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Abstract. We give a formula for the crystal structure on the integer points of the string
polytopes and the ∗-crystal structure on the integer points of the string cones of type A for
arbitrary reduced words. As a byproduct, we obtain defining inequalities for Nakashima–
Zelevinsky string polytopes. Furthermore, we give an explicit description of the Kashiwara
∗-involution on string data for a special choice of reduced word.

Introduction

Let g be a simple complex Lie algebra of rank n− 1 and V a finite dimensional
representation of g. Much information of V is encoded in a directed graph with
arrows colored by {1, 2, . . . , n−1}, called the crystal graph of V [K91]. For instance,
this crystal graph is connected if and only if V is irreducible, the character of V
is encoded in the vertices of the crystals graph and there exists a simple notion of
the tensor product of two crystal graphs yielding the crystal graph of the tensor
product of two representations.

For V irreducible, its crystal graph has a unique source corresponding to a
highest weight vector of V . Making use of this fact, Littelmann [Lit98] and Beren-
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stein–Zelevinsky [BZ93], [BZ01] gave a bijection between the vertices of this graph
as integer points of a rational convex polytope called the Littelmann–Berenstein–
Zelevinsky string polytope.

The rule for assigning an integer point in the Littelmann–Berenstein–Zelevinsky
string polytope to a vertex v is as follows. Let x1 be the largest integer such that
there are x1 consecutive arrows of color i1 ending in v. Let v1 be the source of
this sequence of arrows. Let x2 be the length of the longest sequence of arrows of
a color i2 ending in v1 and so on. If we pick the colors i1, i2, . . . , iN according to
the appearance in a reduced decomposition of the longest Weyl group element of
g, this procedure ends at the source of the graph. Then the vertex v maps to the
integer point (x1, x2, . . . , xN ) ∈ NN , called the string datum of v.

Littelmann–Berenstein–Zelevinsky string polytopes have a vast amount of appli-
cations. They are generalizations of Gelfand–Tsetlin polytopes [Lit98], and appear
as Newton-Okounkov bodies for flag varieties [FFL17], [K15] and in Gross–Hacking
–Keel–Kontsevich’s construction of canonical bases for cluster varieties [BF16],
[GKS17].

We consider the following problem for the string polytope of an irreducible
representation V associated to the reduced word i = (i1, i2, . . . , iN ) of the longest
Weyl group element of g.

Problem 1. Give a formula for the operator fa on the integer points of the string
polytope P defined as follows. For two integer points x and x′ in P we have fax =
x′, if the corresponding vertices v and v′ in the crystal graph are connected by an
arrow of color a.

Problem 1 is easy to solve for a = i1. In this case we have

fa(x1, x2, . . . , xN ) = (x1 + 1, x2, . . . , xN ).

There is, however, no obvious solution for arbitrary a. For sl3(C) and the reduced
word s1s2s1, one can deduce from an explicit construction of the crystal graph
(e.g., [DKKA07]) that f2(x1, x2, x3) is equal to (x1, x2 + 1, x3) if x1 ≤ x2−x3 and
(x1− 1, x2 + 1, x3 + 1) otherwise. In this work, we solve Problem 1 by establishing
a formula for the operator fa for any a in the case that g = sln(C).

For a ∈ {1, 2, . . . , n − 1} and a reduced word i = (i1, i2, . . . , iN ) of the longest
element of the Weyl group of sln(C), we define in Section 4 finitely many sequences
γ = (γj) of positive roots of sln(C) with certain properties that we call a-crossings.
These sequences come with an order relation �. We further introduce maps r, s
associating to γ the vectors r(γ), s(γ) ∈ ZN .

Our main result reads as follows, where 〈· , ·〉 is the standard scalar product on
ZN :

Theorem 5.1. Let γ be minimal such that 〈x, r(γ)〉 is maximal. Then

fax = x+ s(γ).

Theorem 5.1 is in analogy to the Crossing Formula established in [GKS21, Thm.
2.13, Prop. 2.20], which computes the operator fa on the polytopes arising from
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Lusztig’s parametrizations of the crystal graph. Indeed, the two formulae may be
viewed as dual since the roles of maximum and minimum and the vectors r(γ),
s(γ) interchange. We elaborate on this duality in [GKS19].

Theorem 5.1 gives rise to two applications. The Verma module of g of weight
0 has a crystal graph B(∞) with a unique source. Kashiwara [K93] defined an
involution ∗ on the vertices of B(∞), leading to a second crystal graph B(∞)∗

with the same set of vertices. Namely, there is an arrow from v1 to v2 of color a
in B(∞)∗ if and only if there is an arrow from v∗1 to v∗2 of color a in B(∞).

Associating integer vectors to the vertices of B(∞)∗ by taking their string data,
we obtain a rational polyhedral cone called the string cone [Lit98], [BZ93], [BZ01]
which contains the Littelmann–Berenstein–Zelevinsky string polytope.

A variation of Problem 1 now arises, replacing the Littelmann–Berenstein–
Zelevinsky string polytope by the string cone and the crystal graph of an irreducible
representation by B(∞)∗. In Theorem 5.2, we provide a solution to this problem
in the case g = sln. Indeed the crystal graph of each irreducible representation V
is a full subgraph of B(∞)∗. Making use of this fact, we deduce Theorem 5.2 from
Theorem 5.1.

Alternatively, the crystal graph for the irreducible representation V can be
realized as a full subgraph of B(∞). The set of corresponding string parameters
is again the set of integer points in a rational polytope, called the Nakashima–
Zelevinsky string polytope, which was shown by Fujita–Naito [FN17] based on
work of Kashiwara [K93], Littelmann [Lit98] and Nakashima–Zelevinsky [NZ97],
[N99]. These polytopes have been found to coincide with Newton-Okounkov bodies
for flag varieties [FN17], [FO17]. They also appear in [CFL] among Newton-
Okounkov bodies inducing semitoric degenerations of Schubert varieties associated
to maximal chains in the corresponding Bruhat graphs.

For Nakashima–Zelevinsky polytopes, Problem 1 has been solved in the work
of Kashiwara [K93] and Nakashima–Zelevinsky [NZ97], [N99]. It is, however, a
difficult problem to compute the inequalities that cut the Nakashima–Zelevinsky
polytopes out of the string cone. A few special cases are treated in [N99], [H05].
Using Theorem 5.2, we obtain these inequalities for all reduced words of the longest
Weyl group element of sln in Theorem 6.1. Previously, Joseph independently gave
a description of these inequalities valid for all reduced words i in [J18, Thm. 3.1]
using the notion of i-trails introduced by Berenstein–Zelevinsky in [BZ01]. It would
be interesting to further investigate the relation between i-trails and a-crossings.

The paper is organized as follows. In Section 1, we recall the background on
crystals. In Section 2, we recall facts about reduced words for elements of the
symmetric group. In Section 3 ,string cones and Littelmann–Berenstein–Zelevinsky
string polytopes, as well as their crystal structures, are discussed.

In Section 4, we introduce the main combinatorial tools of this paper, namely the
notion of wiring diagrams and Reineke crossings. The main result (Theorem 5.1),
providing a formula for the crystal structure on Littelmann–Berenstein–Zelevinsky
string polytopes, is stated in Section 5. We further prove the Dual Crossing Formula
for the ∗-crystal structure on the string cone in this section.

In Section 6, Nakashima–Zelevinsky string polytopes are introduced and their
defining inequalities are computed.
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Section 7 deals with Lusztig’s parametrization of the canonical basis and recalls
facts from [GKS21] which are used in the proof of Theorem 5.1, which is presented
in Section 8.

In Section 9, we give a description of the piecewise linear Kashiwara ∗-involution
on string data. In particular, we obtain a linear isomorphism between the Littel-
mann–Berenstein–Zelevinsky polytope and the Nakashima–Zelevinsky polytope

for a specific reduced word.

Acknowledgements. V. Genz thanks the Independent University of Moscow and
the Labaratoire J.-V. Poncelet for their hospitality. G. Koshevoy thanks the Uni-
versity of Cologne and the Ruhr-Univerity Bochum for their hospitality. B. Schu-
mann thanks Xin Fang, Peter Littelmann, Valentin Rappel, Christian Steinert,
and Shmuel Zelikson for helpful discussions.

1. Crystals

1.1. Notation

Let N = {0, 1, 2, . . .} be the natural numbers and g = sln(C), h ⊂ g its Cartan
subalgebra consisting of the diagonal matrices in g. We abbreviate

[n] := {1, 2, . . . , n}

and define for k ∈ [n] the function εk ∈ h∗ by εk(diag(h1, h2, . . . , hn)) = hk. We
denote by Φ+ the set of positive roots of g given by

Φ+ = {αk,` = εk − ε` | 1 ≤ k < ` ≤ n}.

For a ∈ [n − 1], the simple root αa of g is given by αa = αa,a+1 = εa − εa+1. We
denote by N = n(n− 1)/2 the cardinality of Φ+.

To a ∈ [n − 1] we associate the fundamental weight ωa =
∑
s∈[a] εs of g. Let

P ⊂ h∗ (resp. P+ ⊂ h∗) be the Z-span (resp. Z≥0-span) of the set of fundamental
weights {ωa}a∈[n−1] of sln(C). We call P the weight lattice and P+ the set of
dominant integral weights.

Let Uq(sln) be the Q(q)-algebra with generators Ea, Fa,K
±1
a , a ∈ [n − 1] and

the following relations for b ∈ [n− 1] \ {a}

KaK
−1
a = K−1a Ka = 1, KaKb = KbKa, KaEaK

−1
a = q2Ea,

KaFaK
−1
a = q−2Fa, EaFb − FbEa = 0, EaFa − FaEa =

Ka −K−1a
q − q−1

,

if b = a± 1 : E2
aEb + EbE

2
a = (q + q−1)EaEbEa,

F 2
aFb + FbF

2
a = (q + q−1)FaFbFa,

KaEbK
−1
a = q−1Eb, KaFbK

−1
a = qFb,

if b 6= a± 1 : EaEb = EbEa, FaFb = FbFa,

KaEbK
−1
a = Eb, KaFbK

−1
a = Fb.

870



CROSSING FORMULA FOR STRING PARAMETRIZATIONS

For m ∈ N, let [m]q := qm−1 + qm−3 + · · ·+ q−m+1. For x ∈ Uq(sln) we set

x(m) :=
xm

([m]q[m− 1]q · · · [2]q)
. (1)

For λ ∈ P+ we denote by V (λ) the irreducible Uq(sln)-module of highest
weight λ.

We finally denote by U−q ⊂ Uq(sln) the subalgebra generated by {Fa}a∈[n−1].
1.2. Crystals

We recall the definition of crystals from [K94, Sect. 7].

Definition 1.1. A crystal B is a set endowed with the following maps:

wt : B → P, εa : B → Z t {−∞}, ϕa : B → Z t {−∞},
ea : B → B t {0}, fa : B → B t {0} for a ∈ [n− 1].

Here 0 is an element not included in B. The above maps satisfy the following
axioms for a ∈ [n− 1] and b, b′ ∈ B

(C1) ϕa(b) = εa(b) + wt(b)(ha),
(C2) if b ∈ B satisfies eab 6= 0 then

wt(eab) = wt(b) + αa, ϕa(eab) = ϕa(b) + 1, εa(eab) = εa(b)− 1,

(C3) if b ∈ B satisfies fab 6= 0 then

wt(fab) = wt(b)− αa, ϕa(fab) = ϕa(b)− 1, εa(fab) = εa(b) + 1,

(C4) eab = b′ if and only if fab
′ = b,

(C5) if εab = −∞, then eab = fab = 0.

Here we put −∞+ k = −∞ for k ∈ Z.

Let B1 and B2 be crystals. A map Λ : B1 t {0} → B2 t {0} satisfying Λ(0) = 0
is called a strict morphism of crystals if Λ commutes with all fa, ea (a ∈ [n− 1])
and if for b ∈ B1, Λ(b) ∈ B2 we have

wt(Λ(b)) = wt(b), εa(Λ(b)) = εa(b), ϕa(Λ(b)) = ϕa(b)

for all a ∈ [n − 1]. An injective strict morphism is called a strict embedding of
crystals and a bijective strict morphism is called an isomorphism of crystals.

Definition 1.2. Let B1 and B2 be crystals. The set

B1 ⊗B2 := {b1 ⊗ b2 | b1 ∈ B2, b2 ∈ B2}
equipped with the following crystal structure is called the tensor product of B1

and B2. For a ∈ [n− 1],

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εa(b1 ⊗ b2) = max{εa(b1), εa(b2)− wt(b1)(ha)},
ϕa(b1 ⊗ b2) = max{ϕa(b2), ϕa(b1) + wt(b2)(ha)},

ea(b1 ⊗ b2) =

{
eab1 ⊗ b2 if ϕa(b1) ≥ εa(b2),

b1 ⊗ eab2 else,

fa(b1 ⊗ b2) =

{
fab1 ⊗ b2 if ϕa(b1) > εa(b2),

b1 ⊗ fab2 else.
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1.3. Crystals of representations

We recall the crystal bases B(∞) and B(λ) of U−q and V (λ), respectively, from
[K91, Sects. 2 and 3].

Let a ∈ [n− 1]. For P ∈ U−q there exist unique Q,R ∈ U−q such that

EaP − PEa = QKa +RK−1a .

We define e′a(P ) = R. As vector spaces, we have

U−q =
⊕
m≥0

F (m)
a ker(e′a).

We define the Kashiwara operators ea, fa on U−q for u ∈ ker(e′a) by

fa(F (m)
a u) = F (m+1)

a u, ea(F (m)
a u) = F (m−1)

a u. (2)

Let A be the subring of Q(q) consisting of rational functions g(q) without a pole
at q = 0. Let L(∞) be the A-lattice generated by all elements of the form

fi1fi2 · · · fi`(1) (3)

and let B(∞) ⊂ L(∞)/qL(∞) be the subset of all residues of elements of the
form (3).

For b ∈ B(∞), let wt(b) be the weight of the corresponding element in U−q . For

a ∈ [n − 1] we furthermore set εa(b) = max{eka 6= 0 | k ∈ N}. This endows B(∞)
with the structure of an crystal (see Definition 1.1).

We let ∗ : U−q → U−q be the Q(q)-anti-automorphism of U−q such that E∗a = Ea
for all a ∈ [n − 1]. By [K93, Thm. 2.1.1], we have B(∞)∗ = B(∞). Clearly ∗
preserves the function wt. We denote by f∗a (x) = (fax

∗)∗, e∗a(x) = (eax
∗)∗ and

ε∗a(x) = εa(x∗) the ∗-twisted maps. This endows B(∞) with a second structure
of a crystal. We denote the crystal given by the set B(∞) and the twisted maps
by B(∞)∗. By construction, ∗ induces a crystal isomorphism between B(∞) and
B(∞)∗.

For λ ∈ P+ let πλ : U−q → V (λ) be the surjection u 7→ uvλ, where vλ is a
highest weight vector of V (λ). The operators ea and fa defined in (2) descend to
V (λ) and we denote by L(λ) the A-lattice generated by all elements of the form

fi1fi2 · · · fi`(vλ) (4)

and by B(λ) ⊂ L(λ)/qL(λ) the subsets of all residues of elements of the form (4).
For b ∈ B(λ), let wt(b) be the weight of the corresponding element in V (λ). For

a ∈ [n− 1], we furthermore set

εa(b) = max
{
ekab 6= 0

∣∣ k ∈ N
}
,

ϕa(b) = max
{
fka b 6= 0

∣∣ k ∈ N
}
.

This endows B(λ) with the structure of a crystal (see Definition 1.1).
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We embed B(λ) into B(∞) with accordingly shifted weight as follows. By [K91,
Thm. 4] we have πλ(L(∞)) = L(λ) inducing a map

πλ : L(∞)/qL(∞)→ L(λ)/qL(λ)

with the following properties:

(1) fa ◦ πλ = πλ ◦ fa for all a ∈ [n− 1],
(2) If πλ(b) 6= 0 we have eaπλ(b) = πλ(eab) for all a ∈ [n− 1],
(3) πλ : B(∞) \ π−1λ (0)→ B(λ) is bijective.

For λ ∈ P an integral weight, let Rλ = {rλ} be the crystal consisting of one
element satisfying wt(rλ) = λ, εa(rλ) = −λ(ha), ϕa(rλ) = 0 and earλ = farλ = 0
for all a ∈ [n− 1].

By [J95, Cor. 5.3.13], [N99, Thm. 3.1]

B̃(λ) := {b⊗ rλ ∈ B(∞)⊗Rλ | πλ(b) 6= 0}

is a subcrystal of B(∞)⊗ Rλ and πλ induces an isomorphism of crystals B̃(λ) ∼=
B(λ). Furthermore,

B̃(λ) = {b⊗ rλ ∈ B(∞)⊗Rλ | ε∗a(b) ≤ λ(ha) ∀a ∈ [n− 1]} ∼= B(λ). (5)

2. Symmetric groups, reduced words and wiring diagrams

2.1. Symmetric groups and reduced words

Let Sn be the symmetric group in n letters. The group Sn is generated by the
simple transpositions σa (a ∈ [n− 1]) interchanging a and a+ 1.

A reduced expression of w ∈ Sn is a decomposition of w

w = σi1σi2 · · ·σik

into a product of simple transpositions with a minimal possible number of factors.
We call k the length `(w) of w. For a reduced expression of w ∈ Sn we write
i := (i1, i2, . . . , ik) and call i a reduced word (for w). The set of reduced words for
w is denoted by W(w).

The group Sn has a unique longest element w0 of length N := n(n− 1)/2. We
have two operations on the set of reduced words W(w0).

Definition 2.1. A reduced word j = (j1, . . . , jN ) ∈ W(w0) is said to be obtained
from i = (i1, ik, ik+1, i2) ∈ W(w0) by a 2-move at position k ∈ [N − 1] if j =
(i1, ik+1, ik, i2) and |ik − ik+1| > 1.

A reduced word j = (j1, . . . , jN ) is said to be obtained from

i = (i1, ik, ik+1, ik+2, i2) ∈ W(w0)

by a 3-move at position k ∈ [N − 1] if ik = ik+2, j = (i1, ik+1, ik, ik+1, i2) and
|ik − ik+1| = 1.

A pair (p, q) ∈ [n]2 with p < q is called an inversion for w ∈ Sn if w(p) > w(q).
Let I(w) be the set of inversions for w ∈ Sn. A total ordering < on I(w) is called
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a reflection ordering or convex ordering if for any triple (p, q), (p, r), (q, r) ∈ I(w)
of pairwise distinct inversions we either have (p, q) < (p, r) < (q, r) or (q, r) <
(p, r) < (p, q).

It is well known that the set of reflection orders on I(w0) is in natural bijection
to W(w0) (see, e.g., [D93, Prop. 2.13]). Under this bijection, the reflection order
corresponding to i = (i1, . . . , ik) ∈ W(w0) is given by

(p1, q1) < · · · < (pk, qk),

where pj = σi1 · · ·σij−1(ij), qj = σi1 · · ·σij−1(ij + 1).

Remark 2.2. Let i ∈ W(w0). The set I(w0) is in bijection with Φ+ via the map

(p, q) 7→ αp,q, (6)

where αp,q is defined in Section 1.1. The reflection order corresponding to i induces
a total ordering on Φ+ in this case.

3. String parametrizations

3.1. String parametrization

Kashiwara embedding and string parameters. Let i ∈ W(w0) and b ∈ B(∞). For
1 ≤ k ≤ N we recursively define

xk = εik
(
e
xk−1

ik−1
· · · ex1

i1
b
)

and call stri(b) := (x1, . . . , xN ) the string datum of b in direction i.
By [Lit94, Lem. 5.3] we have

exN
iN
· · · ex1

i1
b = b∞, (7)

where b∞ is the element in B(∞) of highest weight.
By (7) the map stri is injective. We denote by Si = stri(B(∞)) the image of

stri. Let SRi ⊂ RN be the cone spanned by Si. By [Lit98, Prop. 1.5], [BZ01, Prop.
3.5] SRi is a rational polyhedral cone, called the string cone, and Si are the integral
points of SRi .

Recall the definition of ε∗a and e∗a from Section 1.3. Now let

xk = ε∗ik
(
(e∗ik−1

)xk−1 · · · (e∗i1)x1b
)
.

We call str∗i (b) := (x1, . . . , xN ) the ∗-string datum of b in direction i. The following
is well known:

Lemma 3.1. For b ∈ B(∞) we have

stri(b
∗) = str∗i (b), (8)

b∞ = (e∗iN )xN · · · (e∗i1)x1b, (9)

Si = str∗i (B(∞)). (10)
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3.2. Crystal structures on string data

In this section, we equip Si with two crystal structures isomorphic to B(∞).
For a ∈ [n − 1] and k ∈ Z, let ba(k) be a formal symbol. We denote by Ba :=

{ba(k) | k ∈ Z} the crystal, such that for a′ ∈ [n− 1]

εa′(ba(k)) = ϕa′(ba(−k)) =

{
−k, if a = a′,

−∞, else,

wt(ba(k)) = kαa,

fa′(ba(k)) =

{
ba(k − 1) if a′ = a,

0 else,

ea′(ba(k)) =

{
ba(k + 1) if a′ = a,

0 else.

(11)

By [K93, Thm. 2.2.1] there exists for any a ∈ [n− 1] a unique strict embedding
of crystals given by

Λa : B(∞) ↪→ B(∞)⊗Ba
b∞ 7→ b∞ ⊗ ba(0).

(12)

In [K93, Thm. 2.2.1 and its proof] (see also [NZ97, Sect. 2.4]) the following state-
ment is proved.

Lemma 3.2. Let b ∈ B(∞) and m = ε∗a(b). We have

Λa(b) = (e∗a)
m
b⊗ ba(−m).

Lemma 3.2 naturally provides two crystal structures on Si as follows. Let i =
(i1, . . . , iN ) ∈ W(w0). We iterate the map (12) along i by setting

Λi = ΛiN ◦ ΛiN−1
◦ · · · ◦ Λi1 .

Combining Lemma 3.1 with Lemma 3.2 we obtain the strict embedding

Λi(b) = b∞ ⊗ bi1(−xN )⊗ bi2(−xN−1) · · · ⊗ biN (−x1),

where (x1, x2, . . . , xN ) = str∗i (b) = stri(b
∗). Identifying Si with Λi(B(∞)) via

(x1, . . . , xN ) 7→ b∞ ⊗ biN (−xN )⊗ · · · ⊗ bi1(−x1).

yields two crystal structures B(∞) and B(∞)∗ on Si.
From Λi(B(∞)) ⊂ {b∞} ⊗ BiN ⊗ · · · ⊗ Bi1 , we obtain the following explicit

description of the crystal structure on Si resulting from B(∞). Let (ci,j) be the
Cartan matrix of sln(C). For k ∈ [N ] and x ∈ Si we set

ηk(x) : = xk +
∑

k<`≤N

cik,i`x`. (13)
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Lemma 3.3 ([K02]). The crystal structure on Si obtained from B(∞) via the
bijection b 7→ str∗i (b) is given as follows. For x ∈ Si and a ∈ [n− 1]

εa(x) = max {ηk(x) | k ∈ [N ], ik = a} , wt(x) = −
N∑
k=1

xkαik ,

fa(x) = x+ (δk,`x)k∈[N ] ,

ea(x) =

{
x− (δk,`x)k∈[N ] if εa(x) > 0,

0 else,

(14)

where `x ∈ [N ] is minimal such that i`x = a and η`x(x) = εa(x) and where `x ∈ [N ]
is maximal such that i`x = a and η`x(x) = εa(x).

The crystal structure on Si obtained from B(∞)∗ via the bijection b 7→ str∗i (b)
is given as follows.

By [Lit98, Prop. 2.3] (see also [BZ93, Thm. 2.7]) we introduce piecewise linear
bijections Ψi

j : SRi → SRj between the string cones associated to reduced words
i, j ∈ W(w0) satisfying for b ∈ B(∞)

Ψi
j ◦ stri(b) = strj(b) (15)

as follows. If j ∈ W(w0) is obtained from i ∈ W(w0) by a 3-move at position k we
set y = Ψi

j(x) with

y = (x1, . . . , xk−2, x
′
k−1, x

′
k, x
′
k+1, xk+2, . . . , xN ),

x′k−1 = max(xk+1, xk − xk−1), x′k = xk+1 + xk−1 and

x′k+1 = min(xk − xk−1, xk+1).

If j ∈ W(w0) is obtained from i ∈ W(w0) by a 2-move at position k we set

Ψi
j (x1, . . . , xN ) = (x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xN ) .

For arbitrary i, j ∈ W(w0) we define Ψi
j : Si → Sj as the composition of the

transition maps corresponding to a sequence of 2- and 3-moves transforming i into
j.

The following is well known:

Lemma 3.4. Let x ∈ Si, a ∈ [n − 1] and j ∈ W(w0) with j1 = a. Setting y :=
Ψi

j(x) ∈ Sj we have

ε∗a(x) = y1, wt(x) = −
N∑
k=1

xkαik ,

f∗a (x) = Ψj
i (y + (1, 0, 0, . . . )) ,

e∗a(x) =

{
Ψj

i (y − (1, 0, 0, . . . )) if ε∗a(x) > 0,

0 else.

(16)

In Theorem 5.2 we give a formula for the crystal structure of Lemma 3.4.
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3.3. String polytopes and their crystals structures

Let λ ∈ P+ and i ∈ W(w0). Recall from (5) that the crystal B(λ) is isomorphic

to the subcrystal B̃(λ) of B(∞)⊗Rλ. Hence, using (7) we get a bijection between
B(λ) and

S∗i (λ) := {stri(b) | b⊗ rλ ∈ B(∞)⊗Rλ, ε∗a(b) ≤ λ(ha) ∀a ∈ [n− 1]} . (17)

In [Lit98, Prop. 1.5] it is shown that S∗i (λ) is the set of integer points of the
rational polytope

S∗i (λ)R =

{
x ∈ SRi

∣∣∣∣xk +
∑

k<`≤N

cik,i`xk ≤ λik ∀k ∈ [N ]

}
⊂ RN . (18)

We call S∗i (λ)R the Littelmann–Berenstein–Zelevinsky string polytope.

By (17) we obtain the following crystal structure isomorphic to B(λ) on S∗i (λ) ⊂
Si. Denoting by ιλ : S∗i (λ) ↪→ Si the natural embedding we obtain

Lemma 3.5. For x ∈ S∗i (λ) and a ∈ [n− 1] we have

εa(x) = ε∗a(ιλ(x)), wt(x) = λ+ wt(ιλ(x)), ιλea(x) = e∗aιλ(x),

ιλfa(x) =

{
f∗a ιλ(x) if ϕa(x) > 0,

0 else.

In Theorem 5.1 we give a formula for the crystal structure of Lemma 3.5.

4. Wiring diagrams and Reineke crossings

Following [BFZ96], we recall the notion of a wiring diagram, which is a graphical
presentation of the reduced word i ∈ W(w0).

Definition 4.1 (wiring diagram). Let i = (i1, i2, . . . iN ) ∈ W(w0). The wiring
diagram Di consists of a family of n piecewise straight lines, called wires, which
can be viewed as graphs of n continuous piecewise linear functions defined on the
same interval. The wires have labels in the set [n]. Each vertex of Di (i.e., an
intersection of two wires) represents a letter j in i. If the vertex corresponds to the
letter j ∈ [n − 1], then j − 1 is equal to the number of wires running below this
intersection. We call

level(v) := j

the level of the vertex v.

The word i can be read off from Di by reading the levels of the vertices from
left to right.

Example 4.2. Let n = 5 and i = (2, 1, 2, 3, 4, 3, 2, 1, 3, 2). The corresponding
wiring diagram Di is depicted below:
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1

2

3

4

5

2 1 2 3 4 3 2 1 3 2

The condition i ∈ W(w0) implies that two lines p, q with p 6= q in Di intersect
exactly once.

Each vertex of the wiring diagram Di, i ∈ W(w0) corresponds to an inversion
(p, q) ∈ I(w0), where p and q are the labels of the wires intersecting in that vertex.
Thus the vertices of Di are in bijection with the positive roots by (6). The reflection
order on I(w0) and the induced total order on Φ+ can be read off of Di by reading
the vertices from left to right. We identify

[N ]↔ I(w0) =
{

(p, q) ∈ [n]2
∣∣ p < q

}
(19)

such that k ∈ [N ] corresponds to the k-th vertex (p, q) ∈ I(w0) in Di from left.

Example 4.3. We continue with Example 4.2. The reflection ordering

(2, 3) < (1, 3) < (1, 2) < (1, 4) < (1, 5) < (4, 5) < (2, 5) < (3, 5) < (2, 4) < (3, 4)

corresponding to i is depicted in the wiring diagram Di below:

1

2

3

4

5

(1,3)

(1,2)

(1,4)

(1,5)

(2,3) (2,5)

(2,4)

(3,5)

(3,4)

Definition 4.4. Let i ∈ W(w0) and Di be the corresponding wiring diagram. For
a ∈ [n − 1] we denote by Di(a) the oriented graph obtained from Di by orienting
its wires p from left to right if p ≤ a, and from right to left if p > a.

Example 4.5. Let a = 3 and Di as in Example 4.2. The oriented graph Di(3)
looks as follows:
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1

2

3

4

5

An oriented path in Di(a) is a sequence (v1, . . . , vk) of vertices of Di, which are
connected by oriented edges v1 → v2 → . . .→ vk in Di(a).

Definition 4.6 (Reineke crossings). For a ∈ [n−1] an a-crossing is an oriented
path γ = (v1, . . . , vk) in Di(a) that starts with the leftmost vertex of the wire a and
ends with the leftmost vertex of the wire a+1. We say an a-crossing γ is a Reineke
crossing if γ additionally satisfies the following condition: Whenever vj , vj+1, vj+2

lie on the same wire p in Di and the vertex vj+1 lies on the intersection the wires
p and q, then

p > q if q ≤ a,
p < q if a < q.

In other words, the path γ avoids the following two fragments:

p

q

q

p

We denote the set of all a-Reineke crossings by Γa.

Remark 4.7. Reineke crossings appear as rigorous paths in [GP00].

Example 4.8. Let n = 5. The vertices lying on the path as highlighted below
form the 3-Reineke crossing γ = (v3,2, v3,1, v1,2, v2,5, v2,4, v4,5, v4,1):

1

2

3

4

5

In the remainder of this section, we adopt the following convention: we label
each vertex v = vp,q ∈ γ by the wires p and q that intersect in this vertex where p
is the wire of the oriented edge in γ whose source is vp,q.
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Definition 4.9. Let a ∈ [n− 1] and γ = (vp1,q1 , vp2,q2 , . . . , vpm,qm) ∈ Γa. We call
the set of vertices vps,qs such that ps+1 = qs the turning points Tγ of γ.

Example 4.10. For γ = (v3,2, v3,1, v1,2, v2,5, v2,4, v4,5, v4,1) as in Example 4.8 we
have Tγ = {v3,1, v1,2, v2,4}.

Using the identification (19) we introduce:

Definition 4.11. The maps r : Γa → ZN and s : Γa → ZN are given by

(r(γ))p,q :=

{
sgn(q − p) if vp,q ∈ Tγ ,
0 else,

(s(γ))p,q :=


1 if vp,q ∈ γ, p ≤ a < q or q ≤ a < p,

−1 if vp,q ∈ γ \ Tγ , a < p, q or p, q ≤ a,
0 else.

Example 4.12. Let γ = (v3,2, v3,1, v1,2, v2,5, v2,4, v4,5, v4,1) be as in Example 4.8.
We have

r(γ) = (0,−1, 1, 0, 0, 0, 0, 0, 1, 0), s(γ) = (−1, 0, 0, 1, 0,−1, 1, 0, 1, 0).

By [GKS21, Prop. 2.2] we have the following order relation � on Γa:

Definition 4.13. Let γ1, γ2 ∈ Γa. We say γ1 � γ2 if all vertices of γ1 lie in the
region of Di cut out by γ2.

Example 4.14. Let γ be as in Example 4.8 and γ′ = (v3,2, v2,1, v1,4). In the
picture below, the region cut out by γ is shaded grey while γ′ consists of all
vertices lying on the highlighted path. Thus, γ′ � γ.

1

2

3

4

5

5. Dual Crossing Formula for string parametrizations

Let λ ∈ P+ and i ∈ W(w0). In this section, we state our main result, which
is a formula for the crystal structure on the integer points of the Littelmann–
Berenstein–Zelevinsky string polytope S∗i (λ)R defined in (18).

Recall the notion of the set of a-Reineke crossings Γa from Definition 4.6 and
their associated vectors from Definition 4.11. We denote by 〈· , ·〉 the standard
scalar product on ZN . The crystal structure on S∗i (λ) from Lemma 3.5 is explicitly
computed by:
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Theorem 5.1. For λ ∈ P+, a ∈ [n− 1] and x ∈ S∗i (λ) we have

εa(x) = max {〈x, r(γ)〉 | γ ∈ Γa} , (20)

wt(x) = λ−
∑
k∈[N ]

xkαik , (21)

fa(x) =

{
x+ s(γx) if ϕa(x) > 0,

0 else,
(22)

ea(x) =

{
x− s(γx) if εa(x) > 0,

0 else,
(23)

where γx ∈ Γa is minimal such that 〈x, r(γx)〉 = εa(x) and γx ∈ Γa is maximal
such that 〈x, r(γx)〉 = εa(x).

Theorem 5.1 is proved in Section 8. A formula for the ∗-crystal structure on Si
given in Lemma 3.4 can directly deduced from Theorem 5.1:

Theorem 5.2 (Dual Crossing Formula). For a ∈ [n− 1] and x ∈ Si we have

ε∗a(x) = max {〈x, r(γ)〉 | γ ∈ Γa} ,
f∗a (x) = x+ s(γx),

e∗a(x) =

{
x− s(γx) if εa(x) > 0,

0 else,

where γx ∈ Γa is minimal such that 〈x, r(γx)〉 = ε∗a(x) and γx ∈ Γa is maximal
such that 〈x, r(γx)〉 = ε∗a(x).

Proof. Since Si = ∪λ∈P+S∗i (λ), we can find for each x ∈ Si a λ ∈ P+ such that
f∗ax ∈ S∗i (λ) = {x ∈ Si | εa(x) ≤ λa ∀a ∈ [n − 1]}. Thus the claim follows from
Lemma 3.5 and Theorem 5.1. �

Remark 5.3. The ∗-crystal structure on the string cone Si is dual to the crystal
structure on Lusztig data, which is governed by the Crossing Formula 7.3 recalled
below. By duality we understand the following: Maximum and minimum swap
place as do the maps r : Γa → ZN and s : Γa → ZN .

The ∗-crystal structure on Lusztig data x ∈ NN is described by the ∗-Crossing
Formula [GKS21, Thm. 2.20], which is completely analogous to the Crossing For-
mula for Lusztig data. In [GKS21, Thm. 4.4] we show that Si is polar to the
set

R∗ =
{
f∗ax− x

∣∣ a ∈ [n− 1], x ∈ NN
}
, (24)

i.e., the vectors f∗ax−x of the ∗-crystal structure on Lusztig data provide defining
inequalities for Si. For the special case of reduced words adapted to quivers, (24)
was obtained in [Z13].

Similarly, the set of Lusztig data NN is polar to

{fax− x |x ∈ Si} =
{

(δk,`)k∈[N ]

∣∣ ` ∈ [N ]
}
,

i.e., the vectors fax − x of the crystal structure (14) on Si provide defining
inequalities for the cone of Lusztig data NN . We refer to [GKS19] for more details.
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6. Defining inequalities of Nakashima–Zelevinsky string polytopes

Theorem 5.1 provides a formula for the crystal structure on the Littelmann–
Berenstein–Zelevinsky string polytope S∗i (λ). Switching the roles of B(∞) and
B(∞)∗ in the definition of S∗i (λ) one arrives at

Si(λ) := {x ∈ Si | ε∗a(x) ≤ λa ∀a ∈ [n− 1]}.

Building up on [NZ97], Si(λ) and its crystal structure is defined in [N99].

By Lemma 3.4, the set Si(λ) consists of the integer points of the Nakashima–
Zelevinsky string polytope

Si(λ)R := {x ∈ SRi | ε∗a(x) ≤ λa ∀a ∈ [n− 1]},

where ε∗a on Si(λ)R is defined as in (16). By [FN17], the convex polytope Si(λ)R is
rational. In this section, we solve the problem of deriving defining inequalities for
Si(λ)R ⊂ RN .

The Dual Crossing Formula (Theorem 5.2) immediately implies

Theorem 6.1. The set Si(λ)R ⊂ SRi is explicitly described by

Si(λ)R =
{
x ∈ SRi

∣∣ 〈x, r(γ)〉 ≤ λa for all a ∈ [n− 1] and for all γ ∈ Γa
}
.

Remark 6.2. Previously, Joseph independently gave a description of a set of defin-
ing inequalities for Si(λ)R in [J18, Thm. 3.1] using the notion of i-trails introduced
by Berenstein–Zelevinsky in [BZ01]. It would be interesting to further investigate
the relation between i-trails and a-crossings.

Using the explicit description of defining inequalities of SRi obtained in [GP00]
we obtain defining inequalities of Si(λ)R ⊂ RN . We recall the result of [GP00] for
the convenience of the reader.

Using the notation of Section 4, let Di be the wiring diagram associated to
i ∈ W(w0). For a ∈ [n−1], letDi(a)∨ be the graph obtained from Di(a) by reversing
all arrows. For a ∈ [n− 1], an a-rigorous path is an oriented path γ = (v1, . . . , vk)
in Di(a)∨ that starts with the rightmost vertex of the wire a and ends with the
rightmost vertex of the wire a+ 1. Additionally γ satisfies the following condition:
whenever vj , vj+1, vj+2 lie on the same wire p in Di and the vertex vj+1 lies on the
intersection the wires p and q, we have

p > q if q ≤ a,
p < q if a+ 1 ≤ q.

We denote the set of all a-rigorous paths by Γ∗a.

For γ ∈ Γ∗a, we define the set of turning points and the vector r(γ) as in
Definitions 4.9 and 4.11, respectively.

As a direct consequence of [GP00, Cor. 5.8] and Theorem 6.1, we obtain
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Corollary 6.3. The Nakashima–Zelevinsky string polytope Si(λ)R is explicitly de-
scribed by

Si(λ)R =
{
x ∈ RN

∣∣ 〈x, r(γ)〉 ≥ 0, 〈x, r(γ′)〉 ≤ λa ∀a ∈ [n− 1], γ ∈ Γ∗a, γ
′ ∈ Γa

}
.

For the sake of completeness we recall the crystal structure on Si(λ). For k ∈ [N ]
we consider the function ηk on Si(λ) defined in (13). Analogously to Lemma 3.5
we have:

Lemma 6.4 ([N99]). The following defines a crystal structure on Si(λ) isomor-
phic to B(λ). For x ∈ Si(λ) and a ∈ [n− 1]

εa(x) = max {ηk(x) | k ∈ [N ], ik = a} , wt(x) = λ−
∑
k∈[N ]

xkαik ,

fa(x) =

{
x+ (δk,`x)k∈[N ] if ϕa(x) > 0,

0 else,

ea(x) =

{
x− (δk,`x)k∈[N ] if εa(x) > 0,

0 else,

where `x ∈ [N ] is minimal such that i`x = a and η`x(x) = εa(x) and where `x ∈ [N ]
is maximal such that i`x = a and η`x(x) = εa(x).

7. The Crossing Formula on Lusztig data

The main ingredient in the proof of Theorem 5.1 is the Crossing Formula proved
in [GKS21], which we recall in this section.

7.1. Lusztig’s parametrization of the canonical basis

Lusztig [L90] associated to a reduced word i = (i1, i2, . . . , iN ) ∈ W(w0) a PBW-
type basis Bi of U−q as follows. Let β1 < β2 < · · · < βN be the total ordering of
Φ+ corresponding to i via Remark 2.2. We set

Fi,βm
:= Ti1Ti2 · · ·Tim−1

Fim ,

where Ti acts via the braid group action defined in [Lu90, Sect. 1.3]. The divided
powers x(m) for x ∈ U−q are defined in (1). Then the PBW-type basis

Bi :=
{
F

(x1)
i,β1

F
(x2)
i,β2
· · ·F (xN )

i,βN

∣∣∣ (x1, x2, . . . , xN ) ∈ NN
}

is in natural bijection with the canonical basis B of U−q (see [L90, Prop. 2.3,
Theorem 3.2]).

Definition 7.1. We call x = (x1, x2, . . . , xN ) ∈ NN , the i-Lusztig datum of the

element F
(x1)
i,β1

F
(x2)
i,β2
· · ·F (xN )

i,βN
∈ Bi.
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7.2. Crystal structures on Lusztig’s parametrizations

Let i and j be two reduced words for w0. A piecewise linear bijection Φi
j : NN → NN

from the set of i-Lusztig data to the set of j-Lusztig data is defined in [L90, Sect.
2.1] using the fact that any reduced word j can be obtained from any other reduced
word i by applying a sequence of 2- and 3-moves given in Definition 2.1.

Let i ∈ W(w0) with corresponding total ordering β1 < β2 < · · · < βN of Φ+ as
in Remark 2.2. The crystal structure on i-Lusztig data NN obtained from B(∞)
via the bijection

(x1, . . . , xN ) 7→ bi(x) := F
(x1)
i,β1

F
(x2)
i,β2
· · ·F (xN )

i,βN
∈ Bi ' B (25)

is given as follows (see [L93], also [BZ01, Prop. 3.6]).

Proposition 7.2. Let a ∈ [n − 1] and j ∈ W(w0) with j1 = a. For an i-Lusztig
datum x ∈ NN and y := Φi

j(x)

εa(x) = y1, wt(x) = −
∑
k∈[N ]

xkβk,

fa(x) = Φj
i (y + (1, 0, 0, . . . )) ,

ea(x) =

{
Φj

i (y − (1, 0, 0, . . . )) if εa(x) > 0

0, else.

The main result of [GKS21] is the Crossing Formula for the crystal structure
from Proposition 7.2. Using (5) this leads for λ ∈ P+ to a formula for the crystal
structure on Li(λ) := {x ∈ NN | ε∗a(x) ≤ λa ∀a ∈ [n− 1]} isomorphic to B(λ):

Theorem 7.3 ([GKS21, Thm. 2.13, Prop. 2.20]). Let a ∈ [n − 1], λ ∈ P+ and
x ∈ Li(λ). We have

εa(x) = max {〈x, s(γ)〉 | γ ∈ Γa} , wt(x) = λ−
∑
k∈[N ]

xkβk,

fa(x) =

{
x+ r(γx) if ϕa(x) > 0,

0 else,

ea(x) =

{
x− r(γx) if εa(x) > 0,

0 else,

where γx ∈ Γa is minimal such that 〈x, s(γx)〉 = εa(x) and γx ∈ Γa is maximal
such that 〈x, s(γx)〉 = εa(x).

Remark 7.4. An explicit form of the crystal structure on i-Lusztig data was known
in several cases before. Let g be a simple, finite dimensional, complex Lie algebra
and w0 be the longest element of the Weyl group of g.

In [R97], a rule was given for all reduced words corresponding to a quiver
satisfying a certain homological condition. In type An, this condition is always
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satisfied and our Crossing Formula in [GKS21] is a generalization of Reineke’s rule
to all reduced words in type An (i.e., not necessarily adapted to a quiver).

In [SST18], a combinatorial “bracketing rule” describing the crystal structure
for so-called “simply braided” reduced words for w0 has been established. For g of
type An, a word is simply braided if and only if for all a ∈ I all paths in Γa consist
only of vertices on the a-wire, and a+ 1-wire which is the case if and only if Γa is
linearly oriented. As a consequence, restricting to simply-braided words i Theorem
5.2 becomes a bracketing rule for the computation of the ?-crystal structure on Si
in type A.

In [K18], Reineke’s rule [R97] is applied for g of type An and for reduced words
adapted to quivers with a single sink to give a crystal isomorphism to Young
tableaux. By [BFZ96, Prop. 4.4.1] and [E97, Lem. 2.1], the reduced words adapted
to quivers with a single sink are simply braided and correspond to wiring diagrams
of the following form, where the sink is at vertex k:

1

2

...

k−1

k

...

n

n+1

...

...

. . .

. . .

An essential ingredient of the crystal isomorphism in [K18] is the following tensor
product decomposition given in [K18, Thm. 4.2]:

NN ' NJ ⊗ NJ1 ⊗ NJ2 , (26)

J= {αp,q | p ≤ a < q}, J1= {αp,q | p, q ≤ a}, J2 = {αp,q | p, q > a}.

Here NI denotes for I ⊂ Φ+ the crystal obtained by applying the Crossing Formula
with Γa replaced by

{
γ ∈ Γa | r(γa) ⊂ NI

}
and s(γ) replaced by s(γ)|NI . The sets

J , J1 and J2 correspond to the dashed, dotted and solid parts in the above picture,
respectively.

More generally, the decomposition (26) can be deduced for all simply braided
reduced words from the bracketing rule or alternatively from the Crossing Formula
as follows. We denote the restriction of the crystal NI obtained by forgetting the
root operators fb for b 6= a by NI |a. We abbreviate Ip,q := {αp,q, αp+1,q} and
Cq := NIa,q |a. Since for simply braided words the Reineke lattice Γa is linearly
ordered, we obtain alternatively from the Crossing Formula or the bracketing rule
the tensor product decomposition

NN |a'


Ck⊗. . .⊗Cn+1⊗Ck−1⊗. . .⊗Ca+2⊗N{αa,a+1}|a ⊗ NIa |a, if a<k,

N{αa,a+1}|a⊗NIa |a, if a=k,

Ck−1⊗. . .⊗C1⊗Ck⊗. . .⊗Ca−1⊗N{αa,a+1}|a⊗NIa |a, if a>k

(27)
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for suitable Ia ⊂ Φ+. We remark that NIa |a is the trivial crystal with weight
function obtained by restricting the weight function on NN . Similarly, we obtain

NJ |a '


Ck ⊗ · · · ⊗ Cn+1 ⊗ NI′a |a, if a < k,

N{αa,a+1}|a ⊗ NI′a |a, if a = k,

Ck−1 ⊗ · · · ⊗ C1 ⊗ NI′a |a, if a > k,

NJ1 |a '

{
Ck−1 ⊗ · · · ⊗ Ca+2 ⊗ N{αa,a+1}|a ⊗ NI′′a |a, if a < k,

NI′′a |a, else,

NJ2 |a '

{
Ck ⊗ · · · ⊗ Ca−1 ⊗ N{αa,a+1}|a ⊗ NI′′′a |a, if a > k,

NI′′′a |a, else.

(28)

From (27) and (28) we conclude (26).

8. Proof of Theorem 5.1

We fix i = (i1, . . . , iN ) ∈ W(w0) as well as λ =
∑
b∈[n−1] λbωb ∈ P+ and set

λ∗ :=
∑

b∈[n−1]

λn−bωb ∈ P+,

λ := (λi1 , λi2 , . . . λiN ) ∈ NN .

8.1. A bijection between string and Lusztig data

Let (ci,j) be the Cartan matrix of sln. For x ∈ ZN we define

Fi(x) :=

xk +
∑

k<`≤N

cik,i`x`


k∈[N ]

∈ ZN ,

Gλi (x) := λ− Fi(x) ∈ ZN .

By [MG03, Cor. 3.5], [CMMG04, Lem. 6.3] (see also [GKS17, Lem. 6.4, Lem. 7.4,
Prop. 8.2]) we have

Proposition 8.1. The map Gλi restricts to a bijection

Gλi : S∗i (λ)
∼−→ Li(λ

∗).

Further, Gλj ◦Ψi
j = Φi

j ◦Gλi for any j ∈ W(w0).

The bijection Gλi between S∗i (λ) and Li(λ
∗) intertwines the crystal structures

given in Lemma 3.5 and Proposition 7.2 as follows.

Lemma 8.2. For a ∈ [n− 1] we have on S∗i (λ)

εa = ϕa ◦Gλi , (29)

Gλi ◦ ea = fa ◦Gλi , (30)

wt = −wt ◦Gλi . (31)
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Proof. Clearly, (29) and (30) hold for i1 = a and thus by Proposition 8.1 for
arbitrary i ∈ W(w0).

By (30) and the crystal axiom (C3) in Definition 1.1 it is enough to show (31)
for the highest weight element xλ of S∗i (λ). By (29) we have for a′ ∈ [n− 1]

ϕa′ ◦Gλi (xλ) = εa′(xλ) = 0,

i.e., Gλi (xλ) is the lowest weight element of Li(λ
∗). Thus,

wt(xλ) = λ = −wt ◦Gλi (xλ). �

Remark 8.3. The map Gλi between Lusztig and string data also appears in [K07] by
passing through Mirković–Vilonen polytopes. Namely Kamnitzer defines in op. cit.
crystal isomorphisms between MV polytopes in B(λ) and i-Lusztig data of B(λ)
and i-string data of B(λ∗)∨, respectively. The crystal B(λ∗)∨ is here defined as in
[K94, Sect. 7.4]. In a different context, the composition of Kamnitzer’s bijections
inducing a map S∗i (λ)→ Li(λ) was computed in [GKS17, Prop. 8.2] and turns out
to coincide with the map Gλi .

8.2. Reineke crossings and the bijection Gλ
i

For a ∈ [n−1], we attach in Definition 4.11 to γ ∈ Γa the vectors s(γ), r(γ) ∈ ZN .
In [G18, Thm. 3.11] it is shown that the map Fi relates s(γ) and r(γ) ∈ ZN as
follows:

Proposition 8.4 ([G18]). For a ∈ [n− 1] we have r = Fi ◦ s on Γa.

In this section we use Proposition 8.4 to show

Proposition 8.5. For x ∈ S∗i (λ), a ∈ [n− 1] and γ ∈ Γa we have〈
Gλi (x), s(γ)

〉
− 〈x, r(γ)〉 = wt(x)(ha).

For this we define for a ∈ [n− 1] the function

`a : ZN → Z,

x = (xk)k∈[N ] 7→
∑

k: ik=a

xk.

To prove Proposition 8.5 we use

Lemma 8.6. For a, b ∈ [n− 1] and γ ∈ Γa we have `b(s(γ)) = δa,b.

Proof of Proposition 8.5. From Proposition 8.4 we obtain〈
Gλi (x), s(γ)

〉
− 〈x, r(γ)〉 = 〈λ, s(γ)〉 − 〈Fi(x), s(γ)〉 − 〈x, r(γ)〉

= 〈λ, s(γ)〉 − 〈Fi(x), s(γ)〉 − 〈x, Fi(s(γ))〉 .
(32)

By Lemma 8.6 we have

〈λ, s(γ)〉 =
∑
k∈[N ]

λik(s(γ))k =
∑

b∈[n−1]

λb`b(s(γ)) = λa. (33)
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Furthermore, since cb,b = 2,〈
Fi(x),s(γ)

〉
+ 〈x, Fi(s(γ))〉

=
∑
k∈[N ]

(Fi(x))k(s(γ))k +
∑
k∈[N ]

xk
(
Fi(s(γ))

)
k

=
∑
k∈[N ]

(
xk +

∑
`>k

cik,i`x

)̀
(s(γ))k +

∑
k∈[N ]

xk

(
(s(γ))k +

∑
`>k

cik,i`(s(γ))

)̀
=

∑
k,`∈[N ]

cik,i`xk(s(γ))` =
∑

i,j∈[n−1]

ci,j`i(x)`j(s(γ)).

Thus, by Lemma 8.6

〈Fi(x), s(γ)〉+ 〈x, Fi(s(γ))〉 =
∑

i∈[n−1]

ca,i`i(x). (34)

Combining (32), (33) and (34) yields〈
Gλi (x), s(γ)

〉
− 〈x, r(γ)〉 = λa −

∑
i∈[n−1]

∑
k: ik=i

ca,ixk = wt(x)(ha). �

It remains to prove Lemma 8.6. Recall the notion of the level of a vertex v of
Di from Definition 4.1. For each vertex v of γ, we define

level−γ (v) =


level(v) + 1 the oriented edge of Di(a) with target v that γ

follows is headed downwards,

level(v) the oriented edge of Di(a) with target v that γ

follows is headed upwards,

and

level+γ (v) =


level(v) the oriented edge of Di(a) with source v that γ

follows is headed downwards,

level(v) + 1 the oriented edge of Di(a) with source v that γ

follows is headed upwards.

Here we understand ”headed upwards” and ”headed downwards” with respect to
a small neighborhood around the vertex v.

We give an example for this notion.

Example 8.7. Let n = 5. And γ = (v3,2, v3,1, v1,2, v2,5, v2,4, v4,5, v4,1) the 3 -
Reineke crossing from Example 4.8 highlighted below. We have

level−γ (v3,2) = 3, level+γ (v3,2) = 2, level−γ (v3,1) = 2, level+γ (v3,1) = 2,

level−γ (v1,2) = 2, level+γ (v1,2) = 2, level−γ (v2,5) = 2, level+γ (v2,5) = 3,

level−γ (v2,4) = 3, level+γ (v2,4) = 4, level−γ (v4,5) = 4, level+γ (v4,5) = 3,

level−γ (v4,1) = 3, level+γ (v4,1) = 4.
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1

2

3

4

5

Note that, by definition, for γ = (v1, v2, . . . , vm) ∈ Γa, we have level−γ (v1) = a,

level+γ (v`) = level−γ (v`+1) and level+γ (vm) = a + 1. Thus, Lemma 8.6 is a direct
consequence of

Lemma 8.8. For 1 ≤ ` ≤ m we have level+γ (v`)− level−γ (v`) = (s(γ))`.

Proof. Assume that the vertex v` = vp,q of γ lies at the intersection of wires p and
q, where p is the wire of the oriented edge in γ whose source is vp,q. We assume
first q ≤ a, hence the wire q is oriented from left to right in Di(a). We proceed by
a case-by-case analysis.
q < p ≤ a : Locally around v` there are two possibilities for γ:

q

p

q

p

v` v` .

In the left case, we have (s(γ))` = −1, level−γ (v`) = level(v`) + 1 and level+γ (v`) =

level(v`). In the right case, we have (s(γ))`=0, level−γ (v`)=level(v`) and level+γ (v`)
= level(v`).
p < q ≤ a : Locally around v` there are two possibilities for γ:

p

q

p

q

v` v` .

The left case cannot appear since γ is an a-Reineke crossing. In the right case, we
have (s(γ))` = 0, level−γ (v`) = level(v`) + 1 and level+γ (v`) = level(v`) + 1.
q ≤ a < p : Locally around v` there are two possibilities for γ:

q

p

q

p

v` v` .
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In the both cases, we have (s(γ))` = 1, level−γ (v`) = level(v`) and level+γ (v`) =
level(v`) + 1.

The argument for the assumption a+ 1 ≤ q is symmetrical. �

8.3. Proof of the Dual Crossing Formula

Proof of Theorem 5.1. Equation (21) was established in Lemma 3.5.
We prove (20). By Lemma 8.2 and the crystal axiom (C1) in Definition 1.1

εa(x) = ϕa(Gλi (x)) = wt(Gλi (x))(ha) + εa(Gλi (x)). (35)

By Proposition 8.1 we have Gλi (x) ∈ Li(λ
∗). Using Theorem 7.3 to compute the

value of εa on this Lusztig-datum we obtain

εa(Gλi (x)) = max{
〈
Gλi (x), s(γ)

〉
| γ ∈ Γa}

= max {〈x, r(γ)〉 | γ ∈ Γa}+ wt(x) (ha) ,
(36)

where (36) follows from Proposition 8.5. By Lemma 8.2,

wt(x)(ha) = −wt(Gλi (x))(ha). (37)

Plugging (36) and (37) into (35) yields (20).
We next prove (22). If ϕa(x) = 0, the claim follows from Lemma 8.2.
Assume now that ϕa(x) > 0. By Lemma 8.2 we have

fax = fa(Gλi )−1 ◦Gλi (x) = (Gλi )−1
(
eaG

λ
i (x)

)
. (38)

By Proposition 8.1, we have that Gλi (x) ∈ Li(λ
∗) and by Lemma 8.2 that

εa
(
Gλi (x)

)
> 0.

Thus by Theorem 7.3,

eaG
λ
i (x) = Gλi (x)− r(γx), (39)

where γx ∈ Γa is minimal such that 〈Gλi (x), s(γx)〉 = max{〈Gλi x, s(γ)〉 | γ ∈ Γa}.
By Proposition 8.5

〈
Gλi (x), s(γ)

〉
−〈x, r(γ)〉 = wt(x)(ha) is independent of γ ∈ Γa.

Thus, γx ∈ Γa is minimal such that

〈x, r(γx)〉 = max {〈x, r(γ)〉 | γ ∈ Γa} = εa(x),

where we used (20) in the last equality. Furthermore, by (38) and (39)

fax = (Gλi )−1
(
Gλi (x)− r(γx)

)
= x+ F−1i (r(γx))

and (22) follows from Proposition 8.4.
The proof of (23) works analogously to the proof of (22). �
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9. Kashiwara ∗-involution on String data

In this section we denote by Si and S∗i the set of i-string data equipped with the
crystal structure inherited from B(∞) and B(∞)∗, respectively, via the bijection
str∗i (see (14) and (16)). We denote by Li = NN and L∗i = NN the set of i-Lusztig
data with the crystal structure inherited from B(∞) and B(∞)∗, respectively, via
the bijection bi defined in (25). We write LR

i := RN≥0. Using εa from the crystal Li

and ε∗a from L∗i we define the polytopes

Li(λ)R := {x ∈ LR
i | ε∗a(x) ≤ λa ∀a ∈ [n− 1]},

L∗i (λ)R := {x ∈ LR
i | εa(x) ≤ λa ∀a ∈ [n− 1]}.

The integral points of Li(λ)R and L∗i (λ)R are Li(λ) and L∗i (λ), respectively.
For a reduced word i = (i1, . . . , iN ) ∈ W(w0) we define

i∗ := (n− i1, . . . , n− iN ) ∈ W(w0),

iop := (iN , . . . , i1) ∈ W(w0).

For i, j ∈ W(w0) the Kashiwara ∗-involution ∗ : B(∞)→ B(∞)∗ introduced in
Section 1.3 on string data is given by the isomorphism of crystals

str∗j ◦ str−1i : S∗i
∼−→ Sj. (40)

In general, the map (40) is piecewise linear. We show that (40) is linear for i =
i0 := (1, 2, 1, 3, 2, 1, . . . , n− 1, n− 2, . . . , 1) and j = i∗0.

Using the Crossing Formula [GKS21, Thm. 2.13], we compute stri0 ◦bi0 : If
(i`, i`+1, . . . , i`+m) is a maximal subword of i0 of the form (k, k − 1, . . . , 1) we
have for j ∈ {0, 1, . . . ,m}

(stri0 ◦bi0(x))`+j = x` + x`+1 + · · ·x`+m−j .

From the ∗-Crossing Formula [GKS21, Thm. 2.20] we compute

str∗i∗0 ◦biop0 (x1, . . . , xN ) = stri0 ◦bi0(xN , . . . , x1).

Since i0 and iop0 are related by a sequence of 2-moves the isomorphism of crystals
Φi0

iop0
sending i0-Lusztig data to iop0 -Lusztig data is linear. We thus obtain the linear

isomorphism of crystals

∗ = str∗i∗0 ◦ str−1i0
= str∗i∗0 ◦biop0 ◦ Φi0

iop0
◦ b−1i0

◦ str−1i0
: S∗i0

∼−→ Si∗0 .

Since ∗ = str∗i∗0 ◦ str−1i0
: Si0

∼−→ S∗i∗0 is an isomorphism of crystals as well, we obtain

for λ ∈ P+ the linear isomorphism of crystals

∗ = str∗i∗0 ◦ str−1i0
: S∗i0(λ)

∼−→ Si∗0 (λ)
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and the unimodular isomorphismus of polytopes

∗ = str∗i∗0 ◦ str−1i0
: S∗i0(λ)R

∼−→ Si∗0 (λ)R.

For i, j ∈ W(w0) arbitrary we obtain the piecewise linear isomorphisms

Ψ
i∗0
j ◦ str∗i∗0 ◦ str−1i0

◦Ψi
i0 : S∗i

∼−→ Sj,

Ψ
i∗0
j ◦ str∗i∗0 ◦ str−1i0

◦Ψi
i0 : S∗i (λ)

∼−→ Sj(λ)

and the piecewise linear volume preserving bijections

Ψ
i∗0
j ◦ str∗i∗0 ◦ str−1i0

◦Ψi
i0 : SRi

∼−→ SRj ,

Ψ
i∗0
j ◦ str∗i∗0 ◦ str−1i0

◦Ψi
i0 : S∗i (λ)R

∼−→ Sj(λ)R.

By [BZ01, Prop. 3.3 (iii)] the ∗-involution is given on Lusztig data by the linear
map

∗ : Li
∼−→ L∗i∗,op ,

x = (x1, . . . , xN ) 7→ xop = (xN , . . . , x1).

For λ ∈ P+ we thus have the following commutative diagrams of isomorphisms of
crystals that are linear for i = i0:

Li S∗i

L∗i∗op Si∗op

stri ◦bi

∗ ∗
stri∗op ◦bi∗op

,

Li(λ) S∗i (λ)

L∗i∗op(λ) Si∗op(λ)

stri ◦bi

∗ ∗

stri∗op ◦bi∗op

.

Furthermore, the following are commutative diagrams of volume preserving piece-
wise linear bijections that are linear for i = i0:

LR
i SRi

LR
i∗op SRi∗op

stri ◦bi

∗ ∗

stri∗op ◦bi∗op

,

Li(λ)R S∗i (λ)R

L∗i∗op(λ)R Si∗op(λ)R

stri ◦bi

∗ ∗

stri∗op ◦bi∗op

.
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