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T. PRZEŹDZIECKI

School of Mathematics
University of Edinburgh

Edinburgh EH9 3FD
United Kingdom

tprzezdz@exseed.ed.ac.uk

Abstract. In this paper we define and study a critical-level generalization of the Suzuki
functor, relating the affine general linear Lie algebra to the rational Cherednik algebra of
type A. Our main result states that this functor induces a surjective algebra homomor-
phism from the centre of the completed universal enveloping algebra at the critical level
to the centre of the rational Cherednik algebra at t = 0. We use this homomorphism
to obtain several results about the functor. We compute it on Verma modules, Weyl
modules, and their restricted versions. We describe the maps between endomorphism
rings induced by the functor and deduce that every simple module over the rational
Cherednik algebra lies in its image. Our homomorphism between the two centres gives
rise to a closed embedding of the Calogero–Moser space into the space of opers on the
punctured disc. We give a partial geometric description of this embedding.

1. Introduction

Arakawa and Suzuki [3] introduced a family of functors from the category O
for sln to the category of finite-dimensional representations of the degenerate affine
Hecke algebra associated to the symmetric group Sm. These functors have been
generalized in many different ways, connecting the representation theory of various
Lie algebras with the representation theory of various degenerations of affine and
double affine Hecke algebras.

Lie algebra “Hecke” algebra

sln degenerate affine Hecke algebra Arakawa–Suzuki [3]

ŝln trigonometric DAHA Arakawa–Suzuki–Tsuchiya [4]

ĝln rational DAHA (t 6= 0) Suzuki [52]

ĝln cyclotomic rat. DAHA (t 6= 0) Varagnolo–Vasserot [54]

Figure 1. Functors relating Lie algebras and “Hecke” algebras in type A
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Other generalizations of the Arakawa–Suzuki functor may be found in, e.g., [16],
[17], [23], [24], [36], [37], [46]. Here we are concerned with the third functor in the
table above, introduced by Suzuki, and later studied by Varagnolo and Vasserot
[54], under the assumption that t 6= 0, and the level κ is not critical. It is a functor

Fκ : Cκ → Hκ+n-mod (1)

from the category Cκ of smooth ĝln-modules of level κ to the category of modules
over the rational Cherednik algebra Hκ+n (also known as the rational DAHA)

associated to Sm and parameters t = κ+ n, c = 1. It assigns to each ĝln-module
a certain space of coinvariants:

M 7→ H0(gln[z],C[x1, . . . , xm]⊗ (V∗)⊗m ⊗M).

In this paper we study the limit of the functor Fκ as

κ→ c = −n, t→ 0.

The representation theory of the rational Cherednik algebra at t = 0 differs
radically from its representation theory at t 6= 0, mainly due to the fact that
H0 has a large centre Z, whose spectrum can be identified with the classical
Calogero–Moser space [25]. An analogous pattern occurs in the representation

theory of ĝ := ĝln; the centre of the completed universal enveloping algebra Ûκ

of ĝ is trivial unless the level is critical. In the latter case, the centre Z of Ûc is a
completion of a polynomial algebra in infinitely many variables, and, by a theorem
of Feigin and Frenkel [26], it can be identified with the algebra of functions on the
space of opers on the punctured disc.

The existence of an interesting connection between the two centres Z and Z,
or, equivalently, between the Calogero–Moser space and opers, is suggested by
the close relationship between the Calogero–Moser integrable system and the KP
hierarchy. For example, Ben-Zvi and Nevins [12] investigated this relationship
from the perspective of noncommutative geometry, identifying the Calogero–Moser
space with a certain moduli space of sheaves, called micro-opers, on quantized
cotangent bundles. There is also a more direct connection between Z and Z via
the Bethe algebra of the Gaudin model associated to g. By the work of Chervov
and Talalaev [20], the Bethe algebra can be obtained as the image of Z under the

canonical projection from Ûc to U(g[t−1]). A surjective homomorphism from the
Bethe algebra to the centre of the rational Cherednik algebra was later constructed
by Mukhin, Tarasov and Varchenko [45].

Inspired by these intriguing connections, we study the relationship between the
two centres from a more algebraic point of view. We consider Z and Z as centres
of the respective categories of modules and show that the functor Fc induces (in
a sense which will be made precise below) a surjective algebra homomorphism
Θ: Z � Z. This homomorphism encodes a lot of information about the functor,
allowing us to deduce a number of interesting results (see Corollaries A–E). For
example, we are able to prove that every simple H0-module is in the image of Fc,
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describe the maps between endomorphism rings induced by Fc, and compute the
functor on Arakawa and Fiebig’s restricted category O. Furthermore, we interpret
Θ as an embedding of the Calogero–Moser space into the space of opers on the
punctured disc and provide a partial geometric description of this embedding. We
expect that there is a connection between our approach and the work of Mukhin,
Tarasov and Varchenko, but we do not understand this connection precisely.

1.1. Generalization of the Suzuki functor

Our first theorem, which collects the results of Corollary 5.12 and §6.2 below,
yields a generalization of the functor (1) originally defined by Suzuki.

Theorem A. For all κ ∈ C, there is a colimit preserving functor

Fκ : Ûκ-mod→ Hκ+n-mod.

When κ 6= c, the restriction of this functor to Cκ coincides with (1).

Our next result describes the images of some important Ûκ-modules under the
functor Fκ. Let us briefly explain the motivation for studying these modules. It
comes from the representation theory of the rational Cherednik algebra.

It was proven in [25] that isomorphism classes of simple H0-modules are in
bijection with maximal ideals in Z := Z(H0). Moreover, every simple H0-module
occurs as a quotient of a generalized Verma module ∆0(a, λ), introduced in [7].
These modules can be defined for any t ∈ C, and depend on a vector a ∈ Cm,
together with an irreducible representation λ of a parabolic subgroup of Sm. When
a = 0, they are the usual Verma modules for Ht. The following theorem shows
that generalized Verma modules as well as the regular module are in the image of
the functor Fκ.

Theorem B (Theorems 7.6–7.8). Let κ ∈ C. There exist Ûκ-modules Hκ and
Wκ(a, λ) such that

Fκ(Hκ) = Hκ+n, Fκ(Wκ(a, λ)) = ∆κ+n(a, λ).

Moreover,
Fκ(Mκ(λ)) = ∆κ+n(λ).

Here Mκ(λ) denotes the Verma module for ĝ. When a = 0, the modules Wκ(λ)
:= Wκ(0, λ) coincide with the Weyl modules from [39]. Therefore, we call Wκ(a, λ)
“generalized Weyl modules”.

1.2. Suzuki functor and the centres

From now on assume that n = m. One of our main goals is to understand how the
centres of the categories Ûc-mod and H0-mod behave under the functor Fc. This
is of vital importance because the centres, to a large extent, control morphisms in
these categories. For example, it was shown in [30] that the endomorphism rings
of Verma and Weyl modules for Uc(ĝ) are quotients of Z.

In general, a functor of additive categories does not induce a homomorphism
between their centres. We circumvent this problem by introducing the notions of an
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F -centre of a category and an F -central subcategory. More precisely, we consider
the canonical maps

Z ∼= Z(Ûc-mod)
α−→ End(Fc)

β←− Z(H0-mod) ∼= Z,

from the two centres to the endomorphism ring of the functor Fc. Since H0 lies in
the image of Fc, the map β is injective and Z can be identified with the subring Im β
of End(Fc). We call ZFc(Ûc) := α−1(Z) ⊂ Z the Fc-centre of Ûc-mod. Restricting

α to ZFc(Ûc) gives a natural algebra homomorphism

Z(Fc) := α|ZFc (Ûc) : ZFc(Ûc)→ Z

making the diagram

ZFc(Ûc) Z

EndÛc
(M) EndH0(Fc(M))

Z(Fc)

can can

Fc

(2)

commute for all Ûc-modules M . The homomorphism Z(Fc) contains partial infor-
mation about all the maps between endomorphism rings induced by the functor Fc.

Our next result gives a partial description of ZFc(Ûc). We consider the subal-
gebra Lc := C[id[r], cLr+1]r≤0 ⊂ Z consisting of certain first- and second-order
Segal–Sugawara operators (see §4.5 for a precise definition).

Theorem C (Theorem 8.5). The algebra Lc lies in the Fc-centre of Ûc-mod, i.e.,

Lc ⊆ ZFc(Ûc).

We give an explicit description of the associated homomorphism

Z(Fc)|Lc : Lc → Z (3)

in (75)–(76).

It is natural to ask whether ZFc(Ûc) coincides with Z. Unfortunately, this is far
from being the case. Our solution to this problem is to relax the condition that
the diagram (2) should commute for all Ûc-modules M . We introduce the notion

of a subcategory A of Ûc-mod being Fc-central (see Definition 8.2 for details),
which has the consequence that there exists a unique algebra homomorphism
ZA(Fc) : Z→ Z making the diagram

Z Z

EndÛc
(M) EndH0

(Fc(M))

ZA(Fc)

can can

Fc

(4)

commute for all M ∈ A. Our next result identifies an important Fc-central subcate-
gory of Ûc-mod.
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Theorem D (Theorem 8.9). The full subcategory CH of Ûc-mod projectively ge-
nerated by Hc is Fc-central.

The category CH contains all the Verma and generalized Weyl modules which
are not annihilated by Fc. The associated homomorphism

Θ = ZCH(Fc) : Z→ Z

plays a key role in our study of the functor Fc. The following theorem, whose
representation theoretic and geometric consequences are discussed in the next
subsection, is the main result of this paper.

Theorem E (Theorem 10.6). The homomorphism Θ: Z→ Z is surjective.

Let us briefly comment on the proof of Theorem E. We first show that Θ
factors through Z62(ĝ) (see §11.4 for the definition), and that the homomorphism
Θ: Z62(ĝ) → Z is filtered with respect to the standard filtration on Z and
a certain “height” filtration on Z62(ĝ) (see §9.2 and §10.1) We compute the
associated graded homomorphism grΘ and use it to deduce the surjectivity of Θ.
In our calculations, we rely heavily on the explicit construction of Segal–Sugawara
operators due to Chervov and Molev [19].

We also consider the Poisson algebra structures on Z and Z given by the Hayashi
bracket [34]. The map Θ is not a Poisson homomorphism. However, the following
is true.

Theorem F (Theorem 11.9). The restriction of Θ to Lc is a homomorphism of
Poisson algebras.

The partial compatibility of the Poisson structures on Z and Z is a shadow of
the fact that the functor Fκ is defined for all levels κ. We remark that the Poisson
subalgebra Lc ⊂ Z can be described quite explicitly. It is isomorphic to a certain
subalgebra of S(Heis o Vir), the symmetric algebra on the semi-direct product of
the Heisenberg and the Virasoro Lie algebras.

1.3. Applications

Our main result (Theorem E) has several applications. First of all, we can use it
to gain more information about the homomorphisms between endomorphism rings
induced by Fc.

Corollary A (Corollary 11.1). The ring homomorphisms

EndÛc
(Wc(a, λ)) � EndH0

(∆0(a, λ)), EndÛc
(Mc(λ)) � EndH0

(∆0(λ)).

induced by Fc are surjective.

Secondly, we are able to deduce from Corollary A that every simple H0-module
lies in the image of Fc. This result is, on the one hand, analogous to similar results
[52], [54] in the κ 6= c case. On the other hand, the situation at the critical level
is very different because there are uncountably many non-isomorphic simple H0-
modules. This is reflected by the fact that our proof relies on completely different
techniques from those used in [52], [54].

663



T. PRZEŹDZIECKI

Corollary B (Corollary 11.3). Every simple H0-module is in the image of the
functor Fc.

We next connect the functor Fc with the work of Arakawa and Fiebig. In [1], [2],
they studied a restricted version of category O, obtained by “killing” the action
of the centre Z. This category contains restricted Verma modules Mc(λ) as well
as, analogously defined, restricted versions of Weyl modules Wc(λ). In our third
corollary, we describe the image of these modules under Fc.

Corollary C (Corollaries 11.6–11.7). We have

Fc(Mc(λ)) = Fc(Wc(λ)) = Fc(L(λ)) = Lλ,

where L(λ) (resp. Lλ) is the unique graded simple quotient of Mc(λ) (resp. ∆0(λ)).

Fourthly, we give a partial geometric description of the homomorphism Θ: Z→
Z in terms of opers. By a theorem of Feigin and Frenkel [26], Z is canonically
isomorphic to the algebra of functions on the space OpǦ(D×) of opers on the
punctured disc. Therefore, Θ induces a closed embedding Θ∗ : SpecZ ↪→OpǦ(D×).
We show that the image of this embedding lies in the space OpǦ(D)≤2 of opers
with singularities of order at most two.

We are also able to obtain some information about the residue and monodromy
of the opers in the image of Θ∗. To state our results, we first need to recall
some facts about the affine variety SpecZ and a canonical map π : SpecZ →
Cn/Sn (see (14)). Bellamy showed in [7, 8] that each fibre of π decomposes as a
disjoint union of subvarieties Ωa,λ, which can be identified with supports of the
generalized Verma modules ∆0(a, λ). Moreover, Z surjects onto the endomorphism
rings EndH0(∆0(a, λ)), and Spec EndH0(∆0(a, λ)) ∼= Ωa,λ.

Endomorphism rings of the Weyl modules Wc(λ) also admit a geometric inter-
pretation. Frenkel and Gaitsgory [30] showed that Z surjects onto EndÛc

(Wc(λ)),

and identified the latter with the algebra of functions on the space OpλǦ(D) of
opers with residue $(−λ− ρ) and trivial monodromy.

Using the results of [27], we show that the image of Ωa,λ under Θ∗ is contained

in the space Op62

Ǧ
(D)a of opers with singularities of order at most two and 2-

residue a. Moreover, we show that the image of Ωλ is contained in OpλǦ(D).

Corollary D (Corollary 11.15). The following hold.

a) The map Θ: Z→ Z induces a closed embedding

Θ∗ : SpecZ ↪→ OpǦ(D)62.

b) We have

Θ∗(Ωa,λ) ⊆ Op62

Ǧ
(D)a.

Hence the following diagram commutes:

SpecZ OpǦ(D)62

Cn/Sn t∗/Sn

π

Θ∗

Res2

∼

.
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c) If a = 0, then
Θ∗(Ωλ) ⊆ OpλǦ(D).

Finally, we study the behaviour of self-extensions under Fc.

Corollary E. Suppose that M is a Ûc-module with a filtration by Weyl modules.
Then Fc induces a linear map

Ext1
Ûc

(M,M)→ Ext1
H0

(Fc(M),Fc(M)). (5)

We conjecture (see Conjecture 11.18) that (5) extends to a surjective homomor-
phism between extension algebras, and that it admits an interpretation in terms
of differential forms on opers and the Calogero–Moser space.

1.4. Structure of the paper

Let us finish by summarizing the contents of the paper. In sections 2-4 we recall
the relevant definitions and facts concerning affine Lie algebras, rational Cherednik
algebras and vertex algebras. These sections contain no new results. In Section 5
we recall Suzuki’s construction of the functor Fκ and generalize it to the critical
level. In section 6 we further generalize the functor Fκ to the category of all Ûκ-
modules, proving Theorem A. Section 7 is devoted to the proof of Theorem B.
In Section 8 we study the relationship between the two centres Z and Z via the
functor Fc. Section 8 contains the proofs of Theorems C–D. In Section 9 we define
graded and filtered analogues of the Suzuki functor, which are later used in Section
10 to set up our “associated graded” argument. All of section 10 is devoted to the
proof of Theorem E. In Section 11 we study the applications of Theorem E, proving
Corollaries A–E.
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support of the College of Science & Engineering at the University of Glasgow and
the Max Planck Institute for Mathematics in Bonn. The material will form part of
the author’s PhD thesis. I would like to thank G. Bellamy for recommending the
problem to me, many useful suggestions and comments, as well as his unwavering
support and encouragement throughout the time in which this paper was written.
I am also grateful to C. Stroppel for stimulating discussions as well as numerous
and detailed comments on draft versions of this paper. Finally, I would like to
thank A. Molev for discussing his paper [19] with me, and the two anonymous
referees for extremely detailed and insightful comments.

2. Preliminaries

2.1. General conventions

Fix once and for all two positive integers n and m. The parameter n refers to the Lie
algebra g = gln while m refers to the rational Cherednik algebra Ht,c associated to
the symmetric group Sm. We work over the field of complex numbers throughout.
If V is a vector space, let T (V ) denote the tensor algebra and S(V ) the symmetric
algebra on V .

For a unital associative algebra A, with unit 1A, we denote by A-mod the
category of left A-modules. Given a left A-module M and a left ideal I in A,
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let M I := {m ∈M | I ·M = 0} be the set of I-invariants. We will also work with
the full subcategory A-fpmod of A-mod consisting of finitely presented modules,
i.e., modules M such that there exists a short exact sequence Ak → Al →M → 0
for some k, l ≥ 0. If B is another algebra, let (A,B)-nmod be the full subcategory
of A ⊗ B-mod consisting of modules M with the property that the action of B
normalizes the action of A, i.e., [A,B] ⊆ A in the endomorphism ring of M .

Given a subalgebra B ⊂ A, let ZA(B) denote the centralizer of B in A. In
particular, Z(A) := ZA(A) is the centre of A. Recall that the centre Z(C) of an
additive category C is the endomorphism ring of the identity functor idC . We can
naturally identify Z(A) ∼= Z(A-mod), z 7→ {zM | M ∈ A-mod}, where zM is the
endomorphism of M given by the left action of z.

Suppose that A is a commutative algebra and M is an A-module. Let AnnA(M)
:= {a ∈ A | a · M = 0} be the annihilator of M in A. The affine variety
suppA(M) := SpecA/AnnA(M) is called the support of M in SpecA.

2.2. Combinatorics

Let l ≥ 1. We say that ν = (ν1, . . . , νl) ∈ Zl+ is a composition of m of length
l if ν1 + · · · + νl = m. Let Cl(m) denote the set of all such compositions. Set
ν≤i = ν1 + · · ·+ νi for each 1 ≤ i ≤ l with ν≤0 = 0 by convention.

The symmetric group Sm on m letters acts naturally on h = Cm by permuting
the coordinates. If a ∈ h, let Sm(a) denote its stabilizer in Sm. For 1 ≤ i, j ≤
m, let si,j be the simple transposition swapping i and j. We abbreviate si :=
si,i+1. Given ν ∈ Cl(m), let Sν := Sν1 × · · · ×Sνl denote the parabolic subgroup
of Sm generated by the simple transpositions s1, . . . , sm−1 with the omission of
sν≤1

, sν≤2
, . . . , sν≤l−1

.
A sequence λ = (λ1, . . . , λn) ∈ Zn≥0 is a partition if λ1 ≥ · · · ≥ λn. Let Pn(m)

denote the set of all partitions of m of length n. We call λ = (λ1, . . . , λl) ∈∏l
i=1 Pni(mi) an l-multipartition of m if

∑l
i=1mi = m and each mi 6= 0. We say

that λ has length n if
∑l
i=1 ni = n, and length type µ if (n1, . . . , nl) = µ ∈ Cl(n).

We say that λ is of size type ν if (m1, . . . ,ml) = ν ∈ Cl(m). Let Pµ(m) denote
the set of multipartitions of m of length type µ and let Pn(ν) denote the set of
all multipartitions of length n of size type ν (where we let l vary over all positive
integers). Set

Pµ(ν) := Pµ(m) ∩ Pn(ν), Pµ :=
⊔
m≥0

Pµ(m), P(ν) :=
⋃
n≥0

Pn(ν).

In the union on the RHS we identify l-multipartitions λ and χ whenever each pair
of partitions λi and χi differ only by the number of parts equal to zero.

If λ ∈ Pn(m), let Sp(λ) denote the corresponding Specht module. Given ν ∈
Cl(m) and λ ∈ Pn(ν), set Sp(λ) := Sp(λ1) ⊗ · · · ⊗ Sp(λl). It is a Sν-module.
Let Spν(λ) := CSm ⊗CSν Sp(λ) be the corresponding Sm-module obtained by
induction.

2.3. Lie algebras

Given a Lie algebra a, let U(a) denote its universal enveloping algebra, with unit
1a := 1U(a) and augmentation ideal U+(a). If M is an a-module and k ≥ 0, let
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Hk(a,M) denote the kth homology group of a with coefficients in M . In particular,
H0(a,M) = M/U+(a).M = M/a.M . Given a Lie subalgebra c ⊂ a and a c-module
N , let Inda

c N := U(a)⊗U(c)N be the induced module. For a surjective Lie algebra

homomorphism d � c, let Infdc N denote N regarded as a d-module.

Let G = GLn(C) be the general linear group and g = gln(C) its Lie algebra.
Let ekl be the (k, l)-matrix unit and let id denote the identity matrix. We use the
standard triangular decomposition g = n− ⊕ t ⊕ n+ with respect to the strictly
lower triangular, diagonal and strictly upper triangular matrices, and abbreviate
b+ := t⊕ n+. For 1 ≤ k ≤ n, let εk ∈ t∗ be the function defined by εk(ell) = δk,l.

Given µ ∈ Cl(n), let lµ :=
∏l
i=1 glµi ⊆ g be the corresponding standard Levi

subalgebra. We next recall the connection between multipartitions and weights.
A weight λ =

∑
i λiεi ∈ t∗ is called µ-dominant and integral if each λi ∈ Z and

λi − λw(i) ∈ Z≥0 whenever w(i) > i, for all w ∈ Sµ. Let Π+
µ denote the set of

µ-dominant integral weights with the property that each λi ∈ Z≥0. If µ = (n), we
abbreviate Π+

µ = Π+. There is a natural bijection

Π+
µ
∼= Pµ, λ 7→ (λ1, . . . , λl), (6)

where λi := (λµ≤i−1+1, . . . , λµ≤i). From now on we will implicitly identify weights
with partitions using this bijection.

2.4. Schur–Weyl duality

Given λ ∈ Π+
µ , let L(λ) be the corresponding simple lµ-module of highest weight

λ. Let V ∼= L(ε1) be the standard representation of g, with standard basis {ei |
1 ≤ i ≤ n} and the corresponding dual basis {e∗i | 1 ≤ i ≤ n} of V∗. If n = m, set
e∗id := e∗1 ⊗ · · · ⊗ e∗n and, for w ∈ Sn,

e∗w := e∗w−1(1) ⊗ · · · ⊗ e
∗
w−1(n) ∈ (V∗)⊗n. (7)

Given µ ∈ Cl(n) and ν ∈ Cl(m), let V∗i be the subspace of V spanned by

e∗µ≤i−1+1, . . . , e
∗
µ≤i

and (V∗)⊗m(µ,ν) :=
⊗l

i=1(V∗i )
⊗νi ⊆ (V∗)⊗m.

There is an analogue of classical Schur–Weyl duality (see, e.g., [47, Prop. 9.1.2])
for lµ and Sm n Zml - their actions on V⊗m centralize each other (see, e.g., [43,
Thm. 6.1]). We will need the following application, whose proof can be found in
[54, Prop. 3.8(a)].

Proposition 2.1. Let λ ∈ t∗. Then

a) H0(lµ, (V
∗)⊗m ⊗ L(λ)) = 0 unless λ ∈ Pµ(m).

b) If ν ∈ Cl(m) and λ ∈ Pµ(ν) then

H0(lµ, (V
∗)⊗m(µ,ν) ⊗ L(λ)) ∼= Sp(λ), H0(lµ, (V

∗)⊗m ⊗ L(λ)) ∼= Spν(λ) (8)

as CSν- resp. CSm-modules.

In the case µ = (n), classical Schur–Weyl duality also implies the following.
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Corollary 2.2. Let λ ∈ t∗. Then:

a) H0(b+, (V
∗)⊗m ⊗ Cλ) = 0 unless λ ∈ Pn(m).

b) If λ ∈ Pn(m) then there is a natural CSm-module isomorphism

H0(b+, (V
∗)⊗m ⊗ Cλ) ∼= Sp(λ). (9)

Proof. The space H0(b+, (V
∗)⊗m ⊗Cλ) can be identified with the space of lowest

weight vectors of weight −λ in (V∗)⊗m. It follows from Schur–Weyl duality that
(V∗)⊗m =

⊕
ξ∈Pn(m) L(ξ)∗⊗Sp(ξ). Since the lowest weight in each L(ξ)∗ is equal

to −ξ, the space of lowest weight vectors of weight −λ in (V∗)⊗m is isomorphic to
Sp(λ) if λ ∈ Pn(m) and is zero otherwise. �

2.5. The affine Lie algebra

We recall the definition of the affine Lie algebra associated to g.

Definition 2.3. Let κ ∈ C. The affine Lie algebra ĝκ is the central extension

0→ C1→ ĝκ → g((t))→ 0 (10)

associated to the cocycle (X ⊗ f, Y ⊗ g) 7→ 〈X,Y 〉κ Rest=0(g∂tf), where

〈−,−〉κ := κTr(XY ) + Tr(X) Tr(Y ).

Note that 〈−,−〉−n = − 1
2 Kilg, where Kilg is the Killing form on g. Explicitly, the

Lie bracket in ĝκ is given by:

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg + 〈X,Y 〉κ Rest=0(g∂tf)1, [X ⊗ f,1] = [1,1] = 0

for X,Y ∈ g and f, g ∈ C((t)).

We will also use the central extension g̃κ obtained by replacing g((t)) with g[t±1]
in (10). Given X ∈ g and k ∈ Z, set

X[k] := X ⊗ tk ∈ ĝκ, g[k] := g⊗ tk ⊂ ĝκ.

We next introduce notation for the following Lie subalgebras of ĝκ:

ĝ− := g⊗t−1C[t−1], ĝ+ := g[[t]]⊕C1, ĝ≥r := g⊗trC[[t]], ĝ≤−r := g⊗t−rC[t−1],

where r ≥ 0. Moreover, we abbreviate

n̂+ := n+ ⊕ ĝ≥1, b̂+ := n̂+ ⊕ t⊕ C1, t̂+ := t⊕ ĝ≥1 ⊕ C1.

Let g̃+, g̃≥r, etc., denote the corresponding Lie subalgebras of g̃κ.

2.6. The completed universal enveloping algebra

We are interested in modules on which 1 acts as the identity endomorphism.
Therefore we consider the quotient algebra

Uκ(ĝ) := U(ĝκ)/〈1− 1ĝκ〉.
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Definition 2.4. The parameter κ is called the level. The value c := −n is called
the critical level.

We next recall the definition of a certain completion of Uκ(ĝ) (see, e.g., [28,
§2.1.2]). There is a topology on Uκ(ĝ) defined by declaring the left ideals Ir :=

Uκ(ĝ).ĝ≥r (r ≥ 0) to be a basis of open neighbourhoods of zero. Let Ûκ be the
completion of Uκ(ĝ) with respect to this topology. Equivalently, we can write

Ûκ = lim←−Uκ(ĝ)/Ir. (11)

It is a complete topological algebra with a basis of open neighbourhoods of zero
given by the left ideals Îr := Ûκ.ĝ≥r. The following proposition illustrates the
special nature of the critical level.

Proposition 2.5 ([28, Prop. 4.3.9]). Z(Ûκ) = C if and only if κ 6= c.

We abbreviate
Z := Z(Ûc).

2.7. Smooth modules

Throughout the paper we will mostly deal with smooth Ûκ-modules. Let us recall
their definition (see, e.g., [28, §1.3.6] or [39, §1.9]).

Definition 2.6. A Ûκ-module M is called smooth if M =
⋃
r≥0M

Îr . Let Cκ

denote the full subcategory of Ûκ-mod whose objects are smooth modules. Let
Cκ(r) denote the full subcategory of Cκ consisting of all modules M generated by

M Îr .

One can analogously define smooth Uκ(ĝ)- and Uκ(g̃)-modules. It is easy to
see that the corresponding categories of smooth modules coincide with Cκ. The
following lemma, whose proof is standard, shows that the concept of smoothness
defined above is analogous to that familiar from the representation theory of p-adic
groups.

Lemma 2.7. Let M be a Ûκ-module. The following are equivalent:

a) M is smooth,

b) M , endowed with the discrete topology, is a topological Ûκ-module,

c) AnnÛκ
(v) is an open left ideal in Ûκ for all v ∈M .

3. Rational Cherednik algebras

In this section we recall the definition and the main properties of rational
Cherednik algebras of type A. Rational Cherednik algebras were introduced by
Etingof and Ginzburg in [25]. In type A they can also be regarded as degenerations
of the double affine Hecke algebras defined by Cherednik in [18].

3.1. Rational Cherednik algebras

Recall that h denotes the permutation representation of Sm. Let hreg ⊂ h be the
subvariety on which Sm acts freely. We fix a basis y1, . . . , ym of h with the property
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that w.yi = yw(i) for any w ∈ Sm and 1 ≤ i ≤ m. Let x1, . . . , xm be the dual basis
of h∗ so that C[h] = C[x1, . . . , xm] and C[h∗] = C[y1, . . . , ym]. Define

C[h]o := C[h] oCSm, C[h∗]o := CSm nC[h∗].

Set δ :=
∏

1≤i<j≤m(xi − xj) and δz =
∏m
j=1(z − xj). Define

R := C[hreg] = C[x1, . . . , xm][δ−1], Ro := RoCSm, Rz := R[z][δ−1
z ]

Definition 3.1 ([25, §4]). The rational Cherednik algebra Ht,c associated to the
complex reflection group Sm and parameters t, c ∈ C is the quotient of the tensor
algebra T (h⊕ h∗) oCSm by the relations:

• [xi, xj ] = [yi, yj ] = 0 (1 ≤ i, j ≤ m),
• [xi, yj ] = csi,j (1 ≤ i 6= j ≤ m),
• [xi, yi] = t− c

∑
j 6=i si,j (1 ≤ i ≤ m).

Let 1H denote the unit in Ht,c.
It follows directly from the relations that if ξ ∈ C∗ then Ht,c ∼= Hξt,ξc. From

now on we will assume that c = 1 and abbreviate Ht := Ht,1. Setting deg xi =
deg yi = 1 and deg si = 0 defines a filtration on Ht. Let grHt be the associated
graded algebra.

Theorem 3.2 ([25, Thm. 1.3]). The tautological embedding (h ⊕ h∗) ↪→ grHt
extends to a graded algebra isomorphism

C[h⊕ h∗] oCSm
∼−→ grHt (12)

called the PBW isomorphism.

The following result shows that there is an analogy between the centres of Ht
and Ûκ.

Proposition 3.3 ([15, Prop. 7.2]). Z(Ht) = C if and only if t 6= 0.

The next theorem summarizes the main properties of the centre of H0, which
we abbreviate as

Z := Z(H0).

Theorem 3.4. The following hold.

a) We have C[h]Sm⊗C[h∗]Sm ⊂ Z. The algebra Z is a free C[h]Sm⊗C[h∗]Sm-
module of rank m!.

b) The PBW isomorphism restricts to an isomorphism C[h⊕ h∗]Sm
∼−→ grZ.

c) The affine variety SpecZ is isomorphic to the Calogero–Moser space

{(X,Y, u, v) ∈ Matm×m(C)⊕2×Cm×(Cm)∗ | [X,Y ]+Im = v ·u}�GLm(C).

d) We have Z ∼= eH0e. Moreover, the functor

H0-mod→ eH0e-mod, M 7→ e ·M, (13)

where e = 1
m!

∑
w∈Sm w is the trivial idempotent, is an equivalence of

categories.
e) Every simple H0-module has dimension m! and is isomorphic to CSm as

an Sm-module. Moreover, there is a bijection

{isoclasses of simple H0-modules} ←→ MaxspecZ.
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Proof. Part a) is [25, Prop. 4.15], part b) is [25, Thm. 3.3] and part c) is [25, Thm.
11.16]. For part d) see the proof of [25, Prop. 3.8] and the remark following it. Part
e) is [25, Thm. 1.7]. �

3.2. Generalized Verma modules

Let us recall the definition of generalized Verma modules for Ht. Let l ≥ 1, ν ∈
Cl(m), λ ∈ Pm(ν) and a ∈ h∗ with Sm(a) = Sν . Extend the CSν-module Sp(λ)
to a CSν n C[h∗]-module Sp(a, λ) by letting each yi act on Sp(λ) by the scalar
ai := a(yi).

Definition 3.5 ([7, §1.3]). The generalized Verma module of type (a, λ) is

∆t(a, λ) := Ht ⊗CSνnC[h∗] Sp(a, λ).

We abbreviate ∆t(λ) := ∆t(0, λ).

Remark 3.6. When t 6= 0, the modules ∆t(λ) play the role of standard modules in
the category O(Ht) defined in [32]. Using the results of [10], Bonnafé and Rouquier
[14] also defined a highest weight category for H0 with graded shifts of ∆0(λ) as
the standard modules.

Theorem 3.7 ([7, Thm. 2]). The following hold.

a) The canonical map Z → EndH0(∆0(a, λ)) is surjective.
b) The ring EndH0

(∆0(a, λ)) is isomorphic to a polynomial ring in m variables.
c) The EndH0

(∆0(a, λ))-module e∆(a, λ) is free of rank one.

Theorem 3.7 allows us to construct simple H0-modules as quotients of genera-
lized Verma modules.

Lemma 3.8. Let L be a simple H0-module. Then there exist l ≥ 1, ν ∈ Cl(m),
λ ∈ Pm(ν) and a ∈ h∗ with Sm(a) = Sν such that L ∼= ∆0(a, λ)/I ·∆0(a, λ) for
some maximal ideal I � EndH0(∆0(a, λ)).

Proof. The commuting operators y1, . . . , ym have a simultaneous eigenvector v ∈
L. Let a ∈ h∗ be the corresponding eigenvalue. Without loss of generality, we
may assume that Sm(a) = Sν for some ν ∈ Cl(m). The subspace Sν · v ⊂ L is
C[h∗]-stable and decomposes as a sum of simple Sν-modules. Suppose that this
sum contains a simple module isomorphic to Sp(λ). Then there is a surjective
homomorphism ∆0(a, λ) � L. Let K denote its kernel.

We abbreviate E(a, λ) := EndH0
(∆0(a, λ)). Since, by part a) of Theorem 3.7,

Z surjects onto E(a, λ), all endomorphisms in E(a, λ) preserve eK. Hence eK is
an E(a, λ)-submodule of e∆0(a, λ). But, by part c) of Theorem 3.7, e∆0(a, λ) is
a free E(a, λ)-module of rank one. Hence eK = I · e∆0(a, λ) = eI · ∆0(a, λ) for
some ideal I � E(a, λ).

By the definition of K and part d) of Theorem 3.4, there is a short exact
sequence 0 → eI ·∆0(a, λ)→ e∆0(a, λ)→ eL→ 0. Since, by part e) of Theorem
3.4, eL ∼= C, it follows that I is a maximal ideal. The fact that (13) is an equivalence
implies that the sequence 0 → I ·∆0(a, λ) → ∆0(a, λ) → L → 0 is exact as well.
Hence K = I ·∆0(a, λ). �

671



T. PRZEŹDZIECKI

3.3. Supports of Verma modules

By [8, §1.1], the support of the module ∆0(a, λ) only depends on a := $(a), where
$ : h∗ → h∗/Sm is the canonical map. Therefore we can define

Ωa,λ := suppZ(∆0(a, λ)).

We abbreviate Ωλ := Ω0,λ. Let

π : SpecZ → h∗/Sm (14)

be the morphism of affine varieties induced by the inclusion C[h∗]Sm ↪→ Z.

Proposition 3.9. We have

π−1(a)red =
⊔

λ∈P(ν)

Ωa,λ

with Ωa,λ
∼= Spec EndH0(∆0(a, λ)) ∼= Am.

Proof. The first statement follows from [8, Prop. 4.9] and the second statement
from Theorem 3.7.b). �

4. Recollections on vertex algebras

In this section we recall the definition of the vertex algebra associated to the
vacuum module Vacκ := U(ĝκ)/U(ĝκ).ĝ+. We also recall the main results about
the centre of this vertex algebra and its connection to Z.

4.1. Vertex algebras

Let R be an algebra and let f(z) =
∑
r∈Z f(−r−1)z

r and g(z) =
∑
r∈Z g(−r−1)z

r

be formal power series in R[[z, z−1]]. Their normally ordered product :f(z)g(z): is
defined to be the formal power series

:f(z)g(z): = f+(z)g(z) + g(z)f−(z),

f+(z) =
∑
r≥0

f(−r−1)z
r, f−(z) =

∑
r<0

f(−r−1)z
r.

Given f1(z), . . . , fl(z) ∈ R[[z, z−1]], set

:f1(z) · · · fl(z): = :f1(z) · · · (:fl−2(z)(:fl−1(z)fl(z):):):

Let W be a vector space. A series f(z) =
∑
r∈Z f(−r−1)z

r ∈ (EndCW )[[z, z−1]]
is called a field on W if for every v ∈ W there exists an integer k ≥ 0 such that
f(r).v = 0 for all r ≥ k. Fields are preserved by the normally ordered product.

A vertex algebra is a quadruple (W, |0〉,Y, T ) consisting of a complex vector
space W , a distinguished element |0〉 ∈W , called the vacuum vector, a linear map

Y : W → (EndCW )[[z, z−1]], a 7→ Y(a, z) =
∑
r∈Z

a(−r−1)z
r
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sending vectors to fields on W , called the state-field correspondence, and a linear
map T : W → W called the translation operator. These data must satisfy a list of
axioms, see, e.g., [11, Def. 1.3.1].

Let us briefly recall the construction of a functor

Ũ : {Z-graded vertex algebras} → {complete topological associative algebras}.

Given a Z-graded vertex algebra W , one considers a completion of the Lie algebra
of Fourier coefficients associated to W , and takes its universal enveloping algebra.
To obtain Ũ(W ), one again needs to form a completion and take a quotient by
certain relations. The precise definition can be found in [11, §4.3.1].

4.2. The affine vertex algebra

Let κ ∈ C. The vacuum module Vacκ can be endowed with the structure of a vertex
algebra, as in [11, §2.4]. Let us explicitly recall the state-field correspondence. Let
ρ : Uκ(ĝ) → EndC(Vacκ) be the representation of ĝκ on Vacκ. The state-field
correspondence Y is given by Y(|0〉, z) = id and

X(z) := Y(X[−1], z) =
∑
r∈Z

ρ(X[r])z−r−1, (15)

Y(X1[k1] · · ·Xl[kl], z)

=
1

(−k1 − 1)!
· · · 1

(−kl − 1)!
:∂−k1−1
z X1(z) · · · ∂−kl−1

z Xl(z):
(16)

for X,X1, . . . , Xl ∈ g and k1, . . . , kl ≤ −1. Given X ∈ g we also define a power
series

X〈z〉 := Y〈X[−1], z〉 :=
∑
r∈Z

X[r]z−r−1.

Applying formula (16) with each Xi(z) replaced by Xi〈z〉 we can associate a power

series Y〈A, z〉 =
∑
r∈ZA〈−r−1〉z

r ∈ Ûκ[[z, z−1]] to an arbitrary element A ∈ Vacκ.

4.3. The Feigin–Frenkel centre

Let Z(Vacκ) denote the centre of the vertex algebra Vacκ. It is a commutative
vertex algebra, which is also a commutative ring. A precise definition can be found
in [28, §3.3.1].

Proposition 4.1 ([28, Prop. 3.3.3]). Z(Vacκ) = C|0〉 if and only if κ 6= c.

The commutative vertex algebra z(ĝ) := Z(Vacc) is known as the Feigin–Frenkel
centre. Elements of z(ĝ) are called Segal–Sugawara vectors. We are now going to
recall an explicit description of z(ĝ) due to Chervov and Molev. Identify U(ĝ−)

∼−→
Vacc, X 7→ X · |0〉 as vector spaces and consider the maps

S(g)
i
↪→ S(ĝ−)

σ← U(ĝ−),

where i(X) = X[−1] for X ∈ g and σ is the principal symbol map with respect to
the PBW filtration.
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Definition 4.2 ([19, §2.2]). One calls A1, . . . , An ∈ z(ĝ) ⊂ U(ĝ−) a complete
set of Segal–Sugawara vectors if there exist algebraically independent generators
B1, . . . , Bn of the algebra S(g)g such that i(B1) = σ(A1), . . . , i(Bn) = σ(An).

Theorem 4.3 ([29, Thm. 9.6]). If A1, . . . , An are a complete set of Segal–Suga-
wara vectors then

z(ĝ) = C[T kAr | r = 1, . . . , n, k ≥ 0], (17)

where T is the translation operator.

Example 4.4. Let ˆ̂gκ be the extension 0 → ĝκ → ˆ̂gκ → Cτ → 0 defined by the
relations [τ,X⊗f ] = −X⊗∂tf and [τ,1] = [τ, τ ] = 0. The subspace ˆ̂g− := ĝ−⊕Cτ
is a Lie subalgebra of ˆ̂gκ. Consider the matrix Eτ ∈ Matn×n(U(ˆ̂g−)) defined as

Eτ :=


τ + e11[−1] e12[−1] · · · e1n[−1]
e21[−1] τ + e22[−1] · · · e2n[−1]

...
...

. . .
...

en1[−1] en2[−1] · · · τ + enn[−1]

 .

The traces Tr(Ekτ ) are elements of U(ˆ̂g−). In light of the canonical vector space
isomorphism U(ˆ̂g−) ∼= U(ĝ−) ⊗ C[τ ], we can regard Tr(Ekτ ) as polynomials in τ
with coefficients in U(ĝ−) ∼= Vacc. Define Tk;l (0 ≤ l ≤ k ≤ n) to be the coefficients
of the polynomial

Tr(Ekτ ) = Tk;0τ
k + Tk;1τ

k−1 + · · ·+ Tk;k−1τ + Tk;k

and set Tk := Tk;k. By [19, Thm. 3.1], the set {Tk | 1 ≤ k ≤ n} is a complete set
of Segal–Sugawara vectors in z(ĝ).

4.4. The centre of the enveloping algebra

If A is a Segal–Sugawara vector, the coefficients A〈r〉 of the power series Y〈A, z〉 are
called Segal–Sugawara operators. Given a complete set of Segal–Sugawara vectors
A1, . . . , An such that degAi = −i, let

Z := C[Ai,〈l〉]
l∈Z
i=1,...,n. (18)

be the free polynomial algebra generated by the corresponding Segal–Sugawara
operators. For k > 0, let Jk be the ideal in Z generated by the Ai,〈l〉 with l ≥ ik.

Theorem 4.5. There exist natural algebra isomorphisms

Ũ(Vacc) ∼= Ûc, Ũ(z(ĝ)) ∼= Z. (19)

Moreover, Z = lim←− (Z /Jk) .

Proof. For the isomorphisms (19), see [28, Lem. 3.2.2, Prop. 4.3.4]. For the second
statement, see [28, §4.3.2] or [29, §12.2]. �
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4.5. Quadratic Segal–Sugawara operators

Let κ ∈ C. An important role is played by the vector

κL = 1
2

∑
1≤k,l≤n

ekl[−1]elk[−1] ∈ Vacκ. (20)

Writing Y〈κL, z〉 =
∑
r∈Z

κL〈r〉z
−r−1, we have the formula

κLr := κL〈r+1〉 = 1
2

∑
1≤k,l≤n

( ∑
i≤−1

ekl[i]elk[r− i]+
∑
i≥0

elk[r− i]ekl[i]
)
∈ Ûκ(ĝ). (21)

Proposition 4.6. If κ = c then cL ∈ z(ĝ) and cLr ∈ Z for each r ∈ Z. If κ 6= c,
then [(1/κ+ n)κL−1, X ⊗ f ] = −X ⊗ ∂tf for all X ∈ g and f ∈ C((t)).

Proof. The proposition follows from a direct calculation using operator product
expansions. This calculation can be found in, e.g., [28, §3.1.1]. �

5. Suzuki functor for all levels

In [52], Suzuki defined a functor Fκ : Cκ → Hκ+n-mod for κ 6= c. In this section
we generalize his construction to the κ = c case. Throughout this section assume
that m,n are any positive integers and κ ∈ C unless stated otherwise.

5.1. Simultaneous affinization

Let V∗κ := Indĝκ
ĝ+
◦ Inf

ĝ+

g⊕C1 V∗, where 1 acts on V∗ as the identity endomorphism.

We start by recalling (see e.g. [40, §9.9, 9.11]) the construction of a g⊗Rz-action
on

Tκ(M) := R⊗ (V∗κ)⊗m ⊗M, (22)

for any module M in Cκ. For that purpose we first recall the definition of an
auxiliary Lie algebra GR.

Let R be a commutative unital algebra. We fix formal variables t1, . . . , tm, t∞.
Set g(i)R := g⊗R((ti)), g(i) := g(i)C. Consider the R-Lie algebra

GR :=

m⊕
i=1

g(i)R ⊕ g(∞)R = g⊗
( m⊕
i=1

R((ti))⊕R((t∞))

)
. (23)

We denote a pure tensor on the RHS of (23) by X ⊗ (fi), where X ∈ g and

fi ∈ R((ti)) for i = 1, . . . ,m,∞. Define ĜR,κ to be the central extension

0→ R1→ ĜR,κ → GR → 0 (24)

associated to the cocycle (X⊗(fi), Y ⊗(gi)) 7→〈X,Y 〉κ
∑
i∈{1,...,m,∞}Resti=0(gidfi).

Set
Uκ(ĜR) := U(ĜR,κ)/〈1− 1ĜR,κ〉.

If R = C, we abbreviate Ĝκ := ĜC,κ and Uκ(Ĝ) = Uκ(ĜC).
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A Uκ(ĜR)-module M is called smooth if for every vector v ∈ M there exists
a positive integer k such that g ⊗

(⊕m
i=1 t

k
iR((ti)) ⊕ tk∞R((t∞))

)
.v = 0. Suppose

that M1, . . . ,Mm,M∞ are smooth Uκ(ĝ)-modules. Then R⊗
⊗m

i=1Mi⊗M∞ is a

smooth Uκ(ĜR)-module with the action of the dense subalgebra R⊗Uκ(Ĝ) given
by the formula

r ⊗X ⊗ (fi) 7→
∑

i=1,...,m,∞
r ⊗ (X ⊗ fi)(i), (25)

where (X ⊗ fi)(i) := idi−1 ⊗ (X ⊗ fi) ⊗ idm−i. Note that if R were an infinite-

dimensional algebra and the modules Mi were not smooth, the action of R⊗Uκ(Ĝ)

would not necessarily extend to an action of Uκ(ĜR).

5.2. Conformal coinvariants

We next recall the connection between the Lie algebras GR and g⊗Rz. Consider
Rz as an R-subalgebra of R(z). We thus view elements of Rz as rational functions
which may have poles at x1, . . . , xm and ∞. Set zi := z − xi.

Definition 5.1. For 1 ≤ i ≤ m, let ιR,i : Rz → R((zi)) (resp. ιR,∞ : Rz →
R((z−1))) be theR-algebra homomorphism sending a function in Rz to its Laurent
series expansion at xi (resp. ∞). Let

ιR : Rz ↪→
m⊕
i=1

R((ti))⊕R((t∞)) (26)

be the injective R-algebra homomorphism given by (ιR,1, ..., ιR,m, ιR,∞) followed
by the assignment zi 7→ ti, z

−1 7→ t∞.

The map (26) induces the Lie algebra homomorphism

g⊗Rz ↪→ GR, X ⊗ f 7→ X ⊗ ιR(f), (27)

which, by the residue theorem, lifts to an injective Lie algebra homomorphism

g⊗Rz ↪→ ĜR,κ. (28)

LetM be a smooth Uκ(ĝ)-module. The vector space Tκ(M) is a smooth Uκ(ĜR)-
module (with the action given by (25)). We consider it as a U(g⊗Rz)-module via
(28). It also carries a natural Ro-action: R acts by multiplication and Sm acts by
permuting the factors of the tensor product (V∗κ)⊗m and the xi’s. The next lemma
follows directly from the definitions.

Lemma 5.2. The Ro-action on Tκ(M) normalizes the U(g⊗Rz)-action. There-
fore we have functors

Tκ : Cκ → (U(g⊗Rz),Ro)-nmod, M 7→ Tκ(M), (29)

Fκ : Cκ → Ro-mod, M 7→ H0(g⊗Rz,Tκ(M)). (30)

676



SUZUKI FUNCTOR AT THE CRITICAL LEVEL

5.3. The Knizhnik–Zamolodchikov connection

We are going to extend the Ro-action on Tκ(M) and Fκ(M) to an action of Hκ+n.

Definition 5.3. Let κ ∈ C. The deformed Weyl algebra Dκ is the algebra gene-
rated by x1, . . . , xm and q1, . . . , qm subject to the relations

[xi, xj ] = [qi, qj ] = 0, [xi, qj ] = (κ+ n)δij (1 ≤ i, j ≤ m).

Note that Dc = C[x1, . . . , xm, q1, . . . , qm]. Set

Do
κ := Dκ oCSm, Do

κ,reg := Do
κ [δ−1].

Suppose that M is a C[h]o- (resp. Ro-) module. A good connection on M is a
representation of Do

κ (resp. Do
κ,reg) on M extending the given C[h]o- (resp. Ro-)

module structure.

Lemma 5.4. Let M be a C[h]o-module. If ρ : Do
κ → EndC(M) is a good connecti-

on on M , then ρ′, defined as

ρ′(qi) := ρ(qi) +
∑
j 6=i

1

xi − xj
,

is a good connection on the Ro-module Mreg := R⊗C[h] M .

Proof. The lemma follows by a direct calculation, as in [54, Prop. 1.8]. �

Let M be a smooth Uκ(ĝ)-module. Consider the Ro-module Tκ(M) and the
operators

κ∇∇i := −(κ+ n)∂xi + κL
(i)
−1 (1 ≤ i ≤ m)

on Tκ(M). The following proposition extends [11, Lem. 13.3.7] to the critical level
case.

Proposition 5.5. Let κ ∈ C.

a) The assignment

κ∇∇ : Do
κ,reg → EndC(Tκ(M)), qi 7→ κ∇∇i

defines a good connection (known as the Knizhnik–Zamolodchikov connecti-
on) on Tκ(M).

b) The operators κ∇∇i normalize the g ⊗ Rz-action on the space Tκ(M), i.e.,
[κ∇∇i, g⊗Rz] ⊂ g⊗Rz. Hence κ∇∇ descends to a good connection on Fκ(M).

Proof. It suffices to consider the case κ = c. The operators c∇∇i = cL
(i)
−1 act on

different factors V∗c of the tensor product Tc(M) = R ⊗ (V∗c)⊗m ⊗M , so they
commute. Moreover, the operators xj act only on the first factor R and so they
commute with the operators c∇∇i as well. Hence c∇∇ is a representation of Dc,
which clearly extends to a representation of Do

c,reg. The second statement follows
immediately from the fact that cL−1 ∈ Z. �

To obtain representations of the rational Cherednik algebra on Tκ(M) and
Fκ(M), we are going to compose the connection κ∇∇′ with the Dunkl embedding,
whose definition we now recall.
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Proposition 5.6 ([25, Prop. 4.5]). There is an injective algebra homomorphism,
called the Dunkl embedding,

Hκ+n ↪→ Do
κ,reg, xi 7→ xi, w 7→ w, yi 7→ Di := qi +

∑
j 6=i

1

xi − xj
(si,j − 1), (31)

with 1 ≤ i ≤ m and w ∈ Sm.

Proposition 5.7. Composing (31) with κ∇∇′ yields representations of Hκ+n on
Tκ(M) and Fκ(M). Moreover, the functors (29) and (30) extend to functors

Tκ : Cκ → (U(g⊗Rz),Hκ+n)-nmod, Fκ : Cκ → Hκ+n-mod.

Proof. By Lemma 5.4 and Proposition 5.5, κ∇∇′ is a good connection on Tκ(M),
which descends to a good connection on Fκ(M). It therefore yields representations
of Do

κ,reg on Tκ(M) and Fκ(M), which become representations of Hκ+n via the
Dunkl embedding.

Let us check that Tκ and Fκ are functors. Let f : M → N be a morphism in Cκ.
It induces a map Tκ(f) : Tκ(M) → Tκ(N). Since the Hκ+n-action doesn’t affect
the last factor (as in (22)) in these tensor products, Tκ(f) commutes with the
Hκ+n-action. The fact that f is a ĝκ-module homomorphism also implies that
Tκ(f) commutes with the g ⊗ Rz-action on Tκ(M) and Tκ(N). Hence Tκ(f)
descends to a Hκ+n-module homomorphism Fκ(f) : Fκ(M)→ Fκ(N). �

5.4. The current Lie algebra action

Given a smooth Uκ(ĝ)-module M , set

Tκ(M) := C[h]⊗ (V∗)⊗m ⊗M, Tloc
κ (M) := R⊗ (V∗)⊗m ⊗M.

We will show that the functors Tκ and Tloc
κ fit into the following commutative

diagram

(U(g[t]),Hκ+n)-nmod Hκ+n-mod

Cκ (U(g[t]),Hκ+n)-nmod Hκ+n-mod

(U(g⊗Rz),Hκ+n)-nmod

H0(g[t],−)

loc loc

Tκ

Tκ

Tloc
κ H0(g[t],−)

H0(g⊗Rz,−)

where loc is the localization functor sending N to Nreg := R⊗C[h] N . The Suzuki
functor is the composition of Tκ with H0(g[t],−). Let us explain this diagram in
more detail. The current Lie algebra g[t] acts on Tloc

κ (M) by the rule

Y [k] 7→
m∑
i=1

xki ⊗ Y (i) + 1⊗ (Y [−k])(∞) (Y ∈ g, k ≥ 0). (32)

The Ro-action on Tloc
κ (M) is analogous to that on Tκ(M). It follows directly from

the definitions that the g[t]-action and the Ro-action commute. We next recall
how the Ro-action can be extended to an Hκ+n-action on Tloc

κ (M).
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Definition 5.8. Let 1 ≤ i, j ≤ m and p ≥ 0. Consider

Ω(i,j) :=
∑

1≤k,l≤n

e
(i)
kl e

(j)
lk , Ω

(i,∞)
[p+1] :=

∑
1≤k,l≤n

e
(i)
kl elk[p+ 1](∞),

L(i) := −
∑

1≤j 6=i≤m

Ω(i,j)

xi − xj
+
∑
p≥0

xpiΩ
(i,∞)
[p+1] ,

κ∇i := −(κ+ n)∂xi + L(i),

as operators on Tloc
κ (M). They are well-defined because M is smooth.

Lemma 5.9. The assignment

κ∇ : Do
κ → EndC(Tloc

κ (M)), qi 7→ κ∇i

defines a good connection on Tloc
κ (M).

Proof. One needs to check that κ∇ is a well-defined ring homomorphisms, i.e., show
that [κ∇i, κ∇j ] = 0 and [κ∇i, xj ] = −(κ+ n)δij . These commutation relations are
calculated in [41, Lem. 3.2–3.3]. �

Proposition 5.10. Composing (31) with κ∇′ yields a representation of Hκ+n on
Tloc
κ (M). The element yi acts as the operator

κȳi = −(κ+ n)∂xi +
∑

1≤j 6=i≤m

Ω(i,j)

xi − xj
(si,j − 1) +

∑
p≥0

xpiΩ
(i,∞)
[p+1] , (33)

where si,j acts by permuting the xi’s but not the factors of the tensor product.

Moreover, Tκ(M) is a subrepresentation.

Proof. By Lemma 5.4 and Lemma 5.9, κ∇′ is a good connection, which implies
the first statement. For the second part, observe that

κ∇′(Di) = κ∇i +
∑
j 6=i

1

xi − xj
si,j

= − (κ+ n)∂xi +
∑
j 6=i

1

xi − xj
(si,j − Ω(i,j)) +

∑
p≥0

xpiΩ
(i,∞)
[p+1] .

The equality of operators si,j = Ω(i,j)si,j implies (33). The third statement follows

from the fact that the operators (−1 + si,j)/(xi − xj) and ∂xi preserve C[h] ⊂ R.
�

5.5. Suzuki functor

We next consider the relationship between the functors Tloc
κ and Tκ. Both Tloc

κ (M)
and Tκ(M) carry representations of Do

κ given by κ∇′ and κ∇∇′, respectively. The
following result is well known (see, e.g., [54, Prop. 2.18]).
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Proposition 5.11. Let κ ∈ C.

a) The connection κ∇′ normalizes the g[t]-action on Tloc
κ (M) and descends to

a good connection on H0(g[t],Tloc
κ (M)).

b) There is a Do
κ,reg-module isomorphism

H0(g[t],Tloc
κ (M)) ∼= H0(g⊗Rz,Tκ(M)), (34)

intertwining the connections κ∇′ and κ∇∇′.

Proof. Let us prove part a). Set t = κ + n, and let X ∈ g and r ≥ 0. We need to
compute the commutator [κ∇′(qi), a(X[r])]. We have

[κ∇′(qi), a(X[r])] = A+
∑
j 6=i

Bj + C

as linear operators on Tloc
κ (M), where

A = −[t∂xi , a(X[r])], Bj =
1

xi − xj
[
1− Ω(i,j), a(X[r])

]
,

C =
∑
p≥0

[
xpiΩ

(i,∞)
[p+1] , a(X[r])

]
.

We compute:

A = −[t∂xi , x
r
iX

(i)] = −rtxr−1
i X(i),

B =
−1

xi − xj
[
Ω(i,j), xriX

(i) + xrjX
(j)
]

=
xri − xrj
xi − xj

[
Ω(i,j), X(j)

]
=
∑

1≤p≤r

∑
k,l

([ekl, X][r − p])(j)(elk[p− 1])(i),

C =
∑
p≥0

∑
k,l

xpi
[
e

(i)
kl elk[p+ 1](∞), xriX

(i) +X[−r](∞)
]

=
∑
p≥0

∑
k,l

(
xp+ri [ekl, X](i)elk[p+ 1](∞) + xpi e

(i)
kl

[
ekl[p+ 1](∞), X[−r](∞)

])
=
∑
p≥0

∑
k,l

(
− xp+ri e

(i)
kl ([elk, X][p+ 1])(∞) + xpi e

(i)
kl

[
ekl[p+ 1](∞), X[−r](∞)

])
+
∑
k,l

rxr−1
i 〈elk, X〉κe(i)

kl

=
∑

1≤p≤r

∑
k,l

([ekl, X][p− r])(∞)(elk[p− 1])(i) +
∑
k,l

rxr−1
i 〈elk, X〉κe(i)

kl .
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Therefore, we have

[κ∇′(qi), a(X[r])] = −rtxr−1
i X(i) +

∑
j 6=i

∑
1≤p≤r

∑
k,l

([ekl, X][r − p])(j)(elk[p− 1])(i)

+
∑

1≤p≤r

∑
k,l

([ekl, X][p− r])(∞)(elk[p− 1])(i)

+
∑
k,l

rxr−1
i 〈elk, X〉κe(i)

kl

= −rtxr−1
i X(i) +

∑
1≤p≤r

∑
k,l

a([ekl, X][r − p])(elk[p− 1])(i) −D

+ rxr−1
i (κX(i) − Tr(X)),

where

D =
∑

1≤p≤r

∑
k,l

([ekl, X][r − p])(i)(elk[p− 1])(i)

=
∑

1≤p≤r

∑
k,l

(xr−pi [ekl, X](i))(xp−1
i e

(i)
lk )

= rxr−1
i

∑
k,l

(
e

(i)
kl X

(i)e
(i)
lk −X

(i)e
(i)
kl e

(i)
lk

)
= −rxr−1

i (Tr(X) + nX(i)).

Hence, we have

[κ∇′(qi), a(X[r])] ≡ rxr−1
i

(
− tX(i) + Tr(X) + nX(i) + κX(i) − Tr(X)

)
= 0

modulo g[t]·Tloc
κ (M). This shows that the connection κ∇′ normalizes the g[t]-action

on Tloc
κ (M). Part b) is standard — detailed proofs can be found in, e.g., [54, Prop.

3.6] or [27, Lem. 2.1, Prop. 2.6]. �

Corollary 5.12. Let κ ∈ C.

a) We have functors

Tκ : Cκ → (U(g[t]),Hκ+n)-nmod, M 7→ Tκ(M), (35)

Fκ : Cκ → Hκ+n-mod, M 7→ H0(g[t],Tκ(M)). (36)

b) The map (34) is an Hκ+n-module isomorphism and the functors Fκ and
loc ◦ Fκ are naturally isomorphic.

c) The functor (36) is right-exact and commutes with direct sums.

Proof. By Proposition 5.10, composing the Dunkl embedding (31) with the con-
nection κ∇′ yields a representation of Hκ+n on Tκ(M). Proposition 5.11.a) implies
that this representation descends to a representation on H0(g[t],Tκ(M)). This
proves part a). Part b) follows directly from 5.11.b). Part c) follows from the fact
that Tκ is exact and taking coinvariants is right exact and commutes with direct
sums. �
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Definition 5.13. Given κ ∈ C, we call

Fκ : Cκ → Hκ+n-mod, M 7→ H0(g[t],C[h]⊗ (V∗)⊗m ⊗M) (37)

the Suzuki functor (of level κ).

The functor (37) extends Suzuki’s construction from [52] to the critical level
case. Indeed, setting κ = c, we get the functor

Fc : Cc → H0-mod

relating the affine Lie algebra at the critical level to the rational Cherednik algebra
at t = 0.

Remark 5.14. In [54] Varagnolo and Vasserot constructed functors from Cκ (κ 6= c)
to the category of modules over the rational Cherednik algebra (t 6= 0) associated
to the wreath product (Z/lZ) oSm. We expect that our approach to extending the
Suzuki functor to the κ = c, t = 0 case can also be applied to their functors.

6. Suzuki functor — further generalizations

The Suzuki functor has so far been defined on smooth Ûκ-modules. We now
extend its definition to all Ûκ-modules in several steps. We first extend it to finitely
presented modules using a certain inverse limit construction. We then introduce an
even more general definition which applies to all modules. Let κ ∈ C and t = κ+n
throughout this section.

6.1. Pro-smooth modules

We are going to define the category of pro-smooth modules and the pro-smooth
completion functor. If I is an inverse system in some category, we write lim I
or limMi∈I Mi, where the Mi run over the objects in I , for its inverse limit. We
start with the following auxiliary lemma.

Lemma 6.1. Let M be any Ûκ-module, N a smooth module and f : M → N a
Ûκ-module homomorphism. Then M/ ker f is a smooth module.

Proof. Let v ∈ M and let v̄ be the image of v in M/ ker f . Since N is smooth,
there exists r ≥ 0 such that Îr · f(v) = 0. Hence f(Îr · v) = 0, Îr · v ⊆ ker f and so
Îr · v̄ = 0. �

Definition 6.2. A Ûκ-module M is called pro-smooth if M is the inverse limit of
an inverse system of smooth Ûκ-modules. Let C̃κ denote the full subcategory of
Ûκ-mod whose objects are pro-smooth modules.

Definition 6.3. Let M be a Ûκ-module. The smooth quotients of M form an
inverse system IM partially ordered by projections. Let

M̃ := lim IM .

Proposition 6.4. There exists a “pro-smooth completion” functor

Ûκ-mod→ C̃κ, M 7→ M̃, f 7→ f̃ (38)

left adjoint to the inclusion functor C̃κ ↪→ Ûκ-mod.
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Proof. We first construct f̃ explicitly. Let f : M → N be a homomorphism of Ûκ-

modules. Given a smooth quotient Ni of N , let fi be the map M
f−→ N � Ni. By

Lemma 6.1, Mi := M/ ker fi is a smooth module. Hence, there is a canonical map

M̃ →Mi as part of the inverse limit data. Consider the diagram on the LHS below,
where Nj is another smooth quotient of N and all the unnamed maps are part of
the inverse system or inverse limit data. Since the outer pentagon commutes, the
universal property of the inverse limit Ñ implies that there exists a unique map f̃
making the diagram commute.

M̃

Mi Ñ Mj

Ni Nj

f̃

fi fj

,

M̃

Mi K Mj

Ki Kj

g′

gi gj

,

M

M̃

Mi Mj

ιM

.

Next we construct the adjunction. Let g : M → K be a homomorphism of Ûκ-
modules, and assume that K is the inverse limit of an inverse system of smooth
modules. Given such a smooth module Ki, let gi be the composition of g with the
canonical map K → Ki. By Lemma 6.1, gi factors through the smooth module
Mi := M/ ker gi. An analogous argument to the one above shows that there exists a
unique map g′ making the middle diagram above commute. The universal property
of the inverse limit M̃ also yields a unique map ιM making the diagram on the
RHS above commute.

It is easy to check that the maps

HomC̃κ
(M̃,K) ∼= HomÛκ

(M,K), h 7→ h ◦ ιM , g′ ← [ g (39)

are mutually inverse bijections. This gives the adjunction. �

Proposition 6.5. The restriction of (38) to Cκ or Ûκ-fpmod is naturally iso-
morphic to the identity functor.

Proof. If M is smooth then M is the greatest element in the inverse system IM ,
so M̃ = M . Next suppose that M is finitely presented with presentation

(Ûκ)⊕a
f−→ (Ûκ)⊕b →M → 0.

We first show that (Ûκ)̃ = Ûκ. The inverse system I ′ := {Ûκ/Îr | r ≥ 0} is a

subsystem of I := IÛκ
. Suppose that N = Ûκ/J is a smooth quotient and let

1̄ be the image of 1 in N . Then, by smoothness, Îr.1̄ = 0 for some r ≥ 0. Hence
Îr ⊆ J and N is a quotient of Ûκ/Îr. Therefore I ′ is a cofinal subsystem of I
and

(Ûκ)̃ := lim I = lim I ′ = Ûκ.

The fact that limits commute with finite direct sums implies that the pro-smooth
completion functor sends (Ûκ)⊕a to itself. Hence ι(Ûκ)⊕a = id and f̃ = f ′, using

the notation from (39). The adjunction (39), therefore, implies that f̃ = f . By
Proposition 6.4, the pro-smooth completion functor is left adjoint and, hence, right
exact. Hence (coker f )̃ = coker f̃ = coker f = M . �

We will also need the following lemma.
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Lemma 6.6. Let M and N be Ûκ-modules. Then

HomC̃κ
(M̃, Ñ) = lim

Ni∈IN
colim
Mj∈IM

HomÛκ
(Mj , Ni).

Proof. The equality HomC̃κ
(M̃, Ñ) = limNi∈IN HomÛκ

(M̃,Ni) follows from the
general properties of limits. Therefore it suffices to show that, for each Ni ∈ IN ,

HomÛκ
(M̃,Ni) = colim

Mj∈IM
HomÛκ

(Mj , Ni). (40)

Let us check that the LHS of (40) satisfies the universal property of the colimit.
Suppose that we are given a vector space X and linear functions

χMj
: HomÛκ

(Mj , Ni)→ X,

for each Mj ∈ IM , which commute with the natural inclusions between the Hom-
spaces. We are now going to define a map

χ : HomÛκ
(M̃,Ni)→ X.

If f ∈ HomÛκ
(M̃,Ni), then, by Lemma 6.1, the module M := M̃/ ker f is smooth.

Let f̄ : M → Ni be the homomorphism induced by f . We define χ by setting
χ(f) := χM (f̄). One can easily see that χ is the unique map making the diagram
below commute (where Mk is another smooth quotient of M and all the unnamed
maps are the canonical ones).

HomÛκ
(Mj , Ni) HomÛκ

(Mk, Ni)

X

HomÛκ
(M̃,Ni)

χMj χMk

χ

. �

6.2. Extension to all modules

We start by extending the Suzuki functor from Definition (5.13) to the category

Ûκ-fpmod. Suppose that M is a finitely presented Ûκ-module. By Proposition 6.5,
we have M = M̃ := lim JM . Set

Fκ(M) := lim
Mi∈IM

Fκ(Mi), (41)

where the limit is taken in the category Ht-mod. If M is smooth then M is the
maximal element in the inverse system IM , so (41) is compatible with the previous
definition of Fκ.

Proposition 6.7. The functor (36) extends to a right exact functor

Fκ : Ûκ-fpmod→ Ht-mod, (42)

which preserves finite direct sums.
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Proof. We need to construct maps between Hom-sets. Suppose that N = Ñ is
another finitely presented Ûκ-module. Let Ni ∈ IN . For all Mj ∈ JM , we have
maps

φj : HomÛκ
(Mj , Ni)

Fκ−→ HomHt(Fκ(Mj),Fκ(Ni))→ HomHt(Fκ(M),Fκ(Ni))

compatible with the transition maps of the direct system {HomÛκ
(Mj , Ni) |Mj ∈

JM}. The universal property of the colimit and (40) yield a canonical map

ψi : HomÛκ
(M,Ni) = colim

Mj∈IM
HomÛκ

(Mj , Ni)→ HomHt(Fκ(M),Fκ(Ni)).

The maps ψi are compatible with the transition maps of the inverse system
{HomHt(Fκ(M),Fκ(Ni)) | Ni ∈ IN}. Hence the universal property of the limit
yields a canonical map

HomÛκ
(M,N) = lim

Ni∈IN
HomÛκ

(M,Ni)→ HomHt(Fκ(M),Fκ(N)). (43)

Therefore (42) is in fact a functor.
Since limits commute with finite direct sums, (42) must preserve finite direct

sums. We now prove right exactness. Suppose that we have a short exact sequence

0→ A→ B → C → 0 (44)

in Ûκ-fpmod. By Proposition 6.5, these modules are pro-smooth, and there exists
a short exact sequence of inverse systems of smooth quotients

{0→ Ai → Bi → Ci → 0 | i ∈ Z≥0}

whose limit is (44). Since we are dealing with inverse systems of smooth quotients,
the structure maps are all epimorphisms. Next, note that the functor Fκ is right
exact on smooth modules by Corollary 5.12.c). Hence, after applying Fκ, we get a
short exact sequence of inverse systems of Ht-modules

{Fκ(Ai)→ Fκ(Bi)→ Fκ(Ci)→ 0 | i ∈ Z≥0},

where the structure maps are still epimorphisms. By [53, Lem. 10.86.1], after taking
the inverse limit, we get the sequence

Fκ(A)→ Fκ(B)→ Fκ(C)→ 0,

proving right-exactness. �

Corollary 6.8. The space Fκ(Ûκ) is a (Ht, Ûκ)-bimodule. There exists a natural
isomorphism of functors

Fκ(−) ∼= Fκ(Ûκ)⊗Ûκ
− : Ûκ-fpmod→ Ht-mod. (45)
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Proof. If we take M = N = Ûκ then (43) is an algebra homomorphism

Ûop
κ → EndHt(Fκ(Ûκ),Fκ(Ûκ))

giving the right Ûκ-module structure.
The second statement is proven in the same way as the Eilenberg-Watts theorem

(see, e.g., [49, Thm. 5.45]). Let us briefly summarize the argument. One first uses
the fact that Fκ preserves finite direct sums to show that the isomorphism (45)

holds for the category of finitely generated free Ûκ-modules. One then concludes
that (45) holds for arbitrary finitely presented modules by using the right exactness
of Fκ together with the five lemma. �

We now introduce the final and most general definition of the Suzuki functor.

Definition 6.9. The functor (42), in the realization (45), extends to the colimit-
preserving functor

Fκ(−) := Fκ(Ûκ)⊗Ûκ
− : Ûκ-mod→ Ht-mod. (46)

From now on we will refer to (46) as the Suzuki functor.

Remark 6.10. Let us make several remarks about the definition above.
a) In Corollary 6.8 we had to restrict ourselves to the category Ûκ-fpmod

because inverse limits do not commute with infinite coproducts. However, the
functor (46) preserves all colimits since it is left adjoint to the functor N 7→
HomHt(Fκ(Ûκ), N).

b) We now have three definitions of the Suzuki functor:

• the “coinvariants definition” for smooth modules:

Fκ(M) = H0(g[t],Tκ(M)),

• the “limit definition” for finitely presented modules:

Fκ(M) = lim
Mi∈IM

Fκ(Mi),

• the “tensor product” definition for all modules:

Fκ(M) = Fκ(Ûκ)⊗Ûκ
M.

The limit definition agrees with the coinvariants definition, when restricted to
smooth modules, by the comments preceding Proposition 6.7. The tensor product
definition agrees with the limit definition by Corollary 6.8.

6.3. A generic functor

Considering t as an indeterminate, one obtains flat C[t]-algebras ÛC[t] and HC[t]

such that
ÛC[t]/(t− ξ)ÛC[t]

∼= Ûξ−n, HC[t]/(t− ξ)HC[t]
∼= Hξ

for all ξ ∈ C. More details on the algebra HC[t], often called the generic rational
Cherednik algebra, can be found in [14, §3]. We have specialization functors

686



SUZUKI FUNCTOR AT THE CRITICAL LEVEL

spect=ξ : ÛC[t]-mod→ Ûξ−n-mod, M 7→ M/(t− ξ) ·M,

spect=ξ : HC[t]-mod→ Hξ-mod, M 7→ M/(t− ξ) ·M.

One can easily verify that our construction of the functor Fκ still makes sense if we
treat t as a variable throughout. Therefore, we obtain the generic Suzuki functor

FC[t] : ÛC[t]-mod→ HC[t]-mod,

which commutes with the specialization functors, i.e., spect=ξ ◦ FC[t] = Fξ−n ◦
spect=ξ.

7. Computation of the Suzuki functor

In this section we compute the Suzuki functor on certain induced Uκ(ĝ)-modu-
les, showing that the generalized Verma modules from Definition 3.5 as well as the
regular module Ht are in the image of Fκ. Let κ ∈ C and t = κ+ n throughout.

7.1. Induced modules

We start by recalling the definition of Verma modules.

Definition 7.1. Let λ ∈ t∗ and let Cλ,1 be the one-dimensional t⊕C1-module of
weight (λ, 1). The corresponding Verma module is

Mκ(λ) := Indĝκ
b̂+
◦ Inf

b̂+

t⊕C1 Cλ,1.

We next define certain induced modules which generalize the Weyl modules
from [39, §2.4] (see also [28, §9.6]). Given l ≥ 1 and µ ∈ Cl(n), define

l̂+µ := lµ ⊕ ĝ≥1 ⊕ C1 ⊆ ĝ+, l̄µ := l̂+µ /jµ, (47)

where jµ := n−[1]⊕ n+[1]⊕ (t[1] ∩ [lµ, lµ][1])⊕ ĝ≥2.

Lemma 7.2. The subspace jµ is an ideal in the Lie algebra l̂+µ . Moreover, there is

a Lie algebra isomorphism l̄µ ∼= lµ ⊕ zµ[1]⊕C1, where zµ denotes the centre of lµ.

Proof. Since jµ ⊂ ĝ≥1, we have [ĝ≥1, jµ] ⊆ ĝ≥2 ⊂ jµ. Therefore it suffices to show
that [lµ, jµ] ⊆ jµ. This follows from the fact that jµ = [lµ, lµ][1]⊕ r[1]⊕ ĝ≥2, where r
is the direct sum of the nilradical of the standard parabolic containing lµ and the
nilradical of the opposite parabolic, together with the following three inclusions.
Firstly, we have [lµ, ĝ≥2] ⊆ ĝ≥2 ⊂ jµ. Secondly, [lµ, lµ[1]] ⊆ [lµ, lµ][1] ⊂ jµ. Thirdly,
[lµ, r[1]] ⊆ r[1] ⊂ jµ. The second statement of the lemma follows immediately. �

Let U1(̄lµ) := U(̄lµ)/〈1− 1〉. Consider the functor

Indµ,κ = Indĝκ
l̂+µ
◦ Inf

l̂+µ
l̄µ

: U1(̄lµ)-mod→ Cκ. (48)

In the case µ = (1n) we abbreviate Indκ := Ind(1n),κ. Note that l̂+(1n) = t̂+. Set

i := j(1n) = n−[1]⊕ n+[1]⊕ ĝ≥2 and t̄ := t̂+/i. By Lemma 7.2, we have t̄ ∼= t⊕ t[1].
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Definition 7.3. Let µ ∈ Cl(n), λ ∈ Π+
µ and a ∈ (t[1])∗ with Sn(a) = Sµ (with

respect to the usual Weyl group action). Extend L(λ) to an U1(̄lµ)-module L(a, λ)
by letting zµ[1] act via the weight a. We define the Weyl module of type (a, λ, κ)
to be

Wκ(a, λ) := Indµ,κ(L(a, λ)).

Remark 7.4. As a special case, when a = 0, we obtain modules Wκ(λ) := Wκ(0, λ)
which coincide with the Weyl modules from [39, §2.4].

Definition 7.5. Assume that n = m. Let Iκ be the left ideal in U(ĝκ) generated
by eii − 1ĝκ (1 ≤ i ≤ n), 1− 1ĝκ and i := n−[1]⊕ n+[1]⊕ ĝ≥2. Define

Hκ := U(ĝκ)/Iκ = Indκ(I),

where I := Indt̄
t⊕C1 C(1n,1)

∼= S(t[1]).

The module Hκ is cyclic, generated by the image 1H of 1ĝκ ∈ U(ĝκ). From now
on, whenever n = m, let us identify

I ∼= S(t[1])→ C[h∗], eii[1] 7→ −yi. (49)

7.2. Statement of the results

We state the three main results of this section. The first one implies that the
regular module appears in the image of the Suzuki functor.

Theorem 7.6. Let n = m. The map

Υ: Ht
∼−→ Fκ(Hκ), (50)

f(x1, . . . , xn)wg(y1, . . . , yn)

7→ [f(x1, . . . , xn)⊗ e∗w ⊗ g(−e11[1], . . . ,−enn[1])1H]
(51)

is an isomorphism of Ht-modules.

The next theorem states that the Suzuki functor sends generalized Weyl modules
to generalized Verma modules.

Theorem 7.7. Let n = m. Take l ≥ 1, µ ∈ Cl(n), λ ∈ Pµ(µ) and a ∈ h∗ ∼= (t[1])∗

with Sn(a) = Sµ. There is an Ht-module isomorphism

Fκ(Wκ(a, λ)) ∼= ∆t(a, λ).

We remark that the a = 0 case of the preceding theorem also follows from [54,
Prop. 6.3]. Our third theorem shows that the Suzuki functor sends Verma modules
to Verma modules.

Theorem 7.8. Let m,n ∈ Z≥0 and λ ∈ t∗. Then Fκ(Mκ(λ)) 6= 0 if and only if
λ ∈ Pn(m). If λ ∈ Pn(m) then there is an Ht-module isomorphism

Fκ(Mκ(λ)) ∼= ∆t(λ).
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7.3. Partial Suzuki functors

The proof of Theorems 7.6–7.8 requires some preparation. We start by recalling a
few facts about induction.

Lemma 7.9. Let d ⊂ a be Lie algebras, M a d-module and N an a-module.

a) There exists a linear isomorphism H0(a, Inda
dM) ∼= H0(d,M).

b) There is an a-module isomorphism

Inda
d(N ⊗M)

∼−→ N ⊗ Inda
dM, a⊗ n⊗m 7→

∑
a1n⊗ a2 ⊗m,

called the tensor identity, where
∑
a1 ⊗ a2 is the coproduct of a ∈ U(a). It

restricts to the linear isomorphism

C1a ⊗ (N ⊗M)
∼−→ N ⊗ (C1a ⊗M), 1a ⊗ n⊗m 7→ n⊗ 1a ⊗m.

Proof. The first part of the lemma follows directly from the definitions. For the
proof of the second part see, e.g., [42, Prop. 6.5]. �

We next define “partial Suzuki functors”. Let l ≥ 1 and µ ∈ Cl(n). Suppose
that M ∈ U1(̄lµ)-mod. The diagonal g-action on

T(M) := (V∗)⊗m ⊗M

restricts to an action of the Lie subalgebra lµ. The symmetric group acts on T(M),
as usual, by permuting the factors of the tensor product. We extend this action to
an action of C[h∗]o by letting each yi act as the operator

yi 7→
∑

1≤k≤n

e
(i)
kkekk[1](∞). (52)

Lemma 7.10. The lµ-action and the C[h∗]o-action on T(M) commute.

Proof. The fact that the Sm-action commutes with the lµ-action follows from
Schur–Weyl duality. Therefore we only need to show that the operators (52)
commute with the lµ-action. Let ers ∈ lµ. We have an equality of operators on
T(M):

yi
∑

j=1,...,n,∞
e(j)
rs =

∑
j 6=i,∞

n∑
k=1

e
(i)
kke

(j)
rs ekk[1](∞) (53)

+

n∑
k=1

e
(i)
kke

(i)
rs ekk[1](∞) +

n∑
k=1

e
(i)
kkekk[1](∞)e(∞)

rs . (54)

Consider the first summand in (54):

n∑
k=1

e
(i)
kke

(i)
rs ekk[1](∞) =

n∑
k=1

e(i)
rs e

(i)
kkekk[1](∞) + e(i)

rs (err[1](∞) − ess[1](∞)). (55)
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Since M is an l̄µ-module, err[1] − ess[1] = 0 as operators on M and the second
summand on the RHS of (55) vanishes. Next consider the second summand in
(54):

n∑
k=1

e
(i)
kkekk[1](∞)e(∞)

rs =

n∑
k=1

e
(i)
kke

(∞)
rs ekk[1](∞) + (e(i)

rr − e(i)
ss )ers[1](∞). (56)

If r = s then the second summand on the RHS of (56) vanishes. If r 6= s it vanishes
as well since M is an l̄µ-module and ers[1] acts trivially on M . �

By Lemma 7.10, there is an induced C[h∗]o-representation on H0(lµ,T(M))
and, therefore, a functor

F
µ

: U1(̄lµ)-mod→ C[h∗]o-mod, M 7→ H0(lµ,T(M)),

which we call a partial Suzuki functor. For µ = (1n) we also write F := F
µ
. Set

Hindt : C[h∗]o-mod→ Ht-mod, N 7→ Ht ⊗C[h∗]o N.

Proposition 7.11. The diagram

Cκ Ht-mod

U1(̄lµ)-mod C[h∗]o-mod

Fκ

Indµ,κ

F
µ

Hindt

commutes, i.e., there exists a natural isomorphism of functors Fκ ◦ Indµ,κ ∼=
Hindt ◦ F

µ
. Explicitly, for each M ∈ U1(̄lµ)-mod, this isomorphism is given by

φ : Hindt(F
µ
(M)) = C[h]⊗H0(lµ,T(M))

∼−→ Fκ(Indµ,κ(M)) (57)

f(x1, . . . , xm)⊗ [v ⊗ u] 7→ [f(x1, . . . , xm)⊗ v ⊗ i(u)], (58)

where v ∈ (V∗)⊗m, u ∈M and i : M ↪→ Indĝκ
l̂+µ
M is the natural inclusion.

Proof. We first show that (57) is an isomorphism of C[h]o-modules. Since the first
equality in (57) follows directly from the PBW theorem (12), we only need to prove

the second isomorphism. Consider Indĝκ
l̂+µ
M as a g[t]-module using the Lie algebra

homomorphism

g[t]
∼−→ g[t−1] ↪→ ĝκ, X[k] 7→ X[−k]. (59)

The map (59) induces a g[t]-module isomorphism Indĝκ
l̂+µ
M

∼−→ Ind
g[t]
lµ

M. Hence,

by Lemma 7.9.b), we have a g[t]-module isomorphism

Ind
g[t]
lµ

(C[h]⊗ (V∗)⊗m ⊗M)
∼−→ C[h]⊗ (V∗)⊗m ⊗ (Ind

g[t]
lµ

M), (60)
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where g[t] acts on the LHS as in (32), sending

1g[t] ⊗ f(x1, . . . , xm)⊗ v ⊗ u 7→ f(x1, . . . , xm)⊗ v ⊗ 1g[t] ⊗ u. (61)

Next notice that, by Lemma 7.9.a), we have linear isomorphisms

H0(g[t], Ind
g[t]
lµ

(C[h]⊗T(M)))
∼−→H0(lµ,C[h]⊗T(M))

∼−→C[h]⊗H0(lµ,T(M)). (62)

Applying H0(g[t],−) to the inverse of (60) and composing with (62), we obtain an
isomorphism

Fκ(Indĝκ
l̂+µ
M)

∼−→ C[h]⊗H0(lµ,T(M)). (63)

It is clear from (61) that (63) sends the equivalence class [f(x1, . . . , xm)⊗v⊗ i(u)]
to f(x1, . . . , xm)⊗[v⊗u]. This implies, in particular, that (63) is C[h]o-equivariant.

We next prove that (57) is an isomorphism of Ht-modules. Since Ht is generated
as a C-algebra by C[h]o and C[h∗], it suffices to show that φ intertwines the
C[h∗]-actions. Moreover, since the subspace W := 1C[h] ⊗H0(lµ,T(M)) generates

Hindt(F
µ
(M)) as a C[h]o-module, it is enough to check that φ|W intertwines the

C[h∗]-actions.
Consider the subspace U := 1C[h]⊗(V∗)⊗m⊗M ⊂ Tκ(Indµ,κ(M)) and its image

U in Fκ(Indµ,κ(M)). By (58), φ restricts to a linear isomorphism φ|W : W
∼−→ U .

The element yi ∈ Ht acts on Fκ(Indµ,κ(M)) as the operator κyi (see (33)). The

operators ∂xi and (1 − si,j) vanish on the subspace U . Moreover, Ω
(i,∞)
[p+1] (p ≥ 1)

and ekl[1](∞) (k 6= l) act trivially on all of Fκ(Indµ,κ(M)). Therefore

κyi = Ω
(i,∞)
[1] =

∑
1≤k≤n

e
(i)
kkekk[1](∞) (64)

as operators on U . On the other hand, the action of yi on W is given by (52). It
now follows directly from (58) that φ is C[h∗]-equivariant. �

7.4. Proofs of Theorems 7.6–7.8

We now prove the theorems from §7.2.

Proof of Theorem 7.6. Combining the left CSn-module isomorphism

CSn
∼−→ ((V∗)⊗n)(−1,...,−1), w 7→ e∗w (65)

with (49) allows us to identify

Υ: F(I) ∼= ((V∗)⊗n)(−1,...,−1) ⊗ I ∼= CSn nC[h∗] (66)

as CSn-modules. We claim that (66) also intertwines the C[h∗]-actions.
Let us prove the claim. Consider the subspace U := e∗id ⊗ I ⊂ (V∗)⊗n ⊗ I and

its image U in F(I). The map Υ restricts to a linear isomorphism Υ
′
: U ∼= C[h∗].

Since C[h∗] generates CSnnC[h∗] as an Sn-module, it suffices to show that Υ
′

is
C[h∗]-equivariant. The action of yi on F(I) is given by formula (52). Observe that
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e
(i)
kk .e

∗
id = −δk,ie∗id and ekk[1] acts as multiplication by ekk[1] on I ∼= Sym(t[1]).

Hence yi acts on U as multiplication by −eii[1]. On the other hand, yi acts on

C[h∗] ⊂ CSnnC[h∗] as multiplication by yi. It is clear from (49) that Υ
′
intertwines

these two actions, which completes the proof of the claim.
We now prove the theorem. By definition, Fκ(Hκ) = Fκ(Indκ(I)) and, by

Proposition 7.11, Fκ(Indκ(I)) ∼= Hindt(F(I)). The claim above implies that
Hindt(F(I)) ∼= Hindt(CSnnC[h∗]) = Ht. Formula (51) also follows from Proposi-
tion 7.11. �

Proof of Theorem 7.7. Set Sj(µ) = {µ≤j−1 + 1, . . . , µ≤j} so that {1, . . . , n} =⊔l
j=1 Sj(µ). Write r ∼ s if and only if there exists j such that both r, s ∈ Sj(µ).

By Proposition 2.1, there is a natural CSn-module isomorphism

Υµ,a : F
µ
(L(a, λ)) ∼= C[h∗]o ⊗CSµnC[h∗] Sp(a, λ) =: Spµ(a, λ). (67)

We claim that (67) is an isomorphism of C[h∗]o-modules.
It suffices to show that Υµ,a is an isomorphism of C[h∗]-modules. Consider

the subspace U := (V∗)⊗n(µ,µ) ⊗ L(a, λ) ⊂ (V∗)⊗n ⊗ L(a, λ) and its image U in

F
µ
(L(a, λ)). The map Υµ,a restricts to a CSµ-module isomorphism Υ

′
µ,a : U ∼=

Sp(a, λ). Since Sp(a, λ) generates Spµ(a, λ) as an Sn-module, it suffices to show

that Υ
′
µ,a is C[h∗]-equivariant. The action of yi on F

µ
(L(a, λ)) is given by formula

(52). Let v = v1 ⊗ · · · ⊗ vn ∈ (V∗)⊗n(µ,µ). Suppose that i ∈ Sj(µ). Observe that

e
(i)
kk .v = 0 unless k ∼ i and

∑
k∈Sj(µ) e

(i)
kk .v = −v. Moreover, the elements ekk[1]

(k ∈ Sj(µ)) act on L(a, λ) by the same scalar −ai := −a(yi). Hence yi acts on U
as multiplication by ai. This agrees with the definition of the yi-action on Sp(a, λ),
completing the proof of the claim.

We now prove the theorem. By definition, Fκ(Wκ(a, λ)) = Fκ(Indµ,κ(L(a, λ)))

and, by Proposition 7.11, Fκ(Indµ,κ(L(a, λ))) ∼= Hindt(F
µ
(L(a, λ))). The claim

above implies that Hindt(F
µ
(L(a, λ))) ∼= Hindt(Spµ(a, λ)) = ∆t(a, λ). �

Proof of Theorem 7.8. In analogy to Proposition 7.11, one can show that, for each
λ ∈ t∗, there is a C[h]o-module isomorphism

C[h]⊗H0(b+,T(Cλ))
∼−→ Fκ(Indĝκ

b̂+
Cλ,1) = Fκ(Mκ(λ)) (68)

f(x1, . . . , xm)⊗ [v ⊗ u] 7→ [f(x1, . . . , xm)⊗ v ⊗ i(u)], (69)

where v ∈ (V∗)⊗m, u ∈ Cλ and i : Cλ ↪→ Indĝκ
b̂+

Cλ,1 is the natural inclusion.

The first statement of the theorem now follows directly from (68) and Corollary
2.2. So consider the second statement. Let λ ∈ Pn(m). By Corollary 2.2 and (12),
we can identify ∆t(λ) ∼= C[h] ⊗H0(b+,T(Cλ)) as C[h]o-modules. Let Υλ be the
composition of this isomorphism with (68). We need to check that Υλ intertwines
the C[h∗]-actions. Observe that, by (69), Υλ restricts to a linear isomorphism
Sp(λ) → U , where U is the image of U := 1C[h] ⊗ (V∗)⊗m ⊗ Cλ,1 in Fκ(Mκ(λ)).
Since Sp(λ) generates ∆t(λ) as a C[h]o-module, it suffices to show that Υλ|Sp(λ)

intertwines the C[h∗]-actions. By definition, each yi acts trivially on Sp(λ). On the
other hand, since each ekk[1] acts trivially on Cλ,1, the operator κȳi also vanishes
on U . �
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8. Relationship between the centres

Assume that n = m throughout this section. The fact that the algebras Ûc

and H0 have large centres has many implications for their representation theory.
For example, they have uncountably many isomorphism classes of irreducible
modules, and Verma-type modules have large endomorphism and extension algeb-
ras (see §11 for a more detailed discussion). To understand how simple modules
or endomorphism rings behave under the Suzuki functor, we must, therefore,
understand the relationship between the centres of the categories Ûc-mod and
H0-mod. In general, a functor of additive categories does not induce a homomor-
phism between their centres. In §8.1 below we propose two ways to get around this
problem. In §8.2 and §8.3, we apply them to the Suzuki functor, and construct a
map Z→ Z between the two centres.

8.1. Centres of categories

Suppose F : A → B is an additive functor between additive categories. Recall that
the centre Z(A) of A is the ring of endomorphisms of the identity functor idA.
An element of z ∈ Z(A) is thus a collection of endomorphisms {zM ∈ EndA(M) |
M ∈ A} such that f ◦ zM = zN ◦ f for all f ∈ HomA(M,N).

The functor F does not necessarily induce a ring homomorphism Z(A)→ Z(B).
For example, if F is not essentially surjective, then the collection {F (zM ) ∈
EndB(F (M)) | M ∈ A} does not contain an endomorphism for every object
of B. If F is not full, then the endomorphisms F (zM ) may fail to commute with
some of the morphisms in B. Hence {F (zM ) ∈ EndB(F (M)) | M ∈ A} is not
necessarily an endomorphism of the identity functor idB. We remark that some
sufficient conditions for the existence of a canonical homomorphism Z(A)→ Z(B)
are known - for instance F being a Serre quotient functor (see [48, Lem. 4.3]).

We therefore pursue a different approach to construct a sensible ring homomor-
phism Z(A) → Z(B) encoding information about the functor F . There are cano-
nical ring homomorphisms

Z(A)
α−→ End(F )

β←− Z(B)

with α taking {zM |M ∈ A} to {F (zM ) |M ∈ A} and β taking {zK | K ∈ B} to
{zF (M) |M ∈ A}. We assume that β is injective, and identify Z(B) with a subring
of End(F ).

Definition 8.1. We call ZF (A) := α−1(Z(B)) ⊂ Z(A) the F -centre of A. If
A = A-mod is the category of modules over some algebra A, we will also write
ZF (A) := ZF (A).

Restricting α to ZF (A) gives a natural algebra homomorphism from the F -
centre of A to the centre of B:

Z(F ) := α|ZF (A) : ZF (A)→ Z(B). (70)

For any object M ∈ A, the homomorphism Z(F ) fits into the following commuta-
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T. PRZEŹDZIECKI

tive diagram

ZF (A) Z(B)

EndA(M) EndB(F (M))

Z(F )

can can

F

. (71)

Therefore, Z(F ) contains partial information about all the maps between endomor-
phism rings induced by the functor F .

In general, ZF (A) 6= Z(A). In that case, we would like to extend Z(F ) to
a homomorphism Z(A) → Z(B). Of course, there is a price to pay - such a
homomorphism cannot make the diagram (71) commute for all objects M ∈ A.
Instead, we impose the condition that the diagram should commute for all M from
some subcategory of A.

Given a full additive subcategory A′, let F ′ : A′ → B be the restricted functor.
Restriction to objects in A′ yields canonical homomorphisms q : Z(A) → Z(A′)
and End(F )→ End(F ′). We assume that the canonical map β′ : Z(B)→ End(F ′)
is injective, and identify Z(B) with a subring of End(F ′). The following commu-
tative diagram illustrates all the maps we have just defined:

Z(A) End(F ) Z(B)

Z(A′) End(F ′) Z(B)

α

q

β

α′ β′

. (72)

Definition 8.2. We say that a full subcategory A′ of A is F -central if Im(α′◦q) ⊆
Z(B).

If A′ is F -central, then there is a natural algebra homomorphism

ZA′(F ) := α′ ◦ q : Z(A)→ Z(B)

extending (70), and making the diagram

Z(A) Z(B)

EndA(M) EndB(F (M))

ZA′ (F )

can can

F

commute for all M ∈ A′. The homomorphism ZA′(F ) contains partial information
about all the maps between endomorphism rings induced by the restricted func-
tor F ′.

8.2. The Fc-centre

For the rest of this section, we will use the canonical identifications

Z ∼= Z(Ûc-mod), Z ∼= Z(H0-mod), Ûop
κ
∼= EndÛκ

(Ûκ).
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Let us apply the framework developed in §8.1 to the functor Fc : Ûc-mod →
H0-mod. We have canonical maps

Z
α−→ End(Fc)

β←− Z.

By Theorem 7.6, the regular module H0 is in the image of Fc. The fact that Z
acts faithfully on H0 implies that β is injective.

Our first goal is to give a partial description of the Fc-centre of Ûc-mod. For
any κ ∈ C, define

Lκ := 〈κLr+1, id[r] | r ≤ 0〉 ⊂ Ûκ. (73)

When κ = c, it follows from Theorem 4.3 and §4.4 that the generators on the RHS
of (73) are algebraically independent. Hence

Lc = C[cLr+1, id[r]]r≤0. (74)

We will show that Lc is a subalgebra of the Fc-centre of Ûc-mod. The proof
requires some preparations.

Let κ be arbitrary and set t = κ+n. Let 1ĝ denote the unit in Ûκ. Consider the

image [1⊗e∗id⊗1ĝ] of 1⊗e∗id⊗1ĝ ∈ Tκ(Ûκ) in Fκ(Ûκ). Let Kt be the Ht-submodule

of Fκ(Ûκ) generated by [1⊗ e∗id ⊗ 1ĝ].

Lemma 8.3. There is an Ht-module isomorphism Kt
∼= Ht.

Proof. Since Fκ is right exact, it induces an epimorphism

Fκ(Ûκ) � Fκ(Hκ) ∼= Ht, [1⊗ e∗id ⊗ 1ĝ] 7→ [1⊗ e∗id ⊗ 1H] = 1H,

which restricts to an isomorphism Kt
∼= Ht. �

Let Nt be the subalgebra of EndHt(Fκ(Ûκ)) consisting of endomorphisms which
preserve the submodule Kt. Let ρt : Nt → EndHt(Kt) ∼= Hop

t be the map given by

restriction of endomorphisms of Fκ(Ûκ) to those of Kt.

Lemma 8.4. The following hold.

a) The image of L op
κ under EndÛκ

(Ûκ)
Fκ−→ EndHt(Fκ(Ûκ)) is contained

in Nt.
b) The map ρt ◦ Fκ|L op

κ
is given by:

id[r] 7→
n∑
i=1

x−ri (r ≤ 0), (75)

κLr 7→ −
1

2

n∑
i=1

x1−r
i yi+

∑
i<j

c−r(xi, xj)si,j+
n(1−r)

2

n∑
i=1

x−ri (r≤1), (76)

where c−r(xi, xj) is the complete homogeneous symmetric polynomial of
degree −r in xi and xj, if r ≤ 0, and c−1(xi, xj) = 0.

c) When κ = c, the image of Fc|Lc lies in the image of Z in EndH0(Fc(Ûc)).
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Proof. A homomorphism from Kt to Fκ(Ûκ) is determined by where it sends the
generator [1⊗e∗id⊗1ĝ]. Let z be any of our distinguished generators (see (73)) of Lκ.

The corresponding endomorphism of Fκ(Ûκ) sends [1⊗ e∗id⊗1ĝ] to [1⊗ e∗id⊗ z ·1ĝ].
We are going to use the g[t]-action (32) to show that 1 ⊗ e∗id ⊗ z · 1ĝ is in the

same equivalence class in Fκ(Ûκ) as an element of the form (75) or (76). First take
z = id[r] with r ≤ 0. By (32), we have

[1⊗ e∗id ⊗ id[r] · 1ĝ] =

n∑
i=1

[x−ri ⊗ e
∗
id ⊗ 1ĝ].

This yields formula (75). Secondly, take z = κLr with r ≤ 1. By (32), we have the

following equalities of operators on Fκ(Ûκ) evaluated at [1⊗ e∗id ⊗ 1ĝ]:∑
s≥1

∑
k,l

(ekl[r − s]elk[s])(∞) = −
∑
s≥1

∑
i

xs−ri

∑
k,l

e
(i)
kl elk[s](∞) = −

∑
i

x1−r
i yi,∑

r≤s≤0

∑
k,l

(ekl[s]elk[r − s])(∞) =
∑
r≤s≤0

∑
i,j

x−si xs−rj Ω(i,j)

= 2
∑
i<j

c−r(xi, xj)si,j + n(1− r)
n∑
i=1

x−ri ,

yielding formula (76). We have thus shown that the endomorphisms in Fκ(L op
κ )

send the generator [1⊗ e∗id ⊗ 1ĝ] of Kt to other elements of Kt. Hence Fκ(L op
κ ) ⊆

Nt, proving parts a) and b) of the lemma. Part c) can be checked by a direct
calculation — it suffices to compute that the elements on the RHS of (75) and (76)
lie in Z. It also follows from Theorem 8.9, which has a more conceptual proof. �

Theorem 8.5. We have Lc ⊆ ZFc(Ûc). Moreover, Z(Fc)|Lc is given by formulae
(75) and (76).

Proof. We need to check that, for any M ∈ Ûc-mod and z ∈ Lc, the endomorphism
Fc(zM ) lies in the image of Z in EndH0

(Fc(M)). By Definition 6.9, Fc(M) =

Fc(Ûc)⊗Ûc
M . The corresponding endomorphism Fc(zM ) of Fc(M) sends r⊗m 7→

r⊗z ·m = r ·z⊗m, for m ∈M and r ∈ Fκ(Ûc). Hence Fc(zM ) = Fc(zÛc
)⊗ id. But

Fc(zÛc
) lies in the image of Z in EndH0(Fc(Ûc)) by part c) of Lemma 8.4. Hence

Fc(zM ) lies in the image of Z in EndH0
(Fc(M)), proving the first statement. The

second statement follows directly from part b) of Lemma 8.4. �

8.3. An Fc-central subcategory

The following lemma shows that the Fc-centre of Ûc-mod is a proper subalgebra
of Z.

Lemma 8.6. We have ZFc(Ûc) 6= Z.

Proof. Consider the element id[1] ∈ Z. It follows from (51) that −α(id[1])Fc(Hc)

is the endomorphism of Fc(Hc) ∼= H0 given by multiplication with y1 + · · · + yn.
On the other hand, take, for example, the quotient M of Uc(ĝ) by the left ideal
generated by ĝ≥3. One sees easily from (33) that −α(id[1])Fc(M) does not coincide
with the endomorphism of Fc(M) induced by y1 + · · ·+ yn. �

Our next goal is to find a reasonable Fc-central subcategory of Ûc-mod.
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Definition 8.7. Let CH be the full subcategory of Ûc-mod containing precisely
the quotients of direct sums of Hc. Let FH be the restriction of Fc to CH.

As the lemma below shows, category CH contains interesting objects such as
Verma and Weyl modules.

Lemma 8.8. The following hold.

a) If λ ∈ Pn(n), then the Verma module Mc(λ) is an object of CH.
b) Let l ≥ 1, µ ∈ Cl(n), λ ∈ Pµ(µ) and a ∈ Cn with Sn(a) = Sµ. Then the

Weyl module Wc(a, λ) is an object of CH.

Proof. Let us prove b). The definition of Hc implies that

HomÛc
(Hc,Wc(a, λ)) ∼= Wc(a, λ)i(1,...,1),

where i = n−[1] ⊕ n+[1] ⊕ ĝ≥2. The subspace L(a, λ) ⊂ Wc(a, λ) is annihilated
by i. It is easy to check that, since λ ∈ Pµ(µ), the difference λ − (1, . . . , 1) is a
sum of positive roots of lµ. Since (1, . . . , 1) is a dominant weight, it follows that
L(a, λ)(1,...,1) 6= {0}. Since L(a, λ) is simple as an lµ-module, any non-zero vector

generates Wc(a, λ) as a Ûc-module. It follows that there exists an epimorphism
Hc � Wc(a, λ). Hence Wc(a, λ) ∈ CH. The proof of a) is analogous. �

To state the next theorem, we need to introduce some notation:

Φ: Z→EndÛc
(Hc), z 7→ zHc ,

Ψ: EndÛc
(Hc)→EndH0

(H0) ∼= Hop
0 , φ 7→ Fc(φ),

Θ := Ψ ◦ Φ.

These maps fit into the following commutative diagram:

Z Z(CH) End(FH) Z

Z EndÛc
(Hc) Hop

0 Z

q α′

Φ Ψ

(77)

where the vertical arrows send an endomorphism of the identity functor (resp. FH)
to the corresponding endomorphism of Hc (resp. H0).

The following theorem is the main result of this section.

Theorem 8.9. The subcategory CH is Fc-central and ZCH(Fc) = Θ.

The proof of Theorem 8.9 will be presented in §8.4. We note the following
corollary, which will be useful later.

Corollary 8.10. Let M ∈ CH and z ∈ Z. Then Θ(z)Fc(M) = Fc(zM ). In particu-
lar, Θ(AnnZ(M)) ⊆ AnnZ(Fc(M)).

Proof. By Theorem 8.9, we have Fc(zM ) = (α′◦q(z))M = Θ(z)M . If z ∈ AnnZ(M),
then zM = 0 and so Θ(z)Fc(M) = Fc(zM ) = 0. �
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8.4. Proof of Theorem 8.9

The proof of Theorem 8.9 requires some preparations. We first prove the following
lemma.

Lemma 8.11. The two vertical arrows in (77) are injective.

Proof. Let M be an object of CH. Since M is a quotient of HIc (direct sum over some
index set I), there exists an epimorphism p : HIc � M . Suppose that z ∈ Z(CH).
Then zM ◦ p = p ◦ zHIc and it follows that zM is uniquely determined by zHIc .
But zHIc = ⊕IzHc , so zM is in fact uniquely determined by zHc . This proves the
injectivity of the left vertical arrow.

Now suppose that φ ∈ End(FH). Let φM be the corresponding endomorphism of
Fc(M). Since Fc is right exact, Fc(p) : HI0 → Fc(M) is also an epimorphism. Since
φ is a natural transformation, we have Fc(p)◦φHIc = φM ◦Fc(p). It follows that φM
is determined uniquely by φHIc . But φHIc = ⊕IφHc , so φM is uniquely determined
by φHc . This proves the injectivity of the right vertical arrow. �

Theorem 8.9 states that CH is Fc-central, i.e., Imα′ ◦ q ⊆ Z. By Lemma
8.11, this is equivalent to showing that Im Θ ⊆ Z. The rest of this subsection
is dedicated to this goal. The main idea is to establish the following two facts:
Im Θ ⊆ ZHop

0
(C[h∗]o) and ZHop

0
(C[h∗]o) = Z.

We start by recalling some information about the G((t))-action on Ûc. There
is an adjoint action

G((t))× g((t))→ g((t)), (g,X) 7→ g(X) := gXg−1

of G((t)) on its Lie algebra g((t)). It extends to an action on ĝc if we let G((t)) act
trivially on 1. This action induces an action on the universal enveloping algebra
Uc(ĝ) and its completion Ûc.

Proposition 8.12 ([28, Prop. 4.3.8]). The G((t))-action on Z ⊆ Ûc is trivial.

The G((t))-action restricts to an Sn-action on Ûc, where we identify the sym-
metric group Sn with the subgroup of permutation matrices in G ⊂ G((t)). The
Sn-action preserves the ideal Ic ⊂ U(ĝc) and, hence, induces an action on the
module Hc.

We now define an induced action on Fc(Hc). Let Sn act on (V∗)⊗n by the rule
e∗i1⊗· · ·⊗e

∗
in
7→ e∗w(iw−1(1))

⊗· · ·⊗e∗w(iw−1(n))
. One easily checks that w·e∗τ = e∗wτw−1 ,

where e∗τ is as in (65). Combining the Sn-actions on Hc and (V∗)⊗n defined above
with the natural permutation action on C[h] we obtain an action

Sn × Tc(Hc)→ Tc(Hc), (w, f ⊗ u⊗ h) 7→ w · f ⊗ w · u⊗ w · h. (78)

It is easy to check that if X[k] ∈ g[t] and w ∈ Sn then w ◦ X[k] = w(X)[k] ◦ w
as operators on Tc(Hc). Hence the subspace g[t].Tc(Hc) is Sn-stable, and (78)
descends to an action

? : Sn × Fc(Hc)→ Fc(Hc). (79)

Note that this action is different from the Sn-action defined in §5.4.
There is also a natural conjugation action

Sn ×H0 → H0, (w, h) 7→ whw−1. (80)

In the next lemma we compare the induced actions on endomorphism algebras.
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Lemma 8.13. The map Θ is Sn-equivariant.

Proof. We factor Θ as a product of the maps Φ, EndÛc
(Hc) → EndH0

(Fc(Hc))
and the isomorphism EndH0

(Fc(Hc)) ∼= EndH0
(H0) induced by Υ from (50). The

first two maps are Sn-equivariant by construction. So we only need to check that Υ
intertwines the two actions (79) and (80). Abbreviating ek := ekk, we have

Υ(wf(x1, . . . ,xn)ug(y1, . . . , yn)w−1)

= Υ(f(xw(1), . . . , xw(n))wuw
−1g(yw(1), . . . , yw(n)))

= [f(xw(1), . . . , xw(n))⊗ e∗wuw−1 ⊗ g(−ew(1)[1], . . . ,−ew(n)[1]).1H]

and

w ?Υ(f(x1, . . . ,xn)ug(y1, . . . , yn))

= w ? [f(x1, . . . , xn)⊗ e∗u ⊗ g(−e1[1], . . . ,−en[1]).1H]

= [f(xw(1), . . . , xw(n))⊗ e∗wuw−1 ⊗ g(−ew(1)[1], . . . ,−ew(n)[1]).1H],

as required. �

Proposition 8.14. We have ZH0
(C[h∗]o) = Z.

Proof. Write Hreg := C[hreg × h∗] oCSn. We first prove that

ZHreg (C[h∗] oCSn) = Z(Hreg) = C[hreg × h∗]Sn .

We only need to show that ZHreg (C[h∗]oCSn) ⊆ Z(Hreg), the other inclusion being
obvious. Let z ∈ ZHreg (C[h∗]oCSn). We can uniquely write z =

∑
w∈Sn fww with

fw ∈ C[hreg×h∗]. Since, by assumption, z commutes with CSn, for any u ∈ Sn we
have z = uzu−1 =

∑
w∈Sn ufwwu

−1 =
∑
w∈Sn f

u
u−1wuw, where fu(a) = f(u−1·a).

Hence f1 = fu1 for all u ∈ Sn, i.e., f1 ∈ C[hreg×h∗]Sn . Next, since z commutes with
C[h∗], 0 = [z, g] =

∑
w∈Sn fw(gw − g)w for all g ∈ C[h∗]. But Sn acts faithfully

on h ⊂ C[h∗], so for each w ∈ Sn there exists a ∈ h such that w−1(a) 6= a. This
forces fw = 0 for each w 6= 1.

Using the Dunkl embedding (see (31)), we view H0 as a subalgebra of Hreg. The
following are obvious:

ZH0(C[h∗] oCSn) = ZHreg (C[h∗] oCSn) ∩H0, Z(Hreg) ∩H0 ⊆ Z.

Since Hreg = H0[δ−1] and δ−1 is central in Hreg, we also have Z ⊆ Z(Hreg) ∩ H0.
�

Remark 8.15. Proposition 8.14 generalizes to rational Cherednik algebras at
t = 0 associated to any complex reflection group.
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Proposition 8.16. We have Im Θ ⊆ Z.

Proof. Lemma 8.13 and Proposition 8.12 imply that Im Θ ⊆ ZHop
0

(CSn). There-
fore, it suffices to show that Im Θ ⊆ ZHop

0
(C[h∗]), because then Proposition 8.14

implies that Im Θ ⊆ ZHop
0

(C[h∗]o) = Z.
By the definition of Hc, there is a natural isomorphism

EndÛc
(Hc)

∼−→ (Hc)i(1,...,1). (81)

Observe that Sym(t[1]).1H ⊂ (Hc)i(1,...,1). Indeed, Sym(t[1]).1H has t-weight

(1, . . . , 1), and since i is an ideal in t̂+ and 1H is annihilated by i, so is Sym(t[1]).1H.
Hence elements of Sym(t[1]).1H define endomorphisms of Hc.

By construction, Im Φ ⊆ Z(EndÛc
(Hc)), and so Im Φ commutes with the endo-

morphisms defined by Sym(t[1]).1H. Hence Im Θ = Ψ(Im Φ) must commute with
the image of these endomorphisms under Ψ. But Theorem 7.6 implies that they
are mapped to C[h∗] ⊂ Hop. It follows that Im Θ ⊆ ZHop

0
(C[h∗]), as required. �

We are now ready to complete the proof of Theorem 8.9.

Proof of Theorem 8.9. By Proposition 8.16, Im Θ ⊆ Z. Lemma 8.11 and the com-
mutativity of diagram (77), therefore, imply Im(α′ ◦q) ⊆ Z. The second statement
of the theorem also follows directly from the commutativity of the diagram. �

9. Filtered and graded versions of the Suzuki functor

Our next goal is to show that Im Θ = Z. The proof in §10 relies on a filtered
version of the Suzuki functor, which we construct in this section. We also introduce
a graded version. Assume that κ ∈ C and m,n are arbitrary unless indicated
otherwise.

9.1. Background from filtered and graded algebra

We refer the reader to [5] and [51] for basic definitions from filtered and graded
algebra. All filtrations we consider are increasing, exhaustive and separated. If M
is a graded vector space (or module or algebra) we denote the ith graded piece
by Mi. If M is a filtered vector space (or module or algebra), we denote the ith
filtered piece by M≤i.

Now suppose that A is a filtered algebra and M,N are two filtered A-modules.
An A-module homomorphism f : M → N is called filtered of degree i if f(M≤r) ⊆
N≤r+i for all r ∈ Z. We say that f is a filtered isomorphism if f is an isomorphism
of A-modules and f(M≤r) = N≤r for all r ∈ Z. Let HomA(M,N)≤i denote

the vector space of filtered homomorphisms of degree i and set Homfil
A(M,N) :=⋃

i∈Z HomA(M,N)≤i. If M is finitely generated as an A-module then HomA(M,N)

= Homfil
A(M,N). Observe that Homfil

A(M,N) is a filtered vector space and
Homfil

A(M,M) is also a filtered algebra.
We next define two categories whose objects are filtered (left) A-modules. The

first category, denoted A-fmod, has Hom-sets of the form Homfil
A(M,N). The second

category, denoted A-fmod0, has Hom-sets of the form HomA(M,N)0. We regard
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A-fmod as a category enriched in the category C-fmod0 of filtered vector spaces
(where C is endowed with the trivial filtration).

Analogous definitions make sense in the graded setting. In particular, if A is
a Z-graded algebra then we have two categories of graded modules A-gmod and
A-gmod0. We regard A-gmod as a category enriched in the category C-gmod0 of
graded vector spaces.

If A is a filtered algebra, with associated graded grA, let σ : A → grA be the
principal symbol map. For v ∈ A, set deg v := deg σ(v). If f : A → B is a degree
zero filtered algebra homomorphism, let gr f : grA→ grB be the associated graded
algebra homomorphism.

9.2. Filtrations and gradings

We consider two filtrations and a grading on Uκ(g̃).

Definition 9.1. Suppose that l ≥ 0, X1, . . . , Xl ∈ g and j1, . . . , jl ∈ Z. An
expression of the form m = X1[j1] . . . Xl[jl] ∈ Uκ(g̃) is called a monomial of
length l, height j1 + · · ·+ jl and absolute height |j1|+ · · ·+ |jl|. For r ∈ Z, define:

(a) Uκ(g̃)r = 〈 monomials of height r 〉,
(b) Upbw

κ (g̃)≤r = 〈 monomials of length ≤ r 〉,
(c) Uabs

κ (g̃)≤r = 〈 monomials of absolute height ≤ r 〉,

where the brackets denote C-span. Observe that (a) defines a grading while (b)
and (c) define filtrations on Uκ(g̃). Filtration (b) is the usual PBW filtration. We
call filtration (c) the absolute height filtration. Denote by Upbw

κ (g̃) and Uabs
κ (g̃) the

corresponding filtered algebras.

Definition 9.2. We define subcategories of graded and filtered smooth modules.

a) Let C gr
κ be the full subcategory of Uκ(g̃)-gmod whose objects are graded

modules with the property that the underlying ungraded module is an object
of Cκ.

b) For r ≥ 0, let C abs
κ (r) be the full subcategory of Uabs

κ (g̃)-fmod whose objects
are filtered modules M such that (i) the underlying unfiltered module is an
object of Cκ(r), and (ii) for each l ≥ 0, we have: M≤l = Uabs

κ (g̃)≤l ·M Ir .

Remark 9.3. Consider the associated graded algebra grUabs
κ (g̃). It is easy to see

that the relation

[σ(X ⊗ tr), σ(Y ⊗ tl)] = δ|r|+|l|,|r+l|σ([X,Y ]⊗ tr+l)

holds in grUabs
κ (g̃). Hence

grUabs(g̃≥0) ∼= Uabs(g̃≥0), grUabs(g̃≤0) ∼= Uabs(g̃≤0).

Moreover, we have [grUabs(g̃≥1), grUabs(g̃≤−1)] = 0.
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Definition 9.4. We consider the following grading and family of filtrations on the
rational Cherednik algebra.

a) Setting deg xi = −1, deg yi = 1 and degSm = 0 defines a grading on Ht.
We denote the corresponding graded algebra simply by Ht.

b) For each k ≥ 1, setting deg xi = 1, deg yi = k and degSm = 0 yields a

filtration on Ht, and we denote the corresponding filtered algebra by H(k)
t .

When k = 1, the resulting filtration is known as the PBW filtration, and

we abbreviate Ht := H(1)
t .

We consider C[h], C[h]o and C[h∗] as graded (resp. filtered) subalgebras of Ht.

9.3. Filtered lift of the Suzuki functor

Let M be a filtered module in C abs
κ (r). We equip (V∗)⊗m with the trivial filtration

and Tκ(M) with the tensor product filtration. Explicitly,

Tκ(M)≤p =
∑
k+l=p

C[h]≤k ⊗ (V∗)⊗m ⊗M≤l. (82)

Consider the quotient map

ψ : Tκ(M) � Fκ(M). (83)

We endow Fκ(M) with the quotient filtration given by Fκ(M)≤p := ψ(Tκ(M)≤p).
The following proposition connects the absolute height filtration on Uκ(g̃) with
the filtrations on Hκ+n.

Proposition 9.5. For each r ≥ 2, the functor Fκ lifts to a functor

F(r)
κ : C abs

κ (r)→ H(2r−3)
κ+n -fmod

enriched in C-fmod0.

Proof. Let M ∈ C abs
κ (r). We first show that Fκ(M) is a filtered H(2r−3)

κ+n -module.
The only non-trivial thing to show is that yiFκ(M)≤s ⊆ Fκ(M)≤s+2r−3 for s ∈ Z
and 1 ≤ i ≤ m. Recall that the action of yi is given by (33). Clearly each of ∂xi
and Ω(i,j)(xi − xj)−1(1 − si,j) either vanishes or lowers degree by one. Hence it

is enough to show that for each p ≥ 0, the operator xpiΩ
(i,∞)
[p+1] raises degree by at

most 2r − 3. Observe that xpi raises degree by p and e
(i)
kl doesn’t change degree.

Therefore it is in fact enough to show that each elk[p+ 1](∞) changes degree by at
most −p+ 2r − 3.

If p ≤ r − 2 then the fact that M is a filtered module implies that elk[p + 1]
raises degree by at most r− 1. But r− 1 ≤ (r− 1) + (r− 2− p) = −p+ 2r− 3. So
assume p > r−2. Let v ∈M . Because M ∈ C abs

κ (r), we can assume without loss of
generality that v = X1[a1] . . . Xz[az].u, with u satisfying deg u = 0 and ĝ≥r.u = 0,
for some X1, . . . , Xz ∈ g and a1 ≤ · · · ≤ az < r. Hence deg v = |a1|+ · · ·+ |az| (by
Definition 9.2.b)).

We first prove the inequality

|p+ 1 + a1| − |a1| ≤ −p+ 2r − 3.
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First assume a1 ≤ −p− 1. Then |p+ 1 + a1| − |a1| = −(p+ 1 + a1) + a1 = −p− 1.
But −p − 1 ≤ −p + 2r − 3 since r ≥ 2. Next assume −p ≤ a1 ≤ −p + r − 2 < 0.
Then |p+ 1 + a1| − |a1| = p+ 2a1 + 1 ≤ −p+ 2r − 3.

We argue by induction on z (i.e. by induction on the PBW filtration). If z = 1
then

elk[p+1].v = X1[a1]elk[p+1].u+[elk, X1][p+1+a1].u = [elk, X1][p+1+a1].u (84)

modulo 1. Note that [elk, X1][p+ 1 + a1].u = 0 unless a1 ≤ −p+ r− 2. Let us now
calculate the difference in degree between v and (84). We have

deg elk[p+ 1].v − deg v = |p+ 1 + a1| − |a1| ≤ −p+ 2r − 3.

Hence elk[p+ 1](∞) changes degree by at most −p+ 2r − 3, as required.

Now let z > 1. We have

elk[p+ 1].v = X1[a1]elk[p+ 1].v′ + [elk, X1][p+ 1 + a1].v′

modulo 1, where v′ = X2[a2] . . . Xz[az].u and deg v′ = |a2|+· · ·+|az|. By induction,
we know that elk[p+ 1] changes the degree of v′ by at most −p+ 2r − 3. Hence

degX1[a1]elk[p+ 1].v′ ≤ (deg v′ + |a1|)− p+ 2r − 3 = deg v − p+ 2r − 3.

Moreover, since M is a filtered module, [elk, X1][p+ 1 + a1] changes the degree of
v′ by at most |p+ 1 + a1|. Hence

deg[elk, X1][p+ 1 + a1].v′ ≤ deg v′ + |p+ 1 + a1|
= deg v − |a1|+ |p+ 1 + a1| ≤ deg v − p+ 2r − 3.

It follows that elk[p+ 1](∞) changes degree by at most −p+ 2r − 3, as required.

We now show that F
(r)
κ is an enriched functor. Suppose that M and N are two

filtered modules in C abs
κ (r). Let h : M → N be a filtered homomorphism of degree

i. We need to show that Fκ(h) is also a filtered homomorphism of degree i. So let
v ∈ Fκ(M)≤s. Recall the projection (83). Since Fκ(M) is endowed with the quotient
filtration, we can choose ṽ ∈ Tκ(M)≤s with ψ(ṽ) = v. We can assume without loss
of generality that ṽ = f(x1, . . . , xm)⊗ u⊗ z with u ∈ (V∗)⊗m, z ∈M and f some
polynomial. Since h is filtered of degree i, we have Tκ(h)(ṽ) = f(x1, . . . , xm)⊗u⊗
h(z) ∈ Tκ(N)≤s+i. However, ψ′ ◦ Tκ(h)(ṽ) = Fκ(h)(v), where ψ′ is the projection
ψ′ : Tκ(N) � Fκ(N). It follows that Fκ(h)(v) ∈ Fκ(N)≤s+i, as required. �

In the following proposition assume that κ = c, m = n and consider the
module Hc = Uabs

c (g̃)/(Ic ∩ Uabs
c (g̃)) as a filtered Uabs

c (g̃)-module endowed with
the quotient filtration.
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T. PRZEŹDZIECKI

Proposition 9.6. The isomorphism Υ: H0
∼−→ Fc(Hc) from (50) lifts to an iso-

morphism in the category H0-fmod0. Moreover, the map Ψ: EndÛc
(Hc) →

EndH0
(H0) is a filtered algebra homomorphism.

Proof. Since it is difficult to work with quotient filtrations, we first show that the
module Fc(Hc) is isomorphic to another module with a more explicit filtration.
Consider the H0-module Tc(Hc). One easily checks that the subspace M = C[h]⊗
((V∗)⊗n)(−1,...,−1) ⊗ I is a H0-submodule of Tc(Hc). Moreover, it follows from
Theorem 7.6 that Tc(Hc) = M ⊕ g[t] · Tc(Hc) and Fc(Hc) ∼= M . The latter
isomorphism is filtered if we endow Fc(Hc) with the quotient filtration and M with
the subspace filtration. It follows from (51) that composing Υ with Fc(Hc) ∼= M
yields an H0-module isomorphism H0

∼= M given by

f(x1, . . . , xn)wg(y1, . . . , yn) 7→ f(x1, . . . , xn)⊗ e∗w ⊗ g(−e11[1], . . . ,−enn[1])1H.

This formula together with the definition of the filtration on H0 and (82) imply
that the isomorphism H0

∼= M is in fact filtered. This proves the first part of the
proposition.

The filtered isomorphism Υ−1 induces a filtered isomorphism of endomorphism
rings EndH0(Fc(Hc)) ∼= EndH0(H0). But Ψ is a composition of the latter with the
homomorphism Fc : EndÛc

(Hc) → EndH0
(Fc(Hc)), which is filtered by Proposi-

tion 9.5. �

9.4. Graded lift of the Suzuki functor

Suppose that M is a graded module in C gr
κ . Consider (V∗)⊗m as a graded vector

space concentrated in degree zero. Endow Tκ(M) with the tensor product grading
in analogy to (82). It follows immediately from (32) that Fκ(M) is a quotient of
Tκ(M) by a graded subspace. Hence the grading on Tκ(M) descends to a grading
on Fκ(M).

Proposition 9.7. The functor Fκ lifts to a functor

Fgr
κ : C gr

κ → Hκ+n-gmod

enriched in C-gmod0.

Proof. Let M ∈ C gr
κ . We first prove that Fκ(M) is a graded Hκ+n-module. It

suffices to show that yiFκ(M)s ⊆ Fκ(M)s+1 for s ∈ Z and 1 ≤ i ≤ m. Recall
that the action of yi is given by (33). Clearly ∂xi and Ω(i,j)(xi − xj)−1(1 − si,j)
either vanish or raise degree by one. Since M is a graded Uκ(g̃)-module, the same

holds for xpiΩ
(i,∞)
[p+1] for each p ≥ 0, as required. The proof of the fact that Fgr

κ is an

enriched functor is analogous to the proof of Proposition 9.5. �

10. Surjectivity of Θ

In this section we show that Im Θ = Z. Assume that n = m and κ = c
throughout.
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10.1. The associated graded map

Consider the following commutative diagram in the category of vector spaces.

HIc
c Hc Tc(Hc) Fc(Hc)

EndÛc
(Hc) EndH0

(H0)∼=H0

Im Φ Z

v 7→1C[h]⊗e∗id⊗v

Υ−1oo

Ψ

Ψ

. (85)

Note that the fact that Ψ(Im Φ) ⊆ Z follows from Proposition 8.16. We endow
each of the vector spaces above with a filtration:

• Hc = Uabs
c (g̃)/(Ic ∩Uabs

c (g̃)) carries the quotient filtration and HIc
c ⊂ Hc

has the subspace filtration,

• EndÛc
(Hc) carries the filtration induced by the one on Hc and Im Φ ⊂

EndÛc
(Hc) has the subspace filtration,

• Tc(Hc) has the filtration from (82) and Fc(Hc) has the corresponding quo-
tient filtration,

• H0 has the PBW filtration, EndH0
(H0) carries the induced filtration and

Z ⊂ H0 the subspace filtration.

Lemma 10.1. Each map in the diagram (85) is filtered.

Proof. Every map is filtered by definition except for Ψ and Υ−1. The fact that the
latter two are filtered follows from Proposition 9.6. �

We will show that Im Θ = Z by computing the associated graded algebra
homomorphism

grΨ: gr Im Φ→ grZ. (86)

We split the task of computing (86) into two parts. We first compute the
principal symbols of the images of Segal–Sugawara operators in Hc. We then
compute the images of these principal symbols under the associated graded of
the map Hc → H0 arising from the upper right corner of the diagram (85).

10.2. Calculation of principal symbols

The ideal (U(ĝ−)(n+ ⊗ t−1C[t−1])) ∩U(ĝ−)adt in U(ĝ−)adt is two-sided (see e.g.
[44]). Hence the corresponding projection

AHC : U(ĝ−)adt � U(t⊗ t−1C[t−1])

is an algebra homomorphism, often called the affine Harish-Chandra homomor-
phism. Note that AHC is, moreover, a filtered homomorphism with respect to the
PBW filtrations.
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Lemma 10.2. Let 1 ≤ k ≤ n. The Segal–Sugawara vector Tk from Example 4.4
can be written as

Tk = Pk +Qk +Q′k,

where Pk := (e11[−1])k + · · ·+ (enn[−1])k,

Qk ∈ (U(g̃−)−k ∩Upbw(g̃−)≤k−1)adt, Q′k ∈ (U(g̃−)−k ∩Upbw(g̃−)≤k)adt

and Q′k ∈ kerAHC.

Proof. Consider the algebra U(ˆ̂g−) from Example 4.4 equipped with a modified
PBW filtration in which τ has degree zero. One easily sees that the principal
symbol of Tr(Ekτ ) equals Tr((E(−1))k), where E(−1) := (eij [−1])ni,j=1 is a matrix

with coefficients in S(ĝ−). But gr AHC(Tr((E(−1))k)) = Pk. �

Definition 10.3. Suppose that A ∈ U(ĝ−). We write Al := A〈−l−1〉 so that

Y〈A, z〉 =
∑
l∈ZAlz

l (note that the same notation was used with a different
meaning in (21)). In particular, for 1 ≤ k ≤ n, we write Tk,l := Tk,〈−l−1〉 (not to
be confused with Tk;l from Example 4.4 ). We also write

Âl := Φ̂(Al), Al := σabs(Âl),

where σabs : Hc → grHc is the principal symbol map with respect to the absolute
height filtration and

Φ̂ : Ûc � Ûc/Ûc.Ic = Hc

is the canonical map. If v ∈ Hc, set deg v := deg σabs(v).

The proof of the following key proposition is rather technical and has been
relegated to the appendix.

Proposition 10.4. Let 1 ≤ k ≤ n. Then:

T̂k,l = 0 (l < −2k), T̂k,−2k = P̂k,−2k =

n∑
i=1

(eii[1])k.1H,

Tk,−2k+2+b = Pk,−2k+2+b = k

n∑
i=1

eii[−b−1](eii[1])k−1.1H + (Hc)≤k+b−1 (b ≥ 0).

10.3. The main result

Recall from Theorem 3.4 that grZ = C[h ⊕ h∗]Sn . The latter is known as the
ring of diagonal invariants or multisymmetric polynomials. Given a, b ∈ Z≥0, the
multisymmetric power-sum polynomial of degree (a, b) is defined as pa,b := xa1y

b
1 +

· · ·+ xany
b
n. We call a+ b the total degree of pa,b.

Proposition 10.5. The polynomials pa,b with a+ b ≤ n generate C[h⊕ h∗]Sn .

Proof. See, e.g., [50, Cor. 8.4]. �

We are ready to prove our main result: the surjectivity of Θ. We also partially
describe the kernel of Θ, compute Θ on Segal–Sugawara operators corresponding
to T1 and T2, and compute the principal symbols of the images of “higher-order”
Segal–Sugawara operators under Θ.
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Theorem 10.6. The map Θ: Z→ Z is surjective with

(i) Θ(Tk,l)=0 (l < −2k),
(ii) Θ(T1,l)=pl+1,0 (l ≥ 0),

(iii) Θ(T2,l)=−pl+3,1+
∑
i<j2cl+2(xi, xj)si,j+((n+1)l+3n+1)

∑n
i=1x

l+2
i (l≥−2),

(iv) Θ(Tk,−2k) = (−1)kp0,k,
(v) σ(Θ(Tk,−2k+2+b)) = (−1)k−1kpb+1,k−1 (b ≥ 0),

where 1 ≤ k ≤ n, cr(xi, xj) is the complete homogeneous symmetric polynomial of
degree r in xi and xj, and σ : Z → grZ is the principal symbol map.

Proof. Part (i) follows directly from Proposition 10.4, while (ii)-(iii) follow from
Lemma 8.4 and the fact that T2 = 2 · cL + id[−2]. Proposition 10.4 together with
(51) implies that Υ−1 sends

[1C[h] ⊗ e∗id ⊗ T̂k,−2k] = [1C[h] ⊗ e∗id ⊗
n∑
i=1

(eii[1])k.1H] 7→ (−1)kp0,k,

which proves (iv). Moreover, Proposition 10.4 together with (32) and (51) implies
that grΥ−1 sends

[1C[h]⊗ e∗id⊗Tk,−2k+2+b] = k

n∑
i=1

xb+1
i ⊗ e∗id⊗ (eii[1])k−1.1H 7→ (−1)k−1kpb+1,k−1,

which proves (v) because grΨ(Tk,r) = σ(Θ(Tk,r)) for r ≥ −2k + 2.
It follows from (iv) and (v) that the multisymmetric power-sum polynomials

of total degree ≤ n all lie in the image of grΨ. But, by Proposition 10.5, these
polynomials generate C[h⊕ h∗]Sn = grZ. Hence the map grΨ: gr Im Φ→ grZ is
surjective. By [51, Lem. 1(e)], the map Ψ: Im Θ→ Z is surjective as well because
the filtration on Z is exhaustive and discrete. The surjectivity of Θ = Ψ◦Φ follows.
�

11. Applications and connections to other topics

We present several applications of Theorem 10.6. Assume that n = m through-
out.

11.1. Endomorphism rings and simple modules

We prove that the homomorphisms between endomorphism rings of Weyl and
Verma modules induced by the Suzuki functor are surjective and use this fact to
show that every simple H0-module is in the image of Fc.

Corollary 11.1. The functor Fc induces surjective ring homomorphisms:

Fc : EndÛc
(Wc(a, λ))→ EndH0(∆0(a, λ)), (87)

for l ≥ 1, ν ∈ Cl(n), λ ∈ Pn(ν) and a ∈ h∗ with Sn(a) = Sν ; and

Fc : EndÛc
(Mc(λ))→ EndH0

(∆0(λ)), (88)

for λ ∈ P(n). Moreover, the homomorphisms (88) are graded.

707



T. PRZEŹDZIECKI

Proof. The existence of the ring homomorphisms (87) and (88) follows from the
fact that Fc(Wc(a, λ)) ∼= ∆0(a, λ) (Theorem 7.7) and Fc(Mc(λ)) ∼= ∆0(λ) (Theo-
rem 7.8). Let us prove their surjectivity. Corollary 8.10 implies that we have a
commutative diagram

Z Z

EndÛc
(Wc(a, λ)) EndH0(∆0(a, λ))

Θ

can can

Fc

.

By Theorem 10.6, Θ is surjective, and, by Theorem 3.7.b), the right vertical map
is surjective as well. Hence the lower horizontal map must be surjective, too. The
proof in the case of the Verma modules Mc(λ) is analogous. The fact that (88) is
a graded homomorphism follows from Proposition 9.7. �

We need the following lemma.

Lemma 11.2. Let M be a Ûc-module and A ⊆ EndÛc
(M) be a vector subspace.

Then
Fc(M/AM) = Fc(M)/Fc(A)Fc(M).

Proof. Let B be a basis of A. By definition, M/AM = M/
∑
f∈B Im f . Consider

the exact sequence ⊕
f∈B

M
⊕f∈Bf−−−−→M →M/

∑
f∈B

Im f → 0.

By Remark 6.10, the functor Fc preserves colimits. In particular, it preserves
(possibly infinite) direct sums and cokernels. Hence

Fc(M/
∑
f∈B Im f) = Fc(coker(⊕f∈Bf))

= coker(⊕f∈BFc(f)) = Fc(M)/
∑
f∈B ImFc(f).

But
∑
f∈B ImFc(f) = Fc(A)Fc(M). �

Corollary 11.3. Every simple H0-module is in the image of the functor Fc.

Proof. Let L be a simple H0-module. By Lemma 3.8, there exists a generalized
Verma module ∆0(a, λ) such that L ∼= ∆0(a, λ)/I · ∆0(a, λ) for some ideal I ⊂
EndH0(∆0(a, λ)). Let J := F−1

c (I) ⊂ EndÛc
(Wc(a, λ)). Corollary 11.1 implies that

Fc(J) = I. Hence, by Lemma 11.2,

Fc(Wc(a, λ)/J ·Wc(a, λ)) = ∆0(a, λ)/I ·∆0(a, λ) ∼= L. �

Remark 11.4. When κ 6= c, it has been shown (see [52, Thm. 4.3] and [54, Thm.
A.5.1]) that, under some mild assumptions, every simple Hκ+n-module in category
O(Hκ+n) is in the image of Fκ. It is noteworthy that the proofs in [52] and [54]
employ very different techniques from those used by us in the κ = c case.
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11.2. Restricted Verma and Weyl modules

We are going to compute the Suzuki functor on restricted Verma and Weyl modules
as well as their simple quotients.

Consider the algebra Z from (18) equipped with the natural Z-grading induced
from Uc(ĝ). In [2, §3.2], Arakawa and Fiebig consider the restriction functor

Cc → Cc, M 7→M := M/
∑

0 6=i∈Z Zi ·M. (89)

This functor is right exact because it is left adjoint to the invariants functor M 7→
M := {m ∈M | z ·m = 0 for all z ∈ Zi, i 6= 0}. Given µ ∈ t∗, in [2, §3.5], Arakawa
and Fiebig define the corresponding restricted Verma module as Mc(µ). By [2,
Lem. 3.5],

Mc(µ) = Mc(µ)/Z− ·Mc(µ),

where Z− =
⊕

i<0 Zi.

Consider Mc(µ) as a graded ĝc-module with the subspace Cλ,1 ⊂ Indĝκ
b̂+

Cλ,1
lying in degree zero (or, equivalently, as a module over the Kac-Moody algebra
ĝcoCd, where [d, X[n]] = n ·X[n] for X ∈ g, with d acting by zero on Cλ,1). It is
known (see, e.g., [38, Prop. 9.2.c)] that Mc(µ) has a unique graded simple quotient
L(µ).

Lemma 11.5. If µ /∈ P(n) ⊂ t∗ then Fc(L(µ)) = 0.

Proof. By Theorem 7.8, the module Mc(µ) is killed by Fc. Since Fc is right exact,
its quotient L(µ) is killed as well. �

We also consider ∆0(λ), for λ ∈ P(n), as a graded H0-module. It follows from
[33, Prop. 4.3] that ∆0(λ) has a unique graded simple quotient Lλ (not to be
confused with L(λ) from §2.4).

Corollary 11.6. Let λ ∈ P(n). Then Fc(Mc(λ)) ∼= Fc(L(λ)) ∼= Lλ.

Proof. Consider the short exact sequence

0→ K →Mc(λ)→ L(λ)→ 0. (90)

By [21, Prop. 3.1], K has a (possibly infinite) filtration

0 = K0 ⊂ K1 ⊂ K2 ⊂ · · ·

by submodules Ki such that K = colimKi, and each Ki+1/Ki is a graded shift of
a highest weight module of some weight µi. Next, it follows from [1, Thm. 4.7(4)]
that none of the weights µi are equal to λ. Moreover, [1, Lem. 4.2(5)] implies that
each µi is equal to w · λ = w(λ + ρ) − ρ with e 6= w ∈ Sn. In particular, none of
the weights µi are dominant.

Since Ki is a graded shift of a highest weight module of weight µi, there exists a
surjection Mc(µi)[k] � Ki for some k ∈ Z. Because µi is not dominant, Theorem
7.8 implies that Mc(µi)[k] is killed by Fc. The right exactness of Fc, therefore,
implies that Ki is killed as well.
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It follows that every submodule in the filtration (90) is annihilated by Fc.
However, Definition 6.9 implies that Fc preserves colimits. Therefore, Fc(K) =
colimFc(Ki) = colim 0 = 0. Hence, by another application of right exactness, we
get that Fc(Mc(λ)) ∼= Fc(L(λ)).

We next prove that Fc(Mc(λ)) ∼= Lλ. Abbreviate Eλ := Im Z ⊂ EndÛc
(Mc(λ))

and Eλ := EndH0
(∆0(λ)). These rings are Z≤0-graded. Let E−λ � Eλ and E−λ �

Eλ denote their maximal graded ideals. It follows from the proof of Corollary
11.1 that the restriction of (88) to Eλ is surjective (in fact, by [28, Thm. 9.5.3],
Eλ = EndÛc

(Mc(λ)), but we do not need to use this fact). Since (88) is a graded

homomorphism, it follows that Fc(E−λ ) = E−λ . Therefore, Lemma 11.2 implies that

Fc(Mc(λ)) = Fc(Mc(λ)/E−λ ·Mc(λ)) = ∆0(λ)/E−λ ·∆0(λ).

Arguing as in the proof of Lemma 3.8, one concludes that ∆0(λ)/Eλ ·∆0(λ) = Lλ.
�

Given λ ∈ P(n), we define the corresponding restricted Weyl module to be
Wc(λ). Since Z+ =

⊕
i>0 Zi annihilates Wc(λ), we have

Wc(λ) = Wc(λ)/Z− ·Wc(λ).

Corollary 11.7. Let λ ∈ P(n). Then Fc(Wc(λ)) ∼= Lλ.

Proof. Let M(λ) denote the Verma module over g with highest weight λ. The

canonical surjection M(λ) � L(λ) induces a surjection Mc(λ) = Indĝκ
ĝ+
M(λ) �

Indĝκ
ĝ+
L(λ) = Wc(λ). Let K denote its kernel. The functor Fc sends the exact

sequence 0→ K →Mc(λ)→Wc(λ)→ 0 to the exact sequence Fc(K)→ ∆0(λ)
f−→

∆0(λ) → 0. But ∆0(λ) is a cyclic H0-module, so f must be an isomorphism. It
follows that Fc(K) = 0. Moreover, Fc(K) = 0 because K is a quotient of K.

Since the restriction functor (89) is right exact, we also have an exact sequence
K → Mc(λ) → Wc(λ) → 0. The functor Fc sends it to the exact sequence 0 =
Fc(K) → Lλ → Fc(Wc(λ)) → 0 because Fc(Mc(λ)) ∼= Lλ, by Corollary 11.6. It
follows that Fc(Wc(λ)) ∼= Lλ. �

11.3. Poisson brackets

Suppose that A is an algebraic deformation of an associative algebra A0, i.e., A
is a free C[~]-algebra such that A/~A = A0. Then there is a canonical Poisson
bracket on Z(A0), called the Hayashi bracket, given by

{a, b} :=
1

~
[ã, b̃] mod ~,

where ã, b̃ are arbitrary lifts of a and b, respectively. This Poisson bracket was
introduced by Hayashi in [34]. Applying this construction to Ûc and Ht, we get
Poisson brackets on Z and Z.

Lemma 11.8. The vector space spanned by 1, id[r] and cLr is, under the Poisson
bracket, a Lie subalgebra of Z isomorphic to the semidirect product of the Heisenberg
algebra with the Virasoro algebra. Moreover, the subspace spanned by id[r] and
cLr+1 (r ≤ 0) is a Lie subalgebra.
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Proof. This follows from, e.g., [28, (3.1.3)]. �

By Lemma 11.8, the algebra Lc from (73) is a Poisson subalgebra of Z. Since the
generators κLr+1, id[r] (r ≤ 0) of Lκ are defined for any κ, they have canonical

lifts to ÛC[t]. Let LC[t] be the C[t]-subalgebra of ÛC[t] generated by them. The
map ρt◦Fκ|L op

κ
from Lemma 8.4 also lifts to a map ρC[t]◦FC[t]|L op

C[t]
: L op

C[t] → H
op
C[t].

Theorem 11.9. The map Θ: Lc → Z is a homomorphism of Poisson algebras.

Proof. It follows from Lemma 8.4.c), Theorem 8.5 and Theorem 8.9 that we can
identify Θ|Lc with ρ0 ◦ Fc|Lc . Since Θ is an algebra homomorphism, it suffices to
check that Θ preserves the Poisson bracket on multiplicative generators of Lc. Let
ac, bc be any two of the generators cLr+1, id[r] (r ≤ 0) and let a and b be their

canonical lifts to L op
C[t]. Let us interpret ac and bc as endomorphisms of Ûc. Then

Θ({ac, bc}) = ρ0 ◦ Fc({ac, bc})

=− ρ0 ◦ Fc

(
spect=0

(1

t
[a, b]

))
= − spect=0

(1

t
[ρC[t] ◦ FC[t](a), ρC[t] ◦ FC[t](b)]

)
= {ρ0 ◦ Fc(ac), ρ0 ◦ Fc(bc)} = {Θ(ac),Θ(bc)}

The second equality follows from the definition of the Poisson bracket. The
third equality follows from the easily verifiable fact that spect=0 ◦ ρC[t] ◦ FC[t] =
ρ0 ◦ Fc ◦ spect=0. The fourth equality follows from part b) of Lemma 8.4, which
implies that ρC[t] ◦ FC[t](a) and ρC[t] ◦ FC[t](b) are, respectively, lifts of ρ0 ◦ Fc(a)
and ρ0 ◦Fc(b) to Hop

C[t]. The minus signs in the second and third lines arise because

we work with lifts in the opposite algebras. �

Remark 11.10. It would be interesting to know whether there exists a bigger
subalgebra Lc ⊂ A ⊂ Z such that Θ|A is a homomorphism of Poisson algebras.

Remark 11.11. The image of the “grading element” cL0 under Θ is the so-called
Euler element eu in Z. Moreover, since cL1,−2cL0,−cL−1 form an sl2-triple under
the Poisson bracket, we obtain an sl2-action on Z. This action is not integrable,
in contrast to the well-studied ([9], [13]) action of the sl2-triple

∑
i x

2
i , eu,

∑
i y

2
i .

For example, the subspace of Z spanned by
∑
i x

r
i (r ≥ 0) is isomorphic to the

contragredient Verma module of weight zero while the subspace spanned by Θ(cLr)
(r ≤ 1) is isomorphic to the contragredient Verma module of weight two. It would
be interesting to know in more detail how Z decomposes under our sl2-action.

11.4. A description of Θ in terms of opers

We are going to show that Θ induces an embedding of the Calogero–Moser space
into the space of opers on the punctured disc and describe some of its properties.
Let us first introduce some notation. Set D := SpecC[[t]] and D× := SpecC((t)).
Let B ⊂ G be the standard Borel subgroup and N := [B,B].

The notion of a G-oper on D× was introduced by Drinfeld and Sokolov in
[22]. It was later generalized by Beilinson and Drinfeld in [6] for arbitrary smooth
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curves. Roughly speaking, a G-oper is a triple consisting of a principal G-bundle, a
connection as well as a reduction of the structure group to B, satisfying a certain
transversality condition.

We will work with an explicit description of G-opers on D× from [22, §3] in terms
of certain operators (see also [28, §4.2.2]), which we now recall. Let Loc′G(D×) be
the space of operators of the form

∇ = ∂t + u(t), u(t) ∈ g((t)).

There is an action of G((t)) on LocG(D×) by the rule g · (∂t + A(t)) = ∂t +
gA(t)g−1−g−1∂tg. Elements of the orbit space LocG(D×) = Loc′G(D×)/G((t)) are
called G-local systems on D×. Let OpG(D×) be the space of N((t))-equivalence
classes of operators of the form

∇ = ∂t + p−1 + v(t), v(t) ∈ b((t)),

where p−1 = e2,1 + · · ·+ en,n−1 ∈ g. Elements of OpG(D×) are called G-opers on
D×. There is a natural map OpG(D×)→ LocG(D×) sending an N((t))-equivalence
class to a G((t))-equivalence class. An oper has trivial monodromy if it is in the
G((t))-orbit of the local system ∂t. Let OpG(D×)0 denote the subspace of opers
with trivial monodromy.

A G-oper on D with singularity of order at most r (see [6, §3.8.8]), where r ≥ 1,
is an N [[t]]-equivalence class of operators of the form

∇ = ∂t + t−r(p−1 + v(t)), v(t) ∈ b[[t]]. (91)

Let Op6r
G (D) be the space of all such G-opers. By [6, Prop. 3.8.9], the natural map

Op6r
G (D) → OpG(D×) sending an N [[t]]-equivalence class of operators to their

N((t))-equivalence class is injective. The space Op6r
G (D) can be endowed with the

structure of a scheme and OpG(D×) with the structure of an ind-scheme (see, e.g.,
[6, §3.1.11]).

For an operator (91), its rth residue (r ≥ 1) is defined in [27, §4.3] as Resr(∇) :=
p−1 + v(0). Under conjugation by an element A(t) ∈ N [[t]], Resr(∇) is conjugated
by A(0). Hence the projection of Resr(∇) onto g/G ∼= t/Sn (identified via the
Chevalley isomorphism) is well defined, and we have a map

Resr : Op6r
G (D)→ t/Sn.

For each z ∈ t/Sn, let Op6r
G (D)z := Res−1

r (z).
Let Ǧ denote the Langlands dual of G. Let OpǦ(D×) be the space obtained by

replacing all the algebraic groups and Lie algebras by their Langlands duals in the
definitions above. Noting that ť = t∗, let

$ : t∗ → t∗/Sn = ť/Sn, ϑ : g∗ → g∗/G ∼= t∗/Sn = ť/Sn

be the canonical projections. For λ ∈ Π+, we abbreviate

OpλǦ(D) := Op61

Ǧ
(D)0

$(−λ−ρ).

We are next going to recall the connection between opers and the algebra
Z. Consider Z as a graded algebra, with the grading induced by the grading
on Ûc, and, moreover, as a filtered algebra, with the filtration induced by the
PBW filtration on Ûc. Let Z6r(ĝ) be the quotient of Z by the ideal topologically
generated by elements of graded degree i and PBW degree j, satisfying −i <
j(1− r).
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Theorem 11.12. The following hold.

a) There is a canonical algebra isomorphism

Z ∼= C[OpǦ(D×)]. (92)

b) The isomorphism (92) induces, for each r ≥ 0, isomorphisms

Z6r(ĝ) ∼= C[Op6r
Ǧ

(D)]

c) For each λ ∈ Π+, the canonical map Z → EndÛc
(Wc(λ)) is surjective.

Moreover,

EndÛc
(Wc(λ)) ∼= C[OpλǦ(D)].

Proof. Part a) is [28, Thm. 4.3.6], part b) is [6, Prop. 3.8.6] and part c) is [28,
Thm. 9.6.1]. �

Definition 11.13. For χ ∈ g∗ ∼= g[r− 1]∗, let Ir,χ := Indĝc

ĝ≥r−1⊕C1 Cχ, with ĝ≥r−1

acting on Cχ via ĝ≥r−1 � g[r − 1]
χ−→ C and 1 acting as the identity. Set Ur :=

Ir+1,0.

Theorem 11.14 ([27, Thm. 5.6.(1)-(2)]). We have

suppZ Ur ⊆ Op6r
Ǧ

(D), suppZ Ir,χ ⊆ Op6r
Ǧ

(D)ϑ(χ).

Let us identify t∗ ∼= h∗ via (49) and t ∼= t[1], z 7→ z[1]. Recall the map π and
the varieties Ωa,λ from §3.3. The following corollary gives a partial description of
Θ in terms of opers.

Corollary 11.15. The following hold.

a) The map Θ: Z→ Z induces a closed embedding

Θ∗ : SpecZ ↪→ OpǦ(D)62.

b) Let l ≥ 1, ν ∈ Cl(n), λ ∈ Pn(ν), a ∈ h∗ with Sn(a) = Sν and a = $(a).
We have

Θ∗(Ωa,λ) ⊆ Op62

Ǧ
(D)a.

Hence the following diagram commutes:

SpecZ OpǦ(D)62

h∗/Sn t∗/Sn

π

Θ∗

Res2

∼

. (93)

c) If a = 0 then

Θ∗(Ωλ) ⊆ OpλǦ(D). (94)
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Proof. By Theorem (10.6), the map Θ is surjective, so it induces a closed embedd-
ing Θ∗ : SpecZ ↪→ OpǦ(D×). Corollary 8.10 implies that

Θ∗(SpecZ) = Θ∗(suppZ(H0)) ⊆ suppZ Hc.

Since Hc is a quotient of U2, it follows from Theorem 11.14 that

suppZ Hc ⊆ suppZ U2 ⊆ Op62

Ǧ
(D).

This proves part a). Let us prove part b). Corollary 8.10 implies that

Θ∗(suppZ(∆0(a, λ)) ⊆ suppZ Wc(a, λ). (95)

If we take χ ∈ g[1]∗ with χ|n−[1]⊕n+[1] = 0 and χ|t[1] = a then Wc(a, λ) is a quotient
of I2,χ. Hence Theorem 11.14 implies that

suppZ Wc(a, λ) ⊆ suppZ I2,χ ⊆ Op62

Ǧ
(D)a.

The commutativity of the diagram (93) now follows directly from Proposition 3.9.
Let us next prove part c). As a special case of (95), we have Θ∗(suppZ(∆0(λ)) ⊆
suppZ Wc(λ). Theorem 11.12.c) implies that

suppZ Wc(λ) = OpλǦ(D),

completing the proof. �

11.5. Extensions and differential forms

Let κ ∈ C. We are going to show that the first derived functor of Fκ vanishes on
modules which admit a filtration by Weyl modules. We also formulate a conjecture
that Fc induces a map between certain extension algebras.

We say that a Ûκ-module has a ∆-filtration if it has a finite filtration with each
subquotient isomorphic to Wκ(λ) for some λ ∈ P(n). Let Ûκ-mod∆ be the full

subcategory of Ûκ-mod consisting of modules with a ∆-filtration.

Proposition 11.16. We have L1Fκ(M) = 0 for all M ∈ Ûκ-mod∆. Hence Fκ is

exact on Ûκ-mod∆.

Proof. Consider the augmentation map ε : U(g) → C. Tensoring with C over
U(sln) we obtain a map ε′ : U(g) ⊗U(sln) C → C. Let K := ker ε′. By [35,
Prop. VI.16.1], adapted to the Lie algebra homology setting, we have a long exact
sequence

H1(sln, N)
cores−−−→ H1(g, N)→ N ⊗U(g) K → H0(sln, N)

cores−−−→ H0(g, N)→ 0 (96)

for any U(g)-module N , where cores is the corestriction map. If N is finite-
dimensional then, by Whitehead’s first lemma (see e.g. [35, Prop. VII.6.1]), we
have H1(sln, N) = 0. If, moreover, the corestriction map H0(sln, N) → H0(g, N)
is an isomorphism, the long exact sequence (96) forces H1(g, N) ∼= N ⊗U(g) K.
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Now let λ ∈ P(n) and take N = (V∗)⊗n⊗L(λ). We claim that the corestriction
map is an isomorphism. We need to show that sln ·N = g ·N , which is equivalent
to showing that any trivial sln-submodule of N is also trivial as a g-module. If
µ =

∑
i aiεi is a weight of (V∗)⊗n then φ(µ) :=

∑
i ai = −n. Similarly, if µ is

a weight of L(λ), then φ(µ) = n. Hence, for any weight µ of N , we must have
φ(µ) = 0. But a non-trivial g-module which is trivial when restricted to sln must
have weights of the form χ = a

∑
i εi for 0 6= a ∈ Z, which implies that φ(χ) 6= 0.

This proves the claim.
It follows that

H1(g, (V∗)⊗n ⊗ L(λ)) ∼= (V∗)⊗n ⊗ L(λ))⊗U(g) K. (97)

We can identify K = id · C[id]. Since the identity matrix id acts on L(λ) by the
scalar n, and on (V∗)⊗n by the scalar −n, it acts by zero on the tensor product
(V∗)⊗n ⊗ L(λ). Hence the RHS of (97) is zero. It follows that

H1(g, (V∗)⊗n ⊗ L(λ)) = 0. (98)

Since homology commutes with induction, using the tensor identity and arguing
as in the proof of Proposition 7.11, one shows that

LiFκ(Wκ(λ)) = Hi(g[t],Tκ(Wκ(λ))) = C[h]⊗Hi(g, (V
∗)⊗n ⊗ L(λ)).

Together with (98), this implies that L1Fκ(Wκ(λ)) = 0. One shows that L1Fκ(M)

= 0 for all M ∈ Ûκ-mod∆ by induction on the length of the ∆-filtration. �

Corollary 11.17. The functor Fκ induces a linear map

Ext1
Ûκ

(M,M)→ Ext1
Hκ+n(Fκ(M),Fκ(M))

for all M in Ûκ-mod∆.

Proof. This follows from Proposition 11.16 because the category Ûκ-mod∆ is
closed under one-step extensions. �

Corollary 11.17 admits, at least conjecturally, a geometric interpretation when
κ = c. Frenkel and Teleman consider in [31] the category of (Ûc, G[[t]])-bimodules.
They conjecture, for µ ∈ Π+ (and prove for µ = 0), that Ext•

Ûc,G[[t]]
(Wc(µ),Wc(µ))

is isomorphic to the algebra of differential forms on Opµ
Ǧ

(D). Note that if this

conjecture holds, the algebra of self-extensions is generated by Ext1. An analogous
result for rational Cherednik algebras is proven in [8, Cor. 4.2], stating that
Ext•H0

(∆0(λ),∆0(λ)) is isomorphic to the algebra of differential forms on Ωλ, for
λ ∈ P(n).

Conjecture 11.18. Let λ ∈ P(n). The functor Fc induces a surjective algebra
homomorphism

Ext•
Ûc,G[[t]]

(Wc(λ),Wc(λ))→ Ext•H0
(∆0(λ),∆0(λ)),

which is given by the restriction of differential forms via the inclusion (94).
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A. Proof of Proposition 10.4

We work in the following setup. Let 1 ≤ a ≤ k, j1, . . . , ja ≥ 1 and j1 + · · ·+ja =
k. Consider an element C = X1[−j1] · · ·Xa[−ja] ∈ U(ĝ−), where Xi ∈ {ers | 1 ≤
r, s ≤ n}.
Lemma A.1. The following estimates hold.

a) For arbitrary C as above:

• Ĉl = 0 if l < −(k + a),

• deg Ĉ−(k+a) ≤ a,

• deg Ĉ−(k+a)+1 ≤ a− 1,

• deg Ĉ−(k+a)+2+p ≤ a+ p (p ≥ 0).

b) Moreover, if C ∈ kerAHC ⊂ U(ĝ−)adt then:

• Ĉ−(k+a) = 0,

• deg Ĉ−(k+a)+2+p ≤ a+ p− 2 (p ≥ 0).

Proof. Recall the module U2 = Ûc(ĝ)/I2 from Definition 11.13, where I2 is the

left ideal in Ûc(ĝ) generated by ĝ≥2. We will often make use of the fact that

[ĝ≥0, I2] ⊆ I2. Let Φ̃ : Ûc(ĝ) � U2 be the canonical map and C̃l = Φ̃(Cl). Below
in steps 1-4 we will show, by induction on a that part a) of the lemma holds with

Ĉl replaced by C̃l (l ∈ Z). Since Hc is a quotient of U2, the estimates in part a)

must then also hold for Ĉl. In steps 5-6 we will prove part b).

1. The base case. Let us first tackle the base case a = 1. Then C = X1[−k] and,
by definition,

Y〈C, z〉 =
1

(k − 1)!
∂k−1
z Y〈X1[−1], z〉 =

∑
i∈Z

(i+ 1)· · · (i+ k − 1)

(k − 1)!
X1[−i− k]zi.

Hence

Ci =
(i+ 1)· · · (i+ k − 1)

(k − 1)!
X1[−i− k]. (99)

In particular,
Ci = 0 if i = −1, . . . ,−k + 1. (100)

We now consider the four cases in the lemma. First suppose that i < −(k+1). Since

−i− k > 1 and X1[b].1H = 0 for b > 1, formula (99) implies that C̃i = Ci.1H = 0.
In the second and third cases we have C−(k+1) = (−1)k−1kX1[1] and C−k =

(−1)k−1X1. Hence deg C̃−(k+1) ≤ 1 and deg C̃−k ≤ 0. Finally suppose that i =
−k + p + 1 with p ≥ 0. Formula (99) implies that Ci is a multiple of X1[−p − 1]

and so deg C̃i ≤ p+ 1.

2. The inductive case — notation. Assume a ≥ 2. Let us set k′ = j2 + · · ·+ ja
and a′ = a − 1. Set A = X1[−j1] and B = X2[−j2] · · ·Xa[−ja]. By definition of
the normally ordered product we have

Cl =
∑
r+s=l,
r≥0

ArBs +
∑
r+s=l,
s<0

BrAs. (101)
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Set C+
l =

∑
r+s=l
r≥0

ArBs and C−l =
∑
r+s=l
s<0

BrAs so that Cl = C+
l +C−l . Also set

C̃+
l := Φ̃(C+

l ) and C̃−l := Φ̃(C−l ).

3. The inductive case —C+
l . First suppose that l < −(k+a)+2. Consider any

monomial ArBs in C+
l . Since r ≥ 0, we have s = l− r < −(k+a) + 2 ≤ −(k′+a′).

Therefore, by induction, B̃s = 0. Hence C̃+
l = 0. This takes care of the first three

cases.
Now assume that l = −(k + a) + 2 + p with p ≥ 0. Since r, j1 ≥ 0, we get from

(99) that Ar is a scalar multiple of X1[−r − j1]. Hence degAr ≤ |r + j1| = r + j1.

We now estimate the degree of B̃s. We have s = l− r = −(k′+a′) +2 +p− (r+
j1 + 1). There are four situations to consider. Firstly, suppose that p ≥ r+ j1 + 1.

Then, by induction (the fourth case), we conclude that deg B̃s ≤ a′+p−(r+j1+1).

Hence deg Φ̃(ArBs) ≤ degAr+deg B̃s ≤ (r+j1)+(a′+p−(r+j1+1)) = a′+p−1 =
a + p − 2. Secondly, suppose that p = r + j1. Then s = −(k′ + a′) + 1 and so,

by induction (the third case), we have deg B̃s ≤ a′ − 1. Hence deg Φ̃(ArBs) ≤
degAr+deg B̃s ≤ (r+j1)+a′−1 = a+p−2. Thirdly, suppose that p = r+j1−1.

Then s = −(k′ + a′) and so, by induction (the second case), we have deg B̃s ≤ a′.
Hence deg Φ̃(ArBs) ≤ degAr+deg B̃s ≤ (r+j1)+a′ = a+p. Finally, if p < r+j1−1

then s < −(k′ + a′). Hence B̃s = 0 and Φ̃(ArBs) = 0. Overall we conclude that

deg C̃l ≤ a+ p.

4. The inductive case —C−
l . Regard C−l as a sum of monomials BrAs as in

(101). If s ≤ −j1 − 2 then, by (99), As is a scalar multiple of X1[b] with b ≥ 2.
Hence in both of these cases BrAs ∈ I2. Therefore, it is enough to consider the
cases s = −j1 and s = −j1 − 1.

Suppose that s = −j1. Then As = (−1)j1−1X1. In particular, deg Ãs = 0 and
[As, I2] ⊆ I2. Firstly, assume that l ≤ −(k + a). Then r = l − s ≤ −(k + a+ s) =
−(k′ + a′)− 1. Hence, by induction, Br ∈ I2, and so [Br, As] ∈ I2. It follows that
BrAs = AsBr − [Br, As] ∈ I2.

For the remaining cases, note that

Φ̃(BrAs) = Φ̃(AsBr)− Φ̃([Br, As]) = As · B̃r − Φ̃([Br, As]).

We can write Br = y + z with y ∈ I2, z ∈ U(ĝ−) ⊗ U(n−) ⊗ U(n+) ⊗ U(t[1])

and deg z = deg B̃r. Then Φ̃([Br, As]) = Φ̃([z,As]) and deg Φ̃([z,As]) ≤ deg z =

deg B̃r. Therefore, deg Φ̃(BrAs) ≤ B̃r.
Secondly, assume that l = −(k + a) + 1. Then r = l − s = −(k′ + a′). Hence,

by induction, deg B̃r ≤ a′ = a − 1 and so we can conclude that deg Φ̃(BrAs) ≤
deg B̃r ≤ a−1. Thirdly, assume that l = −(k+a)+2. Then r = l−s = −(k′+a′)+1.

Hence, by induction, deg B̃r ≤ a′ − 1 = a − 2 and so deg Φ̃(BrAs) ≤ deg B̃r ≤
a− 2 < a. Fourthly, assume that l = −(k+a) + 2 + p with p > 0. Then r = l− s =

−(k′ + a′) + 2 + (p− 1). Hence, by induction, deg B̃r ≤ a′ + p− 1 = a+ p− 2 and

so deg Φ̃(BrAs) ≤ deg B̃r ≤ a+ p− 2 < a+ p.

Now suppose that s = −j1 − 1. Then As = (−1)j1−1j1X1[1], deg Ãs = 1 and
[As, I2] ⊆ I2. The proof of the case l < −(k + a) is the same as in the second
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paragraph of this step. Moreover, the same argument as in the third paragraph
shows that deg Φ̃(BrAs) ≤ B̃r + 1.

Firstly, assume that l = −(k + a). Then r = l − s = −(k′ + a′). Hence, by

induction, deg B̃r ≤ a′ = a − 1 and so deg Φ̃(BrAs) ≤ deg B̃r + 1 ≤ a. Secondly,
assume that l = −(k+a)+1. Then r = l−s = −(k′+a′)+1. Hence, by induction,

deg B̃r ≤ a′−1 = a−2 and so deg Φ̃(BrAs) ≤ deg B̃r + 1 ≤ a−1. Thirdly, assume
that l = −(k+a)+2+p with p ≥ 0. Then r = l−s = −(k′+a′)+2+p. Hence, by

induction, deg B̃r ≤ a′ + p = a+ p− 1 and so deg Φ̃(BrAs) ≤ deg B̃r + 1 ≤ a+ p.

This proves that C̃−l satisfies the required constraints and completes the proof of
the first part of the lemma.

5. An auxiliary induction. We claim that

(C) If Xi ∈ n+ ⊕ n−, for some 1 ≤ i ≤ a, then C−(k+a) ∈ Ic.

If a = 1 then C−(k+1) = (−1)k−1kX1[1] ∈ Ic since X1 ∈ n+ ⊕ n−. So suppose

a > 1. Then, by part 3 of the proof, C+
−(k+a) ∈ Ic. Let us show that Ĉ−−(k+a) ∈ Ic

as well. Part 5 implies that it suffices to consider the monomial BrAs in C−−(k+a)

with s = −j1−1. Since As = (−1)j1−1j1X1[1], we have BrAs ∈ Ic if X1 ∈ n+⊕n−.
Otherwise, X1 ∈ t and Xi ∈ n+ ⊕ n− for some 2 ≤ i ≤ a. Since r = −(k′ + a′),

induction gives Br ∈ Ic and Br can be written as a (finite) sum
∑
p ZpYp with

Zp ∈ Uc(g̃) and Yp ∈ i or Yp = eqq − 1 for some 1 ≤ q ≤ n. In the first case,
we use the fact that, by Lemma 7.2, i is an ideal in t̂+. Since As ∈ t[1], we get
[Yp, As] ∈ i. In the second case, [Yp, As] = 0. It follows that [Br, As] ∈ Ic. Hence
BrAs = AsBr − [Br, As] ∈ Ic as well.

6. Part b) of the lemma. We now prove part b) the lemma. First observe that in
many parts of the proof so far we have already established the stronger inequalities
in the second statement of the lemma without even using the assumption that
C ∈ kerAHC. Let us consider all the remaining cases. The first such case appears
in part 3 of the proof: l = −(k + a) + 2 + p with p = r + j1 − 1. In that case
s = −(k′ + a′). Since C ∈ kerAHC, the claim (C) implies that Bs ∈ Ic and so

Φ̂(ArBs) = 0.
The second case appears in part 4 of the proof: s = −j1 − 1 and l = −(k + a).

It follows directly from (C) that Φ̂(BrAs) = 0. The third case also appears in
part 4 of the proof: s = −j1 − 1 and l = −(k + a) + 2 + p with p ≥ 0. In that
case As = (−1)j1−1j1X1[1]. There are two possibilities. Either X1 ∈ n+ ⊕ n− or

Br ∈ kerAHC. In the first case Φ̂(BrAs) = 0. In the second case, by induction,

deg B̂r ≤ a′ + p − 2 = a + p − 3. Part 4 implies that deg Φ̂(BrAs) ≤ deg B̂r + 1.

Hence deg Φ̂(BrAs) ≤ a + p − 2, as required. This was the last case to consider.
We have therefore completed the proof of the lemma. �

Lemma A.1 directly implies the following.

Corollary A.2. Suppose that either (i) C ∈ U(g̃−)−k ∩ Upbw(g̃−)≤k−1 or (ii)
C ∈ (U(g̃−)−k ∩Upbw(g̃−)≤k)adt and C ∈ kerAHC. Then:

Ĉl = 0 (l ≤ −2k), deg Ĉ−2k+2+p ≤ k − 2 + p (p ≥ 0).
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Lemma A.3. We have:

• P̂k,l = 0 if l < −2k, • P̂k,−2k =
∑n
i=1(eii[1])k.1H,

• P̂k,−2k+1 = k
∑n
i=1(eii[1])k−1.1H, • if b ≥ 0 then:

Pk,−2k+2+b = k

n∑
i=1

eii[−b− 1](eii[1])k−1.1H + (Hc)≤k+b−1.

Proof. The first case follows directly from Lemma A.1. So consider the remaining
three cases. Fix 1 ≤ i ≤ n. Let A = eii[−1], B = (eii[−1])k−1 and C = AB. By
Lemma A.1, we have Bs.1H = 0 for s < −2k+ 2 and As.1H = 0 for s < −2. Hence
(101) implies that

Ĉ−2k = B−2k+2A−2.1H, Ĉ−2k+1 = B−2k+2A−1.1H +B−2k+3A−2.1H.

By induction, we know that B−2k+2 = (eii[1])k−1 and B−2k+3 = (k− 1)(eii[1])k−2

modulo Ic. Hence Ĉ−2k = A−2B−2k+2.1H = (eii[1])k.1H and

Ĉ−2k+1 = B−2k+2A−1.1H +B−2k+3A−2.1H

= B−2k+2.1H +A−2B−2k+3.1H = k(eii[1])k−1.1H.

This proves the second and third cases. Finally consider the fourth case. We have

Ĉ−2k+2+b =
∑

0≤s≤b

AsB−2k+2+b−s.1H +B−2k+3+bA−1.1H +B−2k+4+bA−2.1H.

Lemma A.1 implies that AbB−2k+2.1H + B−2k+4+bA−2.1H is the leading term

of Ĉ−2k+2+b. By induction, we know that σabs(B̂−2k+4+b) = (k − 1)eii[−b −
1](eii[1])k−2.1H and B̂−2k+2 = (eii[1])k−1.1H. Hence σabs(Ĉ−2k+2+b) = keii[−b −
1](eii[1])k−1.1H. Summing over i = 1, . . . , n yields the lemma. �

We can now prove Proposition 10.4.

Proof of Proposition 10.4. By Lemma 10.2, we can write

T̂k,l = Q̂k,l + Q̂′k,l + P̂k,l,

where Qk ∈ (U(g̃−)−k ∩Upbw(g̃−)≤k−1)adt, Q′k ∈ (U(g̃−)−k ∩Upbw(g̃−)≤k)adt and

AHC(Q′k) = 0. Hence Corollary A.2 implies that Q̂k,l = Q̂′k,l = 0 for l ≤ −2k and

deg Q̂k,−2k+2+p = deg Q̂′k,−2k+2+p ≤ k + p− 2

for p ≥ 0. On the other hand, we know from Lemma A.3 that P̂k,l = 0 for l < −2k,

deg P̂k,−2k = k and deg P̂k,−2k+2+p = k + p for p ≥ 0. It follows that T̂k,l = 0 if

l < −2k, T̂k,−2k = P̂k,−2k and that P̂k,l is the leading term of T̂k,l if l ≥ −2k+ 2,
as required. �
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