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Abstract
We study closures of conjugacy classes in the symmetric matrices of the orthogo-
nal group and we determine which one are normal varieties. In contrast to the result
for the symplectic group where all classes have normal closure, there is only a rel-
atively small portion of classes with normal closure. We perform a combinatorial
computation on top of the same methods used by Kraft-Procesi and Ohta.

Introduction

In a fundamental paper of Kostant [4], the adjoint action on a reductive Lie algebra
g defined over an algebrically closed field k of characteristic 0 is studied in detail.
In the course of his analysis it arose the following problem. Let A ∈ g, let CA be
the conjugacy class of A and let CA be the (Zarisky) closure of CA. Is CA always a
normal variety?

In his paper Kostant showed that if A is a regular nilpotent element of g, so that
CA is the nilpotent cone of g, the normality is always the case.

In [3], the problem of normality of CA is reduced to the case in which A is
nilpotent, possibly changing the Lie algebra g.

Later, in [2, Theorem 4.1] , Broer proved the normality of a handful of nilpotent
orbits in g, including the regular and the subregular orbits (if g is simple).

In the fundamental paper [5] of Kraft and Procesi, the normality of CA is proved
for every nilpotent A in the case g = gln. Their method consists in constructing an
auxiliary variety Z which is a normal complete intersection such that CA is a quotient
of Z.

Kraft and Procesi extended their method to the case where g is the orthogonal
or symplectic Lie algebra in [7]. In that case not all nilpotent classes have normal
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closure. They obtained necessary and sufficient conditions on the partition of A in
order to have the normality of CA, under suitable hypothesis on A.

In a subsequent paper by Sommers [13], the cases outside of this hypothesis (in
[7]) are proved to always have normal closure. Sommers also solved the problem for
the exceptional case E6 in [12].

Kostant and Rallis generalized the study [4] of the adjoint action on g to the
action on the symmetric space in [8]. We briefly describe their setting. Let θ be a
Lie algebra automorphism of g of order 2. Then there exists a decomposition of g in
θ -eigenspaces given by

g = k ⊕ p

where k = {A ∈ g : θ(A) = A} and p = {A ∈ g : θ(A) = −A}. Let G be
the adjoint group of g and K ⊆ G be the subgroup of elements commuting with θ .
We notice that k is a Lie subalgebra of g and LieK = k. We remark that K is not
necessarily connected. Moreover the adjoint action of G on g induces an action of K

on g and both k, p are K-stable. The pair (g, k) is called a symmetric pair and p is the
symmetric space associate to it.

In their study, Kostant and Rallis focused on the action of K on p. Among other
things, they already observed that the nilpotent cone is not irreducible nor normal in
general.

In [14], Vinberg further generalized the study of the adjoint action to graded Lie
algebras, also called θ -groups. Here θ is an automorphism of a Lie algebra g of
finite order n, thus generalizing the case n = 2 of [8]. The graduation induced by θ ,
g = g0 ⊕· · ·⊕ gn−1, produces an action of the θ -fixed points of the adjoint group on
g1.

After the work of Kostant, Rallis and Vinberg, the problem of the normality of CA

naturally generalizes to the case of symmetric spaces.
In [11], Sekiguchi studied deeply the geometry of the nilpotent cone in sym-

metric spaces. In particular he proved several results for the principal nilpotent
elements (which are the analogue of the regular nilpotent elements) when the sym-
metric space is the orthogonal symmetric space or the symplectic symmetric space,
that is, the symmetric spaces of the symmetric pairs (g, k) = (gl(n), o(n)) and
(g, k) = (gl(2m), sp(m)) respectively.

The method of the auxiliary varietyZ developed by Kraft and Procesi in [5–7] was
adapted by Ohta in [10] to the study of the singularities of the orbits in the orthogonal
and symplectic symmetric spaces. In particular he proved that CA is always normal
in the case of symplectic symmetric space. Moreover he found several orbits CA in
the case of the orthogonal symmetric space which have a non-normal closure.

It is well known that the conjugacy classes of the nilpotent cone of the orthogo-
nal symmetric space are parametrized by the partitions of n (see section 1 for more
details). The main purpose of this paper is to give a necessary and sufficient condi-
tion on the partition corresponding to the orbit of a nilpotent symmetric element A

in order to have the normality of CA. The following theorem is the main result of the
paper.
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Theorem 1 Let p be the symmetric space of the symmetric pair (gl(n), o(n)) and let
A ∈ p be a nilpotent element. Let λ = (λ1, . . . , λh) be the partition of A. Then CA is
normal if and only if

λi − λi+1 ≤ 1 ∀i = 1, . . . , h (1)

with the convention that λh+1 = 0.

The proof of Theorem 1 will be carried out in Section 8. The only if part was
already proved in [10, 11] (see Section 8 for details).

We remark that, if n is even, CA is not necessarily connected, as the group K is not
connected. Therefore, sometimes, CA is not normal just because it is not irreducible,
being the union of two closure of SO(n)-orbits (as an example, if one takes λ = (2),
one can shows that CA is the union of two lines which meet at 0). As the referee has
kindly pointed out, it would be interesting to investigate the normality of the closure
of the SO(n)-orbits.

We summarize the content of the rest of the paper.
In Section 1 we recall some basic facts about symmetric nilpotent orbits for the

orthogonal group. In Section 2 we recall from [5] the classification of nilpotent pairs
via ab-diagrams and we describe the class of ab-diagrams which parametrize sym-
metric nilpotent pairs. In Section 3 we recall the construction of the variety Z and
some of its properties which are needed for the proof. In Section 4 we define a con-
dition on partitions which plays an important role in our investigation. In Section 5
we introduce some combinatorial description of pairs of partitions. In Section 7, resp.
Section 8, we prove a complete intersection, resp. normality, condition for the variety
Z using a combinatorial computation carried on in Section 6.

I am grateful to Claudio Procesi for proposing me this problem. I would like to
thank Corrado De Concini, Andrea Maffei and Paolo Bravi for many useful com-
ments. I am really grateful to the reviewers for their precise and useful comments. A
special thank goes to my PhD advisor Giovanni Cerulli Irelli for many discussions
about this problem and his precious help in editing this paper.

1 Symmetric Nilpotent Orbits

In this section we introduce settings and notations for the objects studied in the paper.
We follow [7] and [8].

Let V be a vector space over C together with a symmetric non-degenerate bilinear
form (−, −). Even if in this paper we will only be concerned with the orthog-
onal group O(V ), we will denote the isometry group with respect to (−, −) as
G(V ) := O(V ) in order to keep the notation as close as possible with [7, 10]. Let
gl(V ) be the space of linear endomorphisms of V . Clearly G(V ) acts on gl(V ) by
conjugation. We denote by D∗ the adjoint of an endomorphism D with respect to
(−, −). The endomorphism θ : D �→ −D∗ of gl(V ) is involutive, therefore we have
a decomposition into eigenspaces for θ as follows:

gl(V ) = k(V ) ⊕ p(V ),
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where k(V ) = {D : D = θ(D) = −D∗} is the Lie algebra of G(V ). Moreover the
action of G(V ) leaves both k(V ), p(V ) stable.

In this paper we are concerned with the study of nilpotent orbits of G(V ) in p(V ).
It is well known ([11, Sec. 3.1], [10, Sec. 0]) that the nilpotent orbits in p(V ) are
completely determined by their Jordan form and every partition of n := dimV real-
izes a non-empty nilpotent orbit. We denote by P(n) the set of partitions of n and by
Cλ ⊆ p(V ) the nilpotent orbit corresponding to λ.

Let λ be a partition. We set |λ| := n if λ ∈ P(n) and we denote the dual partition
of λ bŷλ. We frequently identify a partition with its Young diagram. This means that,
if λ = (λ1, . . . , λh), |λ| = λ1+· · ·+λh, λi are the rows of λ and if̂λ = (̂λ1, . . . ,̂λt ),
̂λj are the columns of λ.

We recall the dimension formula for the orbit Cλ from [10, Remark 8]:

dimCλ = 1

2

(

n2 −
t

∑

i=1

̂λ 2
i

)

. (2)

As the nilpotent cone of p(V ) is G(V )-stable with only finitely many orbits, we
have that orbit closure Cλ is G(V )-stable, and the complement Cλ \ Cλ is a disjoint
union of finitely many orbits. The relation Cμ ⊆ Cλ produces a partial order on the
partitions, called dominance order and denoted by μ ≤ λ, and it is given by

j
∑

i=1

λi ≥
j

∑

i=1

μi ∀j ∈ {1, . . . , h}

or, equivalently,
∑

k>j

̂λk ≥
∑

k>j

μ̂k ∀j ∈ {1, . . . , t}.

We recall the notion of nilpotent pairs. We follow the same argument of [7].
Let V (resp. U ) be a finite dimensional vector space over C equipped with
a non-degenerate symmetric bilinear form (−, −)V (resp. (−, −)U ). We denote
L(V, U) := HomC(V , U), L(V ) := L(V, V ) and we define LV,U := L(V, U) ×
L(U, V ). We can interpret LV,U as the representation variety of the quiver

with dimension vector n = (dimV, dimU). This means that

The group G(V ) × G(U) acts on LV,U by change of basis.
For every A ∈ L(V, U) we define the adjoint map A∗ ∈ L(U, V ) as the unique

map such that
(Av, u)U = (v, A∗u)V (3)

for all v ∈ V , u ∈ U .
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Lemma 2 Let A ∈ L(V, U) be a linear map. Then

rkA = rkA∗.

Proof By (3), we get that kerA⊥ ImA∗ and kerA∗⊥ ImA.

A pair (A, B) ∈ LV,U is nilpotent if the endomorphism AB (or equivalently BA)
is nilpotent. A pair (A, B) ∈ LV,U is symmetric if B = A∗. We define NV,U as the
cone in LV,U of the symmetric nilpotent pairs.

As in [7], we have maps

defined by π(A, B) = AB, ρ(A, B) = BA. We can restrict π, ρ to the subspace of
symmetric pairs, i. e. the image of L(V, U) → LV,U , A �→ (A, A∗):

The subvarietyNV,U ⊆ LV,U isG(V )×G(U)-stable. We call nilpotent symmetric
orbit each of the G(V ) × G(U)-orbits in NV,U . We recall [5, Sec. 4.2] that an ab-
diagram is a list of ab-strings, i.e., strings with letters a and b occurring on alternate
positions. As shown in [5, Sec. 4.3], to each nilpotent pair (A, B) ∈ LV,U corre-
sponds an ab-diagram which determines its GL(V ) × GL(U)-orbit completely; i. e.
the GL(V )×GL(U)-orbits correspond one to one to the ab-diagrams having dimV

a’s and dimU b’s. The following picture illustrates how to associate an ab-diagram
δ = δ(A,B) to a nilpotent pair (A, B):

where {v1, · · · , v5} is a suitable basis of V and {u1, · · · , u4} is a suitable basis of U .
If δ is the ab-diagram of an element p ∈ NV,U , we can retrieve the Young diagram

of π(p) (resp. ρ(p)) by suppressing the a’s (resp. the b’s) from δ. We denote by π(δ)

(resp. ρ(δ)) the Young diagram obtained in this manner.
Let (A, B) ∈ LV,U be a nilpotent pair with ab-diagram δ. For every h ≥ 1, we

want to infer the rank of the linear map (AB)h−1A : V → V (resp. (BA)h−1B :
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U → U ) from δ. If γ = c1 · · · c� is a string, for any 1 ≤ i ≤ j ≤ �, we call ci · · · cj

a substring of γ . A substring of δ is a substring of one of its ab-strings. For example,
for h = 1, the rank of A equals the number of occurrences of the letter a which are
not in the last position of a string; this is hence the number of occurrences of the
substring (ab) = (ab)h in δ. With this in mind we prove the following Lemma.

Lemma 3 Let (A, B) be a nilpotent pair with ab-diagram δ. For every h ≥ 1,
the rk((AB)h−1A) (resp. rk((BA)h−1B)) equals the number of occurrences of the
substring (ab)h (resp. (ba)h) in δ.

Proof The ab-diagram δ suggests the choice of basis of V and U for which the
behavior of A and B is straightforward. For each ab-string δi = ci1ci2 . . . ci�i

of δ

(where cij ∈ {a, b}), for each j = 1, . . . , �i , we pick vectors vij ∈ V (resp. uij ∈ U )
if cij = a (resp. cij = b), with the following properties: {vij }i,j (resp. {uij }i,j ) is
a basis of V (resp. U ) and Avij = ui,j+1 (resp. Buij = vi,j+1) if j + 1 ≤ �i or
Avi�i

= 0 (resp. Bui�i
= 0).

Notice that the map (AB)h−1A carries vij to ui(j+2h−1) if j + 2h − 1 ≤ �i or
to 0 otherwise. Therefore, rk((AB)h−1A) equals the number of pairs (i, j) such that
cij = a and j + 2h − 1 ≤ �i . Moreover, every such pair (i, j) corresponds one to
one to the substring cij . . . ci(j+2h−1) of δ, which is the substring (ab)h. A similar
argument computes rk((BA)h−1B).

2 Ortho-symmetric ab-Diagrams

In this section we give a combinatorial description of the ab-diagrams of the elements
of NV,U .

Let X ∈ NV,U be a nilpotent symmetric pair, let G = G(V ) × G(U) and let G.X
be its orbit in NV,U . We also consider G′ = GL(V ) × GL(U) acting on LV,U , and
the orbit G′.X ⊆ LV,U .

The automorphism σ of G′ defined by

(g1, g2)
σ = ((g∗

1)
−1, (g∗

2)
−1)

has G as the set of fixed points. The automorphism (still denoted by σ ) of LV,U

defined by

σ(A, B) = (B∗, A∗)
has the symmetric pairs as the set of fixed points. It is straightforward to check that
all hypothesis of [9, Prop. 2.1] hold. Thus we get that:

G′.X ∩ NV,U = G.X.

Let δ be an ab-diagram associated to an orbit G′.Y . We say that δ is ortho-symmetric
if

G′.Y ∩ NV,U �= ∅.
We are left with the following problem: which ab-diagrams are ortho-symmetric?
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For any two pairs (A, B) ∈ LV,U , (A′, B ′) ∈ LV ′,U ′ , the direct sum (A, B) ⊕
(A′, B ′) = (A ⊕ A′, B ⊕ B ′) is defined as an element in LV ⊕V ′,U⊕U ′ . If δ is the ab-
diagram of (A, B) and δ′ is the ab-diagram of (A′, B ′), the ab-diagram of the direct
sum (A, B) ⊕ (A′, B ′) is the disjoint union of δ and δ′.

We call a symmetric pair (A, A∗) indecomposable if it can not be written as a
direct sum of two nontrivial symmetric pairs. We claim that the ab-diagrams of inde-
composable nilpotent symmetric pairs are given in Table 1. This table closely follows
table II in [7, 6.3].

Proposition 4 An ab-diagram δ is ortho-symmetric if and only if it is a disjoint union
of finitely many ab-diagrams from Table 1.

Proof We say that an ab-diagram η has property P if, for every h ≥ 1, the number
of occurrences of (ab)h in η equals the number of occurrences of (ba)h in η.

Every ab-diagrams αk, βk, εk in Table 1 has property P . Indeed in the diagrams
αk and βk , for every h ≥ 1, there are exactly k − h + 1 occurrences of (ab)h and of
(ba)h. The diagram εk has property P by symmetry of its two ab-strings.

Let (A, A∗) ∈ NV,U be a nilpotent symmetric pair with ab-diagram δ, an
ortho-symmetric ab-diagram. For every positive integer h, we notice that the pair
((AA∗)h−1A, (A∗A)h−1A∗) is nilpotent symmetric. By Lemma 2, we have:

rk(AA∗)h−1A = rk(A∗A)h−1A∗,

which, by Lemma 3, implies that δ has property P .
We claim that an ab-diagram δ with property P is a disjoint union of finitely many

ab-diagrams from Table 1. We proceed by contradiction: suppose that there exist ab-
diagrams with property P which are not disjoint union of finitely many ab-diagrams
from Table 1 and take δ one with the least number of ab-strings. Let s be one of the
ab-strings in δ with maximal length and let l be its length.

If l = 2k+1 is odd, s = αk or s = βk . Let δ′ be the ab-diagram such that δ = s�δ′
(we cannot have δ = s, otherwise δ is already in Table 1).

If l = 2k is even, without loss of generality, we assume that s starts with a. Then,
in s there exists exactly one occurrence of (ab)k and no occurrence of (ba)k . As δ

satisfies property P , by maximality of l, there must be an ab-string s′ in δ of length
l = 2k starting with b. Thus s � s′ = εk , so let δ′ be the ab-diagram such that
δ = s � s′ � δ′ (again, it cannot be empty).

Table 1 Indecomposable ortho-symmetric ab-diagrams

type αk βk εk

(ab)ka = abab · · · a (ba)kb = baba · · · b (ab)k = abab · · · b
(ba)k = baba · · · a

#a k + 1 k 2k

#b k k + 1 2k

k ≥ 0 k ≥ 0 k ≥ 1
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In both cases, δ and δ \ δ′ have property P , therefore also δ′ has property P . By
minimality of δ, δ′ is disjoint union of finitely many ab-diagrams from Table 1, thus
so is δ. This contradicts the existence of such a δ and concludes the only if part of the
proposition.

On the other hand, we show that every ab-diagram in Table 1 is ortho-symmetric.
In order to show this, we just need to construct a symmetric pair (A, A∗) associated
to each diagram αk , βk , εk .

αk: Let D : C
k+1 → C

k+1 be a symmetric nilpotent endomorphism of nilpo-
tent order exactly k + 1. Let D = I ◦ X be the canonical decomposition of
the map D through its image D(Ck+1), so that X : C

k+1 → D(Ck+1) and
I : D(Ck+1) ↪→ C

k+1. Then D induces a non-degenerate bilinear symmetric
form in D(Ck+1), as shown in [7, 4], and X = I ∗. As dimD(Ck+1) = k and both
X, I have maximal rank, we immediately get that the ab-diagram of the symmetric
nilpotent pair (X, I) is αk .

βk: Let (A, A∗) be a pair with ab-diagram of type αk . Then (A∗, A) is a pair with
ab-diagram of type βk .

εk: Let (A, B) be a nilpotent (not symmetric) pair between the spaces (V , U) =
(Ck,Ck) with ab-diagram ab · · · b. Let (B∗, A∗) be the linear dual of (A, B),
so that it is a nilpotent pair between the dual spaces (V ∗, U∗) with ab-diagram
ba · · · a. Then we can equip V ⊕ V ∗ and U ⊕ U∗ with the non-degenerate sym-
metric bilinear form given by the duality pairing. Therefore (A, B) ⊕ (B∗, A∗) is
a symmetric nilpotent pair and its ab-diagram has type εk .

3 The Variety Z

For each partition λ of n we are going to construct a variety Z(λ) (or just Z, if the
partition λ is clear from the context) with the following property: there exists a quo-
tient map Z → Cλ. In this way, we will be able to assert some properties of Cλ by
proving them for the variety Z. The construction of Z is analogous to the one carried
out in [7] and it has already been described in [10]; here we just recall its definition.

Let λ ∈ P(n) be a partition and let t = λ1 be the number of columns of λ. As in
[7], we define a variety Z using the representations of the quiver:

Let

ni =
t

∑

j>i

̂λj

so that n0 = n and nt = 0. We fix the dimension vector n = (n0, . . . , nt ) and vector
spaces Vi such that dimVi = ni . We also fix a symmetric bilinear non-degenerate
form on each Vi .
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The variety Z consists of the representations of dimension vector n of the quiver
Qt with relations:

• xy = yx;
• y = x∗ (the adjoint map as in (3)).

Therefore, each point z ∈ Z is a sequence of maps

(A1, B1; A2, B2; . . . ; At, Bt )

where Ai ∈ L(Vi−1, Vi), Bi ∈ L(Vi, Vi−1), AiBi = Bi+1Ai+1 and Bi = A∗
i for

each i. As each Bi is adjoint to Ai , we get an inclusion

Z ↪→ L(V0, V1) × · · · × L(Vt−1, Vt )

mapping
(A1, B1; A2, B2; . . . ; At, Bt ) �→ (A1, . . . , At ).

As in [7], we can think of Z as a schematic fiber in the following way. Let

M := L(V0, V1) × · · · × L(Vt−1, Vt ),

N := p(V1) × · · · × p(Vt−1),

� : M → N

(A1, . . . , At ) �→ (A1A
∗
1 − A∗

2A2, . . . , At−1A
∗
t−1 − A∗

t At );
then we put Z := �−1(0). As M is an affine space, this interpretation will be useful
in Section 7 to show that Z is a complete intersection variety (at least for some λ).

As in [7], let G = G(V0) × · · · × G(Vt ) be the group which acts on Z by change
of basis and H = G(V1) × · · · × G(Vt ) ⊆ G. We have a map

� : Z → Cλ

(A1, B1; . . . ; At, Bt ) �→ B1A1.

By the same argument as in [7], we have the following:

Proposition 5 The map � splits through the quotient by the group H as

� : Z −→ Z/H ˜−→Cλ;
moreover � is G(V0) = G/H -equivariant.

(In particular, �−1(Cμ) is stable under the action of G(V0) for each partition
μ ≤ λ.)

By restricting the quiver Qt to two consecutive vertices i − 1, i, we get a map
Z → NVi−1,Vi

. As all the orbits in NVi−1,Vi
are defined by their ortho-symmetric ab-

diagram, we can map each point z ∈ Z and i = 1, . . . , t to its ith ab-diagram τi .
Therefore, for each string of ab-diagrams

τ = (τ1, . . . , τt )

we define
Zτ = {z ∈ Z : ∀i, the ith ab-diagram of z is τi }.

The following are necessary conditions on τ in order to have Zτ �= ∅:
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(1) τi must have exactly ni−1 a’s and ni b’s,
(2) ρ(τi) = π(τi+1) for i = 1, . . . , t − 1,
(3) each τi must be ortho-symmetric.

We will denote by �(λ) (or, shortly, by �) the set of all strings τ which verify the
three conditions above.

As in [5, Lemma 5.4], [7, 8.2], �−1(Cλ) is given by exactly one stratum Zτ 0 .
The string of ab-diagrams τ 0 can be constructed in the following way: for all i =
0, . . . , t − 1, let λi be the partition of ni given by the columns of λ with indices
greater than i; then let τi+1 be the ab-diagram built by setting one a on each box in
the Young diagram of λi and by setting one b between each pair of consecutive a’s.

Example 1 Let λ = (3, 1) be a partition. Then the string of ab-diagrams τ 0 is the
following:

τ 0 = (τ 01 , τ 02 , τ 03 ) =
(

ababa aba a

a

)

.

The stratum Zτ 0 is open in Z as it is the subvariety of the points

(A1, B1, . . . , At , Bt )

in Z where each Ai , Bi has maximal rank. We have the following key result after the
manner of Kraft, Procesi and Ohta.

Proposition 6 ([7, 5.5] and [10, Prop. 8]) The open setZτ 0 is contained in the smooth
locus of Z.

We recall a dimension formula for the strata Zτ due to Otha [10, Prop. 6]. First,
for each ab-diagram δ, we denote by ai (resp. bi) the number of rows of δ starting by
a (resp. b) of length i. We define

�(δ) :=
∑

i odd

aibi

and
o(δ) :=

∑

i odd

(ai + bi).

Proposition 7 [10, Prop. 6] Let τ = (τ1, . . . , τt ). We have

dimZτ = 1
2 dimCπ(τ1) + ∑t−1

i=0

(

1
2nini+1 − 1

4 (ni + ni+1)
)

+ ∑t
i=1

(

1
4o(τi) − 1

2�(τi)
)

.
(4)

In the following sections we focus on the combinatorics of the τ ∈ �. We need
tools to effectively manipulate formula (4), in particular we aim at proposition 10 and
proposition 14 (see Section 6).



Normality of Closures of Orthogonal Nilpotent Symmetric Orbits

4 s-Step Condition

In this section we define a condition which plays a pivotal role in the subsequent
study of the nilpotent symmetric orbits.

Definition 1 Given a partition λ = (λ1, . . . , λh), we say that λ satisfies the s-step
condition if for every i = 1, . . . , h we have

λi ≤ λi+1 + s

with the convention that λh+1 = 0.

We want to highlight some simple properties of this definition. First of all, s1-step
condition implies s2-step condition for each s2 ≥ s1. Secondly, if λ satisfies the s-step
condition, then if we remove the first row or the first column from λ, the resulting
partition still satisfies the s-step condition.

Example 2 The single line partition (n) satisfies the n-step condition, but not the
(n − 1)-step condition. The triangular partition (n, n − 1, . . . , 1) satisfies the 1-step
condition. The 2-skew triangular partition (2n, 2(n − 1), . . . , 2) satisfies the 2-step
condition (but not the 1-step condition).

5 Differences Between Partitions

In this section we study some quantitative ways to address the difference between
two partitions. Let λ, μ ∈ P(n) be two partitions of n such that λ > μ.

Definition 2 If λ = (λ1, . . . , λk) ∈ P(n) and μ = (μ1, . . . , μk) ∈ P(n), possibly
allowing λi = 0 for some i, we define

q(λ, μ) = 1

2

k
∑

i=1

|λi − μi |.

Remark 1 By an easy computation modulo 2, it can be seen that q(λ, μ) is an integer.

Example 3 Let λ = (7, 2, 2, 1) and μ = (5, 3, 1, 1, 1, 1). We can draw the Young
diagram of both partitions and overlay one over the other, so that λ is given by white
and gray boxes while μ is given by white and black boxes in the following diagram:
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We can compute the q difference:

q(λ, μ) = 1

2
((7 − 5) + (3 − 2) + (2 − 1) + (1 − 1) + 1 + 1) = 3.

We can check that in this case q(λ, μ) is the number of gray boxes or the number
of black boxes. This is an easy fact (it is not even needed that λ > μ) that can be
derived from the following Lemma.

Lemma 8 Let λ > μ be two partitions of n. Then there exist partitions

λ = λ0 > λ1 > · · · > λq(λ,μ) = μ

such that q(λi, λi+1) = 1 for each i = 0, . . . , q(λ, μ) − 1.
Moreover, we can choose λi such that for each row r and for each column c the

sequences of integers λ0r , . . . , λ
q(λ,μ)
r and ̂λ0c, . . . ,

̂λ
q(λ,μ)
c are monotone.

Proof We proceed by induction on q = q(λ, μ). If q = 1 we trivially have λ1 = μ.
If q > 1, we are going to build λ1 such that q(λ, λ1) = 1 and q(λ1, μ) = q(λ, μ)−1.

We build λ1 starting from λ in this way. Let ı̃ be the first index such that λı̃ > μı̃

and let j be the first index such that λj < μj . Clearly there must exists such indices
because λ �= μ and |λ| = |μ|. Let i ≥ ı̃ be the last index such that λi = λı̃ (possibly
i = ı̃). As λ > μ, we must have ı̃ < j and therefore i < j . We define

λ1 = (λ1, . . . , λi−1, λi − 1, λi+1, . . . , λj−1, λj + 1, λj+1, . . . , λk).

The sequence λ1 is actually a partition of n as |λ1| = |λ| = n, λi − 1 ≥ λi+1 by the
maximality of i and λj−1 ≥ λj + 1 by the minimality of j .

Moreover, both the following hold: q(λ, λ1) = 1 and q(λ1, μ) = q − 1. We apply
induction on the pair (λ1, μ) and we conclude the proof of the first part of the Lemma.

To conclude the proof, we notice that if, for a row r , λr > μr (resp. λr < μr ),
then we have λi

r ≥ λi+1
r (resp. λi

r ≤ λi+1
r ) by construction. The same holds true for

the columns lengths.

Example 4 Taking the partitions λ, μ defined in the previous example, the construc-
tion explained in the Lemma produces the following sequence of partitions:

(7, 2, 2, 1) > (6, 3, 2, 1) > (5, 3, 2, 1, 1) > (5, 3, 1, 1, 1).

Remark 2 In view of Lemma 8 we can interpret q(λ, μ) as the minimum number of
boxes needed to lower in order to obtain μ from λ.

We consider two other ways of comparing partitions. Given a partition λ, for each
box B in the Young diagram of λ we define its column number c(B) (resp. row
number r(B)) by counting the columns (resp. rows) starting from the leftmost column
(resp. uppermost row). For example, given λ = (7, 2, 2, 1) we have:
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Remark 3 By summing up over the rows (resp. the columns) of λ, we have:

∑

B∈λ

c(B) =
h

∑

i=1

(

λi + 1

2

)

(

resp.
∑

B∈λ

r(B) =
t

∑

i=1

(

̂λi + 1

2

)

)

. (5)

Definition 3 Given λ ≥ μ as before, we define:

c(λ, μ) =
∑

B∈λ

c(B) −
∑

B∈μ

c(B),

whereB is selected among the boxes in the Young diagrams of λ andμ and, similarly,

r(λ, μ) =
∑

B∈μ

r(B) −
∑

B∈λ

r(B).

Example 5 Let λ = (7, 2, 2, 1) and μ = (5, 3, 1, 1, 1, 1). We compute

c(λ, μ) = (28 + 3 + 3 + 1) − (15 + 6 + 1 + 1 + 1 + 1) = 10,

r(λ, μ) = (21 + 3 + 3 + 1 + 1) − (10 + 6 + 1 + 1 + 1 + 1 + 1) = 8.

Remark 4 It is always guaranteed that c(λ, μ) ≥ 0 and r(λ, μ) ≥ 0 for every λ ≥ μ.
We even have that

λ = μ ⇐⇒ c(λ, μ) = 0 ⇐⇒ r(λ, μ) = 0. (6)

In fact we have that c(λ, μ) ≥ 0 is equivalent to

∑

i

(

λi + 1

2

)

≥
∑

i

(

μi + 1

2

)

. (7)

As the function n �→ (

n+1
2

)

is convex, (7) is given by the Karamata’s inequality
[1, Chapter 1, §28].

Remark 5 Given partitions λ ≥ μ ≥ ν, by definition of c and r we have:

c(λ, ν) = c(λ, μ) + c(μ, ν), (8)

r(λ, ν) = r(λ, μ) + r(μ, ν). (9)

Remark 6 For every pair of partitions λ ≥ μ we have that

c(λ, μ) ≥ q(λ, μ). (10)

In fact, when q(λ, μ) = 1, by (6) we get (10). Otherwise, by Lemma 8, we
have a sequence of partitions λ0, . . . , λq(λ,μ). For each pair (λi, λi+1), we have
c(λi, λi+1) ≥ 1, therefore the conclusion follows by summing up each inequalities
by (8).

Lemma 9 Let λ be a partition satisfying the s-step condition and μ < λ be another
partition. Then

s · r(λ, μ) ≥ c(λ, μ) + q(λ, μ). (11)
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Moreover, (11) holds strictly if there exists a column index c such that μ̂c > ̂λc + 1
or a row index r such that μr > λr + 1.

Proof Let q = q(λ, μ). By Lemma 8, we obtain a sequence

λ = λ0 > · · · > λq = μ,

with q(λi, λi+1) = 1 for i = 0, . . . , q − 1.
We want to prove

s · r(λi, λi+1) ≥ c(λi, λi+1) + 1 (12)

for all i = 0, . . . , q − 1. Once (12) is proved, the conclusion will follow by summing
up each of those inequalities by (9) and (8).

We start by noticing that the s-step condition implies that, for every pair of row
indices r1 < r2,

λr1 − λr2 ≤ s(r2 − r1).

Fix r1 to be an index row such that λr1 ≥ μr1 and fix r2 to be an index row such
that λr2 ≤ μr2 . Lemma 8 asserts that λi

rj
is a monotone sequence for both j = 1, 2;

therefore, for such r1, r2, we get λi
r1

− λi
r2

≤ λr1 − λr2 , so we get

λi
r1

− λi
r2

≤ s(r2 − r1). (13)

As q(λi, λi+1) = 1, we already observed that the Young diagrams of λi, λi+1 have
only one box in different positions. This means that there exist exactly two columns
ci,1 < ci,2 which are not equal between λi, λi+1. Similarly, there exist exactly two
rows indices ri,1 < ri,2.

We have c(λi, λi+1) = ci,2 − ci,1 and r(λi, λi+1) = ri,2 − ri,1. Moreover, by
definition of λi and λi+1, we have λi

ri,1
= ci,2 and λi

ri,2
= ci,1 − 1. Therefore, by

(13), we get

s · r(λi, λi+1) = s(ri,2 − ri,1) ≥ λi
ri,1

− λi
ri,2

= ci,2 − ci,1 + 1 = c(λi, λi+1) + 1.

Finally, we consider the additional hypothesis of the existence of a column index
c such that μ̂c > ̂λc + 1 or a row index r such that μr > λr + 1. We are going to
prove that there exists i such that (13) holds strictly.

Let

Icols(c) =
{

i ∈ {0, . . . , q − 1} : ̂

λi+1
c > ̂λi

c

}

.

As q(λi, λi+1) = 1, we have | ̂λi+1
c − ̂λi

c| ≤ 1 for each i. Therefore, if there exists
c such that μ̂c > ̂λc + 1, we have |Icols(c)| ≥ 2. Let j be the minimum in Icols(c).
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We show that (13) holds strictly for the rows ri,1, ri,2 for every i ∈ Icols(c) such that
i �= j . Indeed, as λi

ri,2
= c = λ

j
rj,2 , we have

λi
ri,1

− λi
ri,2

≤ λ
j
ri,1 − λ

j
rj,2 ≤ λri,1 − λrj,2

≤ s(rj,2 − ri,1) ≤ s(ri,2 − 1 − ri,1) < s(ri,2 − ri,1).

In a similar fashion, let

Irows(r) =
{

i ∈ {0, . . . , q − 1} : λi+1
r > λi

r

}

.

If there exists r such that μr > λr + 1, then |Irows(r)| ≥ 2 and we take j ∈ Irows(r)

to be the minimum and i ∈ Irows(r) to be another index. We have λi
ri,2

> λ
j
ri,2 = λri,2 ,

so we get
λi

ri,1
− λi

ri,2
< λri,1 − λri,2 ≤ s(ri,2 − ri,1).

In both cases (13) holds strictly for at least an i. Therefore (12) holds strictly for
this i, and (11) must hold strictly as a consequence. Thus, the Lemma is proven.

Example 6 Let

λ = (6, 4, 2), μ = (5, 3, 2, 1, 1), ν = (5, 3, 3, 1)

be three partitions of n = 12. We have that μ < λ and ν < λ; moreover, in the pair
(λ, μ) the first column differs by 2 boxes, while no column in (λ, ν) differs more
than 1 box.

Since λ satisfies the 2-step condition, we can compute each term involved in (11).
For (λ, μ) we have: 2 · 6 ≥ 8 + 2 (which holds strictly), while for (λ, ν) we have:
2 · 4 ≥ 6 + 2.

6 Inequalities on the Dimensions

In this section we will use the tools introduced in Section 5 to effectively compute
the dimensions of the strata in Z.

Let λ = (λ1, . . . , λk) be a partition of n := |λ| with t := λ1 columns. We want
to compare the dimension of Zτ 0 with the dimension of each other stratum Zτ with
τ ∈ �(λ). Let μ = π(τ), so that μ ≤ λ. The aim of this section is to give some
sufficient combinatorial conditions on the pair of partitions (λ, μ) in order to secure
a bound on the difference dimZτ 0 − dimZτ .

The aim of the current section is to prove proposition 10 and Proposition 14. In
order to introduce the stronger inequality in Proposition 14, we need an in-depth
study of the combinatorics of �, so we prefer to introduce it later.

Proposition 10 Let λ ≥ μ be two partitions and let Z = Z(λ) be the variety built
from λ. Let Zτ 0 be the only stratum of Z with π(τ 01 ) = λ and let Zτ be a stratum
with τ = (τ1, . . . , τt ) such that π(τ1) = μ.

For each real number x, we have that:

2r(λ, μ) − c(λ, μ) − q(λ, μ) ≥ 4x =⇒ dimZτ 0 − dimZτ ≥ x.
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The proof will proceed as follows: we take the dimension formula of the strata
of Z given by (4) then we will estimate each term on the difference. Each of the
following lemmas deals with one of the terms.

Lemma 11 Let λ ≥ μ be two partitions of n. Let t = λ1 be the number of columns
of λ. Then

t
∑

i=1

(

μ̂2
i −̂λ2i

)

= 2r(λ, μ).

(We allow μ̂i = 0 for each i > μ1.)

Proof For every integer m we have: m2 = 2
(

m+1
2

) − m. So, by (5), we get:

t
∑

i=1

(

μ̂2
i −̂λ2i

)

=
t

∑

i=1

(

2

(

μ̂i + 1

2

)

− μ̂i − 2

(

̂λi + 1

2

)

+̂λi

)

= 2r(λ, μ) − n + n.

In order to carry on the computation, we examine carefully all the strata Zτ with
τ �= τ 0. We do so by grouping together the τ ∈ � which can appear in �−1(Cμ), for
fixed μ. We already know that for every τ = (τ1, . . . , τt ) such that �(Zτ ) = Cμ, we
have that π(τ1) = μ.

The conditions τ ∈ � and π(τ1) = μ place important combinatorial restrictions
in the choice of the ab-diagrams τ1, . . . , τt . We are going to describe them in the
following paragraphs.

Let Z(μ) be the variety Z built from the partition μ (rather than the partition λ).
We will denote by σ 0 the unique stratum in �(μ) such that �(Z

(μ)

σ 0 ) = Cμ. As in the

case of τ 0, every ab-diagram σ 0
i has only rows starting and ending by a, in particular

they all have odd length, so:
t

∑

i=1

o(σ 0
i ) = n =

t
∑

i=1

o(τ 0i ). (14)

The sequence of ab-diagrams σ 0 does not belong to �(λ) because the integers ni

computed from μ are different from those computed from λ.
Nonetheless, for every τ ∈ �(λ) such that π(τ1) = μ, the condition ρ(τi−1) =

π(τi) implies that each τi can be obtained from σ 0
i by adding an adequate amount of

a’s and b’s letters. For example, if i = 0 we need some b’s, possibly.
For each i = 1, . . . , t , let di be the list of a’s and b’s we need to add to σ 0

i in order
to obtain τi . Let da

i (resp. db
i ) be the number of a’s (resp. b’s) in di . We remark that

da
i and db

i depend only on (λ, μ) and not on the particular τ . In fact, we can compute
da
i by taking the differences

da
i =

t
∑

j=i

(

̂λj − μ̂j

) ; (15)

and therefore we have db
i = da

i+1.
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Example 7 Let τ ∈ �(λ) and let σ 0 ∈ �(μ). Suppose that the ith diagrams are the
following:

σ 0
i =

aba

aba

b

; τi =
ababa

aba

ba

ab

.

Then, we have di = (a, a, a, b, b), da
i = 3, db

i = 2.

Given an ab-diagram δ and a list d of a’s and b’s, we define augδ(d) to be the set
of ortho-symmetric ab-diagrams obtainable from δ by adding the letters in d .

Example 8 Let d = (a, b) and

δ =
aba

aba

b

.

Then augδ(d) has three elements:

augδ(d) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ababa

aba

b

,

aba

aba

bab

,

aba

aba

a

b

b

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

Lemma 12 Let δ0 be an ab-diagram with rows starting and ending only with a. Let
d be a list of da a’s and db b’s. Let δ ∈ augδ0(d). Then the following holds:

o(δ) − 2�(δ) − o(δ0) ≤ max{da, db}.
Proof The ab-diagram δ is obtained from δ0 by adding da a’s and db b’s.

Let L (resp. S) be the set of rows of δ longer than 1 (resp. of length 1) built using
only letters in d . As o(δ) counts some of the rows in δ, we compare the difference
o(δ) − o(δ0) with the number of rows built only with letters in d and we get o(δ) −
o(δ0) ≤ |L| + |S|.

Let Sa (resp. Sb) the rows of S starting with a (resp. b), so that S = Sa �Sb. Recall
that ai (resp. bi) is the number of rows of length i starting with a (resp. b); in this
particular ab-diagram δ we have |Sb| = b1 and |Sa| ≤ a1.

o(δ) − o(δ0) − 2�(δ) ≤ |L| + |S| − 2
∑

i odd

aibi

≤ |L| + |S| − 2a1b1
≤ |L| + |Sa| + |Sb| − 2|Sa||Sb|
≤ |L| + max{|Sa|, |Sb|}.

If |Sa| ≥ |Sb|, then |L| + |Sa| ≤ da
i because each row in L or in Sa contains at least

one a. If the opposite holds true, then |L| + |Sb| ≤ db
i for the same reason. Thus the

Lemma is proven.
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We can introduce a small, but very important, improvement on Lemma 12.

Lemma 13 In the same setting of Lemma 12, if we furthermore assume that d = (b),
that is da = 0 and db = 1, and that δ0 has l rows of length 1, we have the stronger
equality:

o(δ) − 2�(δ) − o(δ0) = max{da, db} − 2l = 1 − 2l.

Proof As all the rows in δ0 have odd length, we cannot extend exactly one row with
letter b, otherwise the resulting ab-diagram would not be ortho-symmetric. So we
must place b on a new row.

In this case, o(δ) − o(δ0) = 1 and �(δ) = a1b1 = l · 1.
Using this lemma we will be able to introduce the previously announced stronger

version of proposition 10, namely:

Proposition 14 Let λ ≥ μ be two partitions and let Z = Z(λ) be the variety built
from λ. Let Zτ 0 be the only stratum of Z with π(τ 01 ) = λ and let Zτ be a stratum with
τ = (τ1, . . . , τt ) such that π(τ1) = μ. As in proposition 10, we suppose that there
exists a real number x such that:

2r(λ, μ) − c(λ, μ) − q(λ, μ) ≥ 4x.

If there exists an index i such that di = (b) and σ 0
i has l rows of length one, then:

dimZτ 0 ≥ dimZτ + x + l/2.

The proof of proposition 14 will be given together with the proof of proposition 10
at the end of this section.

We want an estimate of the sum of the terms max{da
i , db

i } depending only on λ, μ.

Lemma 15 Let λ ≥ μ be partitions, so that we can define da
i , db

i for all i = 1, . . . , t .
Then

t
∑

i=1

max{da
i , db

i } ≤ c(λ, μ) + q(λ, μ). (16)

Proof First we prove the claim for q(λ, μ) = 1.
In this case, μ is obtained from λ by moving down a single box B. Let us call

c1 (resp. c2) the column where B lies in μ (resp. λ); so c1 < c2. By (15), one gets
da
i = 1 for each c1 < i ≤ c2, and 0 otherwise. Moreover one also gets that db

i = 1
for each c1 ≤ i < c2 and 0 otherwise. Therefore max{da

i , db
i } = 1 for all c1 ≤ i ≤ c2

and 0 otherwise. Therefore
t

∑

i=1

max{da
i , db

i } = c2 − c1 + 1,

while
c(λ, μ) = c2 − c1,
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so
t

∑

i=1

max{da
i , db

i } = c(λ, μ) + 1 (17)

and the conclusion holds in this case.
In the general case, let q := q(λ, μ) so, by Lemma 8, we get a sequence of

partitions
λ = λ0 > λ1 > · · · > λq = μ

such that q(λj , λj+1) = 1 for each j = 0, . . . , q − 1. By (17), for every j , we have
t

∑

i=1

max{da
i , db

i }(λj , λj+1) = c(λj , λj+1) + 1

and, summing up over j ,

t
∑

i=1

q−1
∑

j=0

max{da
i , db

i }(λj , λj+1) =
q−1
∑

j=0

c(λj , λj+1) + q.

By (8), the function c is additive on the pairs (λj , λj+1), therefore the right hand
side is equal to c(λ, μ) + q. Also da

i and db
i are additive functions on the pairs

(λj , λj+1) (as it follows from (15)), therefore

q−1
∑

j=0

max{da
i , db

i }(λj , λj+1) =
q−1
∑

j=0

max
{

da
i (λj , λj+1), db

i (λj , λj+1)
}

≥ max

⎧

⎨

⎩

q−1
∑

j=0

da
i (λj , λj+1),

q−1
∑

j=0

db
i (λj , λj+1)

⎫

⎬

⎭

= max
{

da
i (λ, μ), db

i (λ, μ)
}

= max{da
i , db

i }
and the conclusion follows.

We are finally able to prove both Proposition 10 and Proposition 14.

Proof of Proposition 10 and Proposition 14 We start from the dimension formula of
the strata (4). We recall that �(τ 0) = 0 as no ab-diagram of τ 0 has rows starting
with b. Therefore

4
(

dimZτ 0 − dimZτ − x
) = 2(dimCπ(τ 01 ) − dimCπ(τ1)) +

+
(

o(τ 0) − 2�(τ 0)
)

− (o(τ ) − 2�(τ)) − 4x

= 2(dimCλ − dimCμ) + o(τ 0) − o(τ) + 2�(τ) − 4x

=
t

∑

i=1

(

μ̂2
i −̂λ2i

)

+
t

∑

i=1

(

o(τ 0i ) − o(τi) + 2�(τi)
)

− 4x

(by Lemma 11) = 2r(λ, μ) +
t

∑

i=1

(

o(τ 0i ) − o(τi) + 2�(τi)
)

− 4x
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(by (14)) = 2r(λ, μ) +
t

∑

i=1

(

o(σ 0
i ) − o(τi) + 2�(τi)

)

− 4x

≥ 2r(λ, μ) − 4x +

−
t

∑

i=1

max
τi∈augσ0

i
(di )

(

o(τi) − 2�(τi) − o(σ 0
i )

)

(by Lemma 12) ≥ 2r(λ, μ) −
t

∑

i=1

max{da
i , db

i } − 4x

(by Lemma 15) ≥ 2r(λ, μ) − c(λ, μ) − q(λ, μ) − 4x.

Therefore dimZτ 0 − dimZτ ≥ x is guaranteed as soon as 2r(λ, μ) − c(λ, μ) −
q(λ, μ) ≥ 4x.

In order to obtain the sharper result of proposition 14, it is enough to use
Lemma 13 in place of Lemma 12 in the second to last step.

7 Complete Intersection Conditions

In this section we want to give condition under which we can make sure that Z is a
complete intersection variety.

Proposition 16 Let λ be a partition and recall that Z = �−1(0) ⊆ M . We have

codimM(Zτ 0) = dimN .

Proof In order to prove the equality of the required dimensions, we will work with
the dimension formula given by (4). We are going to prove that

dimZτ 0 = dimM − dimN . (18)

We immediately have:

dimM =
t

∑

i=1

dimL(Vi−1, Vi) =
t

∑

i=1

ni−1ni

and

dimN =
t−1
∑

i=1

dim p(Vi) =
t−1
∑

i=1

1

2
n2i +

t−1
∑

i=1

1

2
ni,

so

dimM − dimN =
t

∑

i=1

ni−1ni − 1

2

t−1
∑

i=1

n2i − 1

2

t−1
∑

i=1

ni .

On the other hand, we have:

dimZτ 0 = 1
2 dimCπ(τ 01 ) + ∑t−1

i=0

(

1
2nini+1 − 1

4 (ni + ni+1)
)

+
+ ∑t

i=1

(

1
4o(τ 0i ) − 1

2�(τ 0i )
)

.
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We have that π(τ 01 ) = λ; we then use formula (2).
We also have that o(τ 0i ) is precisely the number of rows of τ 0i (as they all have odd

length), the number of rows of τ 0i is equal to the number of rows of λi := π(τ 0i ), the
partition λi has clearlŷλi

1 rows and̂λi
1 =̂λi , that is the ith column of λ.

Finally, we have that �(τ 0i ) = 0, because there are no rows in τ 0i starting with b.
Therefore:

dimZτ 0 = 1

4

(

n20 −
t

∑

i=1

̂λ2i

)

+
t−1
∑

i=0

(

1

2
nini+1 − 1

4
(ni + ni+1)

)

+ 1

4

t
∑

i=1

̂λi;

we recall that̂λi = ni−1 − ni and that n0 = n = |λ|, nt = 0; so

dimZτ 0 = 1

4

(

n20 −
t

∑

i=1

(ni−1 − ni)
2

)

+

+1

2

t−1
∑

i=0

nini+1 − 1

4
n0 − 1

2

t−1
∑

i=1

ni + 1

4

t
∑

i=1

ni−1 − ni

= −1

2

t−1
∑

i=1

n2i + 1

2

t−1
∑

i=1

ni−1ni + 1

2

t−1
∑

i=0

nini+1 − 1

2

t−1
∑

i=1

ni

= dimM − dimN .

We can proceed to the main result of this section.

Proposition 17 If λ satisfies the 2-step condition, then Z is a complete intersection
variety.

The argument is basically the same used in [5, Theorem in 3.3] and [7, Theorem
in 5.3]. Here we merely put the pieces together. One of these pieces is the following
technical lemma.

Lemma 18 If the partition λ satisfies the 2-step condition and τ ∈ � is a string of
ab-diagrams different from τ 0, then

dimZτ 0 > dimZτ .

Proof of Proposition 17 We start recalling Proposition 6 and Proposition 16.
As Z \ Zτ 0 consists of finitely many strata Zτ and, by Lemma 18, codimZ(Zτ ) ≥

1, we deduce that Z = Zτ 0 . That implies that Z is a complete intersection variety
smooth in codimension 0 and Z is reduced as a scheme.

We can finally use Lemma 9 and Propositions 10 and 14 to prove Lemma 18.
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Proof of Lemma 18 Let μ = π(τ), so in particular μ < λ, as τ �= τ 0. Therefore
Lemma 9 implies

2r(λ, μ) ≥ c(λ, μ) + q(λ, μ) (19)

and, by combining it with proposition 10 we immediately get

dimZτ 0 ≥ dimZτ .

So our concern is reduced to obtain a strict inequality. We will gain the strict
inequality either by proving that (19) holds strictly for the pair (λ, μ) or by using
proposition 14 with l > 0.

Let c be the first column such that μ̂c > ̂λc and let r = μ̂c. This means that the
first c − 1 columns of λ and μ are the same and μr > λr . On the basis of c and r , we
distinguish three cases.

μ̂c −̂λc ≥ 2: in this case we can use Lemma 9 with the column c to obtain that

2r(λ, μ) > c(λ, μ) + q(λ, μ).

μ̂c −̂λc = 1, μr − λr ≥ 2: we can still use Lemma 9, this time with the row r , to
obtain that

2r(λ, μ) > c(λ, μ) + q(λ, μ).

μ̂c −̂λc = 1, μr − λr = 1: in this case we can use Proposition 14 with i = c and
l ≥ 1. Indeed, the following two facts are immediately seen: by (15), dc = (b);
the ab-diagram σ 0

c has at least one row equal to a single a, namely the μ̂cth row.

8 Normality Conditions

In this section we prove Theorem 1. We start by proving the necessary condition as a
consequence of the works by Ohta and Sekiguchi.

Theorem 19 (the only if part of Theorem 1) Let λ be a partition of n and suppose
that λ does not satisfy the 1-step condition. Then Cλ ⊆ p is not normal.

Proof If λ does not satisfy the 1-step condition, then there is an i such that λi ≥
λi+1 + 2. Let

μ = (λ1, . . . , λi−1, λi − 1, λi+1 + 1, . . . , λh)

be another partition of n, so that μ < λ and μ is a minimal degeneration of λ (in the
same sense of [6, 10]). Let m = λi − λi+1 ≥ 2 and let us define the following two
partitions of m:

λ′ = (m),

μ′ = (m − 1, 1).

The degeneration μ′ < λ′ is obtained from μ < λ by removing the common rows
and columns (of μ and λ). By Theorem [10, Theorem 2], the singularity Cμ of Cλ is
normal if and only if the singularity Cμ′ of Cλ′ is normal.
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Moreover, by construction, Cλ′ is the variety of the principal (or regular) nilpotent
elements of p (in dimension m); therefore we also have that Cλ′ = N (p), that is the
cone of the nilpotent elements in p. As μ′ is the minimal degeneration of λ′, Cμ′ is
the variety of subregular nilpotent elements of p. The Theorem [11, §3.1, Theorem
7]. proves that the singularity Cμ′ is not normal in N (p). So this concludes the only
if part.

We turn to the sufficient condition. We will make use of the construction of the
variety Z.

Theorem 20 (the if part of Theorem 1) If the partition λ satisfies the 1-step
condition, then Z is a normal variety. In particular Cλ is a normal variety.

As λ satisfies the 1-step condition, also λ satisfies the 2-step condition, so, by
proposition 17, Z is a complete intersection variety. At this point the proof of
Theorem 20 is a direct consequence of the following Lemma, as in [5, Section 3.7].

Lemma 21 If the partition λ satisfies the 1-step condition, then dim(Z \ Zτ 0) ≤
dimZ − 2.

Proof Let τ ∈ � such that τ �= τ 0. Thus μ := π(τ1) < λ. We need to prove that

dimZτ 0 − dimZτ ≥ 2.

By Lemma 9, r(λ, μ) ≥ c(λ, μ) + q(λ, μ) and hence

2r(λ, μ) − c(λ, μ) − q(λ, μ) ≥ 4x

where x = 1
4 (c(λ, μ) + q(λ, μ)). By proposition 10, we get

dimZτ 0 − dimZτ ≥ x,

so we are done if x > 1.
Let us assume that x ≤ 1. For simplicity of notation, we put c := c(λ, μ) and

q := q(λ, μ). We claim that there are only four cases left: q = c = 2 and q = 1,
c ≤ 3. Indeed, by (6), λ > μ if and only if both c ≥ 1 and q ≥ 1. By (10), we also
have c ≥ q. Since 4x = c+q ≤ 4, then q < 3. Indeed, q ≥ 3 ⇒ c ≥ 3 ⇒ c+q ≥ 6.
If q = 2, then c ≤ 2 by the same reasoning. If q = 1, then c = 4x − q ≤ 4 − 1.

We analyze the four cases separately and, in each case, we find an index i such
that di = (b), the ab-diagram σ 0

i has l rows of length one and l is big enough so that
we can conclude the proof by proposition 14 as follows:

dimZτ 0 − dimZτ ≥ x + l

2
= 1

4
(c + q) + l

2
> 1.

q = 2, c = 2 There are two boxes B, B ′ which are lowered from λ in order to
obtain μ. Let i′ be the column of B in λ and i be the column of B in μ. As c = 2,
i = i′ − 1. By (15), the list di = (b). In σ 0

i the rows with indices μ̂i = ̂λi + 1,̂λi

and̂λi −1 have length one. Indeed, since λ is 1-step, λ does not have two different
columns with the same height. Thus, σ 0

i has l ≥ 3 rows of length one. We found
that 1

4 (c + q) + l
2 ≥ 5

2 > 1.
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q = 1, c = 3 There is a single box B which is lowered from λ in order to obtain μ.
Let i′ be the column of B in λ and i be the column of B in μ. As c = 3, i = i′ −3.
By (15), the list di = (b). In σ 0

i the rows with indices μ̂i , μ̂i − 1 have length one.
Thus, σ 0

i has l ≥ 2 rows of length one. We found that 1
4 (c + q) + l

2 ≥ 2 > 1.
q = 1, c = 2 Similar to the previous case, there is a single box B moving from

column i′ = i + 2 to column i; di = (b); the rows with indices μ̂i , μ̂i − 1 have
length one; so σ 0

i has l ≥ 2 rows of length one. We found that 1
4 (c + q) + l

2 ≥
7
4 > 1.

q = 1, c = 1 There is a single box B moving from column i′ = i + 1 to column i.
Similar to the case q = 2, c = 2, di = (b), the rows with indices μ̂i = ̂λi + 1,̂λi

and̂λi − 1 have length one and σ 0
i has l ≥ 3 rows of length one. We found that

1
4 (c + q) + l

2 ≥ 2 > 1.
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