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Abstract. We call a flag variety admissible if its automorphism group is the projective
general linear group. (This holds in most cases.)

Let K be a field of characteristic 0, containing all roots of unity. Let the K-variety X be
a form of an admissible flag variety. We prove that X is either ruled, or the automorphism
group of X is bounded, meaning that there exists a constant C ∈ N such that if G is a
finite subgroup of AutK(X), then the cardinality of G is smaller than C.

1. Introduction

Before stating our main theorem we need to introduce a couple of definitions
and notations.

Definition 1 (Definition 2.9 in [Po11]). A group G is called bounded if there
exists a constant C ∈ N such that every finite subgroup of G has smaller cardinality
than C.

Let V be a finite-dimensional vector space (over an arbitrary field). A flag
is a strictly increasing sequence of linear subspaces of V (with respect to the
the containment order). By Fl(d1 < d2 < · · · < dr, V ) or simply by Fl(d, V )
we denote the flag variety of the sequence of linear subspaces of V (flags) of
dimensions determined by the strictly increasing sequence of nonnegative integers
d = (d1, d2, . . . , dr), where dr 5 dimV . We also use the notation Fl(d < e, V )
governed by similar logic, using the strictly increasing sequence of nonnegative
integers d < e = (d1, . . . , dp, e1, . . . , eq) (eq 5 dimV ). If d1 = n then the notation
d − n stands for the strictly increasing sequence of nonnegative integers d − n =
(d1 − n, . . . , dr − n).
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A. GULD

If no confusion can arise we omit the specification of the vector space or the
strictly increasing sequence of nonnegative integers or both of them. When we say
Fl(d, V ) is a flag variety, we implicitly assume that V is a vector space over some
field and d = (d1, . . . , dr) is a strictly increasing sequence of nonnegative integers,
where dr 5 dimV .

Definition 2. We call a flag variety admissible, if its automorphism group is the
projective general linear group; otherwise we call it non-admissible.

Later on we will see that a flag variety is admissible unless it is isomorphic
to a flag variety Fl(d1 < · · · < dr, V ), where 0 < d1, dr < dimV , dimV = 3
and di + dr+1−i = dimV for all i = 1, . . . , r. Notice that the conditions 0 < d1
and dr < dimV are technical assumptions; they do not exclude any isomorphism
class of flag varieties. The automorphism group of the non-admissible flag variety
Fl(d, V ) is PGL(V ) o Z/2Z. (See Theorem 5 for further details.)

Definition 3. Let K be a field. The K-variety X is a form of a flag variety if
X × SpecK ∼= Fl(d, VK) where K is the algebraic closure of K, VK is a finite-
dimensional K-vector space, and d is a strictly increasing sequence of nonnegative
integers.

Now we are ready to state the main theorem of the article.

Theorem 1. Let K be a field of characteristic 0, containing all roots of unity.
Let the K-variety X be a form of an admissible flag variety. Then either the
automorphism group AutK(X) is bounded, or X is birational to a direct product
variety Y × P1; in other words, X is ruled.

Before moving further we introduce another definition from group theory.

Definition 4 ([Po11, Def. 2.1]). A group G is called Jordan if there exists a con-
stant J ∈ N such that for every finite subgroup H 5 G there exists an Abelian
normal subgroup A 5 H such that |H : A| < J .

In [BZ15b] T. Bandman and Yu. G. Zarhin answered a question of Yu. Prokho-
rov and C. Shramov ([PS14]) by showing that the birational automorphism group
of a conic bundle over a non-uniruled base is Jordan when it is not birational to the
trivial P1-bundle over the non-uniruled base. One of the major steps in their proof
was to show that the birational (and hence the biregular) automorphism group of
a non-trivial Brauer–Severi curve is bounded. This follows from our theorem as a
special case. (They also showed that the cardinalities of the finite subgroups of the
automorphism group are bounded by four.)

The result on the boundedness of the automorphism groups of non-trivial Brau-
er–Severi curves was also used by Yu. Prokhorov and C. Shramov when they
classified three-dimensional varieties with non-Jordan birational automorphism
groups ([PS16b]).

Another aspect of our motivation is that we would like to investigate conditions
which imply that the birational automorphism group of a rationally connected
variety is bounded. We hope that by regularizing actions of finite subgroups of the
birational automorphism groups ([PS14, Lem. 3.1]), and with the help of the Mini-
mal Model Program, this question can be reduced to studying finite subgroups of
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BOUNDEDNESS OF AUTOMORPHISM GROUPS

the automorphism groups of Fano varieties over function fields. As a special case
we investigated boundedness properties of automorphism groups of forms of flag
varieties.

The definitions of the Jordan and the boundedness properties was introduced
by V. L. Popov. They are closely related. Boundedness implies the Jordan pro-
perty, while a typical strategy for proving that a group is Jordan is to show that
the group sits in an exact sequence where the normal subgroup is Jordan and
the quotient group is bounded ([Po11, Lem. 2.11]). A survey of results concerning
these properties of groups and the relations between them can be found in [Po14]
and in Section 2 of [PS14].

Research about investigating Jordan properties for birational and biregular
automorphism groups of varieties was initiated by J.-P. Serre in [Se09] and V. L.
Popov in [Po11]. Recently many authors have contributed to the subject ([BZ15a],
[BZ15b], [Hu18], [MZ15], [Po11], [Po14], [PS14], [PS16a], [PS16b], [Se09], [Za15]).

The idea of our proof is the following. A form of a flag variety can be viewed as
a flag variety equipped with a twisted Galois action. The automorphism group of
the form embeds into the automorphism group of the flag variety, and its action
commutes with the twisted Galois action. If the automorphism group of the form
is not bounded, then the commutation imposes a condition on the twisted Galois
action. Using this, we may construct a Galois equivariant rational map from the
flag variety to a smaller-dimensional variety. It turns out that this rational map
induces a vector bundle structure on the open subset of the flag variety where the
map is defined and the twisted Galois action respects the vector bundle structure.
By results of Galois descent, we descend the vector bundle structure to an open
subvariety of the form. This proves our theorem.

We use the admissibility hypothesis to construct the Galois equivarant rational
map from our flag variety to a smaller-dimensional variety. Although the rational
map can be constructed anyway, we use the admissibility condition when we endow
the target space with a Galois action which makes the rational map equivariant.
For a more detailed discussion see Remark 8 and Remark 14.

In general, it is a very hard question to decide whether a variety is ruled or not.
Amongst forms of (admissible) flag varieties we can find examples of both cases.

Indeed, flag varieties are rational, therefore they are ruled. On the other hand
non-trivial Brauer–Severi curves and surfaces provide examples of non-ruled forms
of admissible flag varieties. Non-trivial Brauer–Severi curves are non-ruled essen-
tially as a consequence of their definition, while the case of non-trivial Brauer–
Severi surfaces will be explored in Section 6. Here we only state the corresponding
theorem.

Theorem 2. Let K be a field of arbitrary characteristic. Let X be a Brauer–Severi
surface over K. X is ruled if and only if it is trivial.

The paper is organized in the following way. In Section 2 we recall the necessary
knowledge about automorphism groups of flag varieties and Galois descent. In
Section 3 we construct the rational maps which will give us the vector bundle
structure. It is followed by Section 4, where we analyze the effect of the commuting
group actions when the automorphism group of the form of the flag variety is not
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A. GULD

bounded. Finally, Section 5 contains the proof of our theorem. We enclose our
article with a discussion on Brauer–Severi surfaces in Section 6.

1.1. Conventions

Throughout the article we use the following conventions.
Unless explicitly stated otherwise all fields are assumed to be of characteristic

0. For a field K we use K to denote its (fixed) algebraic closure.
By a vector space we mean a finite-dimensional vector space. Sometimes in the

notation of a vector space we make explicit the field over which the vector space
is defined. When we say VK is a vector space, we mean that VK is a vector space
defined over the field K.

Let V be a vector space over a field K. By LinK(V ) we denote the K-linear
automorphism group of V . (During the article we will encounter situations where
V is a vector space over a field L; where K 5 L, however, we need to consider its
K-linear automorphism group.)

By a variety we mean a separated, integral scheme of finite type over a field.
Let X be an arbitrary scheme over a field K. By AutK(X) we denote the K-

scheme automorphism group of X. (During the article we will encounter situations,
where X is a variety over a field L, where K 5 L, and we need to consider its
K-scheme automorphism group.)

Let X be a variety, by Bir(X) we denote the birational automorphism group
of X.

Acknowledgements. The author is very grateful to E. Szabó for all the helpful
discussions. The author thanks the referees for their valuable comments.

2. Preliminaries

2.1. Automorphism group of flag varieties

In this subsection we collect results about automorphism groups of flag varieties.
First, we recall the definition of the automorphism group scheme.

Definition 5. Let X be a scheme over a base scheme S. Consider the assignment
T 7→ AutT (X × T ) between S-schemes and abstract groups. It gives rise to a
contravariant functor AX : (Sch/S)op → Gr from the category of S-schemes to
the category of groups. ((Sch/S)op denotes the opposite category of the category
of S-schemes). If AX can be represented by an S-scheme Y , then we call Y the
automorphism group scheme of X, and denote it by AutS(X) or simply by Aut(X).
(In case of S = SpecK, for some field K, we also use the notation AutK(X).)

Remark 1. Note that the definition implies that AutT (X ×T ) ∼= AutS(X)×T for
any S-scheme T (by the adjoint property of restriction and extension of scalars).

It is also worth pointing out that an immediate consequence of the definition
is the following. For a K-scheme X, if Aut(X) exits, then the group of its K-
rational points is isomorphic to the automorphism group of X, in the formula
(AutK(X))(K) ∼= AutK(X).

The following theorem of H. Matsumura and F. Oort secures the existence of
the automorphism group schemes for flag varieties ([MO67, Thm. 3.7]).
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BOUNDEDNESS OF AUTOMORPHISM GROUPS

Theorem 3. Let K be a field of arbitrary characteristic, and let X be a proper K-
scheme. The automorphism group scheme Aut(X) exists and it is of locally finite
type over K.

Armed with the concept of automorphism group schemes, we can make our first
step towards describing the automorphism groups of flag varieties.

Proposition 4. Let K be a field, V be a K-vector space and Fl(d, V ) be a K-flag
variety. The group scheme PGL(V ) is a closed subscheme of AutK(Fl(d, V )).

Proof. Clearly the functor of points of the group scheme of the projective general
linear group Hom(−,PGL(V )) is a subfunctor of AFl(d,V ) defined in Definition 5.
Therefore we have a morphism of group schemes ϕ : PGL(V )→ AutK(Fl(d, V )).

The kernel of ϕ is trivial. Indeed, PGL(V ⊗ L) embeds into AutL(Fl(d, V ) ×
SpecL) ∼= AutL(Fl(d, V ⊗ L)) for any field extension L|K. Therefore the kernel
has a unique rational point over any field. Since we work in characteristic 0, this
implies that the kernel is trivial (by smoothness).

Since the kernel is trivial and ϕ is a smooth morphism (as the characteristic is
0), ϕ is a closed immersion ([Stack, Lem. 38.7.8]). �

Remark 2. Consider flag varieties of the form Fl(d1 < · · · < dr, V ), where 0 < d1,
dr < dimV , dimV = 3 and ∀i = 1, . . . , r di + dr+1−i = dimV . (Notice that the
conditions 0 < d1 and dr < dimV are technical assumptions; they do not exclude
any isomorphism class of flag varieties.)

In the next theorem we will show that non-admissible flag varieties are exactly
flag varieties of the above form. In this remark we will construct an order two
automorphism for them, called τ , which lies outside PGL(V ) and normalizes it.
This strengthens the previous proposition, since the existence of τ implies that in
case of flag varieties of the above form PGL(V ) o Z/2Z is a closed subscheme of
the automorphism group scheme.

The involution τ can be constructed in the following way. For an arbitrary flag
variety Fl(e,W ) (not necessarily of the form considered in the beginning of the
remark) we can examine the dual map:

∗ : Fl(e1 < e2 < · · · < eq,W )→ Fl(m− eq < m− eq−1 < · · · < m− e1,W ∗),
U1 < U2 < · · · < Uq 7→ Uq

⊥ < Uq−1
⊥ < · · · < U1

⊥,

where m = dimW , W ∗ is the dual space of W and for an arbitrary linear subspace
U 5W U⊥ = {ϕ ∈W ∗|ϕ|U ≡ 0} is the annihilator subspace.

Consider a flag variety Fl(d, V ) of the form introduced in the beginning of
the remark, and fix a linear automorphism j0 : V ∗ → V such that j−10 maps a
(fixed) basis of V to its dual basis (V ∗ denotes the dual space of V ). j0 induces
an isomorphism j : Fl(d, V ∗) → Fl(d, V ). With a little amount of work it can be
checked that the automorphism τ = j ◦ ∗ is an involution outside the projective
general linear group, and that τ normalizes the projective general linear group. (If
dimV = 2, then τ would be an element of the projective general linear group.)

Our next tool is the result of H. Tango ([Ta76, Thm. 2]). By the use of Schubert
calculus he gave a description of the automorphism groups of flag varieties over
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algebraically closed fields (of arbitrary characteristic).
Just as in the previous remark, when we state the next theorem we will use the

technical assumption that a flag does not contain the trivial linear subspace and
the whole vector space (i.e., 0 < d1 and dr < dimV ).

Theorem 5. Let K be a field, V be a K-vector space and let d denote a strictly
increasing sequence of integers d1 < · · · < dr, where 0 < d1 and dr < dimV . The
automorphism group of the K-flag variety Fl(d, V ) is PGL(V ) (with its natural
action on the variety ), except the case when 3 5 dimV and di + dr−i+1 = dimV
for all i = 1, . . . , r. In this later case the automorphism group is PGL(V )oZ/2Z.

Proof. When K is algebraically closed, this is Tango’s theorem (Theorem 2 in
[Ta76]). As a first step towards describing the case when K is not algebraically
closed, we prove a stronger version of the theorem. We prove that the automor-
phism group scheme has the form which naturally corresponds to the form of the
automorphism group described by the theorem, i.e., it is PGL(V ) or a PGL(V ) o
Z/2Z accordingly.

Observe that the automorphism group scheme of a complex flag variety has
the desired form. Indeed, by Tango’s theorem, the automorphism group of a
complex flag variety is either PGL(V ) or PGL(V ) o Z/2Z. Therefore the group
of the closed points of the automorphism group scheme of a complex flag variety
gives back the groups described by our theorem. Combining this fact with the
result of Proposition 4, which states that PGL(V ) is a closed subscheme of the
automorphism group scheme of a complex flag variety, we can conclude our claim
for the automorphism group scheme of an arbitrary C-flag variety.

As the next step, note that it is enough to show that the our claim for automor-
phism group schemes holds for flag varieties over Q. Indeed, let Fl(d, VK) be an
arbitrary flag variety over an arbitrary field K. By choosing a basis of VK , we can
find a Q-vector space WQ such that WQ ⊗K ∼= VK and Fl(d, VK) ∼= Fl(d,WQ)×
SpecK. Hence Remark 1 implies that AutK(Fl(d, VK)) ∼= AutQ(Fl(d,WQ)) ×
SpecK. The result follows, as PGL(WQ)× SpecK ∼= PGL(VK).

Let Fl(d, UQ) be an arbitrary flag variety over Q. Since base changing the ground
field does not affect dimensions, the group schemes PGL(UQ) and AutQ(Fl(d, UQ))
has the same dimension by the complex case. As PGL(UQ) is connected, and it is
a closed group scheme of AutQ(Fl(d, UQ)) (Proposition 4), we conclude that it is
the identity component.

A similar logic applies to the number of connected components. Indeed, the
number of connected components cannot decrease after base changing the ground
field. Hence using the case of complex flag varieties and the result of Remark 2,
our claim for the automorphism group schemes follows.

Now we can turn back our attention to the automorphism groups. We conclude
our proof by taking rational points of the automorphism group schemes and using
Remark 1. �

Remark 3. Notice that Theorem 5 gives a new characterization of admissible flag
varieties. This new characterization only uses dimensions of the linear subspaces
of a flag of the variety and the dimension of the underlying vector space.
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Remark 4. The projective general linear group has a natural action on the set of
d-dimensional linear subspaces of the underlying vector space (for every fixed d,
where 0 5 d 5 n and n is the dimension of the underlying vector space). These
actions are compatible with the action of the projective general linear group on the
flags of the vector space. Sometimes we use this observation without further notice.
A similar statement holds for twisted Galois actions on admissible flag varieties
(check Remark 8).

The automorphism group PGL(V )oZ/2Z of a non-admissible flag variety also
has a natural action on the set of the union of d-dimensional and (n−d)-dimensional
linear subspaces of the underlying vector space. However some group elements swap
the dimensions. A similar kind of claim can be formulated for the twisted Galois
actions on non-admissible flag varieties (check Remark 8).

2.2. Galois descent

We collect results about Galois descent and fields in general. First we start with a
couple of technical claims. The next lemma can be proved by standard techniques
using the finiteness condition built into the definition of a variety.

Lemma 6. Let K be a field. Let X and Y be K-varieties and ϕ : X → Y be a
morphism between them. There exists a finite Galois extension L|K such that X,
Y and ϕ are defined over L. More precisely, there exist L-varieties X ′, Y ′ and a
morphism ϕ′ : X ′ → Y ′ between them such that X ′×SpecK ∼= X, Y ′×SpecK ∼= Y
and ϕ′ × id ∼= ϕ.

Remark 5. Let the K-variety X be a form of a flag variety. By Lemma 6, we
can find a finite Galois extension L|K such that X × SpecL ∼= Fl(d,WL). Indeed,
applying the lemma to the isomorphism between X×SpecK and Fl(d, VK) proves
the claim.

Remark 6. If the K-variety X is a form of a flag variety, then X is projective.
Indeed if X × SpecK is projective, then the same holds for X as well ([GW10,
Prop. 14.55]).

Definition 6. Let K be a field, and let the K-variety X be a form of a flag
variety. If L|K is a field extension such that X × SpecL ∼= Fl(d, VL), then we
call L a splitting field for X. By Remark 5 L|K can chosen to be a finite Galois
extension.

Now we turn our attention to results about descents. This part of the subsection
is mainly based on [Ja00].

Definition 7. Let L|K be a Galois extension with Galois group Γ. We call a pair
(X,T ) a quasi-projective L-scheme equipped with a twisted Galois action, if X
is a quasi-projective L-scheme and T : Γ → AutK(X) is a group homomorphism
satisfying the following commutative diagram (for every σ ∈ Γ):

X

��

T (σ) // X

��
SpecL

S(σ) // SpecL
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where S(σ) : SpecL→ SpecL is the morphism of schemes induced by σ−1 : L→ L.
If no confusion can arise we denote the pair (X,T ) simply by X. (Observe that

S(σ) is induced by σ−1 since there is an antiequivalence of categories between affine
schemes and rings. Therefore using the inverse is necessary to define an action of
the Galois group.)

The following theorem can be found in [Ja00, Thm. 2.2.b].

Theorem 7. Let L|K be a finite Galois extension with Galois group Γ. There is an
equivalence between the category of quasi-projective K-schemes and the category
of quasi-projective L-schemes equipped with a twisted Γ-action. The equivalence
functor is given by X 7→ X × SpecL.

Remark 7. Since the theorem is about equivalence of categories, it also says that
Galois equivariant morphisms descend to morphisms of the underlying K-schemes.

Definition 8. Let L|K be a Galois extension with Galois group Γ and let VL be
an n-dimensional vector space over L. Let b = (v1, . . . , vn) be a basis of VL. There
is a twisted Galois action Ab : Γ→ LinK(VL) defined by

Ab(σ) : VL → VL,

v = α1v1 + α2v2 + · · ·+ αnvn 7→ σ(α1)v1 + σ(α2)v2 + · · ·+ σ(αn)vn,

where the αi’s are coefficients from the field L (i = 1, . . . , n) and σ ∈ Γ is an
arbitrary element of the Galois group. For a flag variety Fl(d, VL) this induces a
twisted Galois action, denoted by Bb : Γ→ AutK(Fl(d, VL)):

Fl(d, VL)

��

Bb(σ) // Fl(d, VL)

��
SpecL

S(σ) // SpecL

.

It might seem counterintuitive that the diagram contains S(σ), which is induced
by σ−1. However after realizing that this means we pull back functions using σ−1,
we can also realize that it forces us to use σ when we want to ‘push forward’
scalars.

Notice that if T is an arbitrary twisted Galois action on Fl(d, VL), then for

every σ ∈ Γ the morphism T (σ) ◦ Bb(σ)
−1

is an element of the automorphism
group of the flag variety, therefore T (σ) can be written as T (σ) = aσ ◦ Bb(σ)
where aσ ∈ AutL(Fl(d, VL)). (Of course aσ also depends on the basis b, although
we decided to omit it in the notation.)

Remark 8. Let L|K be a Galois extension with Galois group Γ, VL be an L-vector
space and Fl(d, VL) be an L-flag variety with a twisted Galois action T : Γ →
AutK(Fl(d, VL)). Choose a basis of VL, denote it by b. We saw in the previous
definition that T (σ) = aσ ◦Bb(σ).

Assume that the flag variety is admissible, then aσ is an element of PGL(VL),
therefore it has a natural action on the set of linear subspaces of VL. Bb(σ) can also
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be endowed with a natural action on the set of linear subspaces of VL (via Ab(σ)).
This enables us to endow T (σ) with a natural action on the set of linear subspaces
of VL . Moreover, this action is compatible with the action of T (σ) on the flags.
In formula T (σ)(Z1 < · · · < Zr) = (cσ ◦ Ab(σ))(Z1) < · · · < (cσ ◦ Ab(σ))(Zr) for
any flag Z1 < · · · < Zr ∈ Fl(d, VL). Sometimes we use this observation without
further notice.

If the flag variety is non-admissible then we can also formulate a similar claim.
However if aσ 6∈ PGL(V ) then the di-dimensional linear subspace of the image flag
T (σ)(Z1 < · · · < Zr) depends on the (dim V − di)-dimensional linear subspace of
the flag Z1 < · · · < Zr. The existence of these ‘dimension-swapping’ morphisms
can pose problems when we try to construct Galois equivariant morphisms from
non-admissible flag varieties.

Remark 9. If L|K is a finite Galois extension (such that L 5 K) with Galois group
Γ and VL is an L-vector space, then {σ 7→ aσ} gives an element in the first group
cohomology H1(Γ,AutL(Fl(d, VL)). The elements of the first group cohomology
are in 1-to-1 correspondence with the forms of Fl(d, VL)×SpecK ∼= Fl(d, VL⊗K)
split by L. For further informations on this, see [GW10, Thm. 14.88]. Also Theorem
3.6 and Theorem 4.5 in [Ja00] give results of similar flavour in the case of Brauer–
Severi varieties.

Theorem 8. Let L|K be a finite Galois extension with Galois group Γ. Let X,Y be
quasi-projective L-schemes equipped with twisted Galois actions, and let φ : X → Y
be a Galois equivariant morphism of L-schemes such that the triple (X,Y, φ) forms
a vector bundle. Moreover, let the Galois action respect the vector bundle structure
(respect the addition and twist the multiplication by scalar operations ). Then there
exist X ′, Y ′ quasi-projective K-schemes and φ′ : X ′ → Y ′ morphism of K-schemes
such that (X ′, Y ′, φ′) forms a vector bundle and X ′×SpecL ∼= X, Y ′×SpecL ∼= Y ,
φ′ × id ∼= φ.

Proof. By Theorem 2.2.c in [Ja00], a locally free sheaf of finite rank E equipped
with a Galois action compatible with the Galois action on the underlying quasi-pro-
jective L-scheme Y comes from a locally free sheaf (of the same rank) on the quasi-
projective K-scheme Y ′, where Y ′×SpecL∼= Y . Since there is a 1-to-1 canonical
correspondence between finite rank vector bundles and locally free sheaves of finite
rank, the result follows. �

3. Rational maps of flag varieties

Let K be a field and K be its algebraic closure. Let V be a vector space over K.
Assume V = V1 ⊕ V2 is a direct sum decomposition, dim V = n and dimVi = ni
(i = 1, 2). Consider the strictly increasing sequences of nonnegative integers d =
(d1, d2, . . . , dp) and e = (e1, e2, . . . , eq), where dp 5 n1 < e1 and eq 5 n. We are
going to investigate the rational maps

φ1 : Fl(d, V ) 99K Fl(d, V1),

Z1 < · · · < Zp 7→ pr(Z1) < · · · < pr(Zp)
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where pr : V → V1 is the projection along V2, Zi’s (i = 1, . . . , p) are the vector
spaces forming the flag (dimZi = di),

φ2 : Fl(e, V ) 99K Fl(e− n1, V2),

W1 < · · · < Wq 7→W1 ∩ V2 < · · · < Wq ∩ V2

where Wj ’s (j = 1, . . . , q) are the vector spaces forming the flag (dimWj = ej),

ψ : Fl(d < e, V ) 99K Fl(d, V1)× Fl(e− n1, V2),

Z1< · · ·<Zp<W1< · · ·<Wq 7→
(
pr(Z1)< · · ·<pr(Zp),W1 ∩ V2< · · ·<Wq ∩ V2

)
where Zi’s (i = 1, . . . , p) and Wj ’s (j = 1, . . . , q) are the vector spaces forming the
flag (dimZi = di, dimWj = ej).

Clearly all of these are rational maps. φ1 is defined on the open subvariety

U1 = {Z1 < · · · < Zp ∈ Fl(d, V ) | Zp ∩ V2 = {0}},

φ2 is defined on the open subvariety

U2 = {W1 < · · · < Wq ∈ Fl(e, V ) |W1 t V2}
= {W1 < · · · < Wq ∈ Fl(e,V) |W1 + V2 = V },

and ψ is defined on the open subvariety

U = {Z1 < · · · < Zp < W1 < · · · < Wq ∈ Fl(d < e, V ) |
Zp ∩ V2 = {0},W1 + V2 = V }.

We can check that U1, U2 and U are open subvarieties. Indeed, let αp be the
tautological vector bundle on the flag variety Fl(d, V ) corresponding to the dp-
dimensional linear subspaces of V , and let β1 be the tautological vector bundle on
the flag variety Fl(e, V ) corresponding to the e1-dimensional linear subspaces of
V . Let ρ be the global section of the hom-vector bundle HomK(αp, V/V2) induced
by the projection V → V/V2, and let τ be the global section of the hom-vector
bundle HomK(β1, V/V2) induced by the projection V → V/V2. U1 is the open locus
where ρ has maximal rank, while U2 is the open locus where τ has maximal rank.
Combining the above arguments, we can also show that U is an open subvariety.

Proposition 9. Using the notation introduced in this section, the following holds.
The triples (U1,Fl(d, V1), φ1), (U2,Fl(e − n1, V2), φ2) and (U,Fl(d, V1) × Fl(e −
n1, V2), ψ) form vector bundles.

Proof. To see this, first, consider the fiber of φ1 over an arbitrary flag S1 < · · · <
Sp ∈ Fl(d, V1). Notice that if Z1 < · · · < Zp is in the fiber, then it is uniquely
determined by Zp. Indeed pr induces and an isomorphism between Zp and Sp, so
there is a unique linear subspace of Zp which maps to Si (i = 1, . . . , p).

The dp-dimensional linear subspaces of V which are mapped to Sp are para-
metrized by Hom(Sp, V2). If f ∈ Hom(Sp, V2), then the graph of f considered as a
linear subspace of V determines Zp. More precisely

Zp = {v + f(v) | v ∈ Sp}. (1)
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On the other hand, Zp gives an element in Hom(Sp, V2) by the composition pr′ ◦ t,
where t : Sp → Zp is the inverse of the linear isomorphism between Zp and Sp
induced by pr and pr′ : V → V2 is the projection along V1. These two constructions
are inverse to each other, which shows our claim on the fiber.

The argument can be globalized. It shows that U1 is isomorphic to the total
space of the vector bundle corresponding to the locally trivial sheaf of finite rank
HomO(γp, V2 ⊗O), where γp is the sheaf of sections of the tautological bundle of
the flag variety Fl(d, V1) corresponding to the dp-dimensional linear subspaces and
O is the structure sheaf of Fl(d, V1).

A similar argument shows that U2 is the total space of the vector bundle corres-
ponding to the locally trivial sheaf of finite rank HomO(V1⊗O, (V2⊗O)/η1), where
η1 is the sheaf of sections of the tautological bundle of the flag variety Fl(e−n1, V2)
corresponding to the e1 − n1-dimensional linear subspaces and O is the structure
sheaf of Fl(e − n1, V2). (By the properties of η1, (V2 ⊗ O)/η1 is a locally trivial
sheaf of finite rank).

Indeed, again, notice first that an element W1 < · · · < Wq ∈ Fl(e, V ), which is
in the fiber over T1 < · · · < Tq ∈ Fl(e − n1, V2), is uniquely determined by W1.
Since Wj should contain both W1 and Tj , moreover W1 ∩ Tj = W1 ∩ V2 = T1, we
have Wj = W1 + Tj by dimension counting (j = 1, . . . , q).

The e1-dimensional linear subspaces W1 < V , such that W1 ∩ V2 = T1, are
parametrized by Hom(V1, V2/T1). For g ∈ Hom(V1, V2/T1) consider the linear
subspace

W ′1 = {u(v) + g(v) ∈ V/T1 | v ∈ V1} (2)

of the quotient space V/T1, where we use u to denote the quotient morphism
u : V → V/T1. Finally, let

W1 = u−1(W ′1). (3)

Conversely, assume W1 is given. Identify V1 , V2/T1 and W1/T1 with linear sub-
spaces of V/T1. Let p1 : V/T1 → V1 be the projection along V2/T1, and p2 : V/T1 →
V2/T1 be the projection along V1. p1 induces an isomorphism q1 : W1/T1 → V1.
Let g ∈ Hom(V1, V2/T1) be g = p2 ◦ q−11 . These two constructions are inverse to
each other. The argument globalizes. This proves our claim.

For ψ we can use similar constructions. The fiber over (S1 < · · · < Sp, T1 <
· · · < Tq) is parametrized by a linear subspace E < Hom(Sp, V2)×Hom(V1, V2/T1)
for which the constructions, described in the previous paragraphs, yield linear
subspaces Zp and W1 satisfying Zp < W1.

This condition is equivalent to Zp 5 W1 by dimension counting, which in turn
is equivalent to Zp + T1 5 W1. Using the projection u : V → V/T1, our condition
is u(Zp) 5 u(W1). By the construction of Zp and W1 from (f, g) ∈ Hom(Sp, V2)×
Hom(V1, V2/T1), the condition is equivalent to

(u+ u ◦ f)(Sp) 5 (u+ g)(V1).

Consider the identification V/T1 = V1 ⊕ V2/T1.

{(v, u ◦ f(v)) ∈ V1 ⊕ V2/T1 | v ∈ Sp}
= (u+ u ◦ f)(Sp) 5 (u+ g)(V1) = {(v, g(v)) ∈ V1 ⊕ V2/T1 | v ∈ V1}.
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This is equivalent to u ◦ f = g ◦ i, where i : Sp → V1 is the inclusion map. Let F
be the surjective map of linear spaces given by

F : Hom(Sp, V2)×Hom(V1, V2/T1)→ Hom(Sp, V2/T1),

(f, g) 7→ u ◦ f − g ◦ i.

Then E = KerF . Once again, this construction globalizes. U ⊂ Fl(d < e, V ) is
the total space of the vector bundle corresponding to a locally trivial sheaf of finite
rank E . (E is the kernel of a surjective morphism of locally trivial sheaves of finite
rank, hence it is locally trivial of finite rank.) �

Remark 10. Let A1, A2 and A be the complements of the open subvarieties U1, U2

and U in the appropriate flag varieties and endow them with the reduced scheme
structure. A short calculation shows that

A1 = {Z1 < · · · < Zp ∈ Fl(d, V ) | dim(Zp ∩ V2) > 0},
A2 = {W1 < · · · < Wq ∈ Fl(e, V ) | dim(W1 ∩ V2) > e1 − n1},
A = {Z1 < · · · < Zp < W1 < · · · < Wq ∈ Fl(d < e, V ) |

dim(Zp ∩ V2) > 0 or dim(W1 ∩ V2) > e1 − n1}.

Hence A1, A2 and A are union of Schubert cells. Recall that an a-dimensional
Schubert cell is isomorphic to the a-dimensional affine space Aa. (For more details
on Schubert cells the interested reader can consult with [Fu97, Chapt. 10.2].)

Remark 11. By Lemma 6 we can find a finite Galois extension L|K (where L 5 K)
such that φ1, φ2, ψ, U1, U2, U and A1, A2, A are defined over L. Moreover we can
require that, the decompositions of A1, A2 and A into the union of Schubert cells
exist over the field L. In particular, this implies that the sets of L-rational points
are dense in A1, A2 and A (as the same hold for the affine spaces).

Furthermore, since a vector bundle structure over a variety can be defined only
using finitely many elements from the ground field, we can secure that Proposition
9 also holds over L.

During Section 5 we will work over a finite Galois extension L|K and use the
notation introduced in this section (more precisely its corresponding counterpart
which is defined over the field L).

4. Group actions on forms of flag varieties

We recall some theorems about birational automorphism groups. To start with,
we introduce the notion of strongly Jordan groups. It first appeared in [BZ15b].

Definition 9 ([BZ15b, Def. 1.1]). A group G is called strongly Jordan if it is
Jordan, and there exists a constant r ∈ N such that every finite Abelian subgroup
A 5 G can be generated by r elements, in other words the rank of an arbitrary
finite Abelian subgroup is smaller than r.

Theorem 10. Let X be a variety. If X is either rationally connected or non-
uniruled, then the birational automorphism group Bir(X) is strongly Jordan.
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Proof. If X is rationally connected then the birational automorphism group is
Jordan by [PS16a, Thm. 1.8] and [Bi16, Thm. 1.1]. If X is non-uniruled then the
birational automorphism group is Jordan by [PS14, Thm. 1.8].

Furthermore, [PS14, Rem. 6.9] and [Bi16, Thm. 1.1] show that the ranks of
the finite Abelian subgroups of the birational automorphism group of an arbitrary
variety is bounded by a constant depending only on the variety.

Putting together these results prove the theorem. �

Theorem 11. Let X be a variety. Let G 5 Bir(X) be an arbitrary subgroup of the
birational automorphism group. Assume that G is not bounded. Then there exist
elements of G of finite and arbitrary large order.

Proof. Assume that there exists a constant N ∈ N such that if g ∈ G is an element
of finite order, then the order of g is smaller than N . We will show that this implies
the boundedness of G.

By [PS14, Prop. 6.2] for an arbitrary variety X (using the MRC-fibration) we
can fix a rationally connected variety Xrc over some function field and a non-
uniruled variety Xnu over the ground field such that an arbitrary finite subgroup
G0 5 G(5 Bir(X)) is an extension of finite groups Grc and Gnu, where Grc 5
Bir(Xrc) and Gnu 5 Bir(Xnu). (Note that, if the MRC-fibration is trivial, then
either the group Grc or the group Gnu is trivial, which does not pose any problem
in our argument.)

We know that Bir(Xrc) and Bir(Xnu) are strongly Jordan groups. Denote the
corresponding Jordan constants by Jrc and Jnu respectively, and denote the
constants bounding the ranks of finite Abelian subgroups by rrc and rnu respecti-
vely. Since Xrc and Xnu only depend on X, Jrc, Jnu and rrc, rnu only depend on
X as well.

We will use the following easy observation. Let A be a finite Abelian group.
Assume that A can be generated by r elements and the order of an arbitrary
element a ∈ A is smaller than N . Then the cardinality of A is smaller than rN .
Grc is isomorphic to a finite subgroup of G0, therefore the order of an arbitrary

element of Grc is smaller than N . Grc has an Abelian subgroup of rank at most
rrc and of index smaller than Jrc. Hence |Grc| < Jrcr

N
rc .

Gnu is the homomorphic image of G0, therefore the order of an arbitrary element
of Gnu is smaller than N . Gnu has an Abelian subgroup of rank at most rnu and
of index smaller than Jnu. Hence |Gnu| < Jnur

N
nu.

Therefore |G0| < JrcJnu(rrcrnu)N . Since G0 was an arbitrary finite subgroup of
G, and all constants depend only on X, G is bounded. This contradiction finishes
the proof. �

Remark 12. A similar argument proves the following claim. Let X be a variety,
then there exists a constant m ∈ N, depending only on X, such that any finite
subgroup of the birational automorphism group Bir(X) can be generated by m
elements.

Definition 10. Let K be a field and let the K-variety X be a form of a flag
variety. Let L be a splitting field for X such that L|K is a Galois extension. Fix
an isomorphism ϕ : Fl(d, V )→ X × SpecL. Let T : Gal(L|K)→ AutK(Fl(d, V ))
be the twisted Galois action defined by T (σ) = ϕ−1 ◦ (id × S(σ)) ◦ ϕ, where σ
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is an arbitrary element of Gal(L|K) and S(σ) : SpecL → SpecL is induced by
σ−1 : L→ L. We call T the Galois action corresponding to ϕ.

Let the variety X be a form of an admissible flag variety and assume that its
automorphism group is not bounded. In the next lemma we will examine the effect
of the commutation of the automorphism group of X (viewed as a subgroup of
the automorphism group of the corresponding flag variety) and the corresponding
twisted Galois action.

Lemma 12. Let K be a field containing all roots of unity. Let the K-variety X
be a form of an admissible flag variety. Let L be a splitting field for X such that
L|K is a Galois extension. Assume that the automorphism group AutK(X) is
not bounded. Let X × SpecL ∼= Fl(d, V ) (where V is an L-vector space), and
let T : Gal(L|K) → AutK(Fl(d, V )) be the corresponding twisted Galois action.
We can choose a basis b of V such that it splits as b = b1 ∪ b2 (b1, b2 6= ∅),
giving rise to a direct sum decomposition V = V1 ⊕ V2 such that ∀σ ∈ Gal(L|K):
T (σ) = aσ ◦ Bb(σ) (see Definition 8), where aσ ∈ AutL(Fl(d, V )) = PGL(V )
respects this decomposition, i.e., an arbitrary lift cσ ∈ GL(V ) of aσ is contained
in GL(V1)×GL(V2) < GL(V ).

Proof. The isomorphism X×SpecL ∼= Fl(d, V ) induces an isomorphism AutL(X×
SpecL) ∼= AutL(Fl(d, V )) = PGL(V ). Let n = dimV , and fix a finite order
element g ∈ AutK(X) with order larger than n!. It exists by the previous theorem.
g can be viewed as an element in PGL(V ) since AutK(X) 5 AutL(X × SpecL).

Let h be a fixed lift of g to GL(V ) such that the order of h is equal to the
order of g; it exists since K contains all roots of unity. Notice that h is of finite
order, hence it is semisimple (since we are in characteristic 0). Let b be a basis of
V consisting of eigenvectors of h. Again, this basis exists as K contains all roots
of unity and h is of finite order (hence its eigenvalues are roots of unity).

Let V ∼= Vλ1
⊕ Vλ2

⊕ · · · ⊕ Vλr
be the direct sum decomposition corresponding

to the eigenspaces of hn!. Since gn! 6= 1, the linear transformation hn! cannot be
a scalar multiply of the identity, therefore it has at least two distinct eigenspaces,
i.e., r = 2. Let V1 = Vλ1 and V2 = Vλ2⊕· · ·⊕Vλr . The basis b splits as b1∪b2, where
bi is a basis of Vi. Indeed, an eigenspace of hn! is a direct sum of the eigenspaces
of h.

Moreover, since h is chosen to be of finite order: h ◦ Ab(σ) = Ab(σ) ◦ h, as K
contains all roots of unity by assumption.

The action of g on X×SpecL commutes with the natural Galois action. Indeed
the action of g derives from a group action on X, while the natural Galois action
derives from a group action on SpecL. Using the isomorphism AutL(X×SpecL) ∼=
PGL(V ), this leads us to g ◦ (aσ ◦ Bb(σ)) = (aσ ◦ Bb(σ)) ◦ g. Since h and Ab(σ)
commutes, the same holds for g and Bb(σ), hence g ◦ aσ = aσ ◦ g ∈ PGL(V ).

Lift this equation to GL(V ): hcσ = νσcσh, where cσ is an arbitrary lift of aσ,
and νσ ∈ L only depends on σ (as we keep h fixed throughout our argument).

Let v1, v2, . . . , vn ∈ V be a basis consisting of eigenvectors of h, i.e., hvi = µivi
(µi ∈ L; i = 1, . . . ., n). Consider the basis cσv1, cσv2, . . . , cσvn, it is also a basis
consisting of eigenvectors of h. Indeed, h(cσvi) = νσcσhvi = νσµi(cσvi). Since the
eigenvalues of h are uniquely determined, multiplication with νσ must permute
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them. Therefore νσ is a root of unity, with order less than or equal to n (∀σ ∈
Gal(L|K)). Hence hn!cσ = cσh

n!. Therefore cσ ∈ GL(V1) × GL(V2) < GL(V )
(∀σ ∈ Gal(L|K)). �

Remark 13. A similar, but much more technical, statement can be formulated
including the case of non-admissible flag varieties. Since we will not use it, we
decided only to state the simpler version which applies to admissible flags.

5. Proof of the Main Theorem

The strategy for the proof is the following. Instead of working with X, we will
consider a flag variety equipped with a twisted Galois action. Using the splitting
established in Lemma 12 and the constructions introduced in Section 3, we will
build a Galois equivariant morphism from the flag variety to a lower-dimensional
variety, which is isomorphic to the Galois equivariant projection morphism of a
vector bundle. Finally, by the use of Galois descent, we achieve the desired result.

If AutK(X) is bounded, then the claim of the main theorem (Theorem 1) holds,
so in the following we assume otherwise.

5.1. Setup of the proof of Theorem 1

Notation. Let K be a field of characteristic 0, containing all roots of unity. Let the
K-variety X be a form of an admissible flag variety.

We will use the notations of φ1, φ2, ψ and U1, U2, U introduced in Section 3
(see also Remark 11).

Let L be a splitting field for X such that L|K is a finite Galois extension (see
Definition 6). Let X × SpecL ∼= Fl(d0, V ) (where V is an L-vector space), and
let T : Gal(L|K) → AutK(Fl(d0, V )) be the corresponding Galois action (see
Definition 10). Let b be the basis of V established in Lemma 12, b = b1 ∪ b2 and
V = V1 ⊕ V2 be the corresponding decompositions. By enlarging L if necessary,
we can assume that φ1, φ2, ψ and U1, U2, U are defined over L (see Remark 11),
Proposition 9 holds over L, moreover, we can require that the sets of L-rational
points in the complements of U1, U2 and U are dense (see Remark 11). Let

A = Ab : Gal(L|K)→ LinK(V ),

B = Bb : Gal(L|K)→ AutK(Fl(d0, V ))

be the corresponding twisted Galois actions (see Definition 8). Finally, let n =
dimV and ni = dimVi (i = 1, 2).

There are three different cases depending on the sequence d0 = (d0,1 < d0,2 <
· · · < d0,r) and on dimV1 = n1. Case 1: d0,r 5 n1, Case 2: n1 < d0,1 and Case 3:
d0,1 5 n1 < d0,r. All of them should be handled similarly.

In the following we will explicitly deal with Case 3. This contains all the
necessary techniques and calculations involved in Case 1 and Case 2. At the end
of each step we remark some of the necessary changes to deal with the other cases.

Construction of the Galois actions on the target spaces. Let’s assume Case 3. We
will investigate ψ, at the end of the subsection we will note the changes for the
other two cases. Split d0 as d = (d1 < · · · < dp) and e = (e1 < · · · < eq), where
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dp 5 n1 < e1 and d0 = (d1 < · · · < dp < e1 · · · < eq). The basis b1 and b2 induce
the following actions:

A1 = Ab1 : Gal(L|K)→ LinK(V1),

B1 = Bb1 : Gal(L|K)→ AutK(Fl(d, V1)),

A2 = Ab2 : Gal(L|K)→ LinK(V2),

B2 = Bb2 : Gal(L|K)→ AutK(Fl(e− n1, V2)).

By Lemma 12 ∀σ ∈ Gal(L|K): T (σ) = aσ ◦ Bb(σ) (aσ ∈ PGL(V )), and an
arbitrary lift of aσ, denoted by cσ, splits, i.e., cσ ∈ GL(V1) × GL(V2). For every
σ ∈ Gal(L|K) fix a lift cσ, and let cσ,1 ∈ GL(V1) and cσ,2 ∈ GL(V2) be its
components. Let aσ,1 ∈ PGL(V1) and aσ,2 ∈ PGL(V2) be the images of cσ,1 and
cσ,2 respectively. Since all steps in our construction were compatible with the
decomposition V = V1 ⊕ V2,

Q1 : Gal(L|K)→ AutK(Fl(d, V1)),

σ 7→ aσ,1 ◦B1(σ),

Q2 : Gal(L|K)→ AutK(Fl(e− n1, V2)),

σ 7→ aσ,2 ◦B2(σ)

define twisted Galois actions for Fl(d, V1) and Fl(e− n1, V2) respectively. Putting
them together

Q : Gal(L|K)→ AutK(Fl(d, V1)× Fl(e− n1, V2)),

σ 7→ (aσ,1 ◦B1(σ))× (aσ,2 ◦B2(σ))

defines a twisted Galois action on Fl(d, V1)× Fl(e− n1, V2).
In Case 1 and Case 2 we do not need to introduce the notations d and e. In

Case 1 we need to consider a Q1-like action on Fl(d0, V1) (we denote it by R1),
while in Case 2 we need to consider a Q2-like action on Fl(d0−n1, V2) (we denote
it by R2).

5.2. Steps of the proof of Theorem 1

Galois equivariance of the rational maps φ1, φ2 and ψ . To show the Galois equi-
variance of φ1, φ2 and ψ we need to check two things, the invariance of the open
subvariety where the rational maps are defined (U1, U2 and U , respectively), and
the equivariance of the corresponding morphisms from the open subvarieties to the
target spaces.

Lemma 13. The open subvarieties U1, U2 and U are invariant under the Galois
actions, i.e., ∀σ ∈ Gal(L|K) T (σ)Ui = Ui (i = 1, 2) and T (σ)U = U .

Proof. We consider the case of U ; the proof for the other two cases are almost
verbatim.

Let σ ∈ Gal(L|K) be an arbitrary element of the Galois group. First notice that
L-rational points of a flag variety can be identified with the flags of the underlying
vector space.
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We will show that an L-rational point (i.e., a flag) belongs to U if and only
if it belongs to T (σ)U . Notice that the L-rational points of the open subvariety
U ⊂ Fl(d < e, V ) are given by

{Z1 < · · · < Zp < W1 < · · · < Wq | Zp ∩ V2 = {0},W1 + V2 = V }.

By construction, V1, V2 and V are invariant under the natural actions of cσ and
A(σ). Hence

T (σ)(Z1 < · · · < Zp < W1 < · · · < Wq)

= (cσ ◦A(σ))(Z1) < · · · < (cσ ◦A(σ))(Zp)

< (cσ ◦A(σ))(W1) < · · · < (cσ ◦A(σ))(Wq)

satisfies the defining equation of the L-rational points of U if and only if Z1 <
· · · < Zp < W1 < · · · < Wq ∈ U .

Consider the complements of U and T (σ)U as topological subspaces in the
underlying topological space of Fl(d < e, V ). They are homeomorphic Zariski
closed sets, moreover they contain exactly the same set of L-rational points. We
have chosen the field L in such a way that the L-rational points in the complement
of U form a dense set. Putting these together implies that the complements of U
and of T (σ)U are equal. Hence T (σ)U = U as open subvarieties. �

Recall the definitions of the Galois actions R1, R2 and Q from Section 5.1.

Lemma 14.

(1) The morphism φ1 : U1 → Fl(d0, V1) is equivariant for the twisted Galois
actions T and R1.

(2) The morphism φ2 : U2 → Fl(d0 − n1, V2) is equivariant for the twisted
Galois actions T and R2.

(3) The morphism ψ : U → Fl(d, V1) × Fl(e − n1, V2) is equivariant for the
twisted Galois actions T and Q.

Proof. First notice that L-flag varieties can be covered by affine spaces AmL , where
m is the appropriate dimension. Therefore the L-rational points form a dense set
(as the same holds for AmL ). Hence, to show that two morphisms whose domains
and target spaces are built up from open subvarieties of L-flag varieties are equal, it
is enough to show that they are equal on L-rational points, which can be identified
with flags. (Also note that checking Galois equivariance is equivalent to checking
equality of morphisms.)

From now on we will deal with the case of ψ and note the necessary changes at
the end of the proof for the other two cases. The twisted Galois action T on the
L-rational points (i.e., on the flags) is given by the formula

T (σ)(Z1 < · · · < Zp < W1 < · · · < Wq)

= (cσ ◦A(σ))(Z1) < · · · < (cσ ◦A(σ))(Zp)

< (cσ ◦A(σ))(W1) < · · · < (cσ ◦A(σ))(Wq)
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where Z1 < · · · < Zp < W1 < · · · < Wq is an arbitrary flag of the open subvariety
U and σ ∈ Gal(L|K) is an arbitrary element of the Galois group. On the other
hand, the twisted Galois action Q is given by the formula

Q(σ)(S1 < · · · < Sp, T1 < · · · < Tq)

= ((cσ,1 ◦A1(σ))(S1) < · · · < (cσ,1 ◦A1(σ))(Sp),(
cσ,2 ◦A2(σ))(T1) < · · · < (cσ,2 ◦A2(σ))(Tq)

)
where (S1 < · · · < Sp, T1 < · · · < Tq) is an arbitrary L-rational point of the product
variety Fl(d, V1)×Fl(e− n1, V2) and σ ∈ Gal(L|K) is an arbitrary element of the
Galois group. Comparing these equations with the definition of ψ shows that for
verifying the Galois equivariance of ψ it is enough to check that the following hold.

pr ◦ (cσ ◦A(σ))(Z) = (cσ,1 ◦A1(σ)) ◦ pr(Z)

(cσ ◦A(σ))(W ) ∩ V2 = (cσ,2 ◦A2(σ))(W ∩ V2),

where Z and W are arbitrary linear subspaces of V and pr : V → V1 is the
projection along V2.

For the first equation, consider an arbitrary vector v ∈ V . It can be written as
v = v1 + v2 where vi ∈ Vi (i = 1, 2):

(pr ◦ cσ ◦A(σ))(v) = (cσ,1 ◦A1(σ))(v1) = (cσ,1 ◦A1(σ) ◦ pr)(v).

Hence the first equation is satisfied. For the second one, let W 5 V be an arbitrary
linear subspace.

(cσ ◦A(σ))(W ) ∩ V2 = (cσ ◦A(σ))(W ) ∩ (cσ ◦A(σ))(V2)

= (cσ ◦A(σ))(W ∩ V2) = (cσ,2 ◦A2(σ))(W ∩ V2),

where we used that V2 is invariant under cσ ◦A(σ) and that cσ ◦A(σ) is a bijection
from V to V . Hence the second equation is satisfied too, which shows that ψ is
Galois equivariant.

For the case of φ1 we need to perform the steps corresponding to the Z1 < · · ·
· · · < Zp-part of the above argument, meanwhile for the case of φ2 we need to
perform the steps corresponding to the W1 < · · · < Wq-part. �

Galois equivariance of the vector bundle structure.

Lemma 15. The vector bundles (U1,Fl(d0, V1), φ1), (U2,Fl(d0−n1, V2), φ2) and
(U,Fl(d, V1)×Fl(e−n1, V2), ψ) are Galois equivariant. In other words, the Galois
actions respect the addition and twist (by the corresponding element of the Galois
group) the multiplication by scalar operations.

Proof. Again using the fact that L-rational points of L-flag varieties form a dense
set, it is enough to check that the vector bundle structure is respected on the L-
rational points, i.e., on the flags. As usual we assume the case of (U,Fl(d, V1) ×
Fl(e − n1, V2), ψ) and note the necessary changes for the other two cases at the
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end of the proof.
Let Z1 < · · · < Zp < W1 < · · · < Wq ∈ U be an arbitrary flag lying over

(S1 < · · · < Sp, T1 < · · · < Tq) ∈ Fl(d, V1)×Fl(e−n1, V2). As we have seen before,
its image under T (σ) (σ ∈ Gal(L|K)) is the flag

(cσ ◦A(σ))(Z1) < · · · < (cσ ◦A(σ))(Zp)

< (cσ ◦A(σ))(W1) < · · · < (cσ ◦A(σ))(Wq) ∈ U

which lies over

(
(cσ,1 ◦A1(σ))(S1) < · · · < (cσ,1 ◦A1(σ))(Sp),

(cσ,2 ◦A2(σ))(T1) < · · · < (cσ,2 ◦A2(σ))(Tq)
)
∈ Fl(d, V1)× Fl(e− n1, V2).

Using these formulas and the equations (1), (2) and (3) which construct the
flag Z1 < · · · < Zp < W1 < · · · < Wq ∈ U from (f, g) ∈ E < Hom(Sp, V2) ×
Hom(V1, V2/T1) (and the corresponding equations for the image of the flag), we
can see that the image of the flag corresponds to

(cσ,2 ◦A2(σ)) ◦ f ◦ ((cσ,1 ◦A1(σ))−1 ∈ Hom((cσ,1 ◦A1(σ))(Sp), V2),

(cσ,2 ◦A2(σ)) ◦ g ◦ ((cσ,1 ◦A1(σ))−1 ∈ Hom(V1, V2/(cσ,2 ◦A2(σ))(T1)),

where

(cσ,2 ◦A2(σ)) : V2/T1 → V2/(cσ,2 ◦A2(σ))(T1)

is the σ-linear homomorphism induced by cσ,2 ◦ A2(σ) : V2 → V2. Therefore we
have a Galois action on the vector bundle structure which respects the addition
and twists the multiplication by scalar operations. (Observe that the formula of
the action does not depend on the choice of the lift cσ, as both cσ,1 and cσ,2 derive
from the same lift.)

Again for the other two cases we only need to carry out half of the proof. For the
case of (U1,Fl(d0, V1), φ1) we need the part which corresponds to Z1 < · · · < Zp
and f , while for the case of (U2,Fl(d0 − n1, V2), φ2) we need the other half which
corresponds to W1 < · · · < Wq and g. �

Galois descent. We can finish our proof with the help of the Galois descent.

Proof of Theorem 1. For Case 3 we can summarize the results of the previous
lemmas in the following way. We constructed a Galois equivariant commutative
diagram of L-varieties, where ψ is a Galois equivariant projection of a vector bundle
structure:

U

ψ

��

� � // Fl(d < e, V )

uu
Fl(d, V1)× Fl(e− n1, V2)

.
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Generally (including all three cases) we can say that, there is a Galois equivariant
commutative diagram of L-varieties

W

π

��

� � i // Fl(d0, V )

zz
Y

where W is an open subvariety of Fl(d0, V ) and (W,Y, π) is a Galois equivariant
vector bundle (Lemma 15).

Finally, we can use results of the Galois descent (Theorem 7 and Theorem 8)
to achieve a commutative diagram over K with the same properties:

W ∗

π∗

��

� � // X

}}
Y ∗

W ∗ is an open subvariety of X, therefore they are birational. Since W ∗ is a vector
bundle over Y ∗, W ∗ is birational to Pm × Y ∗ for some m > 0. Putting these
together shows that X is birational to Pm × Y ∗. �

Remark 14. Now we can reflect on the role of the admissibility condition. In the
proof above we showed that we can endow Fl(d, V1), Fl(e−n1, V2) and Fl(d, V1)×
Fl(e−n1, V2) with twisted Galois actions which makes the morphism φ1, φ2 and ψ
Galois equivariant. If Fl(d, V ) is non-admissible then Fl(d, V1) and Fl(e− n1, V2)
must be admissible. In this case there exists a pair (T, σ) where T : Gal(L|K) →
AutK(Fl(d, V )) is a twisted Galois action and σ ∈ Gal(L|K) is such that T (σ) =
aσ ◦ Bb(σ) is ‘dimension-swapping’, i.e., aσ /∈ PGL(V ) (see Remark 8). Because
of this dimension-swap we cannot construct Galois actions on the target spaces
which makes the morphisms φ1, φ2 and ψ Galois equivariant.

6. Brauer–Severi surfaces

We analyze the question of non-ruledness of non-trivial Brauer–Severi surfaces.
We need to introduce a couple of new concepts. We will not explain them in full
detail; the interested reader is referred to [GS06], [Ja00] and [Ko16] for further
information on the subject. During this section we can relax the condition that
the ground field is of characteristic zero.

Definition 11. Let K be a field, and let X and Y be Brauer–Severi varieties
over K with dimensions n and m respectively. Let ϕ : X 99K Y be a rational
map. ϕ is called twisted linear if it is linear over K, i.e., the composite map
Pn ∼= X × SpecK 99K Y × SpecK ∼= Pm is linear.

We call the pair (X,ϕ) a twisted linear subvariety of Y if the composite map is
induced by a linear injection. (Notice that in the case of a twisted linear subvariety
ϕ can be extended to a morphism of varieties.) If no confusion can arise we denote
the pair (X,ϕ) simply by X.
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We call X a minimal twisted linear subvariety of Y , if it is a twisted linear
subvariety and has minimal dimension amongst the twisted linear subvarieties. By
[Ko16, Thm. 28] the isomorphism class of a minimal twisted linear subvariety is
well defined.

We call the Brauer–Severi variety Y minimal if the only twisted linear subvariety
of Y is itself (up to isomorphism).

For an arbitrary Brauer–Severi variety P we will denote a fixed minimal twisted
linear subvariety by Pmin.

Lemma 16. Let K be a field and let X be a Brauer–Severi curve or a Brauer–
Severi surface over K. X is non-trivial if and only if X is minimal.

Proof. If X is a non-minimal Brauer–Severi curve then X has a 0-dimensional
twisted linear subvariety, i.e., X has a K-rational point. Then by Châtelet’s theo-
rem X is trivial ([GS06, Thm. 5.1.3]).

If X is a non-minimal Brauer–Severi surface then X either has a K-rational
point or a one-codimensional twisted linear subvariety. In both cases X is trivial
by versions of Châtelet’s theorem.

The other directions are trivial. �

Definition 12 ([Ko16, Def.-Lem. 31]). We call two Brauer–Severi varieties X and
Y similar or Brauer equivalent if Xmin ∼= Y min.

Remark 15. There is a canonical correspondence between central simple algebras
and Brauer–Severi varieties over a given field K (Theorem 5.1 in [Ja00]). We can
also introduce the Brauer equivalence relation on the central simple algebras in a
natural way. The canonical correspondence between central simple algebras and
Brauer–Severi varieties respects these equivalence relations.

Furthermore we can endow the central simple algebras with operations (tensor
product and taking the opposite algebra), which respect the Brauer equivalence
relation and turn the equivalence classes into a commutative group, called the
Brauer group ([GS06, Chap. 2.4]).

A similar construction can be carried out purely geometrically.

Theorem 17. We can introduce operations on Brauer–Severi varieties which turn
the Brauer equivalence classes into a commutative group which is naturally isomor-
phic to the Brauer group. (For further details see [Ko16, Sects. 4 and 5].)

Remark 16. If X and Y are Brauer–Severi varieties we will use the notation X⊗Y
for the binary operation introduced in Theorem 17. We will use the notation X⊗m

to denote the m-fold ‘product’ of X with itself (m ∈ Z+).

Theorem 18 (Amitsur’s theorem, [Ko16, Prop. 45]). Let X and Q be
Brauer–Severi varieties. The following two conditions are equivalent: Q is similar
to X⊗m for some positive integer m; there is a rational map ϕ : X 99K Q.

Definition 13. Let K be a field and X be a projective K-variety. The index of
X is the greatest common divisor of the degrees of all 0-cycles on X. It is denoted
by ind(X).

Lemma 19 ([Ko16, Lem. 51]). Let X be a Brauer–Severi variety and m be a
positive integer, then the index of X⊗m divides the index of X.
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Theorem 20 ([Ko16, Thm. 53]). Let X be a Brauer–Severi variety. Then ind(X)
= ind(Xmin) = dimXmin + 1.

Lemma 21. Let K be a field and X be a Brauer–Severi surface over K. If X is
ruled then either X is trivial or there exists a rational map ϕ : X 99K Q, where Q
is a non-trivial Brauer–Severi curve.

Proof. If X is ruled then it is birational to P1
K×Q, where Q is a smooth projective

curve. Notice that if Q is birational to P1
K , then X has K-rational points, therefore

X is trivial by Châtelet’s theorem. So we can assume that Q is not isomorphic to
the projective line.

Denote Q × SpecK by QK . Since X is a Brauer–Severi surface, P1
K
× QK is

rational. Therefore we can take a general rational curve c : P1
K
→ P1

K
×QK (i.e.,

we can take a general morphism of the projective line to P1
K
× QK) and we can

compose c with the canonical projection P1
K
→ P1

K
×QK → QK . Since c is general,

the composite is dominant (i.e., the rational curve does not lie in a fiber over QK).
Hence we get a non-trivial morphism from a projective line to the smooth curve
QK . This implies that QK is isomorphic to the projective line, i.e., Q is a Brauer–
Severi curve. As Q is not isomorphic to the projective line, Q is non-trivial.

The composite X 99K P1
K × Q → Q, where the first map is the birational

isomorphism giving the ruledness and the second is the canonical projection, gives
a rational map X 99K Q from X to a non-trivial Brauer–Severi curve. �

Proof of Theorem 2. If the Brauer–Severi surface X is trivial, then it is ruled.
Assume that X is non-trivial and ruled. By the previous lemma there is a

rational map ϕ : X 99K Q, where Q is a non-trivial Brauer–Severi curve.
By Amitsur’s theorem (Theorem 18) Q is similar to X⊗m for some positive

integer m. Hence Qmin ∼= (X⊗m)min by the definition of similarity.
We can consider indices:

2 = dimQ+ 1 = dimQmin + 1 = ind(Qmin) = ind((X⊗m)min) = ind(X⊗m),

by Lemma 16 and by Theorem 20. On the other hand ind(X⊗m) divides ind(X)
by Lemma 19, and

ind(X) = dimXmin + 1 = dimX + 1 = 3,

by Theorem 20 and Lemma 16. Since 2 does not divide 3, we arrive at a contra-
diction. Hence a non-trivial Brauer–Severi surface cannot be ruled. This finishes
the proof. �

Remark 17. Brauer–Severi surfaces correspond canonically to degree three central
simple algebras ([Ja00, Thm. 5.1]). (The degree of a central simple algebra is the
square root of its dimension; it is a positive integer.) By Wedderburn’s theorem
degree three central simple algebras are cyclic algebras ([Pi82, Chap. 15.6]). More-
over, if K is a field of characteristic zero containing all roots of unity, then cyclic
algebras over K are given by the following presentation:

K〈x1, x2 | xm1 = a, xm2 = b, x1x2 = ωx2x1〉,
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where m ∈ Z+, a, b ∈ K∗ and ω is a primitive m-th root of unity ([GS06, Cor.
2.5.5]).

We call a central simple algebra over K split if it is isomorphic to a matrix ring
over K. It is equivalent with the corresponding Brauer–Severi variety being trivial.
A cyclic algebra of the above presentation (where K is a field of characteristic zero
containing all roots of unity) is split if and only if b is a norm from the field
extension K( m

√
a)|K ([GS06, Cor. 4.7.7]).

Putting these together, one can show that

C(t1, t2)〈x1, x2 | x31 = t1, x
3
2 = t2, x1x2 = e2πi/3x2x1〉

corresponds to a non-trivial Brauer–Severi surface over a field of characteristic zero
containing all roots of unity.
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