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Abstract. In this paper we define and study a critical-level generalization of the Suzuki
functor, relating the affine general linear Lie algebra to the rational Cherednik algebra of
type A. Our main result states that this functor induces a surjective algebra homomor-
phism from the centre of the completed universal enveloping algebra at the critical level
to the centre of the rational Cherednik algebra at t = 0. We use this homomorphism
to obtain several results about the functor. We compute it on Verma modules, Weyl
modules, and their restricted versions. We describe the maps between endomorphism
rings induced by the functor and deduce that every simple module over the rational
Cherednik algebra lies in its image. Our homomorphism between the two centres gives
rise to a closed embedding of the Calogero-Moser space into the space of opers on the
punctured disc. We give a partial geometric description of this embedding.

1. Introduction

Arakawa and Suzuki [3] introduced a family of functors from the category O
for sl,, to the category of finite-dimensional representations of the degenerate affine
Hecke algebra associated to the symmetric group &,,. These functors have been
generalized in many different ways, connecting the representation theory of various
Lie algebras with the representation theory of various degenerations of affine and
double affine Hecke algebras.

Lie algebra “Hecke” algebra
sl, degenerate affine Hecke algebra Arakawa—Suzuki [3]
sl trigonometric DAHA Arakawa—Suzuki-Tsuchiya [4]
gl, rational DAHA (t # 0) Suzuki [52]
gl, cyclotomic rat. DAHA (¢t # 0) Varagnolo—Vasserot [54]

FIGURE 1. Functors relating Lie algebras and “Hecke” algebras in type A
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Other generalizations of the Arakawa—Suzuki functor may be found in, e.g., [16],
[17], [23], [24], [36], [37], [46]. Here we are concerned with the third functor in the
table above, introduced by Suzuki, and later studied by Varagnolo and Vasserot
[54], under the assumption that ¢ # 0, and the level & is not critical. It is a functor

Fr: %s — Hiyn-mod (1)

from the category %, of smooth gA[n—modules of level k to the category of modules
over the rational Cherednik algebra H,, (also known as the rational DAHA)
associated to G,, and parameters t = K + n, ¢ = 1. It assigns to each gA[n—module
a certain space of coinvariants:

M = Ho(gl,[2], Clz1, ..., xm] © (VF)™ @ M).
In this paper we study the limit of the functor F, as
K—c=—n, t—0.

The representation theory of the rational Cherednik algebra at ¢ = 0 differs
radically from its representation theory at ¢ # 0, mainly due to the fact that
Ho has a large centre Z, whose spectrum can be identified with the classical
Calogero-Moser space [25]. An analogous pattern occurs in the representation
theory of g := é\[n; the centre of the completed universal enveloping algebra ﬁﬁ
of g is trivial unless the level is critical. In the latter case, the centre 3 of ﬁc is a
completion of a polynomial algebra in infinitely many variables, and, by a theorem
of Feigin and Frenkel [26], it can be identified with the algebra of functions on the
space of opers on the punctured disc.

The existence of an interesting connection between the two centres Z and 3,
or, equivalently, between the Calogero-Moser space and opers, is suggested by
the close relationship between the Calogero—Moser integrable system and the KP
hierarchy. For example, Ben-Zvi and Nevins [12] investigated this relationship
from the perspective of noncommutative geometry, identifying the Calogero—-Moser
space with a certain moduli space of sheaves, called micro-opers, on quantized
cotangent bundles. There is also a more direct connection between Z and 3 via
the Bethe algebra of the Gaudin model associated to g. By the work of Chervov
and Talalaev [20], the Bethe algebra can be obtained as the image of 3 under the
canonical projection from Uy to U(g[t™!]). A surjective homomorphism from the
Bethe algebra to the centre of the rational Cherednik algebra was later constructed
by Mukhin, Tarasov and Varchenko [45].

Inspired by these intriguing connections, we study the relationship between the
two centres from a more algebraic point of view. We consider Z and 3 as centres
of the respective categories of modules and show that the functor F. induces (in
a sense which will be made precise below) a surjective algebra homomorphism
©: 3 - Z. This homomorphism encodes a lot of information about the functor,
allowing us to deduce a number of interesting results (see Corollaries A-E). For
example, we are able to prove that every simple Hp-module is in the image of Fq,



SUZUKI FUNCTOR AT THE CRITICAL LEVEL 661

describe the maps between endomorphism rings induced by F¢, and compute the
functor on Arakawa and Fiebig’s restricted category O. Furthermore, we interpret
O as an embedding of the Calogero-Moser space into the space of opers on the
punctured disc and provide a partial geometric description of this embedding. We
expect that there is a connection between our approach and the work of Mukhin,
Tarasov and Varchenko, but we do not understand this connection precisely.

1.1. Generalization of the Suzuki functor

Our first theorem, which collects the results of Corollary 5.12 and §6.2 below,
yields a generalization of the functor (1) originally defined by Suzuki.

Theorem A. For all k € C, there is a colimit preserving functor
Fr: Up-mod — H,qn-mod.

When k # ¢, the restriction of this functor to €, coincides with (1).

Our next result describes the images of some important ﬁn—modules under the
functor F,. Let us briefly explain the motivation for studying these modules. It
comes from the representation theory of the rational Cherednik algebra.

It was proven in [25] that isomorphism classes of simple Hg-modules are in
bijection with maximal ideals in Z := Z(Hg). Moreover, every simple H-module
occurs as a quotient of a generalized Verma module Ag(a, A), introduced in [7].
These modules can be defined for any ¢t € C, and depend on a vector a € C™,
together with an irreducible representation A of a parabolic subgroup of &,,,. When
a = 0, they are the usual Verma modules for H;. The following theorem shows
that generalized Verma modules as well as the regular module are in the image of
the functor F.

Theorem B (Theorems 7.6-7.8). Let k € C. There exist U,.-modules H,, and
We(a, \) such that

Fm (Hn) = HK+7L7 Fm (Wm (aa A)) = Af”v-i-’n(a? A)

Moreover,
FN(M,{ ()‘)) = An+n()‘)~

Here M, () denotes the Verma module for §g. When a = 0, the modules W, ()
:= W, (0, \) coincide with the Weyl modules from [39]. Therefore, we call W, (a, A)
“generalized Weyl modules”.

1.2. Suzuki functor and the centres

From now on assume that n = m. One of our main goals is to understand how the
centres of the categories Uc-mod and Hg-mod behave under the functor F.. This
is of vital importance because the centres, to a large extent, control morphisms in
these categories. For example, it was shown in [30] that the endomorphism rings
of Verma and Weyl modules for Uc(§) are quotients of 3.

In general, a functor of additive categories does not induce a homomorphism
between their centres. We circumvent this problem by introducing the notions of an
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F-centre of a category and an F-central subcategory. More precisely, we consider
the canonical maps

32 Z(Ue-mod) % End(Fe) & Z(Hy-mod) = 2,

from the two centres to the endomorphism ring of the functor F.. Since H; lies in
the image of F¢, the map 3 is injective and Z can be identified with the subring Im /3
of End(F.). We call Zg_(U,) := a~1(Z) C 3 the Fc-centre of Uc.-mod. Restricting

~

a to Zg_(U,) gives a natural algebra homomorphism
Z(Fe) := O‘|ZFC(IAJC): Zg (Ue) = Z
making the diagram

Zr.(U.) 2R o

c

can| J 2)

Endg_(M) —< Endy, (Fo(M))

commute for all Ug-modules M. The homomorphism Z(F.) contains partial infor-
mation about all the maps between endomorphism rings induced by the functor Fe.

Our next result gives a partial description of Zg_(U,). We consider the subal-
gebra Z; := C[id[r],°Ly4+1]r<0 C 3 consisting of certain first- and second-order
Segal-Sugawara operators (see §4.5 for a precise definition).

Theorem C (Theorem 8.5). The algebra £, lies in the F¢-centre ofﬁc—mod, ie.,

~

.,%c C ZFC (Uc)
We give an explicit description of the associated homomorphism
Z(Fe)|e,: Le— 2 (3)

in (75)-(76).

It is natural to ask whether Zg_ (ﬁc) coincides with 3. Unfortunately, this is far
from being the case. Our solution to this problem is to relax the condition that
the diagram (2) should commute for all Uc-modules M. We introduce the notion
of a subcategory A of Ug-mod being Fe-central (see Definition 8.2 for details),
which has the consequence that there exists a unique algebra homomorphism
ZA(Fe): 3 — Z making the diagram

3 Z.A(Fc)

l l (4)

Endg_(M) —< Endy, (Fo(M))

commute for all M € A. Our next result identifies an important Fc-central subcate-
gory of Uc-mod.
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Theorem D (Theorem 8.9). The full subcategory €y of ﬁc—mod projectively ge-
nerated by He is Fc-central.

The category %y contains all the Verma and generalized Weyl modules which
are not annihilated by F.. The associated homomorphism

=24 (Fe): 32

plays a key role in our study of the functor F.. The following theorem, whose
representation theoretic and geometric consequences are discussed in the next
subsection, is the main result of this paper.

Theorem E (Theorem 10.6). The homomorphism ©: 3 — Z is surjective.

Let us briefly comment on the proof of Theorem E. We first show that ©
factors through 3S2(g) (see §11.4 for the definition), and that the homomorphism
©: 352(g) — Z is filtered with respect to the standard filtration on Z and
a certain “height” filtration on 3<2(g) (see §9.2 and §10.1) We compute the
associated graded homomorphism gr © and use it to deduce the surjectivity of ©.
In our calculations, we rely heavily on the explicit construction of Segal-Sugawara
operators due to Chervov and Molev [19].

We also consider the Poisson algebra structures on 3 and Z given by the Hayashi
bracket [34]. The map © is not a Poisson homomorphism. However, the following
is true.

Theorem F (Theorem 11.9). The restriction of © to £, is a homomorphism of
Poisson algebras.

The partial compatibility of the Poisson structures on 3 and Z is a shadow of
the fact that the functor F,. is defined for all levels x. We remark that the Poisson
subalgebra %, C 3 can be described quite explicitly. It is isomorphic to a certain
subalgebra of S(Heis x Vir), the symmetric algebra on the semi-direct product of
the Heisenberg and the Virasoro Lie algebras.

1.3. Applications

Our main result (Theorem E) has several applications. First of all, we can use it
to gain more information about the homomorphisms between endomorphism rings
induced by Fe.

Corollary A (Corollary 11.1). The ring homomorphisms
Endg_(We(a, A)) = Endy, (Ao(a,A), Endg_ (Mc(A) = Endsy, (Ag(N)).

induced by Fe are surjective.

Secondly, we are able to deduce from Corollary A that every simple Hy-module
lies in the image of F.. This result is, on the one hand, analogous to similar results
[52], [54] in the k # c case. On the other hand, the situation at the critical level
is very different because there are uncountably many non-isomorphic simple Hg-
modules. This is reflected by the fact that our proof relies on completely different
techniques from those used in [52], [54].
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Corollary B (Corollary 11.3). Every simple Ho-module is in the image of the
functor Fe.

We next connect the functor F. with the work of Arakawa and Fiebig. In [1], [2],
they studied a restricted version of category O, obtained by “killing” the action
of the centre 3. This category contains restricted Verma modules M (\) as well
as, analogously defined, restricted versions of Weyl modules W, (\). In our third
corollary, we describe the image of these modules under Fe.

Corollary C (Corollaries 11.6-11.7). We have

Fe(Me(A)) = Fe(We(X) = Fe(IL(A)) = La,
where L(A\) (resp. Ly ) is the unique graded simple quotient of Mc(\) (resp. Ag(X)).

Fourthly, we give a partial geometric description of the homomorphism ©: 3 —
Z in terms of opers. By a theorem of Feigin and Frenkel [26], 3 is canonically
isomorphic to the algebra of functions on the space Opx(D*) of opers on the
punctured disc. Therefore, © induces a closed embedding ©*: Spec Z— Op(D*).
We show that the image of this embedding lies in the space Ops(D)<? of opers
with singularities of order at most two.

We are also able to obtain some information about the residue and monodromy
of the opers in the image of ©*. To state our results, we first need to recall
some facts about the affine variety Spec Z and a canonical map 7: Spec Z —
C"/6&,, (see (14)). Bellamy showed in [7, 8] that each fibre of m decomposes as a
disjoint union of subvarieties {25 », which can be identified with supports of the
generalized Verma modules Ag(a, \). Moreover, Z surjects onto the endomorphism
rings Endy, (Ao(a, A)), and Spec Endy, (Ag(a, X)) = Qa .

Endomorphism rings of the Weyl modules W¢(A) also admit a geometric inter-
pretation. Frenkel and Gaitsgory [30] showed that 3 surjects onto Endg_(We(A)),

and identified the latter with the algebra of functions on the space Opg(]D)) of
opers with residue @w(—\ — p) and trivial monodromy.

Using the results of [27], we show that the image of 0, » under ©* is contained
in the space Opé,Q(JD))a of opers with singularities of order at most two and 2-
residue a. Moreover, we show that the image of {2 is contained in Opg(D).
Corollary D (Corollary 11.15). The following hold.

a) The map ©: 3 — Z induces a closed embedding
©*: Spec Z < Opg(D)S2.

b) We have
0*(Qax) € OpS*(D)a.

Hence the following diagram commutes:

SpecZ <9 Opgs(D)S?

a |Ress

C/G, — = /G,
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c) Ifa=0, then
©*(2y) C Op} (D).

Finally, we study the behaviour of self-extensions under Fe.

Corollary E. Suppose that M is a ﬁc-module with a filtration by Weyl modules.
Then F¢ induces a linear map

Exty (M, M) — Extyy, (Fe(M), Fe(M)). (5)

We conjecture (see Conjecture 11.18) that (5) extends to a surjective homomor-
phism between extension algebras, and that it admits an interpretation in terms
of differential forms on opers and the Calogero—-Moser space.

1.4. Structure of the paper

Let us finish by summarizing the contents of the paper. In sections 2-4 we recall
the relevant definitions and facts concerning affine Lie algebras, rational Cherednik
algebras and vertex algebras. These sections contain no new results. In Section 5
we recall Suzuki’s construction of the functor F, and generalize it to the critical
level. In section 6 we further generalize the functor F, to the category of all U,-
modules, proving Theorem A. Section 7 is devoted to the proof of Theorem B.
In Section 8 we study the relationship between the two centres 3 and Z via the
functor F.. Section 8 contains the proofs of Theorems C-D. In Section 9 we define
graded and filtered analogues of the Suzuki functor, which are later used in Section
10 to set up our “associated graded” argument. All of section 10 is devoted to the
proof of Theorem E. In Section 11 we study the applications of Theorem E, proving
Corollaries A-E.
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the author’s PhD thesis. I would like to thank G. Bellamy for recommending the
problem to me, many useful suggestions and comments, as well as his unwavering
support and encouragement throughout the time in which this paper was written.
I am also grateful to C. Stroppel for stimulating discussions as well as numerous
and detailed comments on draft versions of this paper. Finally, I would like to
thank A. Molev for discussing his paper [19] with me, and the two anonymous
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2. Preliminaries

2.1. General conventions

Fix once and for all two positive integers n and m. The parameter n refers to the Lie
algebra g = gl,, while m refers to the rational Cherednik algebra H; . associated to
the symmetric group &,,. We work over the field of complex numbers throughout.
If V is a vector space, let T(V') denote the tensor algebra and S(V') the symmetric
algebra on V.

For a unital associative algebra A, with unit 14, we denote by A-mod the
category of left A-modules. Given a left A-module M and a left ideal I in A,
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let MT :={m € M |I-M =0} be the set of I-invariants. We will also work with
the full subcategory A-fpmod of A-mod consisting of finitely presented modules,
i.e., modules M such that there exists a short exact sequence A* — Al — M — 0
for some k,l > 0. If B is another algebra, let (A, B)-nmod be the full subcategory
of A ® B-mod consisting of modules M with the property that the action of B
normalizes the action of A, i.e., [A, B] C A in the endomorphism ring of M.

Given a subalgebra B C A, let Z4(B) denote the centralizer of B in A. In
particular, Z(A) := Z4(A) is the centre of A. Recall that the centre Z(C) of an
additive category C is the endomorphism ring of the identity functor ide. We can
naturally identify Z(A) =2 Z(A-mod), z — {zy | M € A-mod}, where zy; is the
endomorphism of M given by the left action of z.

Suppose that A is a commutative algebra and M is an A-module. Let Ann 4 (M)
= {a € A | a-M = 0} be the annihilator of M in A. The affine variety
supp 4 (M) := Spec A/ Ann 4 (M) is called the support of M in Spec A.

2.2. Combinatorics

Let I > 1. We say that v = (v1,...,1) € ZL is a composition of m of length
lif v1 + -+ 4+ v, = m. Let C;(m) denote the set of all such compositions. Set
V<; =V + -+ v; for each 1 <7 <[ with v<¢g = 0 by convention.

The symmetric group &,,, on m letters acts naturally on h = C™ by permuting
the coordinates. If a € b, let &,,(a) denote its stabilizer in &,,. For 1 < 4,5 <
m, let s;; be the simple transposition swapping ¢ and j. We abbreviate s; :=
Sii+1- Given v € Cj(m), let &, := &, x --- x &,, denote the parabolic subgroup
of &,, generated by the simple transpositions si,...,S;,—1 with the omission of
SucyySvcay- s Suay_y-

A sequence A = (A,...,\,) € Z%, is a partition if Ay > --- > X,. Let P,(m)
denote the set of all partitions of m of length n. We call A = (Al,... \) €
Hézl Pr,(m;) an l-multipartition of m if Zlizl m; = m and each m; # 0. We say
that A has length n if 22:1 n; = n, and length type p if (nq1,...,n;) = p € Cy(n).
We say that A is of size type v if (mq,...,my) = v € C;(m). Let P,(m) denote
the set of multipartitions of m of length type u and let P, (v) denote the set of
all multipartitions of length n of size type v (where we let [ vary over all positive
integers). Set

Pu(v) = Pu(m) N Pu(v), Pu:i= || Pulm), P):=]Pulv).

m>0 n>0

In the union on the RHS we identify [-multipartitions A and x whenever each pair
of partitions A\* and x* differ only by the number of parts equal to zero.

If A € P,(m), let Sp(\) denote the corresponding Specht module. Given v €
Ci(m) and X € P,(v), set Sp(A) := Sp(A!) ® --- @ Sp(Al). It is a &,-module.
Let Sp,(\) := C&,, ®cs, Sp(A) be the corresponding &,,-module obtained by
induction.

2.3. Lie algebras

Given a Lie algebra a, let U(a) denote its universal enveloping algebra, with unit
1q := ly(q) and augmentation ideal U, (a). If M is an a-module and k > 0, let
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Hj.(a, M) denote the kth homology group of a with coefficients in M. In particular,
Ho(a, M) = M/U,(a).M = M/a.M. Given a Lie subalgebra ¢ C a and a c-module
N, let Ind{ N := U(a) ®y() N be the induced module. For a surjective Lie algebra
homomorphism ? — ¢, let Inff N denote N regarded as a 9-module.

Let G = GL,(C) be the general linear group and g = gl,,(C) its Lie algebra.
Let ey be the (k,!)-matrix unit and let id denote the identity matrix. We use the
standard triangular decomposition g = n_ & t & ny with respect to the strictly
lower triangular, diagonal and strictly upper triangular matrices, and abbreviate
by :=t@ng. For 1 <k <n,let ¢ € t* be the function defined by e (ey) = 0k -

Given p € Cy(n), let [, := H§:1 gl,, € g be the corresponding standard Levi
subalgebra. We next recall the connection between multipartitions and weights.
A weight A = Y. A\je; € t* is called p-dominant and integral if each \; € Z and
Ai = Aw(i) € Z>o whenever w(i) > i, for all w € &,,. Let H: denote the set of
p-dominant integral weights with the property that each A\; € Z>¢. If u = (n), we
abbreviate ITf = II. There is a natural bijection

+
I,

1%

Puy A= (AN, (6)

where \* := (Au_, 41, -+, Ay, ). From now on we will implicitly identify weights
with partitions using this bijection.

2.4. Schur—Weyl duality

Given X € I, let L(A) be the corresponding simple [,-module of highest weight
A. Let V 2 L(e;) be the standard representation of g, with standard basis {e; |
1 <i < n} and the corresponding dual basis {ef | 1 <i <n} of V*. If n =m, set
eqi=el®--- Qe and, for w € G,

€ = Ehmi(n) @ @ ey, € (VIO (7)

Given p € Ci(n) and v € Ci(m), let VI be the subspace of V spanned by
and (V)T = @, (VD)™ € (V9)®r,

6231714'1’ T Zgi (wv) =

There is an analogue of classical Schur-Weyl duality (see, e.g., [47, Prop. 9.1.2])
for [, and &,, x Z]" - their actions on V®™ centralize each other (see, e.g., [43,
Thm. 6.1]). We will need the following application, whose proof can be found in

[54, Prop. 3.8(a)].

,€

Proposition 2.1. Let A € t*. Then

a) Ho(l,, (V*)®™ @ L(X\)) = 0 unless A € P,,(m).
b) If v € Ci(m) and X € P,(v) then

Ho(tu, (VI)EI) © LIN) 2 Sp(A), Ho(l,, (VF)®™ @ L(A)) 2 Sp,(A) (8)

as CS, - resp. CS,,-modules.

In the case u = (n), classical Schur—Weyl duality also implies the following.
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Corollary 2.2. Let A € t*. Then:

a) Ho(by, (V¥)®™ @ Cy) =0 unless X € Py, (m).
b) If A € P,(m) then there is a natural CS,,-module isomorphism

Ho(b, (VF)®™ @ Cy) = Sp(A). (9)

Proof. The space Hy(by, (V*)®™® C,) can be identified with the space of lowest
weight vectors of weight —X in (V*)®™. It follows from Schur-Weyl duality that
(V*)®m = Dcep, (m) L(E)" ®@Sp(£). Since the lowest weight in each L(£)* is equal

to —¢, the space of lowest weight vectors of weight —\ in (V*)®™ is isomorphic to
Sp(A) if A € P,(m) and is zero otherwise. [J

2.5. The affine Lie algebra
We recall the definition of the affine Lie algebra associated to g.

Definition 2.3. Let x € C. The affine Lie algebra g, is the central extension
0—-Cl—g.—g((t)) >0 (10)
associated to the cocycle (X ® f,Y ® g) — (X,Y), Resi—o(g0:f), where
(=, =)k =k Tr(XY) + Tr(X) Tr(Y).

Note that (—, —)_,, = —3 Kilg, where Kilg is the Killing form on g. Explicitly, the
Lie bracket in g, is given by:

[X®fay®g] = [X,Y] ® fg+ <X7Y>KReSt:O(gatf)lv [X®f71] = [131] =0

for X,Y € gand f,g € C((2)).

We will also use the central extension g, obtained by replacing g((t)) with g[t*!]
n (10). Given X € g and k € Z, set

X[k =Xothcg,, gkl:=gathcCg..
We next introduce notation for the following Lie subalgebras of g,:
§- == g0t 'ClY, g4 = ol)OCL, g5, = g0t CH)], v = gt "CltY),
where r > 0. Moreover, we abbreviate
Ay i=n, ®ds1, by :=f, ®t®Cl, # :=tdgs ®CL

Let g+, 9>, etc., denote the corresponding Lie subalgebras of g,.

2.6. The completed universal enveloping algebra

We are interested in modules on which 1 acts as the identity endomorphism.
Therefore we consider the quotient algebra

Ui(8) = U(8x)/(1 = 1g,)-
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Definition 2.4. The parameter s is called the level. The value ¢ := —n is called
the critical level.

We next recall the definition of a certain completion of U,(g) (see, e.g., [28,
§2.1.2]). There is a topology on U, (§) defined by declaring the left ideals I, :=

U..(g).9>r (r > 0) to be a basis of open neighbourhoods of zero. Let U, be the
completion of U (§) with respect to this topology. Equivalently, we can write

~

UK, :@Un(g)/lr- (11)

It is a complete topological algebra with a basis of open neighbourhoods of zero
given by the left ideals I, := U,.g>,. The following proposition illustrates the
special nature of the critical level.

Proposition 2.5 (|28, Prop. 4.3.9]). Z([AJK) = C if and only if k # c.

‘We abbreviate R
3:=2Z(U,).

2.7. Smooth modules

Throughout the paper we will mostly deal with smooth ﬁm—modules. Let us recall
their definition (see, e.g., [28, §1.3.6] or [39, §1.9]).

Definition 2.6. A ﬁn—module M is called smooth if M = Urzo M. Tet M

denote the full subcategory of IAJ',Q—mod whose objects are smooth modules. Let
%, (r) denote the full subcategory of %, consisting of all modules M generated by
M.

One can analogously define smooth U,(§)- and U,(g)-modules. It is easy to
see that the corresponding categories of smooth modules coincide with %,. The
following lemma, whose proof is standard, shows that the concept of smoothness
defined above is analogous to that familiar from the representation theory of p-adic
groups.

Lemma 2.7. Let M be a ﬁﬁ—madule. The following are equivalent:

a) M is smooth,
b) M, endowed with the discrete topology, is a topological U ,-module,
¢) Anng (v) is an open left ideal in U, for all v € M.

3. Rational Cherednik algebras

In this section we recall the definition and the main properties of rational
Cherednik algebras of type A. Rational Cherednik algebras were introduced by
Etingof and Ginzburg in [25]. In type A they can also be regarded as degenerations
of the double affine Hecke algebras defined by Cherednik in [18].

3.1. Rational Cherednik algebras

Recall that h denotes the permutation representation of &,,. Let b C b be the
subvariety on which &,,, acts freely. We fix a basis y1, . .., ¥, of b with the property
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that w.y; = Y, for any w € &,,, and 1 < i < m. Let x1,..., 7y, be the dual basis
of b* so that C[h] = C[zy,...,zy] and C[h*] = Cly1,. .., Ym]. Define
Clp]* :=C[p] x CS,,, C[h*]* :=C6&,, x C[h*].

Set 0 := [[,cicjcm(®i — x;) and 8, = [[j_,(z — ;). Define

R :=Clbreg) = Clz1,...,zn][6 "], R*:=RxC&,, R.:=R[|"]
Definition 3.1 ([25, §4]). The rational Cherednik algebra H, . associated to the

complex reflection group &,,, and parameters ¢, c € C is the quotient of the tensor
algebra T'(h @ h*) x CS,,, by the relations:

o [z, 7] =[yi,y;] =0 (1<i,j <m),

o [mi,y;]=csi; (1<i#j<m),

o [ziyl=t—c) s 1<i<m).
Let 14, denote the unit in H; .

It follows directly from the relations that if { € C* then H; . = Herge. From
now on we will assume that ¢ = 1 and abbreviate H; := H; 1. Setting degx; =
degy; = 1 and degs; = 0 defines a filtration on H;. Let grH; be the associated
graded algebra.

Theorem 3.2 ([25, Thm. 1.3]). The tautological embedding (h @ b*) — grH;
extends to a graded algebra isomorphism

Clh@bh*] « C&,, = grH; (12)
called the PBW isomorphism.

The following result shows that there is an analogy between the centres of H;
and U,.
Proposition 3.3 ([15, Prop. 7.2]). Z(H:) = C if and only if t # 0.

The next theorem summarizes the main properties of the centre of Hg, which
we abbreviate as

Z .= Z(Ho)
Theorem 3.4. The following hold.
a) We have C[h]®™ @ C[h*]®= C Z. The algebra Z is a free C[h]®m @ C[h*]Sm -
module of rank m!.
b) The PBW isomorphism restricts to an isomorphism C[h @ h*|Sm» =5 gr Z.
c) The affine variety Spec Z is isomorphic to the Calogero—Moser space
{(X,Y,u,v) € Mat,,xm(C)P2xC™ x (C™)* | [X, Y]+, = v-u} ) GL,(C).
d) We have Z = eHpe. Moreover, the functor
Ho-mod — eHpe-mod, M —e- M, (13)

where e = #Zwe&%mw is the trivial idempotent, is an equivalence of
categories.

e) Ewvery simple Ho-module has dimension m! and is isomorphic to C&,, as
an S,,-module. Moreover, there is a bijection

{isoclasses of simple Ho-modules} «+— Maxspec Z.
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Proof. Part a) is [25, Prop. 4.15], part b) is [25, Thm. 3.3] and part ¢) is [25, Thm.
11.16]. For part d) see the proof of [25, Prop. 3.8] and the remark following it. Part
e) is [25, Thm. 1.7]. O

3.2. Generalized Verma modules

Let us recall the definition of generalized Verma modules for H;. Let | > 1, v €
Ci(m), A € Py (v) and a € h* with &,,(a) = S,. Extend the CS,-module Sp(\)
to a C&, x C[h*]-module Sp(a, \) by letting each y; act on Sp(A) by the scalar
a; = a(yi).

Definition 3.5 ([7, §1.3]). The generalized Verma module of type (a,\) is
At(a, )\) = H; ®CG,,><C[P)*] Sp(a, )\)

We abbreviate A¢(A) := A4(0, A).

Remark 3.6. When t # 0, the modules A;(\) play the role of standard modules in
the category O(H;) defined in [32]. Using the results of [10], Bonnafé and Rouquier
[14] also defined a highest weight category for Hy with graded shifts of Ag(A) as
the standard modules.

Theorem 3.7 ([7, Thm. 2]). The following hold.

a) The canonical map Z — Endy, (Ao(a, N)) is surjective.
b) The ring Endy, (Ag(a, A)) is isomorphic to a polynomial ring in m variables.
¢) The Endy, (Ao(a, A))-module eA(a, N) is free of rank one.

Theorem 3.7 allows us to construct simple Hp-modules as quotients of genera-
lized Verma modules.

Lemma 3.8. Let L be a simple Ho-module. Then there exist | > 1, v € C;(m),
A € Pn(v) and a € b* with &, (a) = &, such that L = Ag(a,A)/I - Ag(a, A) for
some mazimal ideal I < Endyy, (Ao(a, N)).

Proof. The commuting operators ¥, ..., %, have a simultaneous eigenvector v €
L. Let a € h* be the corresponding eigenvalue. Without loss of generality, we
may assume that &,,(a) = &, for some v € C;(m). The subspace &, -v C L is
C[h*]-stable and decomposes as a sum of simple &,-modules. Suppose that this
sum contains a simple module isomorphic to Sp(A). Then there is a surjective
homomorphism Ag(a,A\) = L. Let K denote its kernel.

We abbreviate E(a, \) := Endy,(Ag(a, A)). Since, by part a) of Theorem 3.7,
Z surjects onto E(a, ), all endomorphisms in E(a, \) preserve eK. Hence eK is
an E(a, A)-submodule of eAg(a, \). But, by part ¢) of Theorem 3.7, eAg(a, \) is
a free E(a, A)-module of rank one. Hence e K = I - eAg(a,\) = el - Ag(a, A) for
some ideal I <1 E(a, \).

By the definition of K and part d) of Theorem 3.4, there is a short exact
sequence 0 — el - Ag(a, \) = eAg(a,\) — eL — 0. Since, by part e) of Theorem
3.4, eL = C, it follows that I is a maximal ideal. The fact that (13) is an equivalence
implies that the sequence 0 — I - Ag(a, \) = Ag(a, A) — L — 0 is exact as well.
Hence K =1-Ap(a,\). O
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3.3. Supports of Verma modules

By [8, §1.1], the support of the module Ag(a, \) only depends on a := w(a), where
w: h* = h*/&,, is the canonical map. Therefore we can define

Qa x = suppz(Ao(a, )).
We abbreviate 1) := g 5. Let
m: Spec Z = h*/G,, (14)

be the morphism of affine varieties induced by the inclusion C[h*]®= — Z.
Proposition 3.9. We have
71—71(a)red = |_| Qa,)\
AEP(v)
with Qa x = Spec Endy,, (Ag(a, X)) = A™.

Proof. The first statement follows from [8, Prop. 4.9] and the second statement
from Theorem 3.7.b). O

4. Recollections on vertex algebras

In this section we recall the definition of the vertex algebra associated to the
vacuum module Vac, := U(g,)/U(§x)-0+. We also recall the main results about
the centre of this vertex algebra and its connection to 3.

4.1. Vertex algebras

Let R be an algebra and let f(2) = > o, f(—r—1)2" and g(2) = > 7 9(—r—1)2"
be formal power series in R[[z,27!]]. Their normally ordered product :f(2)g(z): is
defined to be the formal power series

1f(2)9(2): = f+(2)g(2) + g(2) f-(2),
Fe(2) =) fern?s fo(2) =) 2
r>0 r<0

Given f1(2),..., fi(z) € R[[z,271]], set

f1(2) - filz): = fi(2) - (fim2(2) (fioa(2) fi(2)2)0):

Let W be a vector space. A series f(z) = > ¢y f—r—1)2" € (Endc W)[[z, 27]]
is called a field on W if for every v € W there exists an integer k& > 0 such that
fery-v =0 for all r > k. Fields are preserved by the normally ordered product.

A wvertex algebra is a quadruple (W,]0),Y,T) consisting of a complex vector
space W, a distinguished element |0) € W, called the vacuum vector, a linear map

Y: W = (Ende W)[[z,27'], am Y(a,2) =) ar_1)z"
reZ
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sending vectors to fields on W, called the state-field correspondence, and a linear
map T: W — W called the translation operator. These data must satisfy a list of
axioms, see, e.g., [11, Def. 1.3.1].

Let us briefly recall the construction of a functor

U: {Z-graded vertex algebras} — {complete topological associative algebras}.

Given a Z-graded vertex algebra W, one considers a completion of the Lie algebra
of Fourier coefficients associated to W, and takes its universal enveloping algebra.
To obtain U(W), one again needs to form a completion and take a quotient by
certain relations. The precise definition can be found in [11, §4.3.1].

4.2. The affine vertex algebra

Let x € C. The vacuum module Vac,, can be endowed with the structure of a vertex
algebra, as in [11, §2.4]. Let us explicitly recall the state-field correspondence. Let
p : Uk(g) — Endc(Vack) be the representation of g, on Vac,. The state-field
correspondence Y is given by Y(|0), z) = id and

X(2) =Y(X[-1],2) = > _p(X[r)z"""", (15)
re’l
Y(X1[ki] - Xi[Ki], 2)
1 1
(ki — 1) (=K —1)!

(16)

= 07X (2) - 07X (2):
for X, Xq,...,X; € gand ky,...,k < —1. Given X € g we also define a power
series
X(z) :=Y(X[-1],2) := ZX[r]z_T_l.
reZ
Applying formula (16) with each X;(z) replaced by X;(z) we can associate a power
series Y(A, z) =3, .5 A(—r—1y2" € Uy[[z,27!]] to an arbitrary element A € Vac,.

4.3. The Feigin—Frenkel centre

Let Z(Vac,) denote the centre of the vertex algebra Vac,. It is a commutative
vertex algebra, which is also a commutative ring. A precise definition can be found
in [28, §3.3.1].

Proposition 4.1 (|28, Prop. 3.3.3]). Z(Vac,) = C|0) if and only if k # c.

The commutative vertex algebra 3(g) := Z(Vac.) is known as the Feigin—Frenkel
centre. Elements of 3(g) are called Segal-Sugawara vectors. We are now going to
recall an explicit description of 3(g) due to Chervov and Molev. Identify U(g_) —
Vace, X — X -]0) as vector spaces and consider the maps

S(g) = S(3-) £ UG,

where i(X) = X[—1] for X € g and o is the principal symbol map with respect to
the PBW filtration.
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Definition 4.2 ([19, §2.2]). One calls Aj,..., A, € 3(g) C U(g-) a complete
set of Segal-Sugawara vectors if there exist algebraically independent generators
By, ..., B, of the algebra S(g)? such that i(By) = d(41),...,i1(B,) = c(Ay).

Theorem 4.3 ([29, Thm. 9.6]). If Ay,..., A, are a complete set of Segal-Suga-
wara vectors then

3(8) =C[T"A, |r=1,....n, k>0, (17)
where T is the translation operator.

Example 4.4. Let g, be the extension 0 — §,. — §. — C7 — 0 defined by the
relations [7, X ® f] = —X ®0; f and [, 1] = [r,7] = 0. The subspace g_ := §_ ®Ct
is a Lie subalgebra of g,. Consider the matrix E, € Mat,,«,(U(g_)) defined as

T+ 611[—1} 612[—1] e eln[—l]
B 621[.—1] T+ 62.2[—1] ) €2n[’_1]
ent[<1]  enal=1] - T+ emn|—1]

The traces Tr(EF) are elements of U(g_). In light of the canonical vector space

~

isomorphism U(g_) = U(g_) ® C[r], we can regard Tr(E¥) as polynomials in 7
with coefficients in U(g_) = Vacc. Define Ty, (0 <1 < k < n) to be the coefficients
of the polynomial

TI‘(EE) = Tk;OTk + Tk;lTkil —+ -+ Tk;k—lT —+ Tk;k

and set Ty, := T By [19, Thm. 3.1], the set {Tj | 1 < k < n} is a complete set
of Segal-Sugawara vectors in 3(g).
4.4. The centre of the enveloping algebra

If A is a Segal-Sugawara vector, the coefficients A,y of the power series Y(A, z) are
called Segal-Sugawara operators. Given a complete set of Segal-Sugawara vectors
Aq,..., A, such that deg A; = —i, let

Z = C[A; oI5 (18)

i=1,...,n"

be the free polynomial algebra generated by the corresponding Segal-Sugawara
operators. For k > 0, let Ji, be the ideal in 2 generated by the A; 4y with [ > ik.

Theorem 4.5. There exist natural algebra isomorphisms

U(Vace) = U., U(3(a))

I

3. (19)

Moreover, 3 = lim (Z) k).

Proof. For the isomorphisms (19), see [28, Lem. 3.2.2, Prop. 4.3.4]. For the second
statement, see [28, §4.3.2] or [29, §12.2]. O
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4.5. Quadratic Segal-Sugawara operators

Let x € C. An important role is played by the vector

"L=1 3 enl-lewl-1] € Vac,. (20)
1<k, l<n

”Lmz*“l, we have the formula

"L, = "Ly = 5 ( ekl[i]elk[ri]JrZelk[ri]ekl[i]) e U,.(a). (21)
1<k,l<n"i<—1

i>0

Proposition 4.6. If k = ¢ then °L € 3(§) and °L,. € 3 for each r € Z. If k # c,
then [(1/k+n)"L_1,X @ f]= =X ® Of for all X € g and f € C(()).

Proof. The proposition follows from a direct calculation using operator product
expansions. This calculation can be found in, e.g., [28, §3.1.1]. O

5. Suzuki functor for all levels

In [52], Suzuki defined a functor F,: €, — H,+n-mod for k # c. In this section
we generalize his construction to the k = ¢ case. Throughout this section assume
that m,n are any positive integers and x € C unless stated otherwise.

5.1. Simultaneous affinization

Let VI := Indgi oInfﬁéCl V*, where 1 acts on V* as the identity endomorphism.
We start by recalling (see e.g. [40, §9.9, 9.11]) the construction of a g ® R ,-action
on

T (M) =R (V2™ @ M, (22)

for any module M in %,. For that purpose we first recall the definition of an
auxiliary Lie algebra Gpg.

Let R be a commutative unital algebra. We fix formal variables t1, ..., ¢, too.
Set g(i)r := g ® R((t:)), 9(¢) :== g(¢)c. Consider the R-Lie algebra

6r =@ oli)n®ooo)r = 0 (@ R((t:) & R((too»). (23)
i=1 i=1

We denote a pure tensor on the RHS of (23) by X ® (f;), where X € g and
fi € R((t;)) fori=1,...,m, 0. Define g , to be the central extension

0= Rl— &g, — Gr—0 (24)

associated to the cocycle (X®(fi), Y®(9:)) = (X, Y)n 2ic 1, m, ooy RESt=0(9idf3)-
Set

U (&r) :=U(6r.)/(1— L, )

If R = C, we abbreviate &, := &¢ , and U, (&) = U, (S¢).
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A UH(QAS r)-module M is called smooth if for every vector v € M there exists
a positive integer k such that g ® (@;-; t¥R((t;)) ® th R((ts))).v = 0. Suppose

i=1"
that M, ..., My, M are smooth U, (§)-modules. Then R® Q)" M; ® My is a
smooth U, (& g)-module with the action of the dense subalgebra R® U, (&) given

by the formula
r@X e (f;)— Z T@(X(X)fi)(i)» (25)

i=1,...,m,00

where (X ® f;)® = id""!' @ (X ® fi) ® id™". Note that if R were an infinite-

dimensional algebra and the modules M; were not smooth, the action of RQU (&)
would not necessarily extend to an action of U, (Bg).
5.2. Conformal coinvariants

We next recall the connection between the Lie algebras & and g ® R,. Consider
R as an R-subalgebra of R(z). We thus view elements of R, as rational functions
which may have poles at z1,...,z,, and co. Set z; := z — x;.

Definition 5.1. For 1 < i < m, let tg;: R, — R((2:)) (resp. troo: R: —
R((z71))) be the R-algebra homomorphism sending a function in R, to its Laurent
series expansion at x; (resp. co). Let

1R Re = @D R((t:)) B R((ts)) (26)

i=1
be the injective R-algebra homomorphism given by (tg,1, .-+, tR,ms tR,00) followed
by the assignment z; — t;, 271 — too.

The map (26) induces the Lie algebra homomorphism
gOR, = Br, XQf—Xir(f), (27)
which, by the residue theorem, lifts to an injective Lie algebra homomorphism
gOR, — 6572,5- (28)

Let M be a smooth U, (§)-module. The vector space T(M) is a smooth U (& )-
module (with the action given by (25)). We consider it as a U(g® R, )-module via
(28). It also carries a natural R*-action: R acts by multiplication and &,,, acts by
permuting the factors of the tensor product (V#)®™ and the z;’s. The next lemma
follows directly from the definitions.

Lemma 5.2. The R™-action on T, (M) normalizes the U(g®R.)-action. There-
fore we have functors

Te: 6: — (U(@®R.),R*)-nmod, M — T.(M), (29)
Fe: 6 — Rx'mOda M — HO(g ®R27TH(M))' (30)
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5.3. The Knizhnik—Zamolodchikov connection
We are going to extend the R™-action on T, (M) and F,, (M) to an action of H4p.

Definition 5.3. Let k € C. The deformed Weyl algebra D,; is the algebra gene-
rated by x1,...,z, and qq, ..., ¢n subject to the relations
(26, 75] = g, 5] = 0, [w3,¢5] = (K +n)di; (1 <i,j <m).
Note that D = Clx1, ..., Tm, q1, - - -, Gm]. Set
D} =D, xC&,,, Dr. =D

K,reg *

Suppose that M is a C[h]”*- (resp. R*-) module. A good connection on M is a
representation of D) (resp. D) ;) on M extending the given C[h]*- (resp. R*-)
module structure.

Lemma 5.4. Let M be a C[h]*-module. If p: D)} — Endc(M) is a good connecti-
on on M, then p', defined as

oa) = pla) + 3 —
Jj#i

b
Ti— Ty

is a good connection on the R*-module Mg := R @c[p M.
Proof. The lemma follows by a direct calculation, as in [54, Prop. 1.8]. O

Let M be a smooth U,(§)-module. Consider the R*-module T, (M) and the
operators _
"V :=—(k+n)0y, + ”L(f)l (1<i<m)

on T, (M). The following proposition extends [11, Lem. 13.3.7] to the critical level
case.

Proposition 5.5. Let k € C.

a) The assignment

"W : D)

K,reg

— Endc(T.(M)), ¢~ "V,

defines a good connection (known as the Knizhnik—-Zamolodchikov connecti-
on) on T (M).

b) The operators "W; normalize the g ® R,-action on the space T (M), i.e.,
[V, g®R ] C g®R,. Hence "V descends to a good connection on F,.(M).

Proof. 1t suffices to consider the case k = c¢. The operators °V,; = cL(_Z)1 act on
different factors Vi of the tensor product Tc(M) = R @ (V5)®™ @ M, so they
commute. Moreover, the operators z; act only on the first factor R and so they
commute with the operators °V; as well. Hence °¥ is a representation of D,
which clearly extends to a representation of DJ,. The second statement follows
immediately from the fact that °L_; € 3. O

To obtain representations of the rational Cherednik algebra on T, (M) and
F.(M), we are going to compose the connection *W' with the Dunkl embedding,
whose definition we now recall.
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Proposition 5.6 ([25, Prop. 4.5]). There is an injective algebra homomorphism,
called the Dunkl embedding,

Hiin = Dy regy Ti > Tiy w = w, y; — D; '_QZ+Z
J#i

(805 — 1), (31)

with 1 <i<m and w € &,,

Proposition 5.7. Composing (31) with *W' yields representations of Hin on
T.(M) and F,(M). Moreover, the functors (29) and (30) extend to functors

Ty: 6 — (U(@®R,),Hyin)-nmod, F.: EC; — Hytn-mod.

Proof. By Lemma 5.4 and Proposition 5.5, “¥’ is a good connection on T, (M),
which descends to a good connection on F,(M). It therefore yields representations
of DY e on Ty(M) and F, (M), which become representations of H,, via the
Dunkl embedding.

Let us check that T, and F, are functors. Let f: M — N be a morphism in %.
It induces a map Tx(f): Tx(M) — T, (N). Since the H,,-action doesn’t affect
the last factor (as in (22)) in these tensor products, T,(f) commutes with the
H,1n-action. The fact that f is a g,-module homomorphism also implies that
T.(f) commutes with the g ® R,-action on T,(M) and T,(N). Hence T,(f)
descends to a H4p,-module homomorphism Fy (f): Fo(M) — F(N). O

5.4. The current Lie algebra action
Given a smooth U, (g)-module M, set

T (M) :=C[h]®@ (V)" @ M, TC°(M):=R® (V)P M.

We will show that the functors T, and T'°¢ fit into the following commutative
diagram

), Hipn)-nmod ———— Holeld), - ——— > Hy4n-mod

/ J I

t]), Hi+n)-nmod ———— Holalt). 7) ——— > Hy4n-mod

\ %&,_)

U(g®R.), Hytn)-nmod

where loc is the localization functor sending N to Nieg := R ®c[y) N. The Suzuki
functor is the composition of T, with Hy(g[t], —). Let us explain this diagram in
more detail. The current Lie algebra g[t] acts on T'°(M) by the rule

KoY abov® 410 (Y[-k)™ (Y egq, k>0). (32)
i=1
The R*-action on T!°¢(M) is analogous to that on T, (M). It follows directly from
the definitions that the g[t]-action and the R*-action commute. We next recall
how the R*-action can be extended to an H,,-action on TI¢(M).
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Definition 5.8. Let 1 < 4,5 < m and p > 0. Consider

Q9 = Z ei(d)@l(i)v QE;S]) = 6;(.;1)€lk[p +1]¢),
1<k,l<n 1<k, l<n
, Qd) (i,00) 4
£ == 3 St Yo, "Vii= —(k+n)da, + £,
1<j#i<m Ti p>0

as operators on T'°¢(M). They are well-defined because M is smooth.

Lemma 5.9. The assignment
"V: D) — Endc(T(M)), ¢~ "V,

defines a good connection on T'°(M).

Proof. One needs to check that #V is a well-defined ring homomorphisms, i.e., show
that [*V;,"V;] = 0 and [*V;, z;] = —(k 4+ n)d;;. These commutation relations are
calculated in [41, Lem. 3.2-3.3]. O

Proposition 5.10. Composing (31) with V' yields a representation of Hin on
TIo¢(M). The element y; acts as the operator

— Q(lvj) 7,00
"= —(k+n)0, + Z - Sw )+ Z PQ[p_H) (33)

i<m Ui J >
1<j#i<m p=>0

where s; ; acts by permuting the x;’s but not the factors of the tensor product.

Moreover, T.(M) is a subrepresentation.

Proof. By Lemma 5.4 and Lemma 5.9, ®*V’ is a good connection, which implies
the first statement. For the second part, observe that

ava +Zx i

J#z

nv/(Dz)

- QD)) 4 Z pQ(Z o)

[p+1]"
]#z p>0

T

The equality of operators s; ; = Q(")s; ; implies (33). The third statement follows
from the fact that the operators (=1 +s; ;)/(z; — ;) and J,, preserve C[h] C R.
- 243

5.5. Suzuki functor

We next consider the relationship between the functors T'° and T,. Both T'°¢(M)
and T, (M) carry representations of D2 given by *V’ and *W’, respectively. The
following result is well known (see, e.g., [54, Prop. 2.18)).
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Proposition 5.11. Let k € C.

a) The connection "NV’ normalizes the g[t]-action on T'9(M) and descends to

t
a good connection on Hy(g[t], T'%(M)).

b) There is a D;; oo-module isomorphism

Ho(g[t], TES(M)) = Ho(g ® Rz, T (M)),

intertwining the connections "V’ and *V'.

(34)

Proof. Let us prove part a). Set t = Kk +n, and let X € g and » > 0. We need to

compute the commutator [*V’(g;), a(X[r])]. We have

[*V'(¢:),a(X[])] = A+ > B +C

J#i
as linear operators on T!°¢(M), where
1 ..
[t (X)), By = [1- 209, a(x ()],
J
% oo)
C =" [2Pafl) a(X[r])].
p>0
We compute:
—[t8,, 2T X D] = —ptal L X @)
B= L [Q6d) 4rx 4 27X O]
Ti — Ty
- M[gu,j) X0)]
T — Tj ’
= Z Z erl, X )(])(ezk[p - 1})(i)7
1<p<r k,l
C= Z Z z? [e,(:l)elk[p + 1] 2T X O 4 X [—r] ()]
p>0 k,l

=D (@ lew, X]Peulp + 1)) + e [enlp + 1)), X[-r]>)])

p>0 k,l

= ZZ Z+re’(€l) (lewr, X][p + 1})( ) +xpe,(€l) [ekl[pr 1}(00),X[—

p>0 Kl
+ Z rai e, X)nez(fz)

Z Z (lexs, X][p — ) (ew[p — 1] ()—i—er elk,X>,€e,(fl).

1<p<r ki, k,l

r)>])
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Therefore, we have

["V'(¢:), a(X[r])] = —rtx]” x( )+Z Z Z ([ext, X )(])(elk[P_l]) 9

j#£1 1<p<r k,l

+ > ews Xlp — 7)) (ewlp — 1))@

1<p<r ki,
-1 (@)
+ZT$: <6lk:7X>n€kl

= —rta] ' XD+ "N " a(lew, X]r — p])(ewlp — 1) = D

1<p<r k,l
+ral N (X @ — Tr(X)),

where

= > ex, XIfr = p)) W (ew[p — 1))

1<p<r k,|
> S @ e X)) @hef))
1<p<r k,|l
=1 3 (A XOef] — X0l

= —ral N (Tr(X) + nX@),
Hence, we have
["V'(g;), a(X[r])] = raf (= XD + Te(X) + nX @ + kXD — Tr(X)) =0

modulo g[t]- T'°¢(M). This shows that the connection *V’ normalizes the g[t]-action
on Tl°¢(M). Part b) is standard — detailed proofs can be found in, e.g., [54, Prop.
3.6] or [27, Lem. 2.1, Prop. 2.6]. O

Corollary 5.12. Let k € C.

a) We have functors

T.: 6. — (U(g[t]), Hisn)-nmod, M+ T, (M), (35)
Fo: 6. = Hyirn-mod, M — Hy(g[t], T (M)). (36)

b) The map (34) is an Hin-module isomorphism and the functors F and
loc o F,, are naturally isomorphic.
¢) The functor (36) is right-exact and commutes with direct sums.

Proof. By Proposition 5.10, composing the Dunkl embedding (31) with the con-
nection *V’ yields a representation of H 1, on T,(M). Proposition 5.11.a) implies
that this representation descends to a representation on Hy(g[t], T(M)). This
proves part a). Part b) follows directly from 5.11.b). Part ¢) follows from the fact
that T, is exact and taking coinvariants is right exact and commutes with direct
sums. [
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Definition 5.13. Given x € C, we call
Frt € = Hpgn-mod, M — Ho(g[t], C[b] ® (V)™ @ M) (37)
the Suzuki functor (of level k).

The functor (37) extends Suzuki’s construction from [52] to the critical level
case. Indeed, setting k = ¢, we get the functor

Fe: €. — Ho-mod

relating the affine Lie algebra at the critical level to the rational Cherednik algebra
at t =0.

Remark 5.14. In [54] Varagnolo and Vasserot constructed functors from %, (x # c)
to the category of modules over the rational Cherednik algebra (¢ # 0) associated
to the wreath product (Z/1Z)16.,,. We expect that our approach to extending the
Suzuki functor to the kK = ¢, t = 0 case can also be applied to their functors.

6. Suzuki functor — further generalizations

The Suzuki functor has so far been defined on smooth f],i—modules. We now
extend its definition to all U,-modules in several steps. We first extend it to finitely
presented modules using a certain inverse limit construction. We then introduce an
even more general definition which applies to all modules. Let kK € Cand t = k+n
throughout this section.

6.1. Pro-smooth modules

We are going to define the category of pro-smooth modules and the pro-smooth
completion functor. If .# is an inverse system in some category, we write lim .%
or limps, e #» M;, where the M, run over the objects in .#, for its inverse limit. We
start with the following auxiliary lemma.

Lemma 6.1. Let M be any ﬁn—module, N a smooth module and f: M — N a
U, -module homomorphism. Then M/ker f is a smooth module.

Proof. Let v € M and let ¥ be the image of v in M/ker f. Since N is smooth,
there exists r > 0 such that I, - f(v) = 0. Hence f(I,-v) =0, I, -v C ker f and so

I-5=0. O

Definition 6.2. A ﬁﬁ—modulg M is called pro-smooth if M is the inverse limit of
an inverse system of smooth U,-modules. Let % denote the full subcategory of
U,-mod whose objects are pro-smooth modules.

Definition 6.3. Let M be a ﬁm—module. The smooth quotients of M form an
inverse system .#); partially ordered by projections. Let

M := lim I
Proposition 6.4. There exists a “pro-smooth completion” functor
IAJK—mod—WK;, MH]\A], f»—>f (38)

left adjoint to the inclusion functor ‘Jz — ﬁﬁ-mod.
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Proof. We first construct f explicitly. Let f: M — N be a homomorphism of [AIH—

modules. Given a smooth quotient N; of N, let f; be the map M LN N;. By
Lemma 6.1, M; := M/ker f; is a smooth module. Hence, there is a canonical map
M — M; as part of the inverse limit data. Consider the diagram on the LHS below,
where N; is another smooth quotient of N and all the unnamed maps are part of
the inverse system or inverse limit data. Since the outer pentagon commutes, the
universal property of the inverse limit N implies that there exists a unique map f
making the diagram commute.

M

/ vf\ \/ Vg\ /iM
, M

fli / \4 \Lf7 gl / \4 \ng v N

N, —— 5 N Ki— K; M; —— M;

Next we construct the adjunction. Let g: M — K be a homomorphism of [AJK—
modules, and assume that K is the inverse limit of an inverse system of smooth
modules. Given such a smooth module K;, let g; be the composition of g with the
canonical map K — K;. By Lemma 6.1, g; factors through the smooth module
M; := M/ ker g;. An analogous argument to the one above shows that there exists a
unique map g’ making the middle diagram above commute. The universal property
of the inverse limit M also yields a unique map ¢j; making the diagram on the
RHS above commute.

It is easy to check that the maps

Hom, > (M K)=Homg (M,K), hwhouwy, ¢ g (39)
are mutually inverse bijections. This gives the adjunction. O

Proposition 6.5. The restriction of (38) to €. or ﬁﬁ—fpmod is naturally iso-
morphic to the identity functor.

Proof. If M is smooth then M is the greatest element in the inverse system %y,
so M = M. Next suppose that M is finitely presented with presentation

(T8 L (T,)% - M 0.
We first show that (U,) = U,. The inverse system .#" := {U,. /I, | r > 0} is a
subsystem of . := JA Suppose that N = U,/J is a smooth quotient and let

1 be the image of 1 in N Then, by smoothness, I..1 = 0 for some r > 0. Hence
I, C J and N is a quotient of U, / I,. Therefore .#" is a cofinal subsystem of .%
and o R
(Ug) :=lim . =lim.#' = U,
The fact that limits commute with finite direct sums implies that the pro-smooth
completion functor sends (U,)®? to itself. Hence LT, yee = id and f = f’, using
the notation from (39). The adjunction (39), therefore, implies that f = f. By
Proposition 6.4, the pro-smooth completion functor is left adjoint and, hence, right
exact. Hence (coker f) = coker f = coker f = M. O

We will also need the following lemma.
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Lemma 6.6. Let M and N be ﬁﬁ-modules. Then

Hom > (M N)= lim colim Homg (M;, N;).
Ni€IN M;eIn

Proof. The equality Hom,z (M,N) = limy, .z, Homg (M, N;) follows from the
general properties of limits. Therefore it suffices to show that, for each N; € Sy,

Homg (M N;) = colim Homg (M;, N;). (40)
M;edy

Let us check that the LHS of (40) satisfies the universal property of the colimit.
Suppose that we are given a vector space X and linear functions

X, HomGN(Mj,NZ-) — X,

for each M; € £, which commute with the natural inclusions between the Hom-
spaces. We are now going to define a map

x: Homg (M N;) = X.

If f € Homg (M N;), then, by Lemma 6.1, the module M := ]\7/ ker f is smooth.
Let f: M — N; be the homomorphism induced by f. We define x by setting
X(f) == xz7( f). One can easily see that x is the unique map making the diagram
below commute (where M, is another smooth quotient of M and all the unnamed
maps are the canonical ones).

Homg Homg (Mk,N)

XMk O

Homg N;)

6.2. Extension to all modules

We start by extending the Suzuki functor from Definition (5.13) to the category

ﬁn—fpmod. Suppose that M is a finitely presented ﬁn—module. By Proposition 6.5,
we have M = M :=lim _#Zj. Set

Fo(M):= lim F(M;), (41)

where the limit is taken in the category H;-mod. If M is smooth then M is the
maximal element in the inverse system .#j, so (41) is compatible with the previous
definition of F,,.

Proposition 6.7. The functor (36) extends to a right exact functor
F.: ﬁﬁ—fpmod — H¢-mod, (42)

which preserves finite direct sums.
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Proof. We need to construct maps between Hom-sets. Suppose that N = N is
another finitely presented U,-module. Let N; € Sy. For all M; € ¢/, we have
maps

¢j: I‘IOHII’:T (M37 Nz) F—N) HOIIl;.Lt(FN(]\4j)7 FH(NZ)) — Homq.[t(F,i(M), FH(NZ))

K

compatible with the transition maps of the direct system {Homg (M;, N;) | M; €
_Zu}. The universal property of the colimit and (40) yield a canonical map

;e HornﬁN (M’ Nz) = ]V(jjjoél};jlu HOIIIGN (Mj, Nz) — HOH?lHt(FH(]\f)7 FH(Nl))

The maps 1; are compatible with the transition maps of the inverse system
{Homy, (F(M),F.(N;)) | N; € #n}. Hence the universal property of the limit
yields a canonical map

Homﬁﬁ (M,N)= lim Homg (M,N;) — Homy, (F.(M),F.(N)). (43)

N, €N U

Therefore (42) is in fact a functor.
Since limits commute with finite direct sums, (42) must preserve finite direct
sums. We now prove right exactness. Suppose that we have a short exact sequence

0-A—-B—-C—=0 (44)

in IAJK—fpmod. By Proposition 6.5, these modules are pro-smooth, and there exists
a short exact sequence of inverse systems of smooth quotients

whose limit is (44). Since we are dealing with inverse systems of smooth quotients,
the structure maps are all epimorphisms. Next, note that the functor F, is right
exact on smooth modules by Corollary 5.12.c). Hence, after applying F,, we get a
short exact sequence of inverse systems of Hs;-modules

{FH(Al) — Fn(Bz) — FK(CZ) —0 | 1€ Zzo},

where the structure maps are still epimorphisms. By [53, Lem. 10.86.1], after taking
the inverse limit, we get the sequence

Fr(A) = Fu(B) = Fu(C) =0,

proving right-exactness. [

Corollary 6.8. The space F..(Uy) is a (Hy, U,)-bimodule. There exists a natural
isomorphism of functors

Fe(-) 2 Fo(U,) ®g_ —: Uy-fomod — H;-mod. (45)
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Proof. If we take M = N = IAJH then (43) is an algebra homomorphism
U — Endy, (Fe(U,), Fo(Uy))

giving the right U,.-module structure.

The second statement is proven in the same way as the Eilenberg-Watts theorem
(see, e.g., [49, Thm. 5.45]). Let us briefly summarize the argument. One first uses
the fact that F, preserves finite direct sums to show that the isomorphism (45)
holds for the category of finitely generated free ﬁn—modules. One then concludes
that (45) holds for arbitrary finitely presented modules by using the right exactness
of F,, together with the five lemma. [

We now introduce the final and most general definition of the Suzuki functor.
Definition 6.9. The functor (42), in the realization (45), extends to the colimit-
preserving functor

Fo(—) == Fr(Us) ®g_— 1+ Ux-mod — H;-mod. (46)

From now on we will refer to (46) as the Suzuki functor.

Remark 6.10. Let us make several remarks about the definition above.

a) In Corollary 6.8 we had to restrict ourselves to the category U,-fpmod
because inverse limits do not commute with infinite coproducts. However, the
functor (46) preserves all colimits since it is left adjoint to the functor N —

Homyy, (F..(Uy), N).
b) We now have three definitions of the Suzuki functor:

e the “coinvariants definition” for smooth modules:
FH(M) = HO(g[tL T,{(M)),
e the “limit definition” for finitely presented modules:

FK(M) = Mher%M FR(Mi)v

e the “tensor product” definition for all modules:

Fo(M) = F.(Uy) @g, M.

The limit definition agrees with the coinvariants definition, when restricted to
smooth modules, by the comments preceding Proposition 6.7. The tensor product
definition agrees with the limit definition by Corollary 6.8.

6.3. A generic functor

Considering t as an indeterminate, one obtains flat C[t]-algebras ﬁc[t] and Hcyy
such that

G(C[t]/(t - §)G<C[t] >~ Ue_y, Hep/(t—EHep = He

for all £ € C. More details on the algebra Hcpy, often called the generic rational
Cherednik algebra, can be found in [14, §3]. We have specialization functors
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Spec;_¢: ﬂc[t]-mod — ﬁg,n—mod, M M/(t=¢) M,
spec,_¢: Hep-mod — He-mod, M — M/(t — &) M.

One can easily verify that our construction of the functor F still makes sense if we
treat t as a variable throughout. Therefore, we obtain the generic Suzuki functor

F(C[t] : ﬁ(c[t]—mod — Hc[t]—mod,

which commutes with the specialization functors, i.e., spec,_¢ o Fcpy = Fe—p 0
Spec;_-

7. Computation of the Suzuki functor

In this section we compute the Suzuki functor on certain induced U (g)-modu-
les, showing that the generalized Verma modules from Definition 3.5 as well as the
regular module #H; are in the image of F,. Let k € C and t = k + n throughout.

7.1. Induced modules
We start by recalling the definition of Verma modules.

Definition 7.1. Let A € t* and let Cy ; be the one-dimensional t® C1-module of
weight (A, 1). The corresponding Verma module is

M. (A) := Indgi oInffe, Cap.

We next define certain induced modules which generalize the Weyl modules
from [39, §2.4] (see also [28, §9.6]). Given [ > 1 and p € C;(n), define

(=1, @81 9CLCay, [=1/i. (47)
where j,, :==n_[1] ® ny [1] & (1] N (1, L][1]) @ 2.

Lemma 7.2. The subspace j, is an ideal in the Lie algebra i;r Moreover, there is
a Lie algebra isomorphism Tu = [, ®3,[1] ® C1, where 3, denotes the centre of |,,.

Proof. Since j, C g>1, we have [g>1,j,] C g>2 C ju. Therefore it suffices to show
that [[,,j,] € j,. This follows from the fact that j,, = [[,,,[,][1] S t[1] S g>2, where v
is the direct sum of the nilradical of the standard parabolic containing [, and the
nilradical of the opposite parabolic, together with the following three inclusions.
Firstly, we have [l,,, §>2] € §>2 C j,. Secondly, [l,, [,[1]] C [l4, [.][1] C j,. Thirdly,
[, t[1]] € ¢[1] C j,. The second statement of the lemma follows immediately. [

Let Uy (1,) :== U(1,)/(1 — 1). Consider the functor
. i+ -
Ind,, ., = Indigi_‘ oTnf{" : U, (I,)-mod — €. (48)

In the case u = (1") we abbreviate Ind, := Ind(;n) .. Note that ia") = t,. Set

i:=jun =n_[1]®ni[l] @ §>2 and t:= t; /i. By Lemma 7.2, we have t = t & t[1].
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Definition 7.3. Let p € Ci(n), A € IT} and a € ([1])* with &,(a) = &, (with
respect to the usual Weyl group action). Extend L()\) to an Uy(1,)-module L(a, \)
by letting 3,[1] act via the weight a. We define the Weyl module of type (a, A, k)
to be

Wy (a, A) == Ind, .(L(a, N)).

Remark 7.4. As a special case, when a = 0, we obtain modules W () := W, (0, \)
which coincide with the Weyl modules from [39, §2.4].

Definition 7.5. Assume that n = m. Let J,; be the left ideal in U(§,) generated
by e;; —15. (1<i<n),1—1; andi:=n_[1]®ny[l] ® g>o. Define
H, :=U(gx)/3, = Ind,(Z),

where 7 := Indf@(c1 Cnay = S(H1]).
The module Hy; is cyclic, generated by the image 1y of 15, € U(g,). From now
on, whenever n = m, let us identify

T=SH1]) = Ch*], eu[l] = —ui. (49)

7.2. Statement of the results

We state the three main results of this section. The first one implies that the
regular module appears in the image of the Suzuki functor.

Theorem 7.6. Let n =m. The map

T:Hy — Fo(H,), (50)
flay, .. zn)wg(yr, .-y Yn)
— [f(xl,...,xn)®efu ®g(_611[1]7~-~7_enn[1])1H] (51)

is an isomorphism of Hi-modules.

The next theorem states that the Suzuki functor sends generalized Weyl modules
to generalized Verma modules.

Theorem 7.7. Letn=m. Takel > 1, p € Ci(n), A € Pu(p) and a € h* = ({{1])*
with &,,(a) = &,,. There is an H,-module isomorphism

Fo(Wi(a,N)) = Ay(a, A).

We remark that the a = 0 case of the preceding theorem also follows from [54,
Prop. 6.3]. Our third theorem shows that the Suzuki functor sends Verma modules
to Verma modules.

Theorem 7.8. Let m,n € Z>o and A € t*. Then F,.(M;(X)) # 0 if and only if
A € Pp(m). If X € P,(m) then there is an H-module isomorphism

Fre(Mi (X)) = As(N).
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7.3. Partial Suzuki functors

The proof of Theorems 7.6-7.8 requires some preparation. We start by recalling a
few facts about induction.

Lemma 7.9. Let 0 C a be Lie algebras, M a d-module and N an a-module.

a) There exists a linear isomorphism Ho(a,Indg M) = Hy(o, M).
b) There is an a-module isomorphism

Indy(N ® M) = N ® Indy M, a®n®ml—>2a1n®a2®m,

called the tensor identity, where Y a1 ® as is the coproduct of a € U(a). It
restricts to the linear isomorphism

Cly@(N®@M) SN (Cly@M), 1,0n@m—=n®l,@m
Proof. The first part of the lemma follows directly from the definitions. For the
proof of the second part see, e.g., [42, Prop. 6.5]. O
We next define “partial Suzuki functors”. Let [ > 1 and p € Cj(n). Suppose
that M € Uy(l,)-mod. The diagonal g-action on
T(M):= (V)®" @ M

restricts to an action of the Lie subalgebra [,,. The symmetric group acts on T(M),
as usual, by permuting the factors of the tensor product. We extend this action to
an action of C[h*]* by letting each y; act as the operator

v D el (52)
1<k<n
Lemma 7.10. The [,-action and the C[h*]*-action on T(M) commute.

Proof. The fact that the &,,-action commutes with the [,-action follows from
Schur-Weyl duality. Therefore we only need to show that the operators (52)
commute with the [,-action. Let e,s € [,. We have an equality of operators on
T(M):

Yi Z eg‘?s) = Z Zekkers ek?k %) (53)

j=1,...,n,00 J;élook 1

+ Z () ek (oo)+ Z ()ekk ](OO) (00) (54)

k=1

Consider the first summand in (54):

Z efdzegzs)e )k [1](5°) = Z e(’)e(ke 109 4 e@ (e, [1]) — e, [1]©)).  (55)
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Since M is an [,-module, e,,[1] — ess[1] = 0 as operators on M and the second
summand on the RHS of (55) vanishes. Next consider the second summand in
(54):

n n
3 eernl1]Cel) = 3 e el 1109 + (el — eD)e, [, (56)
k=1 k=1

If r = s then the second summand on the RHS of (56) vanishes. If r # s it vanishes
as well since M is an [,-module and e,[1] acts trivially on M. O

By Lemma 7.10, there is an induced C[h*]*-representation on Ho([l,, T(M))
and, therefore, a functor

F": U,(1,)-mod — C[h*]*-mod, M — Hy(l,,, T(M)),
which we call a partial Suzuki functor. For u = (1") we also write F := F". Set
Hind;: C[h*]*-mod — Hi-mod, N = H; ®cpp=)» N.

Proposition 7.11. The diagram

6. e H¢-mod

|ndMT T’Hindt

Uy (1,)-mod —— C[h*]* -mod

commutes, i.e., there ewists a natural isomorphism of functors F, o Ind, , =
Hind, o F. Explicitly, for each M € Ul(fu)—mod, this wsomorphism is given by

¢: Hind,(F"(M)) = C[h] ® Ho(1,,, T(M)) = F,.(Ind,, .(M)) (57)
f(xla--~7$m)® [U®u] = [f(xh'"vxm)@v@i(u)]v (58)

where v € (V¥)®™ e M andi: M — Ind?j M is the natural inclusion.
m

Proof. We first show that (57) is an isomorphism of C[h]*-modules. Since the first
equality in (57) follows directly from the PBW theorem (12), we only need to prove
the second isomorphism. Consider Indigf M as a g[t]-module using the Lie algebra

homomorphism
glt] = g[t™'] <= Gry X[K] = X[—K]. (59)

The map (59) induces a g[t]-module isomorphism Ind?f M = Indﬁ[t] M. Hence,

by Lemma 7.9.b), we have a g[t]-module isomorphism

nd?(Clh] @ (V)¥™ @ M) = Clh] @ (V9)®™ @ (Ind{" M), (60)
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where g[t] acts on the LHS as in (32), sending
Ly @ f(21, .0 Tm) @UOu i (21,00, Tm) @V 1y @ u. (61)

Next notice that, by Lemma 7.9.a), we have linear isomorphisms
Ho(g[t], Ind{" (CI]@T(M))) = Ho (L, C[H]@T(M)) = Clb]@Ho (1, T(M)). (62)

Applying Hy(g[t], —) to the inverse of (60) and composing with (62), we obtain an
isomorphism

Fr(Indfs M) = C[h] ® Ho(l,., T(M)). (63)

It is clear from (61) that (63) sends the equivalence class [f(z1,. .., Tm) @V i(u)]
to f(z1,...,Tn)®[v@u]. This implies, in particular, that (63) is C[h]*-equivariant.

We next prove that (57) is an isomorphism of H;-modules. Since H; is generated
as a C-algebra by C[h]* and C[h*], it suffices to show that ¢ intertwines the
Clb*]-actions. Moreover, since the subspace W' := 1¢py ® Ho(l,, T(M)) generates

Hind, (F“(M)) as a C[h]*-module, it is enough to check that ¢|y intertwines the
C[h*]-actions.
Consider the subspace U := 1¢iy @ (V*)®" @M C T(Ind,, (M)) and its image

U in F.(Ind,, . (M)). By (58), ¢ restricts to a linear isomorphism ¢|y : W = U.
The element y; € H; acts on F.(Ind, .(M)) as the operator *g; (see (33)). The

operators J;, and (1 — s;,;) vanish on the subspace U. Moreover, QE;_(:E]) (p>1)

and e [1]©) (k # 1) act trivially on all of F,(Ind, (M)). Therefore

T= 4 = Y eenl]™ (64)

1<k<n
as operators on U. On the other hand, the action of y; on W is given by (52). It
now follows directly from (58) that ¢ is C[h*|-equivariant. O

7.4. Proofs of Theorems 7.6—7.8
We now prove the theorems from §7.2.

Proof of Theorem 7.6. Combining the left C&,,-module isomorphism
C&n = (V") (-1,m1), Wi e, (65)
with (49) allows us to identify
T: F(Z) = ((V)®") (1,1 ®L = C6,, x Clh7] (66)

as C6S,,-modules. We claim that (66) also intertwines the C[h*]-actions.

Let us prove the claim. Consider the subspace U := e}y ® Z C (V*)®" ® T and
its image U in F(Z). The map T restricts to a linear isomorphism T U C[p*].
Since C[h*] generates CS,, x C[h*] as an &,-module, it suffices to show that T is
C[b*]-equivariant. The action of y; on F(Z) is given by formula (52). Observe that
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e,(c,z el = —O0p.ely and egx[l] acts as multiplication by ex[l] on Z = Sym(t[1]).
Hence y; acts on U as multiplication by —e;[1]. On the other hand, y; acts on
C[h*] € C6&,,xC[h*] as multiplication by y;. It is clear from (49) that T intertwines
these two actions, which completes the proof of the claim.

We now prove the theorem. By definition, F,(H,) = F.(Ind.(Z)) and, by
Proposition 7.11, F.(Ind.(Z)) = Hind;(F(Z)). The claim above implies that
Hind,(F(Z)) = Hind;(C&,, x C[h*]) = H,. Formula (51) also follows from Proposi-
tion 7.11. [

Proof of Theorem 7.7. Set S;(u) = {pu<j—1 +1,...,p<;} so that {1,...,n} =
|_|§ 1 S5(1). Write r ~ s if and only if there exists j such that both r,s € S ().
By Proposmon 2.1, there is a natural C&,,-module isomorphism

Tya: F(L(a,\) 2 Clh*]* @ce, xclp-) SP(a, A) =: Sp,(a, A). (67)

We claim that (67) is an isomorphism of C[h*]*-modules.
It suffices to show that Y, , is an isomorphism of C[h*]-modules. Consider

the subspace U := (V*)fi”u) ® L(a,\) € (V¥)®" @ L(a,\) and its image U in

F*(L(a, ). The map T, restricts to a C&,-module isomorphism T/Wl: U =~
Sp(a, A). Since Sp(a, ) generates Sp,(a, ) as an &,-module, it suffices to show
that T/Wl is C[h*]-equivariant. The action of y; on ' (L(a, \)) is given by formula
(52). Let v =11 ® -+ @ v, € (V* )(u - Suppose that i € S; (). Observe that

eﬁcg v =0unless k ~iand 3, g e,(c,z v = —v. Moreover, the elements ey[1]

(k € S;(u)) act on L(a, A) by the same scalar —a; := —a(y;). Hence y; acts on U
as multiplication by a;. This agrees with the definition of the y;-action on Sp(a, \),
completing the proof of the claim.

We now prove the theorem. By definition, F, (W, (a,))) = F.(Ind, .(L(a, \)))
and, by Proposition 7.11, F,(Ind,, .(L(a,)))) = Hind;(F"(L(a,)))). The claim
above implies that Hind;(F"(L(a, \))) = Hind,(Sp,,(a,\)) = A¢(a, ). O

Proof of Theorem 7.8. In analogy to Proposition 7.11, one can show that, for each
A € t*, there is a C[h]*-module isomorphism

Clb] @ Ho (b, T(C)) = Fr(Indf® Cy1) = Fr(M()) (68)
flze, .. 2m) @ vul = [f(z1,. .., Tm) @ v i(u)l, (69)

where v € (V¥)®™ 4 € Cy and i : Cy — Indg: Cx,1 is the natural inclusion.

The first statement of the theorem now follows directly from (68) and Corollary
2.2. So consider the second statement. Let A € P,,(m). By Corollary 2.2 and (12),
we can identify A;(\) = C[h] ® Ho(by, T(Cy)) as C[p]*-modules. Let Ty be the
composition of this isomorphism with (68). We need to check that T intertwines
the C[h*]-actions. Observe that, by (69), T, restricts to a linear isomorphism
Sp(A) = U, where U is the image of U := 1¢p ® (V¥)®™ @ Cy 1 in F (M, (X))
Since Sp(A) generates A¢(A) as a C[h]*-module, it suffices to show that Tx[sy(x)
intertwines the C[h*]-actions. By definition, each y; acts trivially on Sp(A). On the
other hand, since each ey [1] acts trivially on Cj 1, the operator “g; also vanishes
onU. [
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8. Relationship between the centres

Assume that n = m throughout this section. The fact that the algebras ﬁc
and Hy have large centres has many implications for their representation theory.
For example, they have uncountably many isomorphism classes of irreducible
modules, and Verma-type modules have large endomorphism and extension algeb-
ras (see §11 for a more detailed discussion). To understand how simple modules
or endomorphism rings behave under the Suzuki functor, we must, therefore,
understand the relationship between the centres of the categories Ug.-mod and
Ho-mod. In general, a functor of additive categories does not induce a homomor-
phism between their centres. In §8.1 below we propose two ways to get around this
problem. In §8.2 and §8.3, we apply them to the Suzuki functor, and construct a
map 3 — Z between the two centres.

8.1. Centres of categories

Suppose F': A — B is an additive functor between additive categories. Recall that
the centre Z(A) of A is the ring of endomorphisms of the identity functor id 4.
An element of z € Z(.A) is thus a collection of endomorphisms {zp; € End 4(M) |
M € A} such that fozy = zyo f for all f € Homy(M, N).

The functor F' does not necessarily induce a ring homomorphism Z(A) — Z(B).
For example, if F is not essentially surjective, then the collection {F(zps) €
Endg(F(M)) | M € A} does not contain an endomorphism for every object
of B. If F is not full, then the endomorphisms F'(z)s) may fail to commute with
some of the morphisms in B. Hence {F(zp) € Endg(F(M)) | M € A} is not
necessarily an endomorphism of the identity functor idg. We remark that some
sufficient conditions for the existence of a canonical homomorphism Z(A) — Z(B)
are known - for instance F' being a Serre quotient functor (see [48, Lem. 4.3]).

We therefore pursue a different approach to construct a sensible ring homomor-
phism Z(A) — Z(B) encoding information about the functor F. There are cano-
nical ring homomorphisms

Z(A) < End(F) £ 2(B)

with a taking {zps | M € A} to {F(zpm) | M € A} and S taking {zx | K € B} to
{zr@u) | M € A}. We assume that j3 is injective, and identify Z(B) with a subring
of End(F).

Definition 8.1. We call Zp(A) := a=Y(Z(B)) C Z(A) the F-centre of A. If
A = A-mod is the category of modules over some algebra A, we will also write
Zp(A) = Zp(A).

Restricting o to Zp(A) gives a natural algebra homomorphism from the F-
centre of A to the centre of B:

Z(F) = O“ZF(.A): ZF(A)%Z(B) (70)

For any object M € A, the homomorphism Z(F') fits into the following commuta-
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tive diagram

Ze(A) — 25 78)

canl Jcan : (71)

End (M) —£— Endg(F(M))

Therefore, Z(F') contains partial information about all the maps between endomor-
phism rings induced by the functor F'.

In general, Zp(A) # Z(A). In that case, we would like to extend Z(F) to
a homomorphism Z(A) — Z(B). Of course, there is a price to pay - such a
homomorphism cannot make the diagram (71) commute for all objects M € A.
Instead, we impose the condition that the diagram should commute for all M from
some subcategory of A.

Given a full additive subcategory A’, let F': A’ — B be the restricted functor.
Restriction to objects in A’ yields canonical homomorphisms ¢: Z(A) — Z(A)
and End(F') — End(F”). We assume that the canonical map ': Z(B) — End(F")
is injective, and identify Z(B) with a subring of End(F"). The following commu-
tative diagram illustrates all the maps we have just defined:

Z(A) —% End(F) +2— Z(B)

RR &

Z(A) — End(F) <2 2(8B)

Definition 8.2. We say that a full subcategory A’ of A is F-central if Im(a/oq) C
Z(B).

If A’ is F-central, then there is a natural algebra homomorphism
Zy(F):=d oq: Z(A) — Z(B)
extending (70), and making the diagram

Z(A4) — 225 7)

con| =

End 4 (M) —£— Endg(F(M))

commute for all M € A’. The homomorphism Z 4/ (F') contains partial information
about all the maps between endomorphism rings induced by the restricted func-
tor F”.

8.2. The F.-centre

For the rest of this section, we will use the canonical identifications

32 Z(Ue-mod), Z 22 Z(Ho-mod), UP = Endg (Uy).
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Let us apply the framework developed in §8.1 to the functor Fc: ﬁc—mod —
Ho-mod. We have canonical maps

3% End(F.) £ 2.

By Theorem 7.6, the regular module Hy is in the image of F.. The fact that Z
acts faithfully on Hy implies that 3 is injective. R
Our first goal is to give a partial description of the F.-centre of Uc-mod. For
any x € C, define R
%= ("Lyi1,id[r] | r <0) C U,. (73)

When k = ¢, it follows from Theorem 4.3 and §4.4 that the generators on the RHS
of (73) are algebraically independent. Hence
Ze = C[°Ly,41,1d[r]]r<0- (74)

We will show that %, is a subalgebra of the Fc-centre of ﬁc—mod. The proof
requires some preparations. N
Let k be arbitrary and set ¢t = x+n. Let 15 denote the unit in U,,. Consider the

image [1@e®1;) of 1®el @15 € To(U,) in F,(U,). Let K, be the H;-submodule
of F,,(Uy) generated by [1 ® ey ® 15].

Lemma 8.3. There is an Hi-module isomorphism K; = H;.

Proof. Since F,; is right exact, it induces an epimorphism
Fo(Un) — Fo(l) 2 H,, [1®ef® 1] (16l @ 1] = 1y,

which restricts to an isomorphism K; = H;. O

Let N; be the subalgebra of Endy, (F,.(U,)) consisting of endomorphisms which
preserve the submodule K;. Let p;: N; — Endy, (K;) = H;® be the map given by
restriction of endomorphisms of F,(Uy) to those of K;.

Lemma 8.4. The following hold.

a) The image of ZL°P under Endﬁ_(ﬁ,{) LLN Endy, (F.(U,)) is contained
m Nt.
b) The map p; o Fr|por is given by:

»—>Zx (r <0), (75)

K 1—r (1_T) - -r
S R DI RRINISLE a0 » T

= 1<j =1

where c_(x;, ;) is the complete homogeneous symmetric polynomial of
degree —r in x; and x;, if r <0, and c_1(z;, x;) = 0.
c) When k = c, the image of Fc|g, lies in the image of Z in Endy,(Fc(Ue)).
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Proof. A homomorphism from K; to F,.(U,) is determined by where it sends the
generator [1®ejy®15]. Let z be any of our distinguished generators (see (73)) of .Z,..
The corresponding endomorphism of F,(U,) sends [1®ejy ® 15] to [1@ejy @z 15].
We are going to use the g[t]-action (32) to show that 1 ® ejj ® z - 15 is in the
same equivalence class in F,(U,;) as an element of the form (75) or (76). First take
z =id[r] with » < 0. By (32), we have
1@ey@idlr]-1g] = > [2;" @ ey @ Lg].
i=1

This yields formula (75). Secondly, take z = *L, with r < 1. By (32), we have the
following equalities of operators on F,(U,) evaluated at [1 ® e}y ® 14]:

DO (emlr — slews) ™) = — szsrze()eu@ (o) = — le "yi,

s>1 k,l s>1 ¢
§ E ex[slew[r — 8])>) = g E xSy TQ(”
r<s<0 k,l r<s<O0 1,5
*2§ C_, xl,xjs”Jrnlfr E T,
1<j

yielding formula (76). We have thus shown that the endomorphisms in F.(£2P)
send the generator [1 ® efy ® 15] of K, to other elements of K. Hence F,(ZP) C
N, proving parts a) and b) of the lemma. Part ¢) can be checked by a direct
calculation — it suffices to compute that the elements on the RHS of (75) and (76)
lie in Z. It also follows from Theorem 8.9, which has a more conceptual proof. [

Theorem 8.5. We have % C Zf, (U.). Moreover, Z(Fe)|e. is given by formulae
(75) and (76).

Proof. We need to check that, for any M € ﬁc—mod and z € %, the endomorphism
Fc(zar) lies in the image of Z in Endy,(Fc(M)). By Definition 6.9, Fo(M) =
FC(UC)®€TC M. The corresponding endomorphism F¢(zp7) of Fo(M) sends r@m —
r@z-m=r-zQm,form e M andr € F,Q(IAJ'C). Hence Fe(zpr) = Fc(z60)®id. But
Fe(zg,) lies in the image of Z in EndHO(Fc(IAJC)) by part ¢) of Lemma 8.4. Hence
Fe(zar) lies in the image of Z in Endy, (Fc(M)), proving the first statement. The
second statement follows directly from part b) of Lemma 8.4. O

8.3. An F.-central subcategory

The following lemma shows that the Fc-centre of ﬁc—mod is a proper subalgebra
of 3.

Lemma 8.6. We have Zf, (ﬁc) # 3.

Proof. Consider the element id[1] € 3. It follows from (51) that —a(id[1 ]) Fe(Ho)
is the endomorphism of F.(H.) & Ho given by multiplication with y; + - -+ + yy.
On the other hand, take, for example, the quotient M of Uc(g) by the left ideal

generated by g>3. One sees easily from (33) that —a(id[1])r_(ar) does not coincide
with the endomorphism of F.(M) induced by y1 + -+ + yp. O

Our next goal is to find a reasonable F.-central subcategory of ﬁc—mod.
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Definition 8.7. Let % be the full subcategory of ﬁc-mod containing precisely
the quotients of direct sums of He.. Let Fyg be the restriction of F. to %x.

As the lemma below shows, category %m contains interesting objects such as
Verma and Weyl modules.
Lemma 8.8. The following hold.

a) If A € Py(n), then the Verma module Mc(X) is an object of 6.
b) Let 1 > 1, p € C(n), A € Pu(p) and a € C* with &,,(a) = &,. Then the
Weyl module We(a, \) is an object of €.

Proof. Let us prove b). The definition of H. implies that
Homg_ (He, We(a, A)) = We(a, A)EL_“J)’

where i = n_[1] ® ny[1] ® §>2. The subspace L(a,A) C We¢(a, A) is annihilated
by i. It is easy to check that, since A € P, (), the difference A — (1,...,1) is a
sum of positive roots of [,. Since (1,...,1) is a dominant weight, it follows that
L(a,\),...1) # {0}. Since L(a, \) is simple as an [,-module, any non-zero vector
generates We(a, \) as a ﬁc—module. It follows that there exists an epimorphism
He = We(a, ). Hence We(a, A) € €. The proof of a) is analogous. O

To state the next theorem, we need to introduce some notation:

d: 3 %EndfJc (He), Z v ZH,,
U Endﬁc (He) — Endyy, (Ho) = HP, ¢ — Fe(d),
O :=Voo.

These maps fit into the following commutative diagram:

33— Z(%u) —2— End(Fy) +—— 2Z

| Lo )

3 —25 Endg (He) —— HP Z

where the vertical arrows send an endomorphism of the identity functor (resp. Fy)
to the corresponding endomorphism of He. (resp. Ho).
The following theorem is the main result of this section.

Theorem 8.9. The subcategory 6u is Fe-central and Zg, (Fe) = ©.

The proof of Theorem 8.9 will be presented in §8.4. We note the following
corollary, which will be useful later.

Corollary 8.10. Let M € 6g and z € 3. Then ©(2)r vy = Fe(zar). In particu-
lar, ©(Annz(M)) C Annz(F.(M)).

Proof. By Theorem 8.9, we have F.(zp) = (&0q(2))ar = ©(2)ar. If 2 € Annz (M),
then zps = 0 and so ©(2)r_(a) = Fe(zm) =0. O
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8.4. Proof of Theorem 8.9

The proof of Theorem 8.9 requires some preparations. We first prove the following
lemma.

Lemma 8.11. The two vertical arrows in (77) are injective.

Proof. Let M be an object of 3. Since M is a quotient of HZ (direct sum over some
index set I), there exists an epimorphism p: H. — M. Suppose that z € Z(%x).
Then zpr op = po zy: and it follows that zps is uniquely determined by zy;.
But zg: = @©rzm,, so 2y is in fact uniquely determined by zp,. This proves the
injectivity of the left vertical arrow.

Now suppose that ¢ € End(Fg). Let ¢pr be the corresponding endomorphism of
Fe(M). Since F. is right exact, Fe(p): HE — Fe(M) is also an epimorphism. Since
¢ is a natural transformation, we have F¢(p) odpr = pnoFe (p). It follows that ¢
is determined uniquely by ¢pz. But ¢ = ©rdm,, s0 ¢ is uniquely determined
by ¢m, . This proves the injectivity of the right vertical arrow. 0O

Theorem 8.9 states that %} is Fe-central, ie., Ina’ o ¢ C Z. By Lemma
8.11, this is equivalent to showing that Im©® C Z. The rest of this subsection
is dedicated to this goal. The main idea is to establish the following two facts:
Im© - ZHSD((C[’)*]N) and ZHSD((C[[)*}N) =Z.

We start by recalling some information about the G((t))-action on U,. There
is an adjoint action

G((t) x g(() = a((®), (9. X) = g(X) := gXg~"
of G((t)) on its Lie algebra g((t)). It extends to an action on g. if we let G((¢)) act
trivially on 1. This action induces an action on the universal enveloping algebra
U.(g) and its completion Ug.

Proposition 8.12 ([28, Prop. 4.3.8]). The G((t))-action on 3 C Uy is trivial.

The G((t))-action restricts to an &,-action on U, where we identify the sym-
metric group &,, with the subgroup of permutation matrices in G C G((t)). The
GS,p-action preserves the ideal J. C U(§e) and, hence, induces an action on the
module H.

We now define an induced action on F¢(He). Let &,, act on (V*)®™ by the rule
e, ® - -Qej ey 1)@ Qe L) One easily checks that w-ef = e’ .,

n w11 w=1l(n T
where e is as in (65). Combining the &,,-actions on H, and (V*)®" defined above
with the natural permutation action on C[h] we obtain an action

Gp X Te(He) = Te(He), (w,f@u®h)—w-fQw-u®w-h. (78)
It is easy to check that if X[k] € g[t] and w € &,, then w o X[k] = w(X)[k] ow
as operators on T¢(H,). Hence the subspace g[t].To(H,) is &,-stable, and (78)
descends to an action

*: G, X Fe(He) — Fe(H,). (79)

Note that this action is different from the &,-action defined in §5.4.

There is also a natural conjugation action

S, x Ho — Ho, (w,h) — whw . (80)

In the next lemma we compare the induced actions on endomorphism algebras.
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Lemma 8.13. The map © is &,,-equivariant.

Proof. We factor © as a product of the maps ®, Endg_(Hc) — Ends, (Fc(He))
and the isomorphism Endy, (Fe(Hc)) 2 Endy, (Ho) induced by T from (50). The
first two maps are &,,-equivariant by construction. So we only need to check that T
intertwines the two actions (79) and (80). Abbreviating ey, := ek, we have

Y(wf(zy,...zn)ug(y,... ,yn)w_l)
= Y(f (@), - o) WU GYu(1)s - - - Yuo(n)))
= [f(@w), - Twm)) @ €puuw—1 @ g(—ewmy 1], ., —ewm)[1]) 1]

and

wxT(f(x1,...,zn)ug(y1,. .., yn))
=w*[f(x1,...,2n) ®el @ g(—er[l],...,—en[1]).1n]
= [f(.%‘w(l), . ,xw(n)) (9 efuuw*1 (9 g(—ew(l)[l], ey —ew(n)[ll).l]ﬁl]’

as required. [
Proposition 8.14. We have Zy,(C[h*]*) = Z.

Proof. Write Hreg := Clhreg X §*] X CS,,. We first prove that
ZHreg((C[b*] xC6,) = Z(Hreg) = C[hreg X b*]6”~

We only need to show that Zy, (C[h*]xC&,,) € Z(Hueg), the other inclusion being
obvious. Let z € Z3,, (C[h*] xC&,,). We can uniquely write z = o fuw with
fuw € Clhreg x h*]. Since, by assumption, z commutes with C&,,, for any u € &,, we
have z = uzu™! = Ywes, Ufwwu Tt =30 o fU, w, where f¥(a) = flu=t-a).
Hence f1 = f{ forallu € &, i.e., fi € C[hreg xh*]S". Next, since z commutes with
Clh*], 0 = [2,9] = Y yes, fulg” — g)w for all g € C[h*]. But &,, acts faithfully
on h C C[h*], so for each w € &,, there exists a € b such that w=!(a) # a. This
forces f, = 0 for each w # 1.

Using the Dunkl embedding (see (31)), we view H as a subalgebra of H,eg. The
following are obvious:

Z3,(Clh*] x C&,,) = Z3,, (C[H*] x C&,) NHo, Z(Hieg) NHo C Z.

Since Hreg = Ho[0 '] and 6! is central in Heg, we also have Z C Z(Hyeg) N Ho.-
O

Remark 8.15. Proposition 8.14 generalizes to rational Cherednik algebras at
t = 0 associated to any complex reflection group.



700 T. PRZEZDZIECKI

Proposition 8.16. We have Im© C Z.

Proof. Lemma 8.13 and Proposition 8.12 imply that Im©® C Zyzr (C8,,). There-
fore, it suffices to show that Im© C Z3or (C[h*]), because then Proposition 8.14
implies that Im© C Zyer (C[h*]*) = 2.

By the definition of H, there is a natural isomorphism

Endg_(H) = (Hc)i(l,.“,l)' (81)

Observe that Sym(t[1]).1y C (HC)EL...,I)' Indeed, Sym(t[1]).1y has t-weight
(1,...,1), and since i is an ideal in t; and 1y is annihilated by i, so is Sym(t[1]).1g.
Hence elements of Sym(t[1]).1y define endomorphisms of H.

By construction, Im® C Z(Endg_(He)), and so Im ® commutes with the endo-
morphisms defined by Sym(t[1]).1g. Hence In©® = ¥(Im ®) must commute with
the image of these endomorphisms under . But Theorem 7.6 implies that they
are mapped to C[h*] C H°P. It follows that Im© C Zyoe (C[h*]), as required. [

We are now ready to complete the proof of Theorem 8.9.

Proof of Theorem 8.9. By Proposition 8.16, Im©® C Z. Lemma 8.11 and the com-
mutativity of diagram (77), therefore, imply Im(a’oq) C Z. The second statement
of the theorem also follows directly from the commutativity of the diagram. [

9. Filtered and graded versions of the Suzuki functor

Our next goal is to show that Im©® = Z. The proof in §10 relies on a filtered
version of the Suzuki functor, which we construct in this section. We also introduce
a graded version. Assume that k € C and m,n are arbitrary unless indicated
otherwise.

9.1. Background from filtered and graded algebra

We refer the reader to [5] and [51] for basic definitions from filtered and graded
algebra. All filtrations we consider are increasing, exhaustive and separated. If M
is a graded vector space (or module or algebra) we denote the ith graded piece
by M;. If M is a filtered vector space (or module or algebra), we denote the ith
filtered piece by Mc;.

Now suppose that A is a filtered algebra and M, N are two filtered A-modules.
An A-module homomorphism f : M — N is called filtered of degree i if f(M<,) C
N<yy; for all 7 € Z. We say that f is a filtered isomorphism if f is an isomorphism
of A-modules and f(M<,) = N<, for all r € Z. Let Homa (M, N)<; denote
the vector space of filtered homomorphisms of degree i and set Hom'y (M, N) :=
Uicz Homa (M, N)<;. If M is finitely generated as an A-module then Hom 4 (M, N)
= H'om‘jl'(M ,N). Observe that Hom'j(M,N) is a filtered vector space and
Hom'y (M, M) is also a filtered algebra.

We next define two categories whose objects are filtered (left) A-modules. The
first category, denoted A-fmod, has Hom-sets of the form Hom'i (M, N). The second
category, denoted A-fmody, has Hom-sets of the form Hom4 (M, N)o. We regard
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A-fmod as a category enriched in the category C-fmody of filtered vector spaces
(where C is endowed with the trivial filtration).

Analogous definitions make sense in the graded setting. In particular, if A is
a Z-graded algebra then we have two categories of graded modules A-gmod and
A-gmod,. We regard A-gmod as a category enriched in the category C-gmod, of
graded vector spaces.

If A is a filtered algebra, with associated graded gr A, let o: A — gr A be the
principal symbol map. For v € A, set degv := dego(v). If f: A — B is a degree
zero filtered algebra homomorphism, let gr f: gr A — gr B be the associated graded
algebra homomorphism.

9.2. Filtrations and gradings

We consider two filtrations and a grading on U, (g).

Definition 9.1. Suppose that I > 0, X;,...,X; € g and j1,...,5 € Z. An
expression of the form m = Xi[j1]... X;[5i] € Uk(g) is called a monomial of
length 1, height j1 + - + j; and absolute height |ji| + - - + |ji|. For r € Z, define:

(a) Uk(g), = ( monomials of height r ),

(b) UPP(§)<, = ({ monomials of length < r ),

(c) U2(§)<, = ( monomials of absolute height < r ),
where the brackets denote C-span. Observe that (a) defines a grading while (b)
and (c) define filtrations on U (g). Filtration (b) is the usual PBW filtration. We

call filtration (c) the absolute height filtration. Denote by UPP¥(g) and U2Ps(g) the
corresponding filtered algebras.

Definition 9.2. We define subcategories of graded and filtered smooth modules.

a) Let €& be the full subcategory of U,(g)-gmod whose objects are graded
modules with the property that the underlying ungraded module is an object
of €..

b) For r > 0, let €25%(r) be the full subcategory of U2**(g)-fmod whose objects
are filtered modules M such that (i) the underlying unfiltered module is an
object of €, (r), and (ii) for each | > 0, we have: M<; = U5(g)<; - MIr.

Remark 9.3. Consider the associated graded algebra gr U2b*(g). It is easy to see
that the relation

(X ®t"),0(Y @ )] = 8o (X, Y] @ E7F)
holds in gr U2b%(g). Hence
grU(g>0) 2 U™(g>0), &rU™(g<0) = U*™(g<0).

Moreover, we have [gr U%s(g>1),gr U?P*(g<_1)] = 0.
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Definition 9.4. We consider the following grading and family of filtrations on the
rational Cherednik algebra.

a) Setting degx; = —1, degy; = 1 and deg &,,, = 0 defines a grading on H;.
We denote the corresponding graded algebra simply by ;.

b) For each k > 1, setting degz; = 1, degy; = k and deg &,,, = 0 yields a
filtration on H;, and we denote the corresponding filtered algebra by ’Hgk).
When k = 1, the resulting filtration is known as the PBW filtration, and
we abbreviate H; := H,El).

We consider C[h], C[h]* and C[h*] as graded (resp. filtered) subalgebras of H;.

9.3. Filtered lift of the Suzuki functor

Let M be a filtered module in €25%(r). We equip (V*)®™ with the trivial filtration
and T, (M) with the tensor product filtration. Explicitly,

To(M)<p = > Clhl<x @ (V)™ ® M. (82)
k+l=p

Consider the quotient map
P: To(M) — Fio(M). (83)

We endow F, (M) with the quotient filtration given by F.(M)<p = ¢¥(T.(M)<p).
The following proposition connects the absolute height filtration on U,(g) with
the filtrations on H 4.

Proposition 9.5. For each r > 2, the functor F,. lifts to a functor
FO - 2%%(r) — HEL Y fmod

enriched in C-fmody.

Proof. Let M € €2%(r). We first show that F, (M) is a filtered H Y module.

The only non-trivial thing to show is that y;F.(M)<s C FH(M)SHQ:,;), for s € Z
and 1 < ¢ < m. Recall that the action of y; is given by (33). Clearly each of 9,,
and Q9 (z; — ;)71 (1 — s, ;) either vanishes or lowers degree by one. Hence it

7,00
’ZZQEPH])
most 2r — 3. Observe that 2! raises degree by p and e,(;l) doesn’t change degree.
Therefore it is in fact enough to show that each ejx[p+ 1](0") changes degree by at
most —p + 2r — 3.

If p < r — 2 then the fact that M is a filtered module implies that ey [p + 1]
raises degree by at most r — 1. But r—1 < (r—1)+(r—2—p) = —p+2r —3. So
assume p > r—2. Let v € M. Because M € €2*(r), we can assume without loss of
generality that v = Xj[a1]. .. X.[a.].u, with u satisfying degu = 0 and g>,.u = 0,
for some X5,..., X, €gand a; <--- < a, <r. Hence degv = |ay|+ -+ |a.| (by
Definition 9.2.b)).

We first prove the inequality

is enough to show that for each p > 0, the operator = raises degree by at

p+14ai|—|a1] < —p+2r—3.
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First assume a; < —p—1. Then [p+1+4a1|—|a1|=—-(p+14a1)+a1 =—-p—1.
But —p—1 < —p+2r — 3 since r > 2. Next assume —p < a; < —p+r—2<0.
Then [p+1+4a1| —|ai|=p+2a;1+1< —p+2r—3.

We argue by induction on z (i.e. by induction on the PBW filtration). If z =1
then

elk[p-i-l].v =X, [al]elk[p+1].u+[elk7Xl][p+1+a1].u = [elk,Xl][p+1+a1].u (84)

modulo 1. Note that [ejr, X1][p+ 1+ a1].u = 0 unless a; < —p+r — 2. Let us now
calculate the difference in degree between v and (84). We have

dege[p+1).v —degv=|p+ 1+ a1| —|a1| < —p+2r — 3.

Hence e, [p + 1]("0) changes degree by at most —p + 2r — 3, as required.
Now let z > 1. We have

ewlp + 1w = Xqla]ew[p + 1].0" + [ew, Xa][p + 1 + a1].0

modulo 1, where v’ = Xsas] ... X, [a.].u and deg v’ = |as|+- - -+]a.|. By induction,
we know that ej[p + 1] changes the degree of v’ by at most —p + 2r — 3. Hence

deg X1[a1])ew[p + 1].v" < (degv' + |a1]) —p+2r — 3 =degv — p+ 2r — 3.

Moreover, since M is a filtered module, [e;;, X1][p + 1 + a1] changes the degree of
v’ by at most |p+ 1+ a1|. Hence

deglerk, X1][p+ 1+ a1].v’ <degv' + |p+ 1+ ay|
=degv —|a1| +|p+ 1+ a1| < degv—p+2r—3.

It follows that ejx[p + 1](00) changes degree by at most —p + 2r — 3, as required.

We now show that F,(f) is an enriched functor. Suppose that M and N are two
filtered modules in €2%*(r). Let h : M — N be a filtered homomorphism of degree
i. We need to show that F,(h) is also a filtered homomorphism of degree i. So let
v € F(M)<s. Recall the projection (83). Since F,, (M) is endowed with the quotient
filtration, we can choose ¥ € T, (M)<s with ¥(9) = v. We can assume without loss
of generality that o = f(z1,...,Zm) @u® 2z with u € (V*)®™ 2 € M and f some
polynomial. Since h is filtered of degree 4, we have T, (h)(0) = f(x1,...,Tm) QU
h(z) € To(N)<s+i- However, ¢’ o T (h)(9) = Fi.(h)(v), where ¢’ is the projection
Y Te(N) — Fo(N). It follows that F(h)(v) € Fi(N)<sti, as required. O

In the following proposition assume that x = ¢, m = n and consider the
module H, = U2(g)/(J. N U(g)) as a filtered U2P*(g)-module endowed with
the quotient filtration.
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Proposition 9.6. The isomorphism YT: Ho — Fe(He) from (50) lifts to an iso-
morphism in the category Ho-fmody. Moreover, the map V: Endﬁc(Hc) —
Endy, (Ho) is a filtered algebra homomorphism.

Proof. Since it is difficult to work with quotient filtrations, we first show that the
module F.(H,) is isomorphic to another module with a more explicit filtration.
Consider the Hg-module T (H.). One easily checks that the subspace M = C[h] ®
((V¥)®") (1. ,—1) ® T is a Ho-submodule of T¢(Hc). Moreover, it follows from
Theorem 7.6 that Tc(He) = M @ g[t] - Te(He) and F.(He) = M. The latter
isomorphism is filtered if we endow Fc(H,) with the quotient filtration and M with
the subspace filtration. It follows from (51) that composing T with F.(H.) = M
yields an Hg-module isomorphism Hy = M given by

flz, o zn)wg(yn, -y yn) — f(X1, .. 20) @el @ g(—enn[1], - .., —enn[1]) 1m.

This formula together with the definition of the filtration on #Hy and (82) imply
that the isomorphism Hy = M is in fact filtered. This proves the first part of the
proposition.

The filtered isomorphism Y ! induces a filtered isomorphism of endomorphism
rings Endy, (Fe(He)) = Endy, (Ho). But ¥ is a composition of the latter with the
homomorphism Fc: Endg (He) — Endy, (Fc(Hc)), which is filtered by Proposi-
tion 9.5. O

9.4. Graded lift of the Suzuki functor

Suppose that M is a graded module in €8". Consider (V*)®™ as a graded vector
space concentrated in degree zero. Endow T, (M) with the tensor product grading
in analogy to (82). It follows immediately from (32) that F, (M) is a quotient of
T.(M) by a graded subspace. Hence the grading on T, (M) descends to a grading
on F.(M).

Proposition 9.7. The functor F, lifts to a functor
F&: €5 — H,qn-gmod

enriched in C-gmod,.

Proof. Let M € €#. We first prove that F,(M) is a graded H,4pn-module. Tt
suffices to show that y;F.(M)s C Fo(M)syq for s € Z and 1 < i < m. Recall
that the action of y; is given by (33). Clearly 9,, and Q9 (z; — x;)~ (1 — s; ;)
either vanish or raise degree by one. Since M is a graded U, (g)-module, the same
holds for z¥ Q%) for each p > 0, as required. The proof of the fact that F& is an

[p+1]
enriched functor is analogous to the proof of Proposition 9.5. O

10. Surjectivity of ©

In this section we show that Im© = Z. Assume that n = m and kK = ¢
throughout.
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10.1. The associated graded map

Consider the following commutative diagram in the category of vector spaces.

v gy Qe ®@v

HJe H Te(He) —— Fe(He)
ZT zl*r—l
Endg,_(He) kL Endy, (Ho) =M, - (89)
Im @ L z

Note that the fact that ¥(Im ®) C Z follows from Proposition 8.16. We endow
each of the vector spaces above with a filtration:

o H. = U2"(g)/(J. N Us(g)) carries the quotient filtration and HIe C H,
has the subspace filtration,

e Endg_ (He) carries the filtration induced by the one on He and Im® C
Endg_(He) has the subspace filtration,

e T.(H.) has the filtration from (82) and F.(He) has the corresponding quo-
tient filtration,

e 7y has the PBW filtration, Endy,(Ho) carries the induced filtration and
Z C Hg the subspace filtration.

Lemma 10.1. Fach map in the diagram (85) is filtered.

Proof. Every map is filtered by definition except for ¥ and Y. The fact that the
latter two are filtered follows from Proposition 9.6. O

We will show that In©® = Z by computing the associated graded algebra
homomorphism

gr¥: grim® — gr Z. (86)

We split the task of computing (86) into two parts. We first compute the
principal symbols of the images of Segal-Sugawara operators in H.. We then
compute the images of these principal symbols under the associated graded of
the map H. — H, arising from the upper right corner of the diagram (85).

10.2. Calculation of principal symbols

The ideal (U(g_)(ny @ t71C[t~1])) N U(g_)2" in U(g_)24" is two-sided (see e.g.
[44]). Hence the corresponding projection

AHC: U(g_)™ — Ut t'C[t™}))

is an algebra homomorphism, often called the affine Harish-Chandra homomor-
phism. Note that AHC is, moreover, a filtered homomorphism with respect to the
PBW filtrations.
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Lemma 10.2. Let 1 < k < n. The Segal-Sugawara vector Ty from Example 4.4
can be written as
Ty =Pi + Qi + Q},

where Py = (e11[—1])F + -+ + (enn[—1])¥,
Qk € (U(§-)-x NUP(§-)<k-1)™", Q€ (U(§-)-x N UP(§-)<p)™
and @}, € ker AHC.

Proof. Consider the algebra U(g_) from Example 4.4 equipped with a modified
PBW filtration in which 7 has degree zero. One easily sees that the principal
symbol of Tr(EF) equals Tr((E(1)*), where ECY := (e;;[—1])1,_, is a matrix
with coefficients in S(g_). But gr AHC(Tr((ECD)k)) =Py, O

Definition 10.3. Suppose that A € U(g_). We write 4; := A_;_y) so that
Y(A,z) = 3., Aiz' (note that the same notation was used with a different
meaning in (21)). In particular, for 1 <k < n, we write Ty := T} (—;_1) (not to
be confused with T}, from Example 4.4 ). We also write

A\l = ‘5(14[), Zl = o_abs(;{l)’

where 02 : H, — grH, is the principal symbol map with respect to the absolute
height filtration and o L
®:U;. - U./U.J. = He

is the canonical map. If v € He, set degv := deg o> (v).

The proof of the following key proposition is rather technical and has been
relegated to the appendix.

Proposition 10.4. Let 1 < k <n. Then:

n

'fk,z =0 (I <—2k), 'fk,—% = f’k,—% = Z(en‘[l})le,
=1

Tk _oki246 = Pr _okio4p =k Z eii[—b—1](eus[1)) 11y + (He)<pp1 (b >0).
i=1

10.3. The main result

Recall from Theorem 3.4 that gr Z = C[h @ h*]®~. The latter is known as the

ring of diagonal invariants or multisymmetric polynomials. Given a,b € Z>¢, the

multisymmetric power-sum polynomial of degree (a, b) is defined as p,p = riyb +

oo+ 222 We call a + b the total degree of pq p.

Proposition 10.5. The polynomials psp with a +b < n generate Clh & h*]Sn.
Proof. See, e.g., [50, Cor. 8.4]. O

We are ready to prove our main result: the surjectivity of ©. We also partially
describe the kernel of ©, compute © on Segal-Sugawara operators corresponding
to T7 and T2, and compute the principal symbols of the images of “higher-order”
Segal-Sugawara operators under O.
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Theorem 10.6. The map ©: 3 — Z is surjective with

(i) @(Tk)l):O (l < —2](5),

(i) ©(T1,)=pit+10 (>0),

(111) @(Tg_yl) = *pl+371+zi<j201+2 (Ii, x])sz,j+((n+l)l+3n+l)Zz":l:cﬁ'ﬂ (l Z 72),

(iv) ©(Tk,—2x) = (—=1)"po.,

(v) 0(O(Tk,—2kt245)) = (=1)* 'kppr1r—1  (b>0),
where 1 < k <n, ¢,.(z;,x;) is the complete homogeneous symmetric polynomial of
degree r in x; and x;, and 0: Z — gr Z is the principal symbol map.

Proof. Part (i) follows directly from Proposition 10.4, while (ii)-(iii) follow from
Lemma 8.4 and the fact that To = 2 - °L + id[—2]. Proposition 10.4 together with
(51) implies that Y~! sends

e ® ey ® Tro—ok] = (Lo ® ey @ Y _(ea[1])F. 1] = (=1)Fpos,
=1

which proves (iv). Moreover, Proposition 10.4 together with (32) and (51) implies
that gr Y1 sends

(e @€y @ Th —opr2s] =k > et @ely @ (en[1)* " 1m = (=1 "kppy1n-1,
=1

which proves (v) because gr ¥(Ty,,.) = 0(0(Tk,,)) for r > —2k + 2.

It follows from (iv) and (v) that the multisymmetric power-sum polynomials
of total degree < m all lie in the image of gr U. But, by Proposition 10.5, these
polynomials generate C[h @ h*]®» = gr Z. Hence the map gr¥: grim ® — gr Z is
surjective. By [51, Lem. 1(e)], the map ¥: Im©® — Z is surjective as well because
the filtration on Z is exhaustive and discrete. The surjectivity of © = ¥o® follows.
O

11. Applications and connections to other topics

We present several applications of Theorem 10.6. Assume that n = m through-
out.

11.1. Endomorphism rings and simple modules

We prove that the homomorphisms between endomorphism rings of Weyl and
Verma modules induced by the Suzuki functor are surjective and use this fact to
show that every simple Hy-module is in the image of Fc.

Corollary 11.1. The functor F. induces surjective ring homomorphisms:
Fe: Endg_(We(a, A)) — Endyy, (Ao(a, A)), (87)
forl>1,veC(n), A€ Po(v) and a € b* with &,(a) = &,; and
Fe: Endg_(Mc(A)) — Endy, (Ao(N)), (88)

for X € P(n). Moreover, the homomorphisms (88) are graded.
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Proof. The existence of the ring homomorphisms (87) and (88) follows from the
fact that Fe(We(a, A)) = Ag(a, A) (Theorem 7.7) and Fe(Mc (M) =2 Ag(A) (Theo-
rem 7.8). Let us prove their surjectivity. Corollary 8.10 implies that we have a
commutative diagram

3 © z

can lcan

Endg_(We(a, A)) —< Ends, (Ao(a, \))

By Theorem 10.6, © is surjective, and, by Theorem 3.7.b), the right vertical map
is surjective as well. Hence the lower horizontal map must be surjective, too. The
proof in the case of the Verma modules Mc()) is analogous. The fact that (88) is
a graded homomorphism follows from Proposition 9.7. O

We need the following lemma.

Lemma 11.2. Let M be a Uc-module and A C Endﬁc(M) be a vector subspace.
Then
Fe(M/AM) = Fe(M)/Fc(A)Fe(M).

Proof. Let B be a basis of A. By definition, M/AM = M/ ZfeB Im f. Consider
the exact sequence

Dy 2=l o MY I f 0.
feB feB

By Remark 6.10, the functor F. preserves colimits. In particular, it preserves
(possibly infinite) direct sums and cokernels. Hence

Fe(M/ ) pepTm f) = Fe(coker(®renf))
= coker(©renFe(f)) = Fe(M)/ 2 sep ImFe(f).

But ZfEB ImF.(f) = Fc(A)F(M). O
Corollary 11.3. FEvery simple Ho-module is in the image of the functor Fe.

Proof. Let L be a simple Ho-module. By Lemma 3.8, there exists a generalized
Verma module Ag(a, A) such that L = Ag(a,\)/I - Ag(a, A) for some ideal I C
Endy, (Ao(a, N)). Let J := FS1(I) € Endg (We(a, A)). Corollary 11.1 implies that
Fe(J) = I. Hence, by Lemma 11.2, ‘

Fe(We(a,\)/J - We(a,A) = Ag(a, A)/I - Ag(a, \) = L. g

Remark 11.4. When k # c, it has been shown (see [52, Thm. 4.3] and [54, Thm.
A.5.1]) that, under some mild assumptions, every simple H 4 ,-module in category
O(Hy+n) is in the image of F,. It is noteworthy that the proofs in [52] and [54]
employ very different techniques from those used by us in the kK = c case.
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11.2. Restricted Verma and Weyl modules

We are going to compute the Suzuki functor on restricted Verma and Weyl modules
as well as their simple quotients.

Consider the algebra 2 from (18) equipped with the natural Z-grading induced
from Uc(g). In [2, §3.2], Arakawa and Fiebig consider the restriction functor

Ce— Coy M M:=M/Y ) icq Zi- M. (89)

This functor is right exact because it is left adjoint to the invariants functor M +—
M:={meM]|z-m=0forall z€ Z,i#0}. Given u € t*, in [2, §3.5], Arakawa
and Fiebig define the corresponding restricted Verma module as Mc(p). By [2,
Lem. 3.5],

Me(p) = Me(p)/ 2~ - Mec(p),

where 27 =@, _, Zi.

Consider Mc(u) as a graded §e-module with the subspace Cy ;1 C Indg” Ca1

+

lying in degree zero (or, equivalently, as a module over the Kac-Moody algebra
gc ¥ Cd, where [d, X[n]] = n- X[n] for X € g, with d acting by zero on Cy 1). It is
known (see, e.g., [38, Prop. 9.2.c)] that M () has a unique graded simple quotient
L(w).
Lemma 11.5. If u ¢ P(n) C t* then Fc(L(p)) = 0.

Proof. By Theorem 7.8, the module M () is killed by F.. Since F is right exact,
its quotient L(u) is killed as well. O

We also consider Ag(A), for A € P(n), as a graded Ho-module. It follows from
[33, Prop. 4.3] that Ag(\) has a unique graded simple quotient Ly (not to be
confused with L(\) from §2.4).

Corollary 11.6. Let A € P(n). Then Fe(Mc()\)) =2 Fe(L(\)) = Ly.

Proof. Consider the short exact sequence
0 — K — Mc(\) — L(A\) — 0. (90)
By [21, Prop. 3.1], K has a (possibly infinite) filtration
0=KoCKi{CKyC---

by submodules K; such that K = colim K;, and each K;.1/K; is a graded shift of
a highest weight module of some weight ;. Next, it follows from [1, Thm. 4.7(4)]
that none of the weights p; are equal to A\. Moreover, [1, Lem. 4.2(5)] implies that
each p; is equal to w - A = w(A + p) — p with e # w € &,,. In particular, none of
the weights p; are dominant.

Since K; is a graded shift of a highest weight module of weight p;, there exists a
surjection M (p;)[k] — K; for some k € Z. Because p; is not dominant, Theorem
7.8 implies that Mc(u;)[k] is killed by F.. The right exactness of F., therefore,
implies that K; is killed as well.
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It follows that every submodule in the filtration (90) is annihilated by Fe.
However, Definition 6.9 implies that F. preserves colimits. Therefore, Fo(K) =
colim F¢(K;) = colim0 = 0. Hence, by another application of right exactness, we

get that Fe(Mc(X)) = Fo(L(X)).

We next prove that Fe(Mc(\)) 2 Ly. Abbreviate Ey := Im 2 C Endg_(Mc(M))
and Ey := Endy,(Ag())). These rings are Z<o-graded. Let E; < Ey and E} <
E) denote their maximal graded ideals. It follows from the proof of Corollary
11.1 that the restriction of (88) to E, is surjective (in fact, by [28, Thm. 9.5.3],
Ex = Endg_(Mc(A)), but we do not need to use this fact). Since (88) is a graded

homomorphism, it follows that Fc(E, ) = E} . Therefore, Lemma 11.2 implies that
Fo(Ma(N) = Fo(Mo(N)/Ex - Mo(A)) = Ag(N)/E; - Ag(N).

Arguing as in the proof of Lemma 3.8, one concludes that Ag(A)/Ex - Ag(N\) = L.
O

__Given A € P(n), we define the corresponding restricted Weyl module to be
We(A). Since 2, = P, £ annihilates W (), we have

WC(A) = V\Vc()‘)/‘gC : Wc()‘)

Corollary 11.7. Let A € P(n). Then Fe(Wc(X)) = L.

Proof. Let M(X) denote the Verma module over g with highest weight A. The
canonical surjection M(A) — L(X) induces a surjection Mc(\) = Indgjr M(A) —
Indgi L(A\) = W¢(A). Let K denote its kernel. The functor F. sends the exact

sequence 0 = K — M (M) = W (A) — 0 to the exact sequence Fo(K) — Ag(N) EN

Ag(A) — 0. But Ag(A) is a cyclic Ho-module, so f must be an isomorphism. It

follows that F.(K) = 0. Moreover, F¢(K) = 0 because K is a quotient of K.
Since the restriction functor (89) is right exact, we also have an exact sequence

K — Mc(A) = We(X) — 0. The functor F. sends it to the exact sequence 0 =

Fe(K) = Ly — Fe(Wc (X)) — 0 because Fe(Mc(A)) = Ly, by Corollary 11.6. It

follows that Fe(We(A) =< Ly. O
11.3. Poisson brackets

Suppose that A is an algebraic deformation of an associative algebra Ag, i.e., A
is a free C[h]-algebra such that A/hA = Ap. Then there is a canonical Poisson
bracket on Z(Ap), called the Hayashi bracket, given by

{a,b} := %[d,g] mod £,

where a,b are arbitrary lifts of a and b, respectively. This Poisson bracket was
introduced by Hayashi in [34]. Applying this construction to U, and H;, we get
Poisson brackets on 3 and Z.

Lemma 11.8. The vector space spanned by 1, id[r] and °L,. is, under the Poisson
bracket, a Lie subalgebra of 3 isomorphic to the semidirect product of the Heisenberg
algebra with the Virasoro algebra. Moreover, the subspace spanned by id[r] and
°L,y1 (r <0) is a Lie subalgebra.
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Proof. This follows from, e.g., [28, (3.1.3)]. O

By Lemma 11.8, the algebra %, from (73) is a Poisson subalgebra of 3. Since the
generators "L, id[r] (r < 0) of .%,; are defined for any x, they have canonical
lifts to ﬁ@[t]. Let Zcpy be the Clt]-subalgebra of [AJCM generated by them. The
map p;oF | ger from Lemma 8.4 also lifts to a map pepyoFepy |$§p] : f(g[}z] — ’Hgﬁt].

t

Theorem 11.9. The map ©: %, — Z is a homomorphism of Poisson algebras.

Proof. Tt follows from Lemma 8.4.c), Theorem 8.5 and Theorem 8.9 that we can
identify ©|g, with pg o Fc|«.. Since © is an algebra homomorphism, it suffices to
check that © preserves the Poisson bracket on multiplicative generators of %.. Let
e, be be any two of the generators °L,11, id[r] (r < 0) and let a and b be their
canonical lifts to f&‘z]. Let us interpret a. and b, as endomorphisms of ﬁc. Then

@({ac, bc}) = pPo©° Fc({am bc})
— pooFe (Spect:o (%[aa b]))

= —spec,_ (%[Pcm o Fepy(a), peryg © Fepy (b)])
{PO o Fc(ac),po o Fc(bc)} = {9(a0>7 G(bc)}

The second equality follows from the definition of the Poisson bracket. The
third equality follows from the easily verifiable fact that spec,_q o pcpy © Fep =
po © Fe o spec,_. The fourth equality follows from part b) of Lemma 8.4, which
implies that pcpy o Fepg(a) and pepyg o Fep(b) are, respectively, lifts of pg o Fe(a)
and pgoFc(b) to 7—[&1]. The minus signs in the second and third lines arise because
we work with lifts in the opposite algebras. [

Remark 11.10. It would be interesting to know whether there exists a bigger
subalgebra %, C A C 3 such that ©]4 is a homomorphism of Poisson algebras.

Remark 11.11. The image of the “grading element” °Lg under © is the so-called
Euler element eu in Z. Moreover, since Ly, —2°Lg, —°L_; form an sly-triple under
the Poisson bracket, we obtain an sls-action on Z. This action is not integrable,
in contrast to the well-studied ([9], [13]) action of the slo-triple >, 27, eu, >, y?.
For example, the subspace of Z spanned by ).z} (r > 0) is isomorphic to the
contragredient Verma module of weight zero while the subspace spanned by O(°L,.)
(r <1) is isomorphic to the contragredient Verma module of weight two. It would
be interesting to know in more detail how Z decomposes under our sly-action.

11.4. A description of ® in terms of opers

We are going to show that © induces an embedding of the Calogero—-Moser space
into the space of opers on the punctured disc and describe some of its properties.
Let us first introduce some notation. Set D := Spec C[[¢]] and D* := Spec C((¢)).
Let B C G be the standard Borel subgroup and N := [B, BJ.

The notion of a G-oper on D* was introduced by Drinfeld and Sokolov in
[22]. It was later generalized by Beilinson and Drinfeld in [6] for arbitrary smooth
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curves. Roughly speaking, a G-oper is a triple consisting of a principal G-bundle, a
connection as well as a reduction of the structure group to B, satisfying a certain
transversality condition.

We will work with an explicit description of G-opers on D* from [22, §3] in terms
of certain operators (see also [28, §4.2.2]), which we now recall. Let Locg(D*) be
the space of operators of the form

V =0 +u(t), ut)eg(t)).
There is an action of G((t)) on Locg(D*) by the rule g - (0; + A(t)) = 0 +
gA(t)g~' — g~ '0,g. Elements of the orbit space Locg(D*) = Locg (D*)/G((t)) are
called G-local systems on D*. Let Opgs(ID*) be the space of N((t))-equivalence
classes of operators of the form
V= at +p_1+ ’U(t), U(t) € b((t))a

where p_1 =ez1+ -+ enn_1 € g. Elements of Op,(D*) are called G-opers on
D*. There is a natural map Op(D*) — Locg(D*) sending an N ((t))-equivalence
class to a G((t))-equivalence class. An oper has trivial monodromy if it is in the
G((t))-orbit of the local system 9;. Let Opg(D*)Y denote the subspace of opers
with trivial monodromy.

A G-oper on D with singularity of order at most r (see [6, §3.8.8]), where r > 1,
is an N|[[t]]-equivalence class of operators of the form

V =0+t "(p-1+v(t), wv(t)e b (91)
Let Opgr(ID)) be the space of all such G-opers. By [6, Prop. 3.8.9], the natural map
Opér(]D)) — Opg(D*) sending an NJ[t]]-equivalence class of operators to their
N((t))-equivalence class is injective. The space Opgr(]]])) can be endowed with the
structure of a scheme and Op(D*) with the structure of an ind-scheme (see, e.g.,
[6, §3.1.11]).

For an operator (91), its rth residue (r > 1) is defined in [27, §4.3] as Res, (V) :=
p—1 +v(0). Under conjugation by an element A(t) € N|[[t]], Res,(V) is conjugated
by A(0). Hence the projection of Res,(V) onto g/G = t/&,, (identified via the
Chevalley isomorphism) is well defined, and we have a map

Res,: Opg (D) — t/6,,.
For each z € t/6,, let Opg’ (D), := Res, ' (2).

Let G denote the Langlands dual of G. Let Op(D*) be the space obtained by
replacing all the algebraic groups and Lie algebras by their Langlands duals in the
definitions above. Noting that { = t*, let

w: tt = t/6, =1/6,, J:¢"—g"/G2t/6,=t/6,
be the canonical projections. For A € II'", we abbreviate
Opgy (D) == Opg' (D)%, _5_)-

We are next going to recall the connection between opers and the algebra
3. Consider 3 as a graded algebra, with the grading induced by the grading
on Ug, and, moreover, as a filtered algebra, with the filtration induced by the
PBW filtration on U.. Let 357(g) be the quotient of 3 by the ideal topologically
generated by elements of graded degree i and PBW degree j, satisfying —i <

i =)
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Theorem 11.12. The following hold.

a) There is a canonical algebra isomorphism
3 = C[Opg (D7)). (92)
b) The isomorphism (92) induces, for each r > 0, isomorphisms
357(g) = C[Opg" (D))

c) For each A\ € II*, the canonical map 3 — Endg (We(A)) ds surjective.
Moreover,
Endg_(We()) = C[Opg (D).
Proof. Part a) is [28, Thm. 4.3.6], part b) is [6, Prop. 3.8.6] and part c) is [28,
Thm. 9.6.1]. O

Definition 11.13. For x € g* = g[r —1]*, let I, := Indg;_l@m

acting on C,, via §>r_1 — g[r — 1] 2 C and 1 acting as the identity. Set U,. :=

(CX’ with gZT*I

]Ir+1,O-
Theorem 11.14 ([27, Thm. 5.6.(1)-(2)]). We have

supps U, € OpS" (D), supps I, € OpS (D) y(y)-

Let us identify t* 2 h* via (49) and t = t[1], z — z[1]. Recall the map 7 and
the varieties 25  from §3.3. The following corollary gives a partial description of
O in terms of opers.

Corollary 11.15. The following hold.
a) The map ©: 3 — Z induces a closed embedding

©*: Spec Z < Opg(D)S2.
b) Letl > 1, v € Ci(n), A € Pp(v), a € b* with &,(a) =S, and a = w(a).
We have
0*(Qa,n) C OpS*(D)a.

Hence the following diagram commutes:

Spec Z <2 Opg (D)2

ﬂl JReSQ : (93)

h*/6, —/—— t*/6,

c) Ifa=0 then
0" () € Op(D). (94)
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Proof. By Theorem (10.6), the map © is surjective, so it induces a closed embedd-
ing ©*: Spec Z — Opx(D*). Corollary 8.10 implies that

©*(Spec Z) = ©*(suppz(Ho)) C supps He.
Since H is a quotient of Us, it follows from Theorem 11.14 that
supps He C suppy Uz C Opé2 (D).
This proves part a). Let us prove part b). Corollary 8.10 implies that
©7(suppz(Ao(a; A)) € suppz We(a, A). (95)

If we take x € g[1]* with X|n_pjen, n] = 0 and x|¢1) = @ then We(a, A) is a quotient
of Il . Hence Theorem 11.14 implies that

supps We(a, A) C supps Iz, C OpéQ(D)a.

The commutativity of the diagram (93) now follows directly from Proposition 3.9.
Let us next prove part c). As a special case of (95), we have ©*(suppz(Ag(A)) C
suppz We(A). Theorem 11.12.c) implies that

suppz We () = Opg(D),

completing the proof. [

11.5. Extensions and differential forms

Let k € C. We are going to show that the first derived functor of F, vanishes on
modules which admit a filtration by Weyl modules. We also formulate a conjecture
that F. induces a map between certain extension algebras.

We say that a U,-module has a A-filtration if it has a finite filtration with each
subquotient isomorphic to W, (A) for some A € P(n). Let U,-moda be the full
subcategory of U,.-mod consisting of modules with a A-filtration.

Proposition 11.16. We have L'F,.(M) = 0 for all M € U,.-moda. Hence F, is
exact on U,-moda.

Proof. Consider the augmentation map e: U(g) — C. Tensoring with C over
U(sl,) we obtain a map &": U(g) ®u(si,,) C — C. Let K := kere’. By [35,
Prop. VI.16.1], adapted to the Lie algebra homology setting, we have a long exact
sequence

cores cores

Hy(sl,,N) — Hi(g,N) = N ®u(g) K — Ho(sl,, N) — Ho(g, N) = 0 (96)

for any U(g)-module N, where cores is the corestriction map. If N is finite-
dimensional then, by Whitehead’s first lemma (see e.g. [35, Prop. VIL.6.1]), we
have Hy(sl,, N) = 0. If, moreover, the corestriction map Hy(sl,, N) — Ho(g, N)
is an isomorphism, the long exact sequence (96) forces Hi(g, N) = N ®yq) K.
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Now let A € P(n) and take N = (V*)®" @ L()). We claim that the corestriction
map is an isomorphism. We need to show that sl, - N = g- IV, which is equivalent
to showing that any trivial sl,-submodule of N is also trivial as a g-module. If
po= >, a€ is a weight of (V*)®" then ¢(u) := >, a; = —n. Similarly, if p is
a weight of L()), then ¢(u) = n. Hence, for any weight p of N, we must have
¢(p) = 0. But a non-trivial g-module which is trivial when restricted to sl,, must
have weights of the form x = a )", ¢; for 0 # a € Z, which implies that ¢(x) # 0.
This proves the claim.

It follows that

Hy(g, (VF)®" @ L(A)) = (V)*" ® L(N)) @u(g) K. (97)

We can identify K = id - C[id]. Since the identity matrix id acts on L(\) by the
scalar n, and on (V*)®" by the scalar —n, it acts by zero on the tensor product
(V*)®" @ L()\). Hence the RHS of (97) is zero. It follows that

Hy(g,(V*)®" @ L(X)) = 0. (98)

Since homology commutes with induction, using the tensor identity and arguing
as in the proof of Proposition 7.11, one shows that

L'Fo(W,o(N) = Hi(glt], Te(W. (V) = C[o] @ Hi(g, (V*)*" @ L(\)).

Together with (98), this implies that L'F,(W,())) = 0. One shows that L'F, (M)
=0 for all M € Ui-moda by induction on the length of the A-filtration. [

Corollary 11.17. The functor F, induces a linear map

Ext%ﬁ (M, M) — Ext;mn (Fo(M),F.(M))

for all M in ﬁﬁ—modA.

Proof. This follows from Proposition 11.16 because the category IAJK—modA is
closed under one-step extensions. [

Corollary 11.17 admits, at least conjecturally, a geometric interpretation when
k = c. Frenkel and Teleman consider in [31] the category of (U, G[[t]])-bimodules.

They conjecture, for p € TI* (and prove for p = 0), that Extg cltal (We(p), We(w))

is isomorphic to the algebra of differential forms on Op‘é(]D)). Note that if this
conjecture holds, the algebra of self-extensions is generated by Ext'. An analogous
result for rational Cherednik algebras is proven in [8, Cor. 4.2], stating that
Ext3, (Ao(A), Ao(A)) is isomorphic to the algebra of differential forms on €2, for
A € P(n).

Conjecture 11.18. Let A € P(n). The functor F¢ induces a surjective algebra
homomorphism

Ext (We(A), We(A)) = Extiy, (Ao(A), Ao(A)),

U.,G[t]

which is given by the restriction of differential forms via the inclusion (94).
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A. Proof of Proposition 10.4

We work in the following setup. Let 1 < a <k, j1,...,jo > land j1+---+jo =
k. Consider an element C = X1[—j1] - Xo[—Ja] € U(g-), where X; € {e,5s |1 <
r,s <n}.
Lemma A.1. The following estimates hold.
a) For arbitrary C' as above:
e C1=0 if l<—(k+a),
o degC_(ryq) < a,
° deg a—(k:—i—cL)-‘,—l <a-1,
e degC_(h1a)121p <a+p (p>0).
b) Moreover, if C € ker AHC C U(g_ ) then:
* C (kta) =0,
o degC_(jya)t24p <a+p—2 (p=>0).

Proof. Recall the module Uy = U (§)/I> from Definition 11.13, where I is the
left ideal in Ug(g) generated by §>2. We will often make use of the fact that

[650,I2) C Io. Let ®: U, (d) — Uy be the canonical map and C; = ®(C}). Below
in steps 1-4 we will show, by induction on a that part a) of the lemma holds with

C replaced by C, (I € Z). Since H, is a quotient of Uy, the estimates in part a)
must then also hold for Cj. In steps 5-6 we will prove part b).

1. The base case. Let us first tackle the base case a = 1. Then C = X;[—k] and,
by definition,

1 1 B (G+1)--(i+k—-1) ) i
Y<C,z>:(k_1)!a§ Y(Xl[—l],z>_é 1) Xi[—i — k]2
Hence (1) (k1)
Ci= =) X1[—i — k. (99)
In particular,
Ci=0 if i=-1,...,—k+ 1 (100)

We now consider the four cases in the lemma. First suppose that ¢ < —(k+1). Since
—i—k>1and X;[b].1g = 0 for b > 1, formula (99) implies that C; = C;.1y = 0.
In the second and third cases we have C_ (k+1) = (—1)*1kX,[1] and C_) =
(—=1)*~1X,. Hence degC (k1) < 1 and degC ¢ < 0. Finally suppose that i =
—k 4+ p+1 with p > 0. Formula (99) implies that C; is a multiple of X1[—p 1]
and so deg@ <p+1
2. The inductive case — notation. Assume a > 2. Let us set k¥’ = jo + - + jq
and ' = a —1. Set A = X;[—j1] and B = Xo[—jo] - - - X4[—Ja]. By definition of
the normally ordered product we have

> A.B.+ Y BA.. (101)

r+s=lI, r+s=lI,
r>0 s<0
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Set C’IJr = ZTBEZ A,.Bs; and C; = eréol B, A, so that C; = C + C; . Also set

éfr = :IB(C’;') and él_ = 5(01_).

3. The inductive case — C’+ First suppose that I < —(k+a)+ 2. Consider any
monomial 4, B in C;f. Since r > 0, we have s =l —r < —(k+a)+2 < —(k' +d’).
Therefore, by induction, B = 0. Hence C’l+ = 0. This takes care of the first three
cases.

Now assume that [ = —(k + a) + 2 + p with p > 0. Since r, j; > 0, we get from
(99) that A, is a scalar multiple of X;[—r — j;]. Hence deg A, < |r+ ji| = r + j1.

We now estimate the degree of By. We have s = | —r = —(k' +a') +2+p— (r +
j1+1). There are four situations to consider. Firstly, suppose that p > r + j; + 1.
Then, by induction (the fourth case), we conclude that deg By < a’+p— (r+j1+1).
Hence deg ®(A, B,) < deg A, +deg B, < (r+j1)+(a/ +p—(r4+j1+1)) = a/+p—1 =
a 4+ p — 2. Secondly, suppose that p = r + j1. Then s = —(k' 4+ a') + 1 and so,
by induction (the third case), we have deg ES < o’ — 1. Hence deg &)(ATBS) <
degATeregés < (r+ji1)+ada’ —1=a+p—2. Thirdly, suppose that p = r+j; — 1.
Then s = —(k' 4+ a’) and so, by induction (the second case), we have deg B, < a’.
Hence deg &)(ATBS) < deg A, +deg ES < (r4j1)+d’ = a+p. Finally, if p < r4j; -1
then s < —(k' + o). Hence By, = 0 and ®(A, B,) = 0. Overall we conclude that
deg 5’1 <a+p.

4. The inductive case— C; . Regard C; as a sum of monomials 5, A as in
(101). If s < —j; — 2 then, by (99), As is a scalar multiple of X [b] with b > 2.
Hence in both of these cases B.Ag € I5. Therefore, it is enough to consider the
cases s = —j; and s = —j; — 1. _

Suppose that s = —j;. Then A, = (—1)7*71X;. In particular, deg A, = 0 and
[As, I2] C I. Firstly, assume that | < —(k+a). Thenr=1—s < —(k+a+s) =
—(k' + d’) — 1. Hence, by induction, B, € I, and so [B,, 4] € I1. It follows that
B, A, = A,B, — [B,, A} € L.

For the remaining cases, note that

(B, A,) = ®(AB,) — ®([Br, A)) = A, - By — ®([Br, AJ)).

We can write B, =y + z with y € I, z € U( )@ Um.) @ Ung) @ UH[1])
and degz = deg B,.. Then @([BT,A 1) = ®([z, A,]) and deg ®([z, A,]) < degz =
deg B,.. Therefore, deg ®(B, A,) <

Secondly, assume that | = —(k + a) + 1. Then r =1 —s = —(k' + a’). Hence,
by induction, deg B, < a’ = a — 1 and so we can conclude that deg ®(B,A,) <
deg B, < a—1. Thirdly, assume that [ = —(k-+a)+2. Thenr = [—s = — (k' +a/)+1.
Hence, by induction, deg B, <d —1=a-2and so deg 5(BTAS) < deg B, <
a—2 < a. Fourthly, assume that [ = (k+a)+2+p with p > 0. Thenr =1—s =
—(k"+a')+2+ (p—1). Hence, by induction, degB, <a' +p—1=a+p—2and
SO deg@(BrAS) < degB <a+p-—2<a+p.

Now suppose that s = —j; — 1. Then A, = (—1)7~1j; X;[1], deg A, = 1 and
[As, I2] € Iy. The proof of the case | < —(k + a) is the same as in the second
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paragraph of this step. Moreover, the same argument as in the third paragraph
shows that deg ®(B,A,) < B, + 1.

Firstly, assume that [ = —(k + a). Then r = [ — s = —(k’ + ). Hence, by
induction, deg ér <a =a—1 and so deg <I>(BTAS) < deg ET + 1 < a. Secondly,
assume that ] = —(k+a)+1. Then r =1—s = —(k'+a’)+ 1. Hence, by induction,
degér <a' —1=a—2and so deg&;(B Ag) < degé +1 < a—1. Thirdly, assume
that [ = (k+a)+2—|—p with p > 0. Then r =1—s = — (k' +a’) + 2+ p. Hence, by
induction, degB <d+p=a+p—1andso deg<I>(B As) < deggr +1<a+p.
This proves that C satisfies the required constraints and completes the proof of
the first part of the lemma.

5. An auxiliary induction. We claim that
(C) If X; eny @n_, for some 1 <i < a, then C_(j44) € Je.

If a = 1 then C_(py1) = (—1)* kX [1] € Jc since X1 € ny & n_. So suppose
a > 1. Then, by part 3 of the proof, Cf(k_m) € J¢. Let us show that 5:(k+a) €Je
as well. Part 5 implies that it suffices to consider the monomial B, A in C:(k +a)
with s = —j; — 1. Since A, = (—1)%1715; X [1], we have B, A, € Jcif X; € n, ®n_.

Otherwise, X; € t and X; € ny @ n_ for some 2 < i < a. Since r = —(k' + a'),
induction gives B, € Jc and B, can be written as a (finite) sum }_ Z,Y, with
Zy, € Ug(g) and Y, € i or Y}, = egq — 1 for some 1 < ¢ < n. In the first case,
we use the fact that, by Lemma 7.2, i is an ideal in t;. Since A, € t[1], we get
[Yp, As] € 1. In the second case, [Y,, As] = 0. It follows that [B,, As] € Jc. Hence
B, As; = AsB, — [By, As] € J¢ as well.

6. Part b) of the lemma. We now prove part b) the lemma. First observe that in
many parts of the proof so far we have already established the stronger inequalities
in the second statement of the lemma without even using the assumption that
C' € ker AHC. Let us consider all the remaining cases. The first such case appears
in part 3 of the proof: | = —(k+a) + 2+ p with p = r 4+ j; — 1. In that case

= — (K + d'). Since C' € ker AHC, the claim (C) implies that Bs € J. and so
D(A,B,) = 0.

The second case appears in part 4 of the proof: s = —j; — 1 and | = —(k + a).
It follows directly from (C) that </I;(BTAS) = 0. The third case also appears in
part 4 of the proof: s = —j; — 1 and | = —(k + a) + 2 4+ p with p > 0. In that
case Ay = (—1)71715; X1[1]. There are two possibilities. Either X; € n, @ n_ or
B, € ker AHC. In the first case ;I;(BTAS) = 0. In the second case, by induction,
deg ET <a +p-—2=a+p-—3. Part 4 implies that deg EIS(BTAS) < deg ET + 1.
Hence deg ;IS(BTAS) < a+ p— 2, as required. This was the last case to consider.
We have therefore completed the proof of the lemma. [

Lemma A.1 directly implies the following.

Corollary A.2. Suppose that either (i) C € U(g_)_x N UPPY(g_)<p—1 or (ii)
C € (U(g-)—r NUPY(g_)<)2d" and C € ker AHC. Then:

~

C; =0 (l < —2]6), deg6,2k+2+p <k—-2+4p (p > O)
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Lemma A.3. We have:
o f)kJ =0 Zfl < 72]6, o §k7—2k = Z?Zl(eii[]-])k~]-Ha
° Pk,—2k+1 = kZ?:l(eii[l])kil.IH, ° Zfb > 0 then:

Pr_okioib = kz eii[—b—1)(ex[1) g + (He)<hro1-

i=1

Proof. The first case follows directly from Lemma A.1. So consider the remaining
three cases. Fix 1 < i < n. Let A = e;[~1], B = (e;[—1])*"! and C = AB. By
Lemma A.1, we have Bs.1g = 0 for s < —2k +2 and A,.1g = 0 for s < —2. Hence
(101) implies that

Coor = B_opioA 5.1y, Cooprr = B_opraA 1.0m+ B_opi3A 5.1y

By induction, we know that B_o4o = (e[1])* ™! and B_op,3 = (k—1)(e;[1])F 2
modulo J.. Hence C_o, = A_ 9B oy 2.1g = (ey[1])*.1g and

Coop1 = BopyoA 1.1y + B_opy3A o1y
= B_ojio.ly+ A_aB_opi3.1m = k(ey[1])" . 1p.

This proves the second and third cases. Finally consider the fourth case. We have

Cooprosy = Z AsB opyorb—s-lu + Booky3ipA 1.1y + B_opyarp A 2.1m.
0<s<b

Lemma A.1 implies that AyB_ogi0.1g + B_ogya1pA_o.1g is the leading term
of C_gkt24p. By induction, we know that 02®(B_gi41p) = (k — 1)ey[—b —
1](6”[1])k_2.1]}]1 and B_2k+2 = (eii[l})k_l.l]}]l. Hence UabS(C_2k+2+b) = keii[—b —
1](eis[1])*~ 1. 1. Summing over i = 1,...,n yields the lemma. [0

We can now prove Proposition 10.4.

Proof of Proposition 10.4. By Lemma 10.2, we can write
Tk,l = @k,l + @Zl + 131«,17

where Qi € (U(g-) -k NUP™(§-)<k-1)*", @, € (U(3-)-rNUP(§-)<x)*" and

~

AHC(Q},) = 0. Hence Corollary A.2 implies that @k,l = ;c,l =0 for [ < —2k and

deg Qk,—2k+2+4p = deg Q;c,—2k+2+p <k+p-—-2

for p > 0. On the other hand, we know from Lemma A.3 that f)k,l =0forl < —2k,
deg f’h_gk = k and deg 13k7_2k+2+p =k + p for p > 0. It follows that Tk,l =0if
I < —2k, Tg_or = Py _op, and that Py is the leading term of Ty if | > —2k +2,
as required. [
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