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Abstract. We generalize the natural cross ratio on the ideal boundary of a rank one
symmetric space, or even CAT(—1) space, to higher rank symmetric spaces and (non-
locally compact) Euclidean buildings. We obtain vector valued cross ratios defined on
simplices of the building at infinity. We show several properties of those cross ratios; for
example that (under some restrictions) periods of hyperbolic isometries give back the
translation vector. In addition, we show that cross ratio preserving maps on the chamber
set are induced by isometries and vice versa,— motivating that the cross ratios bring the
geometry of the symmetric space/Euclidean building to the boundary.

Introduction

Cross ratios on boundaries are a crucial tool in hyperbolic geometry and more
general negatively curved spaces. In this paper we show that we can generalize
these cross ratios to (the non-positively curved) symmetric spaces of higher rank
and thick Euclidean buildings with many of the properties of the cross ratio still
valid.

On the boundary d.,H? of the hyperbolic plane H? there is naturally a multi-
plicative cross ratio defined by

21 T k223 — 24
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when considering H? in the upper half space model, i.e., 9, H? = R U {oo}.
This cross ratio plays an essential role in hyperbolic geometry. For example it
characterizes the isometry group by its boundary action and therefore allows us
to study the geometry of the space from its boundary; which is an important
perspective in hyperbolic geometry.
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This cross ratio can be generalized in a far broader context, namely CAT(—1)
spaces [7]: Let 0o,Y be the ideal boundary of a CAT(—1) space Y, 2,y € 0Y
and o € Y. Then the Gromov product (-|-), : 0.0Y% — [0,00] is defined by
(]y)o = limgyoo t — %d(%w(t),’yoy(t)), where 7oz, Yoy are the unique unit speed
geodesics from o to z,y, respectively. Then an additive cross ratio crp_y : A C
s Y — [0, 00] is defined by

oy (2,9, 2,w) = —(x]y)o — (2| w)o + (x| w)o + (2] y)o

for all (z,y,2,w) € 0,Y* with no entry occurring three or four times; which is
independent of the basepoint. For the hyperbolic plane the additive cross ratio
corresponds to log|cryz|. By construction crp_y has several symmetries with
respect to (R, +). In analogy to the hyperbolic plane, maps f : 0xY — 05Y that
leave crp_ v under the diagonal action invariant are called Moebius maps. It follows
from the definition of the cross ratio together with the basepoint independence that
isometries are Moebius maps when restricted to the boundary.

The cross ratios cryp_y and Moebius maps have been proven to be very useful
in hyperbolic geometry. For example Bourdon [8] has shown that Moebius maps
of rank one symmetric spaces extend uniquely to isometric embeddings of the
interior, and with this he gave a new proof of Hamenstddt’s ‘entropy against
curvature’ theorem [15]. Otal [28] has (implicitly) shown that Moebius bijections on
boundaries of universal covers of closed negatively-curved surfaces can be uniquely
extended to isometries; which yields that marked length spectrum rigidity holds
for those manifolds, a prominent conjecture formulated in [10]. See [12], [19], [20]
for more results in that context. Moreover, there is a close relation between the
cross ratio on the boundary of the universal cover of a closed negatively curved
manifold and the quasi-conformal structure on the boundary, and to dynamical
properties of the geodesic flow; see, e.g., [26].

On the boundary 8OO§ of the universal cover of a closed surface S there are
many other cross ratios, besides the above constructed one, that parametrize
classical objects associated to the surface; such as simple closed curves, measured
laminations, points of Teichmiiller space [6], Hitchin representations [25] and posi-
tively ratioed representations [27]%, to name a few.

This prominence and importance of cross ratios in negative curvature motivates
us to ask if such objects also exists for non-positively curved spaces and how much
information about the geometry they carry.

There is already some work done in this context. In [11] a coarse cross ratio for
arbitrary CAT(0) spaces on some subset of the boundary has been constructed. In
[3] there is a cross ratio defined on the Roller boundary of a CAT(0) cube complex,
using essentially the combinatorial structure of the space. In those works Moebius
(respectively quasi-Moebius) bijections are connected to isometries (respectively
quasi-isometries).

In this paper we will construct cross ratios for symmetric spaces and Euclidean
buildings, which will generalize the cross ratios of CAT(—1) spaces. There is little

2We will see that the cross ratios associated to Hitchin representations and positively
ratioed representations arise as pullbacks (under the natural boundary map) of cross
ratios that we construct in this paper.
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need to explain the importance of symmetric spaces in differential geometry and
related areas. However, we want to point out that the study of symmetric spaces
has recently gained renewed prominence in the active field of research of Anosov
representations and Anosov subgroups (e.g., [24], [18], [14] and many more). We
will see that the cross ratios we construct are connected to the study of those (e.g.,
[25], [27]) and hence we hope for applications of our work in this area.

Euclidean buildings arise in many different areas of mathematics. See [17] for an
overview of some applications. Probably most prominently they arise in the study
of algebraic groups and geometric group theory; they have also been a crucial
tool in the proof of quasi-isometric rigidity of symmetric spaces [22] (extending
Mostow—Prasad rigidity), to name a few.

We will denote by M either a symmetric space or a thick Euclidean building.
It is well known that the ideal boundary J.,,M has naturally the structure of a
spherical building A, M. Therefore there is a type map typ : OoM — o with
o the closed fundamental chamber of the spherical Coxeter complex associated
to M. Then we show that to each type & € o there is £ € o such that the
Gromov product (defined exactly as for CAT(—1) spaces) restricted to the set
typ~1(€) x typ~1(:€) is generically finite. Thus we get a generically defined additive
cross ratio on (typ 1(€) x typ~1(:£))? in the same way as for CAT(—1) spaces.
We can show that this cross ratio is independent of the choice of basepoint; and
denote it by cre.

Let 7 be a face of the simplex o, int(7) the interior of 7 and £ € int(7). Moreover,
we denote by Flag (M) C A M the set of simplices of the building at infinity
of type 7 (i.e., those simplices that are mapped to 7 under typ); in particular
Flag_ (M) is the chamber set of the building at infinity. Then one can naturally
identify typ—1(¢) with Flag, (M) and in the same way typ~!(:£) with Flag, (M).
This yields a cross ratio cre : A, C (Flag, (M) x Flag,.(M))? — [—o0,00], which
by construction has similar symmetries as the additive one on CAT(—1) spaces;
for A; see equation (1), for the symmetries see equation (3).

Clearly, we get a whole collection of cross ratios defined on the set A, which is
parametrized by £ € int(7). Then we show that we can put together this collection
to a single vector valued cross ratio cr, with the same symmetries, and values in
the Coxeter complex associated to M. We will see that the vector valued cross ratio
is the natural object to consider; we can connect the so-called period cr,(g~, g -
x,g%,z) of a hyperbolic element g € Iso(M) (with attractive and repulsive fixed
points g* € Flag, (X) and generic # € Flag, (X)) to the translation vector of g
along the unique maximal flat joining g~ and g+, and we give a ‘nice’ geometric
interpretation of the vector valued cross ratio.

Let M7, M be either two symmetric spaces or two thick Euclidean buildings. Let
01,09 be the respective fundamental chambers of the spherical Coxeter complexes
and let &; € int(o;) be two types. Let f : Flag_ (M;) — Flag, (Mz) be surjective. If
cxe, (.9, 2, w) = cre, (F(@), (), £(2), f(w)) for all (2,9, z,w) € As,, f is called & -
Moebius bijection; if cry, (z,y, 2z, w) =crq, (f(x), f(y), f(2), f(w)) for all (z,y, z,w)
€ A, fis called o1-Moebius bijection. Moreover, we call a locally compact Eucli-
dean building with discrete translation group a combinatorial Fuclidean building
and a Euclidean building thick if and only if the building at infinity is thick. Then
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we show the following:

Theorem A. Let My, My be either symmetric spaces or thick combinatorial Eucli-
dean buildings and & € int(oq). If My, My are irreducible, then every & -Moebius
bijection f: Flag,(M;) — Flag, (M) can be extended to an isometry F : My —
Ms. If none of the spaces is a Fuclidean cone over a spherical building, then this
extension is unique. If My, Ma are reducible one can rescale the metric of My on
irreducible factors — denote this space by My, such that f can be extended to an
isometry F: My — M.

Theorem B. Let Ey, Ey be thick (non-locally compact) Euclidean buildings. Then
for every o1-Moebius bijection f: Flag, (E;) — Flag, (F2) one can rescale the
metric of E1 on irreducible factors — denote this space by El — such that f can
be extended to an isometry F: E1 — FEs. If none of the irreducible factors is a
FEuclidean cone over a spherical building, then f can be extended to an isometry

F: Ey — E5 (without rescaling the metric).

We remark that essentially by definition of the cross ratio every isometry gives
rise to a Moebius bijection. Therefore these theorems show that the cross ratios,
at least for the chamber set of the building at infinity, carry a lot of the geometric
information of the space, as they characterize isometries by their boundary action.
In this spirit we hope that those cross ratios will be a valuable tool in the studies
of symmetric spaces and Fuclidean buildings.

We want to refer the reader to Section 4 for slightly more results in this spirit,
e.g., when we get a one-to-one correspondence of Moebius bijections and isometries,
and also an analysis of situations in which the rescaling of the metric is really
necessary.

Concerning the proofs of those theorems: First we show that Moebius bijections
split as products of Moebius bijections of irreducible factors; and that Moebius bi-
jections can be extended to building isomorphisms. For rank one symmetric spaces
and rank one thick Euclidean buildings it is already known that Moebius bijections
extend to isometries. For irreducible thick combinatorial Euclidean buildings it
will be enough that Moebius maps are restrictions of building isomorphisms to
the chamber set. For symmetric spaces and (general) thick Euclidean buildings,
we derive additional properties of the building map, using the cross ratio. Those
properties will allow us to use theorems (essentially due to Tits) showing that the
respective maps can be extended to isometries.

The structure of this paper is as follows. In the preliminaries we recall well
known facts of symmetric spaces and Euclidean buildings (we assume the reader
to be familiar with those objects) and show basic lemmas we need later on. In
Section 3 we define R-valued cross ratios, show basic properties, and illustrate the
objects with two examples. In Section 4 we show that the collections of R-valued
cross ratios fit together to vector valued cross ratios and suggest that these are the
natural objects to consider. In the last section, Section 5, we show that Moebius
maps on the chamber set extend to isometries.

Related work. In [21] I. Kim constructed a cross ratio very similar to our R-valued
cross ratio (Definition 2.5). Labourie [25] has given one of the cross ratios in
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Example 2.11 ad hoc and used it as a tool to understand Hitchin representations.
Martone and Zhang [27] have constructed cross ratios on boundaries of surface
groups, which in particular for SL(n, R)-Hitchin representations coincide with the
pullback under the boundary map of some of the cross ratios in Example 2.11. In
[30] (see also [5]) there is a Gromov product defined, which is closely related to
ours.

Acknowledgments. I want to thank Viktor Schroeder very much for suggesting
this topic to me and helping me with fruitful discussions and advice; Linus Kramer
for helping me understand and apply building theory; Beatrice Pozzetti for several
helpful comments; and Thibaut Dumont for a valuable comment concerning wall
trees.

1. Preliminaries

We use the notation that M is either a symmetric space of non-compact type or
a thick Euclidean building, X is a symmetric space of non-compact type and FE is
a thick Euclidean building. In the case of a symmetric space when writing affine
apartment we mean a maximal flat.

A reference for symmetric spaces of non-compact type is, e.g., [13]; for Euclidean
buildings we refer to [23], [29], [32] and also [22].3

Coxeter complex and spherical buildings ([1]). Let W be a finite Coxeter group and
S the standard set of generators consisting of involutions. Then W can be realized
as a reflection group along hyperplanes in R” with » = |S|. The hyperplanes
decompose R” and the unit sphere S"~! into (cones over) simplicial cells. The
maximal, i.e., r-dimensional, closed cells in R" are called Weyl sectors. Lower
dimensional cells will be called conical cells. The maximal, i.e., r — 1-dimensional,
closed simplicial cells in S"~! are called Weyl chambers. The set S corresponds to
exactly the hyperplanes bounding a Weyl sector. This Weyl sector will be called
the positive sector, the corresponding chamber in S”~! will be called the positive
chamber. We can give each simplex adjacent to the positive chamber or positive
sector a different label. Then the action of W on the simplicial complex induces a
unique labeling for all simplices. A fixed label will be called a type.

In this paper we refer to (R”, W) as the Cozeter compler and to (S™"1, W) as
the spherical Cozeter complex.

A spherical building is a simplicial complex B together with a collection of
subcomplexes Apt(B), called apartments, which are isomorphic to a fixed spherical
Coxeter complex (S™™1, W), such that the following holds:

(1) For any two simplices a,b € B there is an apartment A € Apt(B) with

a,be A
(2) If A, A’ are apartments containing the simplices a,b, then there is a type
preserving simplicial isomorphism A — A’ fixing a, b.

We say that the building is modelled over the spherical Cozeter complex (ST, W).

A spherical building is called thick if each non-maximal simplex is contained in
at least three chambers. A (spherical) Coxeter complex is called irreducible if the

3We will use the definition due to [32], which is equivalent to the axioms in [23] and
[29], while the definition in [22] would additionally assume metrical completeness.
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Coxeter group can not be written as a product W = W; x W5 of two nontrivial
Coxeter groups. A spherical building is called irreducible if the spherical Coxeter
complex over which it is modelled is irreducible. If a building B is reducible, i.e.,
modelled over the spherical Coxeter complex W7 x Ws, then it can be written as the
spherical join of two buildings, i.e., B = Bj o By for two spherical buildings By, Bs
modelled over Wy, Wy respectively and o being the spherical join [22, Sec. 3.3].

Given a simplex z € B with B a thick spherical building. The residue of x is
given by Res(z) := {y € B | « C y}. Let A be an apartment containing z, i.e.,
a Coxeter complex containing x. Let W be the Coxeter group of A and denote
by W, the stabilizer of  under W. If x is not a chamber then Res(z) is itself a
spherical building modeled over the Coxeter complex to W, [33, 3.12].

Euclidean buildings ([23], [29], [32], [22]). Let W be an affine Coxeter group, i.e., W
can be realized as a subgroup of the isometry group of R" and can be decomposed
as a semi-direct product W = W x Ty, where W is a finite reflection group and
Tw < R" is a co-bounded subgroup of translations. Here we assume r = |S|, where
S is the standard generating set of W. Moreover, let (E,d) be a metric space. A
chart is an isometric embedding ¢ : R” — FE, and its image is called anaffine
apartment; the image of a Weyl sector and conical cells are again called Weyl
sectors and conical cells. Two charts ¢, 1 are called W -compatible if Y = ¢~ 14)(R")
is convex in the Euclidean sense and if there is an element w € W such that
Yowly = ¢|y. A metric space E together with a collection of charts C, called an
apartment system, is called a Euclidean building (modelled over the Cozxeter group
W ) if it has the following properties:

(1) For all ¢ € C and w € /V[7, the composition ¢ o w is in C.

(2) Any two points p,q € E are contained in some affine apartment.

(3) The charts are W-compatible.

(4) If a,b C E are Weyl sectors, then there exists an affine apartment A such
that the intersections A Na and A N b contain Weyl sectors.

(5) If A is an affine apartment and p € A a point, then there is a 1-Lipschitz
retraction p : E — A with d(p, q) = d(p, p(q)) for all ¢ € E.

From these properties it follows that the metric space E is necessarily CAT(0).
The dimension of R” is called the rank of E, i.e., rk(E) = r. While the definition
depends on a fixed set of affine apartments, there is always a unique maximal
set of affine apartments, called the complete apartment system. A set is an affine
apartment in the complete apartment system if and only if it is isometric to R".
In the ongoing we will always consider E with its complete apartment system. If
the subgroup of translations Ty is discrete and F is locally compact we call E a
combinatorial Euclidean building.

Symmetric spaces ([13, Chap. 2]). Let X be a symmetric space. We will always
assume that X is of non-compact type and be d : X x X — [0,00) the natural
metric. Moreover, be G = Isop(X), i.e., the connected component of the identity
of the isometry group.

Let g = Lie(G) and g = £+ p the Cartan decomposition. Fixing a maximal flat
F in X together with a basepoint o € F yields the identification T, M =2 p. This
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identification is such that T, F' = a where a is a maximal abelian subspace of p. The
restricted root system of g with respect to a defines hyperplanes in a—namely the
zero sets of the restricted roots. The Weyl group W of X is the group generated by
the reflections along those hyperplanes with respect to the metric that a inherits
from T,F C T,X. Hence we can associate to X a Coxeter complex (a, W). Let
a1 be the unit sphere in a, then we also get a spherical Coxeter complex (a;, W).
It is well known that up to isometry the Coxeter complex is independent of the
choices. We fix a Weyl sector in a which we denote by a™ and call a positive sector.
Then af will be called the positive chamber.* The rank of X is the usual rank and
equals rk(X) = dim a. To keep the notation consistent with buildings we will call
maximal flats in X affine apartments.

The ideal boundary and Busemann functions ([9, Part II, Chap. 8]). We denote
by OseM the ideal boundary; equipped with the cone topology 0., M is naturally
a topological space. For every o € M and every x € 0o, M we denote by 7., the
unique unit-speed geodesic ray joining o to z, i.e., ¥, (0) = 0 and ~,, in the class
of z. For o,p,q € M the Gromov product on M is defined by

(p ‘ Q)o = %(d(ovp) + d(O, Q) - d(pv Q))

Let o € M and z,y € 0xxM. Then (-|-)o : OocM X 05o6M — [0, 00], the Gromov
product with respect to o, is given by

(x]y)o = tlir&(Vox (t) |’Yoy(t))o = tlggot - %d(’yor (1) |’Yoy (t)).

We remark that the convexity of the distance function guarantees the existence of
the limit in [0, oc].

Given x € 0., M the Busemann function with respect to x, which will be denoted
by b, : M x M — (—00,00), is defined by

bm(O,p) = tlirgo d(oa 'Ypm(t)) - d(p, 'pr(t)) = tILI?O d(O, ’Vpr(t)) -t

It holds that —d(o,p) < by(0,p) = —bz(p,0) < d(o,p) and bx(o,p) + b.(p,q) =
b:(0,q) for o,p,q € M. Moreover, it follows directly that b, (0,v.:(s)) = s for all
s > 0 and for all s € R if ~,, is extended bi-infinitely.

An easy argument in Euclidean geometry yields that the level sets of Busemann
functions in R™ with respect to x in the boundary sphere are affine hyperplanes
orthogonal to the direction x. In general Busemann level sets with respect to one
coordinate are called horospheres and the collection of horospheres is independent
of the choice of the other coordinate.

The isometry group Iso(M) acts naturally by homeomorphisms on 0., M, since
they map equivalence classes of geodesic rays to equivalence classes of geodesic rays.
Moreover, by definition of the Busemann function, it follows b (0, p) = bg.<(g-0,g-p)
for every g € Iso(M).

4Usually at is called a positive Weyl chamber. However, as we will consider Euclidean
buildings and symmetric spaces at the same time and we want to distinguish between
spherical chambers and cones, we change the usual notation.
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The building at infinity ([13, Chap. 3], [23], [29], [32], [22]). Let M now be either a
symmetric space or a Euclidean building. To keep notation simple, we will denote
by (a, W) also the Coxeter complex over which a Euclidean building is modeled.
Moreover, a; is the unit sphere in a and hence (a1, W) a spherical Coxeter complex.
We fix a positive Weyl sector at C a and the respective positive chamber a” =
a; Na’. Let S denote the generating set of W consisting of reflections along the
walls of a*. By definition we have rk(M) = dima.

The ideal boundary 0., M carries naturally the structure of a spherical building
Ay M modeled over the spherical Coxeter complex (a;, W). The building A M
will be called the building at infinity.

For a Euclidean building F the building at infinity arises as follows: Let A C E
be an affine apartment. Then A being the image of (a, W) under a chart implies
that A is decomposed into conical cells. Each conical cell defines a simplex in
O E by taking the geodesic rays contained in the cell for all times. One can show
that two conical cells define the same set in 0o F if and only if they have finite
Hausdorff distance. In the latter case we say the conical cells are equivalent. Taking
all conical cells in ' modulo the equivalence relation yields a simplicial structure
on O E; which can be shown to be a spherical building over the spherical Coxeter
complex (ay, W).

In a very similar way we get the building at infinity of symmetric spaces X:
Every maximal flat F' with fixed basepoint can be isometrically identified with
a. Then the conical cells of a descend to conical cells in F' C X. Again taking
all conical cells in X modulo the equivalence relation of finite Hausdorff distance
gives 0, X a simplicial structure, which yields a spherical building modeled over
(al, W)

Apartments in A, M correspond to the ideal boundaries of affine apartments
of M. It is well known that A X is a thick building. We call a Euclidean building
thick if in the case rk(F) > 2 we have that A F is thick, and in the case rk(F) = 1
we have that |0 E| > 3, i.e., E #R.

In particular the following important property holds: To every two points p, q €
M U 9sM we find an affine apartment A in M such that p,q € AU JxA. We say
that A joins p and q.

Given two affine apartments A, A’ in a Euclidean building E that have a common
chamber at infinity, i.e., ¢ € A, FE such that ¢ C 9,4 and ¢ C 9, A’, then the
intersection A N A’ contains a Weyl sector with ¢ being its boundary at infinity.
Such a Weyl sector is called a common subsector of A and A’.

The type map ([22, Sec. 4.2.1], [18, Sec. 2.4]). To the visual boundary 0. M with
the building structure A, M there exists a map typ : 0o M — af, called type
map. Given z € 0, M there is a chamber ¢, € A, M with = € ¢, and an affine
apartment A with ¢, C 0, A. Then this yields an isometry from ¢, to aT with
respect to the Tits metric on ¢, and the angular metric on af. In this way we can
assign to each element of 9., M an unique element of aj. It can be shown that
the image is independent of the chamber and the apartment chosen, hence we get
a well-defined map typ : 9.oM — af. The type map is consistent with the types
of the spherical building A M, i.e., two simplices of A M are of the same type
if and only if they are mapped to the same face of ai" under typ. Hence we also
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call the faces of af types (ai" will be a face of itself). When speaking of types we
denote o = af, i.e., a simplex of A, M is a chamber if and only if it is of type o.
Faces of o will usually be denoted by 7. The set of simplices in A M of type 7
will be denoted by Flag_ (M), or just by Flag_ if M is clear from the context and
will be called flag space. If we consider chambers we denote this by Flag,_ and call
it full flag space.

We (ambiguously) call elements in £ € 0 = al+ types. However, from the context
it is clear if an element or a simplex is meant. We denote by int(7) the interior of
a simplex (and set the interior of a point to be the point itself). Given a simplex
x € Flag (M) and & € 7, we denote by ¢ the unique point in  C Joo M of type &.

Let F': My — M, be an isometry between either two symmetric spaces or two
thick Euclidean buildings. Restricting F' to the ideal boundary O0.,M; induces a
building isomorphism Fi, : Age M1 — AgoMs. The map Fy, is in general not type
preserving. However, that M7, M5 are isometric implies that they are modeled over
the same Coxeter complex and hence have the same fundamental chamber . Then
we can associate to F' a type map F, : 0 — o such that typ(Fx(z)) = Fy(typ(z))
for every x € 0,M; and F, is an isometry with respect to the angular metric.
Moreover, F(Flag, (M:1)) = Flagp, () (Ma2).

The G-action and flag manifolds ([13, Chap. 3], [18, Sec. 2.4]). Let X be a sym-
metric space and G = Isog(X). Then the cone topology on 0, X induces a topology
on Ay X such that all flag spaces are compact. Moreover, given x € Flag_(X), let
P, denote the stabilizer of z under the G-action. Then we can identify Flag (X) ~
G/ P, with the identification being G-equivariant and homeomorphic; the group
P, is a parabolic subgroup of G and G/ P, is equipped with the quotient topology
of the topological group G. Moreover, Flag, (X) ~ G /P, yields a smooth structure
on Flag_(X) (inherited from G/P,) making it a compact connected manifold. The
spaces G/ P, are called Furstenberg boundaries or flag manifolds (motivating our
notion of flag space). Let K be a maximal compact subgroup of G. Then already
K acts transitively on the flag manifolds and given x € Flag (X)) we can identify
Flag, (X) ~ K/K, K-equivariant and homeomorphically, where K, = stabg (z).
Moreover, we remark that the G-action is type preserving, i.e., g, = id for all
g €aq.

The opposition involution. An important map for us will be the opposition invo-
lution ¢ : a — a, which is given by ¢« = —id o wg with wg € W the maximal element
of the Coxeter group with respect to the generating set S. If W is an irreducible
Weyl group, then ¢ = id if and only if W is not of type A,, with n > 2, Dy, 11 with
n > 2 or Eg [33, 2.39]. Moreover, we remark that we can restrict ¢ : aj — af and
that ¢ is an isometry with respect to the angular metric.

Opposite simplices ([18, Sec. 2.2,2.4]). There is a natural notion of opposition in
spherical buildings. This corresponds to the following: Let x,y € A, M and let
Ao be an apartment in A, M such that x,y € A,. Since A, can be identified
with the unit sphere aj, there is a natural map —id : Aoc — As. Then z is the
opposite of y, denoted by x op y, if and only if x = —id(y). The action of the
spherical Coxeter group W leaves the type invariant. Therefore, assume for the
moment that W is modeled in A, and x is a face of the positive chamber. Denote
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by wo : Aso = Aco the maximal element of W. Then w(y) is a face of the positive
chamber and of the same type as y and hence y is of type —id o wg(z) = wa. Hence
all simplices opposite of elements in Flag_ are contained in Flag, . For later use
we denote

Ag—p::{(xhylax27y2)E(Flag‘rXFlagm')z|x17x2 op y17y2}7
AT::{(‘T17y17x27y2)e(FlagTXFla'gLT)g|x’i OpY; O &4 opijlajz]-727l7é]}

Opposition of simplices has the following important connection to bi-infinite
geodesics: Let 21,29 € 0ooM and A C M an affine apartment with 21, z0 € 0 A.
Then one can show that there exists a bi-infinite geodesics joining z; and zo if
and only if there exists one in A. From Euclidean geometry it follows that the
z; can be joined by a bi-infinite geodesic in A if and only if z; = —id(z2) with
—id : 0xA — 05 A as before. This can easily be seen to be equivalent to the
unique simplices 7., € A, M containing the z; in its interior being opposite, i.e.,
T2y OP Tz, and typ(z1) = ttyp(z2).

We will call points 21, 20 € oM opposite if they can be joined by a bi-infinite
geodesic and denote this also by 21 op z2. Moreover, for every £ € 7 and (z,y) €
Flag, x Flag,,. with = op y, it follows that x; is opposite to y,¢.

Symmetric spaces, Langlands decomposition ([13, Sec. 2.17], [18, Sec. 2.10]). In
case of a symmetric space X and given x € Flag_(X), the set of simplices opposite
to x is an open and dense subset of Flag, (X) (which can be deduced from the
Bruhat decomposition of G/P). Moreover, for (z,y) € Flag, (X) x Flag,.(X) we
have z op y if and only if the pair is in the unique open and dense G-orbit in
Flag (X) x Flag, (X). In particular, it follows in this case that A, and A are
open and dense subsets of (Flag, x Flag,.)?.

Every parabolic subgroup P, has a natural decomposition P, = K, A, N, called
the Langlands decomposition, where K, is compact and N, is nilpotent. The group
N, is called horospherical subgroup and is unique, while K, and A, are not. The
horospherical subgroup has several important properties; it leaves the Busemann
function with respect to x¢ € x € Flag, (X) invariant, i.e., b, (0, p) = by, (n-0,p) =
be.(0,n - p) for all n € N, and £ € 7; given a geodesic ray v,, with endpoint in
T C 00X, we have d(ve, (t),n - Y (t)) — 0 for t — oo for all n € N,; moreover,
N, acts simply transitive on the set of simplices opposite to x. If x is a chamber,
ie, x € Flag (M), then N, acts simply transitive on the set of maximal flats
containing x in its boundary.

Parallel sets ([13, Sec. 2.11, 2.20], [18, Sec. 2.4], [22, Sec. 4.8]). Let (z,y) be a point
of Flag, (M) x Flag,, (M) with 2 op y and let £ be an element of int(7). Then the
parallel set with respect to x,y, denoted by P(z,y), is the set of all points that lie
on a bi-infinite geodesic joining x¢ to y,e¢.

The parallel sets split metrically as products, i.e., P(z,y) ~ Fyy x CS(z,y),
where F,, is an isometrically embedded R™ such that z,y C 0 Fyy and z,y are
simplices of maximal dimension in the sphere 0 Fyy, in particular the dimension
of the spherical simplices z,y equals n — 1. Then it follows that the parallel set is
independent of the choice of type £ € int(7), as for each type £ € int(r) geodesics
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in M joining xe,y.¢ are of the form (yu.y, (t),p) with 7,
joining x¢, vy, and p is a point in C'S(z,y).

The space C'S(z,y) is called a cross section. In the case of a symmetric space X
the cross section is itself a symmetric space without Euclidean de Rham factors;
in the case of a Euclidean building the cross section is again a Euclidean building.
In both cases the rank is given by rk(C'S(z,y)) = rk(M) — dim Fy,,.

Let 7 be a face of o = a;. Let a, be the subspace of a defined by 7, i.e.,
the smallest subspace of a containing 7 and 0. Let &1,...,& € a be the corners
of the spherical simplex 7. Then a, = span;,_; , &. It is immediate that we
can also identify P(x,y) ~ a, x CS(x,y). We can additionally impose that this
identification is such that z ~ d..af where af := (a, Na™).

y.e @ geodesic in Fyy

Lemma 1.1. Let (z,y) € Flag, x Flag, with x opy and be p,q € P(x,y). Let
7 P(x,y) ~ a, xCS(x,y) — a, be the projection to the first factor. Then for each
¢ € 7 we have that by (p,q) = (bee)|a, (7(p),7(q)), i.e., the Busemann function is
independent of the second factor of the product.

Proof. Let 744, denote the geodesic ray from ¢ to x¢. Moreover, be ¢ = (q1,q2)
under the identification P(z,y) ~ a, x CS(z,y). Then we have that v,,, =~
(Yqrz¢» 42) Where g, o, is the geodesic ray in a, from ¢; to z¢. Using that metrically
P(z,y) ~ a; x CS(x,y) and p = (p1,p2) we derive the equalityd(p, vy, (t)) =
\/al(plﬁql:,c£ ()2 + d(p2, q2)?). If we set K3 := d(p2, g2)?, then we have bee (P, q) =
limy o0 \/d(P1; Varze (1))2 + K2 — t. As p1,7g,2, () € ar, it reduces to Euclidean
geometry, ie., d(p1, Vg2 (t)) = \/bae (D1, Vg0 (1))? + K1 with K the squared
distance from p; to the (now) bi-infinite geodesic 7,z . It follows that we have
bae (D1, Ygrae (1)) = t + by, (p1, ). Using a substitution ¢ = s~! and a Taylor series
for the root expression below yields

b:vg (pa q) :t1l>r£o \/(t + bxg(plaql))2 + Kl + K2 —t

= lim s_l(\/(l + 28by (p1,q1) + 8% (bae (p1,q1)? + K1 + Ka) — 1)

s—0

:bmg(plaql)' |:|

We will also need the following lemma.

Lemma 1.2. Let (z,y) € Flag, x Flag, with xopy and £ € 7. Moreover let
p1,p2 € P(z,y). Then by (p1,p2) = —by, (p1,p2).

Proof. Let ~;, i = 1,2 be bi-infinite geodesics with 7;(0) = p;, vi(+00) = z¢ and
7i(—00) = y.¢, which exists by assumption. The ~; are parallel and denote by C
their distance. Then the Flat Strip Theorem (see, e.g., [9]) implies that the convex
hull of 1 (R) U~2(R) is isometric to a flat strip R x [0, C] C R? with +; identified
with R x 0, R x C respectively.

It follows that the level sets of the Busemann function by, (-, p2) in R x [0, C]
are given by hyperplanes orthogonal to +;, i.e., are of the form s x [0,C] and the
same holds for by, (-,p2). In addition, ; joining z¢ to y,c implies by, (-,p2)|,, =
—by,c(-,P2)|y;- Then the claim is a direct consequence. [
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Retracts ([29]). Lastly, we need to introduce the notion of retracts of M to affine
apartments with respect to chambers at infinity. For the construction we will
distinguish between Euclidean buildings and symmetric spaces.

Let E be a Euclidean building. Let A C F be an affine apartment and x C
OsoA a chamber of the building at infinity. Then there exists a 1-Lipschitz map
Pz.a : E — A which is an isometry when restricted to any affine apartment A’ with
x C OxoA’ (i.e., any affine apartment that contains the chamber z in its boundary),
and the identity on A [29, Prop.1.20]. We call this map a (horospherical) retract
with respect to x. Horospherical retracts have the following important property:

Lemma 1.3. Let p,.a : E — A be a horospherical retract with respect to x €

Flaga(E)' Then bzg (O,p) = bzg (pz,A(O)vp) = b:c§ (07 pm,A(p)) Jor all o,p € E and
(eo.

Proof. To o € F there exists an affine apartment A, containing o and x C 0 A4,.
As mentioned, the horospheres with respect to z¢ in A, are hyperplanes orthogonal
to the direction z¢.

By construction, the two affine apartments A, A, have the same chamber in its
boundary, which implies that they have a common subsector. Hence p, 4 is the
identity on the non-empty intersection ANA,. Moreover, p; 4 is an isometry when
restricted to A,. Since p, 4 leaves each horosphere intersecting A N A, invariant,
it has to map the level set of b, (-,p) in 4, to the corresponding level set in A.
The other equality follows, for example, from the symmetry b, (0,p) = —bz,(p,0).
O

Let X be a symmetric space, A C X be a maximal flat (an affine apartment
for us) and # C OxA a chamber at infinity. To any o € X there exists a unique
maximal flat A, with o € 4, and © C 05 A4,. Then we define p, 4(0) :=ng 4, -0
for ny 4, the unique element in N, that maps A, to A. Againwecall p, 4 : X — A
a (horospherical) retract.

For later reference: To every affine apartment A C M and a chamber z C 0, A
we have a well-defined map pgy 4 : M — A such that

bz (0,9) = bu, (pz,4(0),p) = ba (0, pz,a(P)) (2)

for all 0o,p € M and £ € o. Moreover, it is known that two opposite chambers z,y €
Flag, are contained in an unique apartment A, of A, M and this corresponds
to an unique affine apartment A,, C M. Hence to z,y € Flag, with x op y we set

Pzy = Px,Agy-

Lemma 1.4. Let x,y € Flag_ with z op y and o € M. Then for all £ € T we have
that pe, e, (Yoz, (1)) s a geodesic in P(x,y), where c;,c, € Flag, such that x is a
face of ¢, y is a face of ¢y and c; op cy.

We remark that x op y implies that such c;,c, € Flag, always exist. Namely,
take an apartment containing x and y. Take ¢, € Flag, such that x is a face of
cz. Take ¢, € Flag, the unique opposite chamber in the apartment. Then zx op y
implies that y is a face of c,.
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Proof. For a symmetric space X this follows since pc, ., is the same element of
G for all points vo., (t) and that G < Iso(X). Hence pe, c, (Yore (t)) is the image
of a geodesic under an isometry. The image pe, c, (Yoz, (t)) is a geodesic ray with
endpoint z¢ in an affine apartment joining x and y. Then y op x implies that if we
extend pe, ¢, (Yo, (t)) bi-infinitely it joins x¢ to y.¢, i.e., this geodesic is contained
in P(z,y).

Consider a Euclidean building E. Denote by A, the unique affine apartment
joining ¢, and cy. Let A be an affine apartment containing o and ¢, C JxA.
Then it follows that veq, (t) € A for all t € Ry. As p, ., is an isometry on affine
apartments containing c, it follows that p., c, (Voz (t)) C Agy is the image of
a geodesic under an isometry. Since one of the endpoints is x¢, we can extend
the geodesic in A;, uniquely to a bi-infinite geodesic joining z¢ and y,¢. Thus
Pea,cy ('Voxg (t)) C P(z,y). O

2. Cross ratios

Let M be a symmetric space of non-compact type or a thick Euclidean building.
Let o be the fundamental chamber of the associated spherical Coxeter complex
and 7 a face of 0. For any type & € o such that £ € int(7) and any o € M we define
a Gromov product (-|-)o¢ : Flag (M) x Flag, (M) — [0, 0o] with base-point o by

($|y)o,§ = tlllgot - %d(70m5 (t),’Yong (t))

for (x,y) € Flag, (M) x Flag, (M) and 7oz, (t), Yoy, (t) the unit speed geodesics
from o to x¢, y.¢, respectively. Using this we define the (additive) cross ratio cr, ¢ :
A; — [—00, 00] with respect to (0,§) by

Cro¢(x1,y1, %2, y2) = —(T1|Y1)o,e — (T2|¥2)0,e + (T1|Y2)0,e + (X2]Y1)o0,e

where A, is the set of quadruples (z1,y1,z2,y2) C (Flag, (M) x Flag, (M))? as
in equation (1). If £ € int(7), we also denote A¢ := A,. By definition cr, ¢ has the
following symmetries, whenever all factors are defined,

Croe(21, Y1, %2, Y2) = —Cloe(T1,Y2, T2, Y1) = —Clo (T2, Y1, %1, Y2)
Croe(1, Y1, %2, ¥y2) = Croe(T1,y1, W, y2) + Croe(w, Y1, 22, Y2) (3)

Cro,{(xla Y1, T2, Y2) = Cro,é(xlayl»x% v) + Cro,f(xlavax%yQ)'

The last two symmetries are called cocycle identities.

Notation: Let T be the face of o and be £ € 7. Then we drop for any (z,y) €
Flag, x Flag,, the projection maps in the Gromov product (and in the cross ratio)
for notational reasons, i.e., (x|y)o¢ = (Te(z), Te(Y))o,e, Where 7¢ is the face of 7
containing £ in its interior and 7¢ : Flag, — Flag_ , m,¢ : Flag,, — Flag,, are the
obvious projection maps.

Proposition 2.1. Let M be a symmetric space or thick Euclidean building, o €
M, (z,y) € Flag, (M) x Flag,.(M) with x opy and cs,cy € Flag, (M) such that
x s a face of ¢y, y is a face of ¢y and ¢, op ¢y. Then for every £ € 7

(| y)O,& = %bﬂﬂg (o, Pey,co (0)) = %bng (o, Peg,cy (0)).
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Proof. In the case of a symmetric space let N, be the horospherical subgroup of
P, = stab(z) and be n;(o,y) € N, the unique element such that n,(o,y) -0 €
P(z,y): Extend 7, bi-infinitely and let z € Flag,, be such that v,,(—0) € z.
Then n,(o,y) € N, is the unique element with n.(o,y)(z) = y. By construction
we have ng(0,y) -0 € P(x,y).

We define in the same way n, (0, z) € N, and set vz (t) := 12(0,¥) - Yo, (t) and
Yy (t) = 1z (0,Y) * Yoy, (t). Then vuy, vy, are geodesics in P(x,y) with the same
(un-ordered) end points. Hence they are parallel. Moreover, n,(o,y) € N, implies
that d(Vog, (t), Yay(t)) — 0 for t — oo and similarly d(yoy,, (), Vyz(t)) — 0.

The triangle inequality yields that (zy)oe = limyoot — $d(Vay(t), vy (1))
By construction 7.y, vy are parallel geodesics; hence by the Flat Strip Theorem
(see, e.g., [9]) the distance d(7yay(t), Yy« (t)) decomposes into a part parallel to the
geodesics and the distance of the images of the geodesics, which is a constant and
will be denoted by C.

The part parallel to the geodesics is by, (Vyz(t), Yay(t)) —or in the same way
by, (Yay (t), 4z (t)). Using that we have geodesics asymptotic to z¢ we derive that
bae (Vo (), Y2y (1)) = 2t + bae (Vy2(0), 72y (0)). Altogether

(x‘y)o,ﬁ = tlggo t— %d(70£5 (t)7 Yoy.e (t)) = tlij&t - %d(%cy (t), Yyx (t))

= lim ¢ — %(\/(% + bae (1y2(0),724(0)))? + C?) (4)

t—o00

= — 2bo (Y2 (0), Yoy (0)) = 2o (Yay (0), 142 (0)),

while the second to last equality follows using Taylor series at s = 0 after substitut-
ing s =t~! (see also the calculations in Example 2.6).

In the case of a Euclidean building F, let A, be an affine apartment containing
Youe (1), let d, € Flag, be such that d, C 0,A, and x C d,. Moreover, be
d, € Flag, a chamber opposite to d, such that y is a face of d,, and let A, be the
unique affine apartment that d, and d, define.

Then the affine apartments A, and A, have a common subsector. Hence there
exists T, > 0 such that for ¢ > T, the geodesic Yo, (t) is parallel to a geodesic vz,
in the subsector, denote the distance of the geodesic rays by C,; Extend 7, bi-
infinite in A, such that it is in the same horosphere with respect to z¢ as yoq, (1)
for all (positive) time. That v,, is in A,, with one endpoint being z¢ implies that
Yoy joins z¢ and y,¢ and hence v,y C P(z,y).

In the same way we construct v,, C P(x,y) to 7oy, such that those geodesics
are parallel for ¢ > T, —denote the distance by Cy. Since vy, Yy join the same
points at infinity, they are parallel— denote the distance by Cy. Then the triangle
inequality together with the Flat Strip theorem yields for ¢t > max{T,,T,} that
d(Yoze (2t), Yoy, (2t)) is smaller than or equal to

d(Yowe (28), Vay (1) + d(Vay (1), Yy (1)) + d(vya (t), Yoy, (2t))
= VP = CZ 4 b (e (8,700 (0 + CF + 12 = 3.
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Since 7,y and 7,, are asymptotic to z¢, we derive that by (yyz(t),Vay(t))) =
2t + by, (752(0),724(0)). Therefore

(2 9o > Jim 26— 5 (/B = CF4 |/ (2be, (12(0), 72y (0)))+CF 4+ 12— C2).

We substitute t = s~!. Then a Taylor expansion for the root expressions at s = 0
yields that (x|y)0,£ > 7%6% (’me(o)a%cy(o)) = %bfg (’Yzy(o)a’me(O))'

We claim that lim; oo b, (Yya (1), Yoy (£))) = bee (Yoy,e (1), Yoz, (t)) = 0: By con-
struction g, (Yay(t), Yoz, (t)) = 0. As we have b.(p,q) + b.(¢q,0) = b.(p,0), it is
enough to show that lim; o be, (Yoy,. (1), Yy (t)) = 0.

By construction we have that the geodesic 7,, joins x¢ and .. Therefore
bee (Yoy,e (1), Yy (1)) = lims 00 d(Yoy,( (t), Yy (t — 5)) — 5. Moreover,

d('Yong (1), 'Yyaf(t —s)) < d('Yong (1), ”ny(Ty)) +|t—s— Ty|~

Applying the Flat Strip Theorem with an according Taylor expansion as before,
we derive that lim; oo d(Voy, (t), Vyz(Ty)) —t — —T),. In particular,

tlggo bzg ('Yong (t), Yy (t)) < lim ( lim d(’)’ong ), Yy (Ty)) =t + s+ T, —s) =0.

t—o0 s—o0

It follows from the definition of Busemann functions that if ¢ € M lies on a
bi-infinite geodesics joining z,w € O M, then b.(p,q) + bw(p,q) > 0. Hence we
derive by, (Yoy,e (t), Yyz (t)) + by,c (Yoy,e (1), Yy (t)) > 0. Since by construction we
have by, (Vye(t), Yoy, (t)) = 0, it follows by, (Yoy, (t), Vyz(t)) > 0; which yields the
claim.

We have d('YOng (t)a’}’oxg (t)) > bwg ('Yong (t)7’Yomg (t) — bwg ('wa(t)a%cy(t))a for
t — oo. Thus

(x‘y)o,g < tli)rgot - %bxg ('sz(t)v%ﬁy(t)) = %blg ('sz(o)a’yym(()))'

Altogether (z]y)oe = 2bs (Vay(0), 7z (0)).

Consider a symmetric space or a Euclidean building M and let v, v,z be the
accordingly constructed geodesics. Then by, (V2y(0), Yoz, (0)) = 0 while yo,, (0) = 0
and also by, (7,2(0), 0) = 0. For notational reasons set p; := pe, e, and py = pe, c,
Then py(0), 7y=(0) € P(z,y). Together with equation (2) and Lemma, 1.2 this yields

ba:g ('Va:y (O)a Yyx (0)) :bxg (%cy (0), Pw(O)) + bw5 (pz (O), py(o)) + bxg (py (0)7 Yyx (0))
:bﬂig (0’ Py (0)) - b%s (py(0)7 Yy (0)) = b$§ (07 Py (0))
In a similar way it follows also that by, (Vay(0), Vy2(0)) = by, (0, pz(0)). Finally the
equality (z|y)o,e = 3bze (Yay(0), Yy (0)) implies the claim. O

Corollary 2.2. Let (z,y) € Flag,_ x Flag,, and o € M. Then (x]y), s = 00 <



46 J. BEYRER

Proof. Let (z,y) € Flag, xFlag,, be such that z op’'y. Let A be an affine apartment
containing x,y in its boundary. Let p € A and vy, Vpy,. be the unit speed
geodesics joining p to x¢,y.e, respectively. A straightforward argument in Eucli-
dean geometry yields that d(vpe, (t), Ypy.. (1)) = 2at with o depending on the angle
of the geodesics. Then x op'y implies that v,z (t) # Ypy,.(—t) and hence a < 1,
ie., (z|y)p.e = oo.

Now let Yore, Yoy, be the unit speed geodesics joining o to z¢, y.¢, respectively.
Since Yoz, and 7., define the same point in the ideal boundary, we can derive by
the convexity of the distance functions along geodesics in non-positive curvature
that d(Vos, (t), Ypze () < d(o0,p) for all ¢ > 0. Thus

(x|y)o,£ = tlirgo t— %d(7oz5 (t)a fYOng (t))
> lim t — %d(%ggE (1), Ypy.. (t)) — d(o,p) = oc.

T t—oo

Let (x,y) € Flag, x Flag,. be such that « op y. Then by the above proposition
(x‘y)o,ﬁ = %bzg (Oa Pey,cy (0)) < d(O, Pey,cy (O))v Le., (‘r‘y)o,f < o0. U

The above corollary implies that Ag¢ is the maximal domain of definition for
Cro¢. As mentioned, in the case of a symmetric space X is the set A¢ is an open
and dense subset of (Flag, (X) x Flag, (X))?, i.e., the cross ratio is generically
defined.

Proposition 2.3. Leto,0 € M, (z,y) € Flag_ xFlag,. and{ € 7. Then (x|y)o¢ =
(x]y)se + %bxé (0,0) + %by@ (0,0).
Proof. If x 9p’y, then by the above corollary (z[y),¢ = 00 = (z|y)se-

If x op y, let py 4y, py,» be any horospherical retracts as in Proposition 2.1. Then

b$5 (07 Py,x (0)) = bxg (07 6) + b:vg (67 Py,x (6)) + bwg (py,z(b\)v py,m(o))'

By construction p, ,(0), py.+(0) € P(z,y). Moreover x,y are opposite and hence
by Lemma 1.2 and equation (2)

be (py’m (0), Py, (0)) = _by,,g (Py,r (0), Py,z (0)) = _by,,s (0,0) = byl,g (076)~

Together with Proposition 2.1 the claim follows. [
Proposition 2.4. Let 0,0 € M. Then cro¢(21,y1,%2,Y2) = (21, Y1,T2,Y2)
for all (z1,y1,x2,y2) € Ae.
Proof. Plugging in the above proposition in the definitions of cr, ¢ and crs ¢ yields

directly the result. [

Definition 2.5. Given (z1,y1,22,Y2) € A¢, we define the cross ratio with respect
to & € o to be cre(x, y1, X2, Y2) = Cloe(T1, Y1, T2, Y2) for some o € M.

Example 2.6 (see also [21]). Consider the symmetric space X = H? x H?, where
H? is the hyperbolic plane. The ideal boundary d., (H? x H?) can be identified with
St x S x [0,7/2] — this is in such a way that the unit-speed geodesic ray from
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a base-point (01, 02) € H? x H? to the point in (z1,z2,a) € St x S x [0, 7/2] =
oo (H? x H?) s given by (Yo,x, (c0S()t), Yo,a, (sin(@)1)).

The types are exactly determined by the angle o and the opposition involution
equals the identity. In particular every type is self-opposite.

Fix 0 = (01,02) € H? x H? and = = (21,22, ),y = (y1,%2, @) € Do (H? x H?)
and set Y1 1= Yorz1, V1 1= Yory1s V2 = Yogws aNd Y2 1= Yo,y,. Then

(ely)o = Jim £ — 3/ Ty (cos(@)E)1 (cos(@I) P + Pa(sin(a) D)7 (sim(@)t) .

Using lims—, o |71 (cos(@)t)71 (cos(a)t)| — 2 cos(a)t = —2(x1|y1)o,, if & # 7/2

(@[y)o.0 = m ¢ — /(= (z1]y1)o, + cos(@)t)? + (= (w2ly2)o, + sin(a)t)?

— lim £ — \/t2 — 2t(cos(a)(1]y1) o, + sin(a)(®2|y2)o,) + (z1]y1)3, + (72]y2)3,

t—o0

We substitute ¢ = s~!. Then a Taylor expansion for the root expression at s = 0
yields that

(al)o = lim = (1~ (1 = s(cos(a)(z1lya)o, + sin(@)(w2ly2)e) + of5))

= cos(a)(w1(y1)o, + sin(a)(z2|y2)o,-

Therefore cr, = cos(a) log |cryz| + sin(«) log |cryz|, where crye is the usual mul-
tiplicative cross ratio on 0., H?2.

Lemma 2.7. Let X be a symmetric space. Then for every o € X the Gromov
product (-|-)o.¢ : Flag, (X) x Flag, (X) — [0, 00] is continuous. In particular also
CT¢ 15 conlinuous.

Proof. Since Flag_(X),Flag, . (X) are manifolds it is enough to consider sequential
continuity. Therefore let (z,y) € Flag (X) xFlag, . (X) and let ; — z and y; — y.

If 2 op y, we have (z|y)oe = 00. Weset (2]y)o,6(t) = (Voze (£) Yoy, (t))o with the
Gromov product on the right-hand side the usual Gromov product on the metric
space (X, d). As X is non-positively curved, the function ¢ — (z|y),.¢(t) is mono-
tone increasing. Let C' > 0 be given. Then there is t¢ € Ry such that (z|y)o.¢(tc) >
C + 2. Since the topology on Flag_(X) is induced by the cone topology, we have
that (z;)¢ — x¢ in the cone topology and similarly for y; and y. Hence we find
L € N such that d(Yo(a,) (tc); Yoz, (tc)) < 1 and d(Yo(y,), (tc); Yoy, (tc)) < 1 for
all i > L. Hence by the triangle inequality (z;|y;)o.e(tc) > (2|y)oe(tc) —2 > C for
all 4,5 > L. As C was arbitrary, this yields lim; ;oo (2;]y;)0,e = 00, which proves
continuity for = op'y.

Assume xopy. Let K =stabg (0). We know that K acts transitively on Flag, (X)
and we have a K-equivariant, homeomorphic identification Flag (X) ~ K/K,.
Therefore x; — = implies that we find k; € K such that k;z; = r and k; — e € G.
Now, = op y and opposition being an open condition, together with y; — y and
k; — e, imply that there exists L € N such that k;y; op x for all 4,7 > L. Thus
there exists a unique n;; € IV, such that n;;k;y; =y for 4,5 > L. From k; — e and
y; — y it follows n;; — e € G for i, j — co. We set g;; := n;;k; and by construction
gij — €, gijri = ¥, gijy; = y. Hence (24|y;)oe = (2|Y)g,;0,e. Proposition 2.3 and
gij — € yield that (331' |yj)07§ — (3;‘ | y)07§. (I



48 J. BEYRER

Lemma 2.8. Let (z,y) € Flag, x Flag,  and x opy. Moreover, let & € T be a
sequence with & — & € 1. Then we have (x|y)oe, — (2|Y)oe,. In particular,
cre, (z,y, 2, w) = crey (x,y, z,w) for all (z,y,z,w) € AF.

Proof. Let c.,cy € Flag, such that ¢, op ¢y, = is a face of ¢, and y is a face of c,.
Then Proposition 2.1 and equation (2) imply (z|y)o.c = $ba,(pey e, (0), Pe, .c. (0))
for all £ € 7. Denote p, := pc, ¢, (0), Dy = pe, .. (0) and by A, the unique affine
apartment with ¢z, ¢y C 00 Aqgy.

Every affine apartment can be isometrically identified with R” where r is the
rank of M. We identify A, with R" such that 0 ~ p,. Let v¢ € A,y ~ R" be of
norm one and such that the line from 0 through v is the geodesic ray in A, from
Pe t0 x¢. Then Euclidean geometry yields that b, (pz,py) = (ve, py). In particular,
we get

(xly)o,fi = %<U£i7py>' (5)
Moreover §; — &y implies that ve, — v¢, and hence the claim follows. [

The assumption of opposition in the above lemma is needed, since there are
(z,y) € Flag. x Flag,. with x op’'y but there are faces zo of z and yo of y with
Zo op Yo. Then if & € int(7) converge to & such that & € int(7p) and 79 is the
type of zg, we get (z]y)oe, = 00 = (Zo|yo)o¢, (as the latter is finite).

We recall that any isometry F' : M; — Ms induces a building isomorphism
Foo : Ao My — Ao My together with a type map F,, : 01 — o2 with the property
that F'(Flag,(M1)) = Flagp () (M2).

Proposition 2.9. Let F' : My — My be an isometry between either symmetric
spaces or thick Fuclidean buildings, Fao : Ao My — Ao Mo the induced building
tsomorphism and & € o1. Then

Cregy ('Tlayla Zo, y?) = Cng(§1)(FOO(x1)7FOO(y1)a Foo(-rQ)a Foo(y2))

for all (x1,y1,22,y2) € Ag,. Equivalently, cre, = F} crp, (¢,) with F}, denoting the
pullback under F.

Proof. Let & € 7 and (z,y) € Flag, (M7) xFlag,, (M;). Since the Gromov product
(] )o,¢, is defined in terms of a limit of distances involving unit speed geodesics and
isometries leave those invariant, it follows that (| y)o,e= (Foo (2)|Foo (¥)) F(0),F, (£1)
Therefore (z1,y1,22,y2)EAg, implies (Fuo (1), Foo (Y1), Foo(%2), Foo (Y2))EAFR, (£1)
by Corollary 2.2. Finally, crg, = cro¢, = F3 Crp(o),F,(6,) = FaCrF, (¢,) by Propo-
sition 2.4. O

Corollary 2.10. Let g € Iso(M) and & be the center of gravity of o with respect
to the angular metric. Then cre, = g*cre,. In case of a symmetric space X and
g € G we have cr¢ x = g*creg x for all{ € 0.

Proof. For the center of gravity & € o we have g,(§o) = & for all g € Iso(M), as
g : 0 — o is an isometry with respect to the angular metric. Then the first claim
follows. In case of a symmetric space and g € G, we know g, = id,, which implies
the second claim. O
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Example 2.11. We want to determine the Gromov products and cross ratios of
the symmetric spaces X (n) := SL(n,R)/SO(n,R). For a deeper description of the
symmetric space X (n) see [13].

The ideal boundary 0. X (n) can be identified with eigenvalue flag pairs (\, F),
where F' = (V4,...,V]) is a flag in R™, i.e., the V; are subspaces of R™ with
Vi g ‘/;+1, V, = Rn, and \ = ()\1, ey )\l) € R’ such that A > )\i+17 Zé:l miXN; =0
for m; = dimV; — dimV;_; and 22:1 mi)\% = 1. In particular, 2 < [ < n. The
action of g € SL(n,R) on an eigenvalue flag pair is given by g- (A, F) = (A, g - F),
where g- (V4,...,V))=(9-V1,...,9- Vi) and F = (Vq,..., V).

The ”eigenvalues” A in the eigenvalue flag pairs (A, F') determine the type of any
point in the ideal boundary. Namely, the set of pairs (A1,...,A;), (m1,...,my), \; €
R,m; € N\{O} with \; > )‘i+17 Ei:l miA; = 0, Zé:l mz)\? =1 and Zﬁ:l m; =n
parametrize the Weyl chamber o. We have that A = (Ay,..., ;) is in the interior
of the chamber if and only if [ = n.

Faces of o can be characterized in the following way: Two pairs as above
(A1, A0), (ma,..,my) and (M],...,A), (m),...,m]) are in the interior of the
same face if and only if m; = m/ for all¢ = 1,...,l. In particular we can identify the
set of faces of o with {(mq,...,m;) € N' |1 > 2,m; # O,Zézl m; = n}. For 7 ~
(mq,...,m;) we have Flag, = {(V1,...,V)) | Vi € Vi41,dimV; — dim V;_1 = m;}.
The action of the opposition involution is given by ¢(A1,..., ;) = (=X, ..., —A1)
and ¢(mq,...,m;) = (my,...,mq). Hence, it V= (V4,...,V}) € Flag, and W =
(Wy,..., W) € Flag, ., then dim V; 4+ dim W,_; = n. In this situation V op W «<—-
VoW, ;=R foralli=1,...,1 —1.

Let V.= (V4,...,V)),Y = (W1,...,Y)) € Flag, and W = (Wy,...,. W), Z =
(Z1,...,2;) € Flag,, such that V.Y op W, Z. Let i; = dimV;. Then fix a basis
(v1,...,v,) such that V; = span{vy,...,v;, }. In the same way we fix a basis (w1, ...

cwn), Y1y -+ yn) and (z1,. .., 2,) for W, Y, Z, respectively. Additionally, fix an
identification A"R™ =2 R. We set V; AW _j :=v1 A... A Vi, NI A AWy, (we

have W;_; = span{wy, ..., w,_;;}) and in the same way for the other flags. Then
the term (V; AW,_)(Y; A Zi—j)(Vi A Z1—;) " (Y; AW,—;)~! can be shown to be
independent of all choices for all j = 1,...,l — 1; compare, e.g., [27].

Let V,W,Y, Z be as before and A = (A1,..., ;) a type with A € int(7). Then

).

using the above conventions —see the appendix for a proof. We remark that some
specifics of those cross ratios are known already and have been used for analysing
Hitchin representations and more general Anosov representations (see, e.g., [25],
[27]).

Let M = M; X --- x My, be a product of either symmetric spaces or Euclidean
buildings. Then the building at infinity A., M is the spherical join of the buildings
A M; [22, Sec. 4.3]. In particular, the Weyl chamber o decomposes as a spherical
join 0 = g1 o --- o 0y. Hence we get a surjective map

VinWi; Yj N2
ViNZi—j Y; A Wi

-1
(VWY Z) =03 () — Aje1) log (‘
j=1

Tio1 XX op X S — o, (6)
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where S; = {u = (u1,...,px) € [0,1]% | ¥u? = 1}. We remark that 7 is in
general not injective, since it is independent of the exact choice of the type &; € o;

Let & = m(&1y ..., &y ) With w = (p1,..., ) € Si and let © = (z1,...,25) €
Flag (M) ~ Flag, (M) x --- x Flag, (M},)° such that £ € int(7) and & € int(7;).
For simplicity we assume p; # 0 for all 1 < i < k; if some p; = 0 essentially the
same formula holds, but the factor Flag  (M;) is not apparent in the decomposition
of Flag_(M).

We remark that the unit-speed geodesic from some point (o1,...,0x) € M to
¢ is of the form (Yo,z¢, (H11), - -+ s Yorae, (Hkt)), Where 7o,z denote the unit speed
geodesics in the factors M; joining o; to (z;)e,; cp. also Example 2.6.

Let y = (y1,...,yx) € Flag, (M) ~ Flag,, (M) x --- x Flag,,, (M) and be x
and ¢ as above. Then similar calculations as in Example 2.6, yield that

(1? | y)(017~~,01c)77f(51,~-7€k7ﬂ) = :ul(zl |y1)017§1 et Hk(l'k | yk)ok,ﬁk'

Proposition 2.12. Notations as before. Moreover, let z € Flag (M) and w €
Flag, (M). Then

Clr(€r,. €k, t) (x,y, va) = H1Crgy ($17y1, Zlawl) + o4 pECrg, (l‘k,yk, Zk)w’f)

for (x,y,z,w) € Ar(e,...c0)-
3. Vector valued cross ratios

So far, we have constructed families of cross ratios on subsets of the spaces (Flag,. x
Flag,)? which are parametrized by £ € int(7). In this section we show that such a
family gives rise to a single vector valued cross ratio containing all the information
of the family. The vector valued cross ratio has the same symmetries as the usual
cross ratios (cp. equations (3)) justifying the name cross ratio.

We recall that o = a]; hence every type can be viewed as vector in a of norm
one.

Lemma 3.1. Let 7 be a face of o and &,&1,...,§; € T such that there exist
a; € R with & = Y_1_, a;&;. Then for (z,y) € Flag_ x Flag,, with x op y we have

(l‘ | y)mfo = 25:1 a; (l‘ | y)o,ﬁi - In particular, Creg (Z‘, Y, =, w) :ZZ:I a;iCTg, (Z‘, Y, =, w)
for all (z,y,z,w) € AF.

Proof. Let c;,c, € Flag, such that c; op ¢y, x is a face of ¢, and y is a face of
cy. We recall the notation of the proof of Lemma 2.8: We denote p, := pc, ¢, (0),
Py = Pe,.c, (0) and by Az, the unique apartment with c,,c, C 0xAyy. Moreover,
let Ayy ~ R" such that p, ~ 0, in particular A,, inherits an inner product. Let
ve € Agzy ~ R” be of norm one and such that the line from p, ~ 0 through v
is the geodesic ray in A, from p, to z¢. Then we know from equation (5) that

1
(x|y)07~fi = §<U§i,py>.
5Actua11y we would have a spherical join instead of the product. However, we can

naturally identify a simplex in a join with the product of the simplices in the different
factors — and that is what we do here for simplicity.
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By the definition of the v, it is immediate that ve, = 23:1 a;ve, , where we have
the addition inherited to A., under the identification with R" such that p, ~ 0.
Hence

j J
Ly 1
(@[Y)o.co = 3 (Vo> Py) Z 30 (Vg y) Zaz [Y)o,g, - 0
i=1 i=1
Let &1,...,& € a be the corners of ¢ = af. Then every subset J C {1,...,7}

defines a simplex in o, i.e., a face 7 of o. In the same way every smlplex T C o
gives a subset J, C {1,...,7}.

Given a simplex 7 we recall that a; = span;c; ; C a. Moreover, we define
of € a, for j € J; by (a7, &;) = d;; for all i € J;; this yields well defined vectors,
as the & with ¢ € J. form a basis of a,. We recall that a was naturally equipped
with an inner product.

The &; correspond to normalized fundamental weights of the root system and
the af to possibly rescaled roots.

Definition 3.2. Let 7 be a face of 0 and J-, a as above. Then we define a (vector
valued) cross ratio cry : Ay — a; U {£oo} by

crr(z,y, z,w) Z cre, (x,y, 2, w)a;
i€,

Here we set crr(z,y, z,w) := —00 if x op'y or z op w and cr,(v,y,2,w) = o< if
TP W Or Z 9P Y.

It is straightforward to see that cr, has the same symmetries as in equations
(3), where the addition is now in the vector space a.

The vector valued cross ratio contains the full information of the collection of
cross ratios from the previous section:

Lemma 3.3. Let { € int(r). Then we have {(cr;(z,y,z,w),§) = cre(z,y, 2, w)
for (z,y,z,w) € AF and cr(x,y,z,w) = £oo = cre(x,y, z,w) for (z,y,z,w) €
A N\AP.

Proof. If (z,y,z,w) € A;\A¥, then the equality is immediate. Hence assume
(2,9, 2,w) € AF. Then

(erp(x,y, z,w) Z cre, (x,y, 2z, w){aj , &).
e,
Since (af,&;) = di; for all i € J;, we derive that (3, ; (af,§)&i,af) = (§,af) for
all in j € J-. Moreover, it is immediate that the o form a base of a.. Thus we get
that >, ; (o], €)& =& Therefore Lemma 3.1 implies } ;. ; (a7, §)cre, (z,y, 2, w) =
cre(z,y, z,w). O

The above lemma also holds for € € 97 as long as (z,y, z,w) € A, but does
not hold for general (z,y,z,w) € A;; in this case cre(z,y, 2z, w) might be finite
while cr,(z,y, z,w) is not (compare the discussion just after Lemma 2.8).

The following corollary captures the topological properties of cr, in case of
symmetric spaces. It is an immediate consequence of the lemma above and Lemma

2.7.
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Corollary 3.4. Let X be a symmetric space. The map cr, restricted to AF is
continuous and for all & € int(r) the map (cr,(-),&) : A — R U {£oo} is
continuous.

Let m; : a — a, be the orthogonal projection. Then it is straightforward to
show that 7-(af) = af for all i € J; and 7,(af) = 0 for all j ¢ J;. Then we can
derive that cr,(z,y, z,w) = m (cry (2, y, 2,w)) for all (z,y,z,w) € AF.

Translation vectors and periods. We assume for this section that 7 is self-opposite,
i.e., 7 = 7. Moreover denote by Iso.(M) the subgroup of Iso(M) such that g, = id
for all g € Iso.(M)—in particular G = Iso.(X) for a symmetric space X. Let
g € Iso.(M) such that g stabilizes two points g* € Flag, with g~ op g*. Since
g is an isometry, it maps every geodesic connecting points of the interior of g~
and g to another geodesic connecting the same points. In particular g stabilizes
P(g~,g") set-wise.

In the preliminaries we have seen that P(g~,g") splits as a product a, X
CS(g~,g") such that g* are identified with the positive and negative, respectively,
maximal dimensional simplices in a,, i.e., g* ~ dsa} where al := a, Na™. Note
that g descends to an isometry g, of a,. Since a, is Euclidean and g,_ stabilizes
each boundary point of a-, g, acts as a translation on a,. More precisely, there
exists a translation vector £} € a, such that g, (p) = p + £; for all p € a.

Proposition 3.5. Let g € Iso.(M) such that gt € Flag, with g~ op g* are sta-
bilized by g. Let £} denote the translation vector along the first factor of P(g~, g)
~ a; x CS(g~,g%). Then cr,(97,9 - =, g",x) = 505 + u]), for any = € Flag,
with x op g*.

Proof. We remark that cr, (g, g-x,g",z) is independent of the choice of z op g*;
this follows from the symmetries of cr, together with Proposition 2.9. Therefore,
we fix one z € Flag_ with = op g*.

Let o € P(g~,¢") and & with i € J, be the corners of 7. By assumption = op g*
and hence g - x op g*. Then Proposition 2.3 yields
-1

(019 2)og = (97 |2)g-106, = (97 [ @)og, + 5byz (971 0,0) + 3ba (97" - 0,0).

1

Moreover, we have bgé? (gt-0,0) = bq{i (0,9 - 0). Plugging this in the definition of

cre, several terms cancel such that cre, (97, gz, g7, x) = %bq; (o, g-o)—%bgg (0,g-0).
Since 0,g-0 € P(g~,g") and Q:Zi € g7 is the point opposite to 9e, €97, Lemma 1.2

implies bgg (0,9-0) = —bg:rék (0,9-0). Altogether we get that cre, (97,9 -z, 9", 2) =
%bg; (0,9-0)+ %bg;i (0,g-0).

Since o was arbitrary in P(g~, g*) we can assume that its first coordinate under
the identification P(g™,g") ~ a, x CS(g~,g") is 0 € a,. Moreover, we can use
Lemma 1.1 to see that only the first factor matters for the Busemann functions
bge,»bg.c,- As g acts as a translation on a., we have that g - 0 = ¢7. Therefore
bg; (0,9 -0) = (&,¢;) (cp. the arguments around equation (5)). By assumption

T = 7, hence ¢ restricts to an isometry ¢ : a, — a,. Together with ;> = id, this
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yields (t&;, £5) = (&, 1ly). Altogether we derive

CrT(g_?g : x,g+,x) = Z %<<§Z7£7g—> + <£%7L€;>)a:

icJ,

It is immediate that (cr-(g7,g-z,9%,2),&) = 5((&, £5) + (&, u0y)) for all i € J.
Since the & with 4 € J, form a basis of 7, it follows that cr, (¢97,9 - x,g7,2) =
Ler+ur). O

Let g € Iso.(M) be as before. Then the term cr. (g7, ¢ z,9", ) is also called
period —in analogy to rank one spaces. In particular, the periods give rise to the
translation vector of the first factor of the parallel set if + = id.

Geometric interpretation of the cross ratio. Let x,z € Flag_  and y,w € Flag, .
with z,z op y,w. Pick ¢, ¢, dy, dy,d,, € Flag, such that z is a face of ¢, and
accordingly the other chambers and that c; op dy, d,, as well as ¢, op d,, d!,. Then
we use the following notations for the horospherical retracts p, = pc,.d,, Pw =

Pdu,cos Pz 7= Pe.,d;, and py == pd, c. .

Lemma 3.6. Let (v,y,z,w) € A® and let py, pu, p» and p, as above. Moreover,
be o in the unique affine apartment joining c, and dy. Then for all i € J. we have

2CI‘51. (LL', Y, %, U)) = bwfi (07 pzpwpzpy(o)) .

Proof. Denote by A, the unique affine apartment joining ¢, and d,. Then pg, .,
restricted to Ay, is the identity, i.e., pq,.,(0) = o. Therefore Proposition 2.1
implies that 2(x [y)o,¢; = bz, (0,0) = 0.

By definition p,(0) is contained in the unique affine apartment joining c, and
dy. Then in the same way it follows that (2]y),, (0),e, = 0. Moreover, equation (2)
yields by, (0, py(0)) = by, (0,0) = 0.

We can use Proposition 2.3 and again equation (2) to derive that

2(Z I y)o,&' = 2<Z | y)py(o),gi + sz (07 py(o)) + bng,i (07 py(o)) = bzgi (07 pzpy(0)>'

In a very similar way we get

2(z | w)o,e; = bz, (0, pzpy(0)) + bu,¢, (0, puwp2py(0))
2(z[w)oe, = bxgi (0, popuwpzpy(0)) + bw,,gi (0, pwp=zpy(0))-

USing that Crg; (.T,y,Z,U}) = _(£E | y)o,éi - (Z | w)O,fi + (:E | w)O,éi + (Z|y)0,§m we
get 2cr§i (377 Y, z, w) = bl}gi (07 Pz PwPzPy (0)> O

Proposition 3.7. Let pg, py,p. and p, as before. Let o be in the unique affine
apartment joining ¢, d, such that we have under the identification P(z,y) ~ a, X
CS(z,y) that w(o) = 0 € a,, where 7 is the projection to the first factor (also
assume x ~ af ). Then 2cr,(x,y, 2, w) = T(pzpuwp=py(0)).

Proof. By construction we have that o, pzpwp.py(0) are in the unique affine apart-
ment joining ¢, and dy. Then by Lemma 1.1 and from similar arguments as around
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equation (5) we can derive that by, (0, pzpwpzpy(0)) = (&is T(pupwp=py(0))) for all
i € J;. Together with Lemma 3.6 and the definition of cr, we get

2cr(x,y,z,w) = Z (&, T(pzpuwp=py(0)))as .
i€,
The &; € a; for ¢ € J. form a basis of a,. Moreover, for all ¢ € J, we have that
(2crr(z,y, 2, w), &) = (&, T(PsPwp2py(0))). Thus it follows that 2cr,(z,y, 2z, w) =
T(papuwpzpy(0)). O
4. Cross ratio preserving maps
We assume in this section that 7 is self-opposite, i.e., T = ¢7.

Definition 4.1. Let M;, i = 1,2 be either both symmetric spaces or thick Fucli-
dean buildings. A map f : Flag, (M;) — Flag, (M) is called &-Moebius map
(or cross ratio preserving) if there exists & € int(r;) such that cre, (x,y, z,w) =
cre, (f(2), f(y), f(2), f(w)) for all (z,y,z,w) € A, we in particular assume that
F(AL) € Ay,

If f is a &-Moebius map with respect to &1,&2, we also denote this by cre, =
frere,. If & is clear from the context, we sometimes call f just a Moebius map.
Moreover, for any map f : Flag, (M;)— Flag, (Mz) we denote f*cre, (z,y, 2, w):=
Cley (f(x)v f(y)7 f(Z), f(w)) for z,y,z,w € Flagn (Ml)

Lemma 4.2. Let x,y € Flag_. Then there exists z € Flag, with z op z,y.

Proof. We take ¢, cy € Flag, such that z is a face of ¢, and y is a face ¢,. Then
there exists ¢, € Flag, with ¢, op ¢z, ¢y [2, 5.1]. Be z the face of ¢, which is of
type 7. Then z € Flag_ with zop z,y. O

Lemma 4.3. Let f : Flag_ (M;) — Flag, (Ms) be a &-Moebius map. Then for
x,y € Flag, (M1) we have that x op y if and only if f(x) op f(y).

Proof. Let z,y € Flag, (M) be given. Choose z1, 20, z3 € Flag, (M) such that
Z3 0p T Z2 Oop Y, 23 and z1 op , z2. From Corollary 2.2 we know that cre (z,y,22,23)
=r and cre, (z, 21, 22, 23) # £00, L.e., T op y <= 1 # —o0. Since crg, = frcre,, we
can derive that f(z2) op f(z3) and therefore we have f(x) op f(y) <= r # —o0.
In particular, f(z) op f(y) < zopy. O

A map f : Flag, (M) — Flag, (M>) such that for all z,y € Flag, (M) it

holds that x op y if and only if f(z) op f(y) is called opposition preserving.
Lemma 4.4. Let f : Flag, (M) — Flag,_ (Ms) be a §1-Moebius map. Then f is
imjective.
Proof. Assume there exist x # y € Flag, (M) with f(z) = f(y). Take a €
Flag, (M) with a op z and a 9p y: For example take an apartment which contains
x and y. Take a opposite of z in this apartment. Then z # y implies that a o'y —
opposite points are unique in apartments.

In addition, choose z,w € Flag, (M) such that z op a and w op z,z. Then
cre, (z,a, z,w) # foo and cre, (y, a, z, w) = —oo or is not defined; but

Cre, (:E,a,z,w) = f*CI'§2(JS,CL,Z,’LU) = f*cr@(y,a,z,w) = CTg (y7a72aw)7

contradicting cre, (z, a, z,w) # cre, (y,a, 2z, w). Hence f(x) # f(y) ifx #y. O
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Definition 4.5. A surjective & -Moebius map is called a £&1-Moebius bijection.

When restricting to the full flag space we can apply the following result due to
Abramenko and van Maldeghem.®

Proposition 4.6 (Corollary 5.2 of [2]). Let f : Flag,(M;) — Flag, (Msz) be a
surjective map that preserves opposition. Then f extends in a unique way to an
automorphism of the building f : Asoc My — Ao Mo.

Lemma 4.7. Let B=Byo---0By and B' = B{ o---0Bj, be joins of irreducible
thick spherical buildings. Moreover, be f : B — B’ a building isomorphism. Then
k = k' and there exists a permutation s on k numbers such that f = f1 X -+ X [
with f; : B; — Bé(i) building isomorphisms.

Proof. That f is a building isomorphism implies that B and B’ are modeled
over the same spherical Coxeter complex, i.e., over the Coxeter complex to W =
Wi X -+ X Wy, where W; are irreducible Coxeter groups. The irreducibility of the
buildings B;, B] yields then that k = k'

Assume without loss of generality that [Wy| < |W;| foralli =1,..., k. Let 21 be
a chamber in B;. Then 7 is a simplex in B. We know that Res(z1) is a spherical
building over the spherical Coxeter complex to Wy X -+ x Wy. As f is a building
isomorphism, we derive that f(Res(x1)) = Res(f(z1)) is a spherical building over
Wa x -+« x W If f(z1) would not correspond to a chamber in an irreducible factor
B, then there would be a subgroup W’ of W isomorphic to Wy x --- x W, such
that the projection of W’ to each W is non-trivial (as W is minimal). This would
yield a decomposition of W5 x --- x W into k Coxeter groups, which contradicts
the irreducibility of the factors. In particular, up to reordering Res(f(z1)) is a
spherical building over W7 x W3 x --- x W) and Wi is isomorphic to W5. Thus
f(z1) = ya for a chamber yo € Bj. Since f is a building isomorphism it maps
all simplices of the same type as x; to simplices of the same type as y- i.e., it
maps the chambers of By to chambers of Bj. In particular, f induces a building
isomorphism f; = f|p, : B1 — B} (Bj is naturally a subset of B, namely the
set of simplices of B fully contained in Bp) and thus f = f; x fy for a building
isomorphism fo : By o---0 By — Bj o Bj...o Bj. A straightforward induction
yields the result. [

We remark that multiplying the metric of a space M by some positive constant
a, yields that the Gromov product on Flag_(aM) is given by (-|)¢,anmr = (-] )e,m
and hence also cr¢ op = acre p. Moreover, there is a natural identification of
Flag, (M) with Flag_(M).

Lemma 4.8. Let M; = M} x ---x MF be products of either irreducible symmetric
spaces or irreducible thick Fuclidean buildings. Moreover, be f : Flag (M;) —
Flag,(M2) a & -Moebius bijection. Then there exists a permutation s on k numbers

such that f = f1 x -+ X fr with f; : Flagg(]/w\f) — FlagU(Ms(i)) a & -Moebius

SWe remark that every spherical building is 2-spherical as in the notation of [2].
Moreover, the buildings at infinity of symmetric spaces and thick Euclidean building are
thick; hence we can apply their result.
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bijection and J/\/I\} is the space M} with its metric rescaled (for the types & see the
proof).

Proof. Let f : AcoM; — Ao Ms be the building isomorphism from Proposition
4.6. From Lemma 4.7 we get a permutation s on k letters and building isomor-
phisms f; : Ao M{ — AOOM;(” such that

f:flxkaAOOMllooAOOM{C%AooM;(l)OOAOOMS(k)

Moreover, we know from Proposition 2.12 that cre, = pferg + -+ + ufcrgk with
f{ € Uf fori=1,2and j =1,...,k and p; € S such that & = m (&}, ..., &8, ;)

7
with 7; as in the proposition (the numbers in the exponent are for indexing, not
powers). Fix (20,0, 20, wo) € Flag,, (M3)o--- oFlag,, (MF) with zg, 2o op Yo, wo.

Then for any (x1, 41, 21, w1) € Ay, We get

M%Crfi (1'1, Y1, 21, ’U)l) + (/L%CI‘g% St /’[’Ilgcrgi“)(m()a Yo, =0, wO)

2

1) px " k
= M;( )f1 Crggm (33172/1, Zlawl) + fo (M; )CT§;<2> st MZ( )CYg(z))(xo,yo,Zo,wo)

with fo = fo x -+ x fi. The equality also holds when we replace (xo, yo, 20, wo)
with (2o, Yo, Zo, wo). Moreover, we have that (,u%crff S u’fcrgif)(mo, Yo, 20, W) =

—(plergs -+ u’fcrgf)(zo, Yo, To, wo). Hence we derive that
1 _ o os(1) px
,ulcrgi (3?1, Y1, 21, ’LUl) = Mo fl Crf;(l) (xlv Y1, 21, UJ1).

As (z1,y1, 21, w1) was arbitrary in A,, we get LL%CI‘G = ﬂ;(l)ffcrgsu). In the same
2
way it follows for all ¢ = 1,...,k that /~Li1cr§;1 = ﬂ;(l)fi*Cfgs(i).
2

If we rescale the metric on M} by ,u;(i)/uil—denote this space by Mf—then
fit Ao M} — AOOM;(Z) restricts to a Moebius bijection on the chamber sets, i.e.,
we get a Moebius bijection f; : Flag, (M}) — Flaga(M;(Z)). O

We will need the following fact:

Theorem 4.9 ([4]). Let Ty, T» be geodesically complete trees with |0-T;| > 3.
Then every isometry from Ty to Ty restricted to the boundary is a Moebius bijection
and every Moebius bijection f : 0,11 — OxoT2 can be uniquely extended to an
1sometry.

Let T be a rank one thick Euclidean building; in particular T is a tree. Then
every geodesic segment in 7T lies in an affine apartment, i.e., in a bi-infinite geodesic.
This means that T is geodesically complete (in the notation of [4]). Moreover, by
definition of thickness for rank one Euclidean buildings we have that |0xT| > 3.

We remark that rk(7) = 1 implies that the positive chamber of the Coxeter
complex or consists of a single point. Thus AT = Flag,(T) = 0xT. Hence
there is a unique Gromov product (-, )., for any o7 € T on 95,T? and a unique
cross ratio crp on Ap C 0o T
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Recall that a locally compact Euclidean building with discrete translation group
is called a combinatorial Fuclidean building. Moreover, given a metric realization
(B,dg) of a spherical building as a CAT(1) space, the cone Ep over B is the
quotient of B x [0, 00)/~ for the equivalence relation (b1,t) ~ (ba,8) <= s=0=t¢
with b; € B and s,t € [0,00). The metric on Ep is given by dg, ((b1,1), (b2,5)) =
52 + 12 — 2st cos(dp(by, ba)).

Proposition 4.10. Let Ey, Ey be irreducible thick combinatorial Euclidean build-
ings. Then every | Moebius bijection f : Flag,(F1) — Flag, (Fs) is the restriction of
an isometry F : E1 — Fs to the boundary where El 1s B with its metric rescaled.
If E is not the cone over a spherical building, then F is unique.

Proof. If the rank is one, then the result follows from the theorem above.

If the rank is at least 2, Struyve has shown in [31] that every isometry between
OooF1 and 0o, Fo with respect to the Tits metric is induced by an isometry after
rescaling the metric on Ej. The isometry is unique if E; is not the cone over a
spherical building. We know that f induces a building isomorphism f : A E; —
Ao F> and this yields an isometry f : OsoF1 — 0sFEo with respect to the Tits
metric when viewing simplices as subsets of J., F;. Hence we can apply the result
of Struyve. O

The non-uniqueness for cones over spherical buildings arises, for example, as
follows: Let E'g be a cone over a spherical building B. Then clearly the identity map
id : Flag, (Ep) — Flag,(Fp) is a Moebius bijection. However, every homothety of
Ep,i.e., every map Fy : Eg — FEp, (b1,t) — (b1, At) for A € (0,00), is an isometry
from Fy : A>Eg — Eg, where A2E5 is the space Ep with its metric rescaled by
A2. In particular, every F\ extends the map id : Flag, (Eg) — Flag,(Eg) as an
isometry after rescaling the metric on the domain of Fy by 2.

Corollary 4.11. Let Ey and E5 be combinatorial Fuclidean buildings and let f :
Flag,(E1) — Flag,(F2) be a Moebius bijection. Then one can rescale the metric of
E1 on irreducible factors — denote this space by Ey — such that f is the restriction
of an isometry F : E1 — FE5 to the boundary. If none of the irreducible factors is
a cone over a spherical building the isometry F' is unique.

Proof. This follows from Lemma 4.8 and the proposition above. O

Symmetric spaces. We want to show that the above proposition and corollary hold
in a similar way for symmetric spaces. We will see that we essentially only need
to show that Moebius bijections are homeomorphisms. Therefore we analyze some
topological properties of Moebius bijections for the case of symmetric spaces.

In this section we only consider symmetric spaces X. For r € R, £ € int(7) and
Z2,Y1,Yy2 € Flag_(X) we define

Bl e(y1,22,y2) == {z1 € Flag (X) | (21,91, 22,92) € Ag, cre(w1,y1,22,52) > 1},
B (1, 22,y2) := {21 € Flag (X)) | (21,91, 72,92) € A¢, cre(z1,y1,22,92) <7}

Those sets are open by the continuity of cre and the fact that A¢ is open. However,
it can happen that they are empty — which holds if z2 9p y1, yo.
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Proposition 4.12. Let X be a symmetric space. The sets B, (yl, Ta,Y2) varying
over allr € R and all x2,y1,y2 € Flag, form a subbase of the topology on Flag_(X)

Proof. As mentioned, those sets are open. Thus it is enough to show that any open
neighborhood U of a point « € Flag, (X) contains an open neighborhood V' which
can be written as a finite intersection of sets of the form B;é (y1, 22, y2).

Let € Flag, (X) and let any neighborhood U of = be given. We set K :=
Flag \U. Then K is compact and = ¢ K.

For any a € K, choose y, € Flag (X) such that y, opa and y, op z. In
addition, choose wg,z, € Flag, (X) such that w, op a,z and z, op ¥a,w,. This
yields cre(z, Yo, Za, wq) = —o00 and cre(a, Yo, Za, Wq) > 1o for some r, € R and
hence x € B;aé(ya,zmwa), xz ¢ B;;,E(ya,za,wa), a€ B;ng(ya,za,wa).

Varying over all a € K the sets B:l ,g(ya, Za, Wq) cover K and by compactness
we find a finite number of points a; € K, i = 1,...,l such that the according
sets already cover K. We set V = (1, ., BZ ¢Wa;» Za;, Wa,). As a finite
intersection of open sets, V' is open. Furthermore, x € V and hence V is non-
empty. By construction V ¢ K¢ and hence V. Cc U. [

Lemma 4.13. Let f : Flag, (X;) — Flag, (X2) be a & -Moebius bijection. Then
f is a homeomorphism.

Proof. Since f leaves the cross ratio invariant and is a bijection, it is immediate that
(B¢, (y,z,w)) = B¢, (f(y), f(2), f(w)). This means that f yields a bijection of
subbases of the topology and hence f is a homeomorphism. O

As mentioned, for a symmetric space X the boundary Flag. (X) can be identified
homeomorphically with G/ P, for P, = stab(x) and « € Flag_(X). Hence Flag, (X)
can be given the structure of compact connected manifold (without boundary) —
inherited from G/P,. Using this there is a different way to characterize Moebius
bijections captured in the following lemma.

Lemma 4.14. Let X1, Xo be symmetric spaces. Assume that dim FlagT1 (X)) =
dimFlag,, (X2) and let f : Flag_ (X1) — Flag,, (z2) be a continuous & -Moebius
map. Then f is a homeomorphism, in particular f is a & -Moebius bijection.

Proof. Since f is a {;-Moebius map and hence injective, f : Flag, (X1) — Im(f)
is a bijection, with Im(f) denoting the image. Moreover, f*cre, = cre, implies
(B¢, (Y, 2,w)) = B¢, (f(y), f(2), f(w)) N Im(f). Then Proposition 4.12 yields
that f maps a subbase of the topology on Flag, (X1) into a subbase of the topology
on Im(f) equipped with the subset topology. Hence f : Flag, (X1) — Im(f) is open
and therefore a homeomorphism.

We derive that Im(f) is compact connected submanifold of Flag, (X2) of the
same dimension. However, Flag_ (X>) is a compact connected manifold without
boundary and hence the only such submanifold is Flag, (X3) itself, i.e., Im(f) =
Flag., (X2), which proves the claim. [

Theorem 4.15. Let Xy, X5 be symmetric spaces of rank at least two with no
rank one de Rham factors and let f : Flag, (X1) — Flag, (X2) be a & -Moebius
bijection. Then one can multiply the metric of X1 by positive constants on de
Rham factors — denote this space by X1 — such that f is the restriction of a unique
isometry F : X1 — X5 to Flag,(X1).
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Proof. We know that a &;-Moebius bijection f : Flag, (X;) — Flag,(X2) can
uniquely be extended to a building isomorphism f : Ay, X1 — A Xo. Moreover,
f is a homeomorphism on the chamber sets Flag, (X;) by Lemma 4.13. Then for
such maps the result is known [13, Sec. 3.9]. O

Actually all we need for the above result is that f : Flag_ (X;) — Flag,(X>)
is opposition preserving and a homeomorphism. However, when dealing also with
rank one factors we really need Moebius maps.

Corollary 4.16. Let X1 and X5 be symmetric spaces of non-compact type and
let f : Flag,(X1) — Flag, (X2) be a Moebius bijection. Then one can rescale the
metric of X1 on de Rham factors — denote this space by )?1 — such that f is the
restriction of an unique isometry F : X1 — Xo to the boundary.

Proof. This follows from Lemma 4.8 together with the theorem above and the fact
that Moebius bijections of rank one symmetric spaces can be uniquely extended
to isometries. For the latter result see [8]. O

Rescaling on irreducible factors. In this generality it is not possible to drop the
scaling on the irreducible factors in the Corollaries 4.11, 4.16 and Theorem 4.15.
For example consider the following situation: Let My be a symmetric space or a
combinatorial Euclidean building. We set M; := uflMo, My = u;lMO for pu; >0
with 43 + p3 = 1 and M := M; x My—here M; = u; "My means we take the
space My with its metric multiplied by y; '. Moreover, we define f : Flag, (M) —
Flag, (M) by f(z,y) == (y,z).

Let ¢ € int(og) and op the fundamental of the space M. Consider the cross
ratio Crr(e ¢, (ur,ue)),M = M1CTe M,y + H2CTe ar, — cp. Proposition 2.12. As mentioned,
we have picre ar, = cre pm, = pacre p, and hence f is a (€, &, (11, t2))-Moebius
bijection.

We see that f is induced by a map F := F} X Fy : My x My — My x My,
such that F; : Flag,(M;) — Flag,(M;), ¢ # j is the identity (under the natural
identification with Flag,(My)). As F' and hence the F; shall be isometries, it follows
that F'(p,q) = (q,p) and clearly F' is an isometry only after rescaling on de Rham
factors.

Let M7 be a symmetric space or a combinatorial Euclidean building and assume
that the image of cr, 57, lies not in a proper subspace of aps,. Then the above
situation is essentially the only possibility where rescaling can appear:

Let Mj, My be irreducible. In addition, be f : Flag, (M;) — Flag, (M2) a
&1-Moebius bijection, i.e., crg;, = f*crg,. Then we know that we can rescale the
metric on M; by some positive number g1, such that f is induced by an isometry
F: py My — Ms. Thus Proposition implies 2.9 f*cre, = crg; i, m, = pracre; a, for
f{ € 01 with Fg(fi) = EQ.

However, it follows from the assumption on cr, a7, together with Lemma 3.3 that
crg # acrg for £ # ¢’ € 01 and any a € R. Therefore cre, ar, = f*ere, = picre ar,
implies & = £] and g1 = 1—in particular f is induced by an isometry without
rescaling the metric.

We remark that for symmetric spaces with ¢ = id the image of cr, is all of a.
This follows from the fact that every vector of a can be realized as a translation
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vector of a hyperbolic element in GG. Then the periods of those elements in G
are exactly those translation vectors, as seen in Proposition 3.5. Hence the above
discussion applies.

Corollary 4.17. Let M either be a symmetric space or a combinatorial Fuclidean
building with none of the irreducible factors being a cone over a spherical building.
In addition, assume that the image of cr, is not contained in a proper subspace of a.
Let &y € o be the center of gravity of o. Then there is a one-to-one correspondence
between Iso(M) and &y-Moebius bijections.

Proof. Let g € Iso(M) and g, : 0 — o the induced map. Then g, is an isometry
with respect to the angular metric, hence g, stabilizes the center of gravity &y of
o. Therefore Proposition 2.9 yields a {y-Moebius bijection for each g € Iso(M).

On the other hand, by Corollaries 4.11 and 4.16, we know that each £,-Moebius
bijection is induced by a unique isometry — after possible rescaling on irreducible
factors. However, following the above discussion we can exclude rescaling of the
metric:

Let f be a £g-Moebius bijection and let f = f; X --- x fi be the decomposition

on irreducible factors M, ..., My as in Lemma 4.8. Assume w.l.o.g. that fi :
Flag,(M,) — Flag,(Ms), i.e., M7y, Ms are isometric after possibly rescaling the
metric. From Proposition 2.12 we know cre, = picre, v, + paCre, an, + -0 +

HCTe, M, - However, & € o being the center of gravity of o and M;, M, isometric
after possibly rescaling the metric implies p1 = ps and & =~ &. Then f; is a &;-
Moebius bijection between irreducible spaces. From the above discussion it follows
that it is induced by an isometry without rescaling the metrics. The same argument
implies the result for all f; and hence the claim follows. O

General Euclidean buildings. In this section we consider general Euclidean build-
ings, i.e., in particular non-locally compact ones. The goal is again to show that
Moebius bijections are induced by isometries. However, now we will need the vector
valued cross ratio cr, to derive such a result.

Let E be a thick Euclidean building considered with the complete apartment
system. Let « € Flag, (E) and y € Flag, . (F) with z op y and 7 is a codimension 1
face of 0 —in this case x, y are called panels of the building A, E. Then metrically
we have the splitting P(z,y) ~ a, x CS(z,y), where CS(z,y) is a Euclidean
building of rank rk(F) —dima, =1, i.e., CS(z,y) is an R-tree. This tree is called
a wall tree and will be denoted by T,. One can show that the isomorphism type
of Ty, does not depend on the choice of y € Flag,.(E) with y op = [23]; hence the
isomorphism class of T, will be denoted by 7.

We recall that the residue of an element z € A F is defined by Res(z) = {w €
A FE |z C w}. In case of a panel z € A E we have that Res(z) consists of all the
chambers in Ao F containing x.

It is known that one can naturally identify Res(z) =~ 0ucTy. Let us describe
this identification: Fix y op x and consider T, in the isomorphism class T,.. Let
0 € P(z,y). Then we can identify P(x,y) ~ a, x Ty, such that o ~ (0,07) and
x ~ Oxaf; recall that af = a, Na™. Then there is a one-to-one correspondence of
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chambers in Res(z) with (specific) Weyl sectors in P(x,y) with tip o [29, Cor. 1.9.].7
The affine apartments in P(x,y) ~ a, x T, containing o are of the form a, x =,
where 7 is a bi-infinite geodesic ray in T, passing through o7 (those are easily seen
to be isometric to R"). By definition every Weyl sector is contained in an affine
apartment; hence we can derive that every Weyl sector with tip o and boundary
chamber ¢ € Res(z) is contained in af X 7,,., where 7, is a geodesic ray in Ty,
from o7 to a boundary point z € O5T%y. This yields a one-to-one correspondence
of Res(z) with geodesic rays emanating from op. As those rays are in one-to-one
correspondence with 0o T4y, we get Res(x) ~ 05T, as claimed.

Remark 4.18. It follows that for z € JucTyy,c € Res(x) and d € Res(y) we have
that z >~ ¢ and z ~ d under Res(z) ~ 0Ty, Res(y) =~ 0014y respectively if and
only if the Weyl sectors with tip o = (0, 0r) defining c, d are contained in at X Yo,
a7 X Yopz, respectively.

By definition Res(z) is the set of chambers that contain x. Hence there is a
unique corner &, of o such that c¢, ¢ x for every chamber ¢ € Res(z). In the same
way we get a type from y and it is immediate that this type equals (£, — following
for example from the fact that « € Flag, implies that y € Flag, ..

Lemma 4.19. Let z,y be opposite panels in Ao E and Ty, the associated tree. Let
Zey 2d € oo Ty, ¢ € Res(x) such that ¢ ~ z. under Res(z) ~ 0xTyy and d € Res(y)
such that d ~ zq under Res(y) ~ 0xTyy. Then (c|d)oe, = sin(a)(z¢|zd)o, where
o ~ (0,or) under P(z,y) ~ a, x Ty and o € (0,7) does only depend on o and
the type of x.

Proof. Let 7,74 be the geodesics in P(z,y) from o to c¢, and dg,, respectively. The
splitting P(z,y) =~ a, x Ty, yields geodesics 7,7, in a, from 0 and ,,,7,, in Ty,
emanating from or such that v.(t) = (74(t), 7. () and va(t) = (vy(t), V2, (t)) —
while 7.,vq are unit speed, the geodesics vz, vy,7., and 7., are not. It is clear
that the geodesics 74,7, do not depend on the choice of ¢,d and are in opposite
directions (since the 7.,~vq are): The geodesics 7., 74 are along those corners of
Weyl sectors that are not contained in a,. Since Weyl sectors are isometric to
convex subsets of R", it reduces to Euclidean geometry; for example v, is the
geodesic in a, from 0 to the point in x of type 7, (&, ), where 7, is the orthogonal
projection from o to 7, and 7, is the type of z.

Let now 7z, vy, 72, and 7., be the geodesics as above but reparametrized such
that they are unit speed. Then the above discussion implies d(7y;(t),v,(t)) = 2t.
Let a be the angle of & and 7, (&;). Then v.(t) = (yz(cos()t), 7., (sin(a)t)).
Basic facts of trees imply that d(v.,(t),v2,(t)) = 2t — 2(2c|2d)op for t > (2¢|24) oy
(see, e.g., [4]). Altogether,

(c|d)oe, = tlir&t - %\/4 cos?(a)t? 4 (2sin(a)t — 2(zc|2d)op)?

= lim t — \/t2 — 2t sin(a)(2¢|2a)or + (2c]2a)?, = sin(a)(zel2d)or

t—o0

while the last equality follows from a Taylor series in the same way as we have
seen several times before. [

"Here Weyl sector includes also all translates in an affine apartment of the Weyl
sectors we have considered so far.
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Corollary 4.20. The natural cross ratio on OxTyy is given by
crr,, (21, w1, 29, w2) = sin(a)cre, (c1,dy, c2, d2)

where £, € o is the corner not contained in T, the type of x, a is the angle between
& and Ty, ¢; =~ z; under Res(x) =~ 0o Tyy and d; ~ w; under Res(y) =~ 0o Tyy -

The thickness of E' means that A, F is thick and therefore for every panel x
we have that |0Ty| > 3 (as Res(z) ~ 0x.T%), i.e., T, is thick and geodesically
complete. Therefore Theorem 4.9 implies that the whole isometry class T, has a
natural cross ratio cro, .

Definition 4.21. Let E1, E5 be thick irreducible Fuclidean buildings. A building
isomorphism ¢ : AsoE1 — Ao FEs is called tree-preserving or ecological, if for
every panel x € Ao Ey we have that @lres(z) : Res(z) — Res(¢(x)) is induced by
an isomelry ¢ : Ty — Ty(zy —i-e., (9z)|onT, = lRes(z) under the identification
Res(z) =~ 0x Ty

Theorem 4.22 (Tits, [32, Thm. 2]). Let Ei, Es be two thick irreducible Fucli-
dean buildings and ¢ : Ao E1 — Aso Eo an ecological isomorphism. Then ¢ extends
to an isomorphism, i.e., an isometry after possibly rescaling the metric on E;.

In a similar way as before, we call a surjective map f : Flag, (E1) — Flag,, (E>)
such that cry, (2,9, z,w) = f*cry, (2, y, z,w) for all (z,y, z,w) € Ay, a o1-Moebius
bijection. We remark that to identify the image of cr,, with the one of cr,, it is
already necessary that E; and Ey are modeled over the same Coxeter complex,
ie, 01 ~09=:0.

It is immediate that such a map is a £g-Moebius map, for &y the center of gravity
of 0. We assumed f to be surjective, hence f is a £g-Moebius bijection and therefore
f can be extended uniquely to a building isomorphism f : A F7 — A FE2 by
Proposition 4.6.

We recall that the affine Weyl group W=Wx Tw of the Coxeter complex over
which a Fuclidean building is defined gives a collection of hyperplanes, namely the
hyperplanes of the finite reflection group W together with all its translates under
Tw . Each hyperplane defines two half spaces which we call affine half apartments.
The image of an affine half apartment under a chart map is again called affine half
apartment.

In spherical buildings the hyperplanes associated to the spherical Coxeter group
define walls in apartments and those walls separate the apartments in two halfs,
called half apartments. One can show that the boundary of an affine half apartment
H C FE defines a half apartment in Hy,, C A FE and to every half apartment
in Ho, C AF we find an affine half apartment H C FE which has H., as its
boundary.

Now, let f : AxF1 — AxFEs be a building isomorphism and let z,y be
opposite panels. The identifications OsTyy ~ Res(x), OooTyy =~ Res(y) together
with f|Res(z) © Res(z) — Res(f(z)), flres(y) : Res(y) — Res(f(y)) induce two
maps fm, fy : 890sz — 6‘00Tf(l)f(y)
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Lemma 4.23. Notations as above; in particular let x,y be opposite panels and
Jors fy 0 0Ty = OocTg(ayp(y) are induced by flreszy : Res(z) — Res(f(x)),
flRos(y) : Res(y) — Res(f(y)) Then fm = fy

Proof. Let z € 0xcTyy, i.€., 2 is an equivalence class of geodesic rays. Every ray .
in the class starting at a branching point defines an affine half apartment a, X, in
E; and thus (the equivalence class of rays) defines a half apartment H,, C Ax FEj.
Then it follows from Remark 4.18 that ¢ ~ z with ¢ € Res(z) if and only if ¢ is
contained in the half apartment H., and in the same way d ~ z with d € Res(y) if
and only if d is contained in the half apartment H,. By assumption, f is a building
isomorphism, i.e., f(Hy) C Ao FE2 is a half apartment with f(z), f(y) € f(Hoo)-
The metric splitting P(f(z), f(y)) ~ ar X Tf(z)f(y) yields that we find an affine
half apartment a, X 7, with v, a geodesic ray in T(,)f,) and boundary point
W € OooTf(2)f(y) such that the boundary of this affine half apartment is exactly
f(Hoo). By definition f(c), f(d) € f(Hs). Hence from Remark 4.18 we get that
f(¢) @ w =~ f(d). Therefore fy(z) =w and fy(z) =w. O

Theorem 4.24. Let Eq, FEs be thick irreducible Euclidean buildings and let the
map f : Flag, (F1) — Flag, (Es) be a o-Moebius bijection. Then the induced
isomorphism f : Ao E1 — A FEa is ecological and hence can be extended to an
isomorphism F . Ey — FEs, i.e., an isometry after possibly rescaling the metric
on By.

Proof. What we need to show is, given a panel x € A FEj, the induced map
fo 1 00Ty — 0Ty is the restriction of an isometry. This implies that f is
ecological and therefore by the Theorem of Tits induced by an isomorphism.

We fix y op x to get a tree Ty, in the class of T,. Since we are considering
isometry classes of trees, it is enough to show that fiy : 0Ty — OocTr(a)f(y) 18
induced by an isometry.

Corollary 4.20 implies that for zi,ws, 22, w2 € O0uTyy and ci,c2 € Res(z),
dy,ds € Res(y) with z; ~ ¢;, w; =~ d; there is some a € (0, 7) with

crr,, (21, w1, 22, w2) = sin(a)cre, (c1,dy, c2,d2) = sin(a) f*cre, (c1,dy, 2, d2),

while the last equality follows from f being a o-Moebius bijection. By construction
foy ¢+ 0Ty =~ Res(z) = 0scTy(a)f(y) =~ Res(f(z)) is defined in the way that
fle1) =~ fay(z1) under OocTy(q)f(y) =~ Res(f(z)) and similar for cy. In light of
Lemma 4.23 we have that f(d;) ~ fuy(w;). Applying again Corollary 4.20 this
yields that sin(a)f*cre, (c1,d1,c2,d2) = f;ychf(z)f(y)(zl,wl,zg,wg); we remark
that the a is the same as before as the simplices o, and oy coincide. Hence fq,
is a Moebius bijection. Since 77, is a geodesically complete tree and the thickness
of Ey implies that |0Tyy| > 3, we can apply Theorem 4.9 to derive that fy, is
induced by an isometry. [

Corollary 4.25. Let Ey, E> be thick Fuclidean buildings and let f : Flag, (E1) —
Flag,(FE2) be a o-Moebius bijection. Then we can rescale the metric on the irre-

ducible factors of E1 — denote this space by El — such that f is the restriction of
an isometry F : E1 — FEs to the boundary.
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Proof. Since f can be extended to a building isomorphism (as we have seen before),
f is opposition preserving for each type of simplex. This, together with Lemma 3.3
and f being a o-Moebius bijection, yield that f*cre = cr¢ for every type £ € o.

Let 0 = 010 -00y be the decomposition of ¢ corresponding to the decomposi-
tion of E; into irreducible factors; the decompositions coincide as both buildings
are thick and modeled over the same spherical Coxeter complex. Moreover, be
f = f1 %+ X fr the decomposition from Lemma 4.8.

Then f*cre = cr¢ for all £ € o implies that each f; is a 0y-Moebius bijection.
Thus the above theorem yields the claim. O

Corollary 4.26. Let E1, Es be thick irreducible Euclidean buildings. In addition,
assume that there exists a wall tree T, for a panel x € Ay FE1 which has more
than one branching point. Let f:Flag, (F1)— Flag, (E2) be a o-Moebius bijection.
Then f can be extended to an isometry F': Ey — Eo (without rescaling the metric).
Moreover, if Ey is not a Euclidean cone over a spherical building then every wall
tree has more than one branching point.

Proof. From Theorem 4.24 we know that we can rescale the metric by some p € Ry
such that f is induced by an isometry F : pFy — FEo, where puF; is E7 with the
metric rescaled by p. Let x € A, F7 be a panel such that the wall tree T, has
more than one branching point. Then clearly the wall tree of x € A uFq is puTy,.
Let fy : 0Ty — O0ooTy(y) be the induced map from f on the wall tree. Since F
restricted to the boundary is f, the map induced from F on OyouT, equals f,.
Therefore we have crr, = frcrr,,, = crur, = pcrr, (the first equality follows
from f being a o-Moebius bijection, the second from f, = F|a_ .1, )

By assumption, T}, has two branching points. The distance of those two points
can be given in terms of the cross ratio—i.e., let p, ¢ € T, be the branching points,
then there exist zi, za, w1, ws € 0Ty such that d(p,q) = crr, (21, w1, 22, w2) [4,
Lem. 4.2]. Since this distance d(p, q) is non-zero, we derive from crr, (21, w1, 22, w2)
= pcrr, (21, w1, 22, ws) that p = 1. Hence F' is an isometry without rescaling the
metric on Fj.

The second claim is a direct consequence of Propositions 4.21 and 4.26 in [23].
O

The second claim of Theorem B follows now from the fact that every o-Moebius
bijection splits as a product of ¢;-Moebius bijections on irreducible factors, as in
the proof of Corollary 4.25. The corollary above implies that those ¢;-Moebius
bijections induce isometries without the need of rescaling.

5. Appendix

Here, we determine the cross ratios that we construct explicitly for the symmetric
spaces X (n) := SL(n,R)/SO(n,R). We will use the notation as in Example 2.11.

The map g - SO(n,R) — gg' yields an identification of X (n) with the space
P, = {A € Mat(n x n,R)]JA = A" A det(A) = 1 A A is positive definite}. The
action of g € SL(n,R) on A € P, is given by g- A = gAg'. By definition of the
cross ratio, it will be enough to determine (-|-);, » with I, being the identity
matrix in P, and A = (A1,..., ;) being identified with some type.

Let 7 = (41,...,4), ¢; € {1,...,n} such that 4y = n, i; < iy, for 1 < j <
m <! <mn and let S; be the corresponding standard flag, i.e., S; = (V;,,...,V;)
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for V;, = span{ey,ea,...,¢e;; }. Let S,. be the standard opposite flag to S;, i.e.,
Sy = (V& ..., V> R") with sz = span{en,€n_1,...,€;,+1}. Furthermore, be

i1 » Vg
A= (A,..., A1) € R such that A; > A1, Y25y myA; = 0 for my = dimVj, —
dim Vi, if j > 1, my =dimV;, and 3 m;A2 = 1.

Claim. Notations as before; k,h € SO(n,R) and denote by ﬁl the i-th column of
the matriz h and accordingly k;. Then

-1
(kS hSur)ran = n Y (A1 = Aj)log [ det(Fer | -+ [F; [ha| -+ [hns, )]
j=1

Proof. We show the claim for types A = (A\1,...,\,) € int(o) and the full standard
flag S = (V1,...,V,) where V; = span{ey,...,e;} (the e; being the standard base
of R™). The claim follows then in full generality from Lemma 2.8.

Since (- | )1, . is invariant under the SO(n,R) action, it is enough to determine
(kS|S)1,.a or (S|kS)1, » for arbitrary k € SO(n,R). Proposition 2.1 implies that
(S|kS)1,.x = 2bs, (In,nis (I, S) - I,), where Sy is a point in the ideal boundary
05X (n) determined by the eigenvalue flag pair (A, S) and ngs(l,,S) € Ngs,
i.e., the element in the horospherical subgroup to kS such that ngs(I,,S) - I, €
P(kS,S).

We first determine nyg (I, S)- I,. Let ky, € SO(n,R) be the standard antidiago-
nal matrix with —1 in the upper right corner. Then k,S = W with W the
standard opposite flag, i.e., W = (V{*,...,V,¥) with V;* = span{e,,...,en—it1}.
Since any k € SO(n,R) stabilizes I,,, the maximal flat through &S and I,, is the
unique maximal flat (i.e., affine apartment) that joins kS and kW = kk,,S. This
yields ngs (I, S) = ngs(kky,S, S); here ngg(kk,S,S) € Nis is the unique element
mapping kk,,S to S.

We know Nis = kENgk™' = kNgk' and Ng is the group of upper triangular
matrices with ones on the diagonal. Thus we are looking for ng € Ng such that
kngk'kk,S = S, i.e., kngk, € stab(S); which is equivalent to kngk, being upper
triangular.

Let k; denote the i-th row of k. Then it is straightforward to check that the
(n 41— j)-th column of ny is given by >°7_, a; n41—jki, with a;,+1—; such that

kin—jt1 - kjn—j+1 1,n+1—j 1
kin—jrz oo Kjn—jye | [ a2zme1—; 0 o
RO kjn Qjn+1-j 0

We set A := kng. Then ngs(I,,,S) - I,, = (knsk?) - I, = kngnik' = AA".

The Busemann function on X (n) is well known —see Lemmata 2.4, 2.5 in [16].
Namely, for p € P, we have bg, (p,I,) = nlog(H;:ll(det A7 (p))rn—i—Ant1-5),
where A} (p) is the lower right j x j-minor of p -, e.g., A7 (p) = py,n- This yields

(SIkS) 1,0 = 5 2721 (Anga—j — An—y) log det(A] (AAY)).
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Let (J)i; = 6int1—j, where §; ; is Kronecker’s delta, i.e., J is the antidiagonal.
Then AJ is upper triangular with the diagonal of the form a;,,...,a,,1. Then
one can easily show that A7 (AA") = A7 (AJ)AT (JA'); and thus det A7 (AA") =
det A7 (AJ)det AT (JAY) = a3,y ---ap q_j -

If we apply Cramer’s rule to equation (7), we get

Kln—itl - kin—i
kl,n—j+2 - kj—l,n—j+2 kl, j‘+1 k]’ z+1
j+1 . . ILn—j+2 * " Njn—j+2
ajnt1—j=(=1)"" " det L : det : :
kl’n - kjil’n kl,n e kj,n
forj>2anda;, = k;}, Thus det A;fj(AAt) =det(er| - |enjlki| - |k;)2
Let El denote the i-th column of k € SO(n,R). Then (kS|S);, » = (S|k'S)r, A =
nZ?:_ll()‘n-&-l—j — An—j)log|det(er| -+ |ejlki| | knoyj)l

Let k, h € SO(n,R). Then the i-th column of =1k is given by h=tk-e; = h_lii‘\i.
Then

det(er |- |e; [ k|- [h™ oy ) = det(ha| - [hy [ R | -+ [Fny)
yields
n—1 N L N
(B 'EkSIS) 1 a =1 Y (Ang1-j — An—j)log|det(hy | -+ [ By ko | -+ [Fnoy)l.
j=1
Therefore (kS|hS)r, x = n 3"} (Ajr1 — Aj)log [det(Fy | -+ [ [ha | [y,

O

Proposition 5.1. Let A = (Ay,...,\;) be a type, and 7 such that A € int(r).
Let V = (Vi,...,V), Y = (Y1,....Y)) € Flag, and let W = (W1,...,W)), Z =
(Z1,...,2Z;) € Flag,.. Then

-1
V, AW Y A Z
VWY, Z) =n> (8 = ) log (| 7L =L L),
cra( ) ”;(g j+1)log Vi NZi_; Y; AW,

using the above conventions.

Proof. As mentioned in Example 2.11, the term is independent of the choices made.
By the transitivity of the SO(n, R) action, we know that every flag V' € Flag,_ can
be written as kS, for S; € Flag, the standard flag and some k € SO(n,R). Then
the columns El are such that V; = span{El, e ,Eij }. In the same way every flag
W € Flag,, can be written as hS,; for S,; € Flag,. the standard flag and some
h € SO(n,R).

Fixing the identification A"R"™ ~ det, we get |det(E1 |- |Ez] \El |- |iAzn_ij )|
= |V; AW,_;|. Thus the claim follows from the lemma above. [
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