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Abstract. We generalize the natural cross ratio on the ideal boundary of a rank one
symmetric space, or even CAT(−1) space, to higher rank symmetric spaces and (non-
locally compact) Euclidean buildings. We obtain vector valued cross ratios defined on
simplices of the building at infinity. We show several properties of those cross ratios; for
example that (under some restrictions) periods of hyperbolic isometries give back the
translation vector. In addition, we show that cross ratio preserving maps on the chamber
set are induced by isometries and vice versa, — motivating that the cross ratios bring the
geometry of the symmetric space/Euclidean building to the boundary.

Introduction

Cross ratios on boundaries are a crucial tool in hyperbolic geometry and more
general negatively curved spaces. In this paper we show that we can generalize
these cross ratios to (the non-positively curved) symmetric spaces of higher rank
and thick Euclidean buildings with many of the properties of the cross ratio still
valid.

On the boundary ∂∞H2 of the hyperbolic plane H2 there is naturally a multi-
plicative cross ratio defined by

crH2(z1, z2, z3, z4) =
z1 − z2
z1 − z4

z3 − z4
z3 − z2

when considering H2 in the upper half space model, i.e., ∂∞H2 = R ∪ {∞}.
This cross ratio plays an essential role in hyperbolic geometry. For example it
characterizes the isometry group by its boundary action and therefore allows us
to study the geometry of the space from its boundary; which is an important
perspective in hyperbolic geometry.
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This cross ratio can be generalized in a far broader context, namely CAT(−1)
spaces [7]: Let ∂∞Y be the ideal boundary of a CAT(−1) space Y , x, y ∈ ∂∞Y
and o ∈ Y . Then the Gromov product (· | ·)o : ∂∞Y

2 → [0,∞] is defined by
(x | y)o = limt→∞ t − 1

2d(γox(t), γoy(t)), where γox, γoy are the unique unit speed
geodesics from o to x, y, respectively. Then an additive cross ratio cr∂∞Y : A ⊂
∂∞Y

4 → [0,∞] is defined by

cr∂∞Y (x, y, z, w) := −(x | y)o − (z |w)o + (x |w)o + (z | y)o

for all (x, y, z, w) ∈ ∂∞Y 4 with no entry occurring three or four times; which is
independent of the basepoint. For the hyperbolic plane the additive cross ratio
corresponds to log |crH2 |. By construction cr∂∞Y has several symmetries with
respect to (R,+). In analogy to the hyperbolic plane, maps f : ∂∞Y → ∂∞Y that
leave cr∂∞Y under the diagonal action invariant are called Moebius maps. It follows
from the definition of the cross ratio together with the basepoint independence that
isometries are Moebius maps when restricted to the boundary.

The cross ratios cr∂∞Y and Moebius maps have been proven to be very useful
in hyperbolic geometry. For example Bourdon [8] has shown that Moebius maps
of rank one symmetric spaces extend uniquely to isometric embeddings of the
interior, and with this he gave a new proof of Hamenstädt’s ‘entropy against
curvature’ theorem [15]. Otal [28] has (implicitly) shown that Moebius bijections on
boundaries of universal covers of closed negatively-curved surfaces can be uniquely
extended to isometries; which yields that marked length spectrum rigidity holds
for those manifolds, a prominent conjecture formulated in [10]. See [12], [19], [20]
for more results in that context. Moreover, there is a close relation between the
cross ratio on the boundary of the universal cover of a closed negatively curved
manifold and the quasi-conformal structure on the boundary, and to dynamical
properties of the geodesic flow; see, e.g., [26].

On the boundary ∂∞S̃ of the universal cover of a closed surface S there are
many other cross ratios, besides the above constructed one, that parametrize
classical objects associated to the surface; such as simple closed curves, measured
laminations, points of Teichmüller space [6], Hitchin representations [25] and posi-
tively ratioed representations [27]2, to name a few.

This prominence and importance of cross ratios in negative curvature motivates
us to ask if such objects also exists for non-positively curved spaces and how much
information about the geometry they carry.

There is already some work done in this context. In [11] a coarse cross ratio for
arbitrary CAT(0) spaces on some subset of the boundary has been constructed. In
[3] there is a cross ratio defined on the Roller boundary of a CAT(0) cube complex,
using essentially the combinatorial structure of the space. In those works Moebius
(respectively quasi-Moebius) bijections are connected to isometries (respectively
quasi-isometries).

In this paper we will construct cross ratios for symmetric spaces and Euclidean
buildings, which will generalize the cross ratios of CAT(−1) spaces. There is little

2We will see that the cross ratios associated to Hitchin representations and positively
ratioed representations arise as pullbacks (under the natural boundary map) of cross
ratios that we construct in this paper.
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need to explain the importance of symmetric spaces in differential geometry and
related areas. However, we want to point out that the study of symmetric spaces
has recently gained renewed prominence in the active field of research of Anosov
representations and Anosov subgroups (e.g., [24], [18], [14] and many more). We
will see that the cross ratios we construct are connected to the study of those (e.g.,
[25], [27]) and hence we hope for applications of our work in this area.

Euclidean buildings arise in many different areas of mathematics. See [17] for an
overview of some applications. Probably most prominently they arise in the study
of algebraic groups and geometric group theory; they have also been a crucial
tool in the proof of quasi-isometric rigidity of symmetric spaces [22] (extending
Mostow–Prasad rigidity), to name a few.

We will denote by M either a symmetric space or a thick Euclidean building.
It is well known that the ideal boundary ∂∞M has naturally the structure of a
spherical building ∆∞M . Therefore there is a type map typ : ∂∞M → σ with
σ the closed fundamental chamber of the spherical Coxeter complex associated
to M . Then we show that to each type ξ ∈ σ there is ιξ ∈ σ such that the
Gromov product (defined exactly as for CAT(−1) spaces) restricted to the set
typ−1(ξ)×typ−1(ιξ) is generically finite. Thus we get a generically defined additive
cross ratio on (typ−1(ξ) × typ−1(ιξ))2 in the same way as for CAT(−1) spaces.
We can show that this cross ratio is independent of the choice of basepoint; and
denote it by crξ.

Let τ be a face of the simplex σ, int(τ) the interior of τ and ξ ∈ int(τ). Moreover,
we denote by Flagτ (M) ⊂ ∆∞M the set of simplices of the building at infinity
of type τ (i.e., those simplices that are mapped to τ under typ); in particular
Flagσ(M) is the chamber set of the building at infinity. Then one can naturally
identify typ−1(ξ) with Flagτ (M) and in the same way typ−1(ιξ) with Flagιτ (M).
This yields a cross ratio crξ : Aτ ⊂ (Flagτ (M) × Flagιτ (M))2 → [−∞,∞], which
by construction has similar symmetries as the additive one on CAT(−1) spaces;
for Aτ see equation (1), for the symmetries see equation (3).

Clearly, we get a whole collection of cross ratios defined on the set Aτ which is
parametrized by ξ ∈ int(τ). Then we show that we can put together this collection
to a single vector valued cross ratio crτ with the same symmetries, and values in
the Coxeter complex associated to M . We will see that the vector valued cross ratio
is the natural object to consider; we can connect the so-called period crσ(g−, g ·
x, g+, x) of a hyperbolic element g ∈ Iso(M) (with attractive and repulsive fixed
points g± ∈ Flagσ(X) and generic x ∈ Flagσ(X)) to the translation vector of g
along the unique maximal flat joining g− and g+, and we give a ‘nice’ geometric
interpretation of the vector valued cross ratio.

LetM1,M2 be either two symmetric spaces or two thick Euclidean buildings. Let
σ1, σ2 be the respective fundamental chambers of the spherical Coxeter complexes
and let ξi ∈ int(σi) be two types. Let f : Flagσ(M1)→ Flagσ(M2) be surjective. If
crξ1(x, y, z, w)=crξ2(f(x), f(y), f(z), f(w)) for all (x, y, z, w)∈Aσ1

, f is called ξ1-
Moebius bijection; if crσ1

(x, y, z, w)=crσ2
(f(x), f(y), f(z), f(w)) for all (x, y, z, w)

∈ Aσ1 f is called σ1-Moebius bijection. Moreover, we call a locally compact Eucli-
dean building with discrete translation group a combinatorial Euclidean building
and a Euclidean building thick if and only if the building at infinity is thick. Then
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we show the following:

Theorem A. Let M1,M2 be either symmetric spaces or thick combinatorial Eucli-
dean buildings and ξ1 ∈ int(σ1). If M1,M2 are irreducible, then every ξ1-Moebius
bijection f : Flagσ(M1) → Flagσ(M2) can be extended to an isometry F : M1 →
M2. If none of the spaces is a Euclidean cone over a spherical building, then this
extension is unique. If M1,M2 are reducible one can rescale the metric of M1 on
irreducible factors — denote this space by M̂1, such that f can be extended to an
isometry F : M̂1 →M2.

Theorem B. Let E1, E2 be thick (non-locally compact) Euclidean buildings. Then
for every σ1-Moebius bijection f : Flagσ(E1) → Flagσ(E2) one can rescale the

metric of E1 on irreducible factors — denote this space by Ê1 — such that f can
be extended to an isometry F : Ê1 → E2. If none of the irreducible factors is a
Euclidean cone over a spherical building, then f can be extended to an isometry
F : E1 → E2 (without rescaling the metric).

We remark that essentially by definition of the cross ratio every isometry gives
rise to a Moebius bijection. Therefore these theorems show that the cross ratios,
at least for the chamber set of the building at infinity, carry a lot of the geometric
information of the space, as they characterize isometries by their boundary action.
In this spirit we hope that those cross ratios will be a valuable tool in the studies
of symmetric spaces and Euclidean buildings.

We want to refer the reader to Section 4 for slightly more results in this spirit,
e.g., when we get a one-to-one correspondence of Moebius bijections and isometries,
and also an analysis of situations in which the rescaling of the metric is really
necessary.

Concerning the proofs of those theorems: First we show that Moebius bijections
split as products of Moebius bijections of irreducible factors; and that Moebius bi-
jections can be extended to building isomorphisms. For rank one symmetric spaces
and rank one thick Euclidean buildings it is already known that Moebius bijections
extend to isometries. For irreducible thick combinatorial Euclidean buildings it
will be enough that Moebius maps are restrictions of building isomorphisms to
the chamber set. For symmetric spaces and (general) thick Euclidean buildings,
we derive additional properties of the building map, using the cross ratio. Those
properties will allow us to use theorems (essentially due to Tits) showing that the
respective maps can be extended to isometries.

The structure of this paper is as follows. In the preliminaries we recall well
known facts of symmetric spaces and Euclidean buildings (we assume the reader
to be familiar with those objects) and show basic lemmas we need later on. In
Section 3 we define R-valued cross ratios, show basic properties, and illustrate the
objects with two examples. In Section 4 we show that the collections of R-valued
cross ratios fit together to vector valued cross ratios and suggest that these are the
natural objects to consider. In the last section, Section 5, we show that Moebius
maps on the chamber set extend to isometries.

Related work. In [21] I. Kim constructed a cross ratio very similar to our R-valued
cross ratio (Definition 2.5). Labourie [25] has given one of the cross ratios in
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Example 2.11 ad hoc and used it as a tool to understand Hitchin representations.
Martone and Zhang [27] have constructed cross ratios on boundaries of surface
groups, which in particular for SL(n,R)-Hitchin representations coincide with the
pullback under the boundary map of some of the cross ratios in Example 2.11. In
[30] (see also [5]) there is a Gromov product defined, which is closely related to
ours.

Acknowledgments. I want to thank Viktor Schroeder very much for suggesting
this topic to me and helping me with fruitful discussions and advice; Linus Kramer
for helping me understand and apply building theory; Beatrice Pozzetti for several
helpful comments; and Thibaut Dumont for a valuable comment concerning wall
trees.

1. Preliminaries

We use the notation that M is either a symmetric space of non-compact type or
a thick Euclidean building, X is a symmetric space of non-compact type and E is
a thick Euclidean building. In the case of a symmetric space when writing affine
apartment we mean a maximal flat.

A reference for symmetric spaces of non-compact type is, e.g., [13]; for Euclidean
buildings we refer to [23], [29], [32] and also [22].3

Coxeter complex and spherical buildings ([1]). Let W be a finite Coxeter group and
S the standard set of generators consisting of involutions. Then W can be realized
as a reflection group along hyperplanes in Rr with r = |S|. The hyperplanes
decompose Rr and the unit sphere Sr−1 into (cones over) simplicial cells. The
maximal, i.e., r-dimensional, closed cells in Rr are called Weyl sectors. Lower
dimensional cells will be called conical cells. The maximal, i.e., r− 1-dimensional,
closed simplicial cells in Sr−1 are called Weyl chambers. The set S corresponds to
exactly the hyperplanes bounding a Weyl sector. This Weyl sector will be called
the positive sector, the corresponding chamber in Sr−1 will be called the positive
chamber. We can give each simplex adjacent to the positive chamber or positive
sector a different label. Then the action of W on the simplicial complex induces a
unique labeling for all simplices. A fixed label will be called a type.

In this paper we refer to (Rr,W ) as the Coxeter complex and to (Sr−1,W ) as
the spherical Coxeter complex.

A spherical building is a simplicial complex B together with a collection of
subcomplexes Apt(B), called apartments, which are isomorphic to a fixed spherical
Coxeter complex (Sr−1,W ), such that the following holds:

(1) For any two simplices a, b ∈ B there is an apartment A ∈ Apt(B) with
a, b ∈ A.

(2) If A,A′ are apartments containing the simplices a, b, then there is a type
preserving simplicial isomorphism A→ A′ fixing a, b.

We say that the building is modelled over the spherical Coxeter complex (Sr−1,W).
A spherical building is called thick if each non-maximal simplex is contained in

at least three chambers. A (spherical) Coxeter complex is called irreducible if the

3We will use the definition due to [32], which is equivalent to the axioms in [23] and
[29], while the definition in [22] would additionally assume metrical completeness.
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Coxeter group can not be written as a product W = W1 ×W2 of two nontrivial
Coxeter groups. A spherical building is called irreducible if the spherical Coxeter
complex over which it is modelled is irreducible. If a building B is reducible, i.e.,
modelled over the spherical Coxeter complex W1×W2, then it can be written as the
spherical join of two buildings, i.e., B = B1 ◦B2 for two spherical buildings B1, B2

modelled over W1,W2 respectively and ◦ being the spherical join [22, Sec. 3.3].
Given a simplex x ∈ B with B a thick spherical building. The residue of x is

given by Res(x) := {y ∈ B | x ( y}. Let A be an apartment containing x, i.e.,
a Coxeter complex containing x. Let W be the Coxeter group of A and denote
by Wx the stabilizer of x under W . If x is not a chamber then Res(x) is itself a
spherical building modeled over the Coxeter complex to Wx [33, 3.12].

Euclidean buildings ([23], [29], [32], [22]). Let Ŵ be an affine Coxeter group, i.e., Ŵ
can be realized as a subgroup of the isometry group of Rr and can be decomposed
as a semi-direct product Ŵ = W n TW , where W is a finite reflection group and
TW < Rr is a co-bounded subgroup of translations. Here we assume r = |S|, where
S is the standard generating set of W . Moreover, let (E, d) be a metric space. A
chart is an isometric embedding φ : Rr → E, and its image is called anaffine
apartment ; the image of a Weyl sector and conical cells are again called Weyl
sectors and conical cells. Two charts φ, ψ are called Ŵ -compatible if Y = φ−1ψ(Rr)
is convex in the Euclidean sense and if there is an element w ∈ Ŵ such that
ψ ◦ w|Y = φ|Y . A metric space E together with a collection of charts C, called an
apartment system, is called a Euclidean building (modelled over the Coxeter group

Ŵ ) if it has the following properties:

(1) For all φ ∈ C and w ∈ Ŵ , the composition φ ◦ w is in C.
(2) Any two points p, q ∈ E are contained in some affine apartment.

(3) The charts are Ŵ -compatible.
(4) If a, b ⊂ E are Weyl sectors, then there exists an affine apartment A such

that the intersections A ∩ a and A ∩ b contain Weyl sectors.
(5) If A is an affine apartment and p ∈ A a point, then there is a 1-Lipschitz

retraction ρ : E → A with d(p, q) = d(p, ρ(q)) for all q ∈ E.

From these properties it follows that the metric space E is necessarily CAT(0).
The dimension of Rr is called the rank of E, i.e., rk(E) = r. While the definition
depends on a fixed set of affine apartments, there is always a unique maximal
set of affine apartments, called the complete apartment system. A set is an affine
apartment in the complete apartment system if and only if it is isometric to Rr.
In the ongoing we will always consider E with its complete apartment system. If
the subgroup of translations TW is discrete and E is locally compact we call E a
combinatorial Euclidean building.

Symmetric spaces ([13, Chap. 2]). Let X be a symmetric space. We will always
assume that X is of non-compact type and be d : X × X → [0,∞) the natural
metric. Moreover, be G = Iso0(X), i.e., the connected component of the identity
of the isometry group.

Let g = Lie(G) and g = k + p the Cartan decomposition. Fixing a maximal flat
F in X together with a basepoint o ∈ F yields the identification ToM ∼= p. This

36



CROSS RATIOS

identification is such that ToF ∼= a where a is a maximal abelian subspace of p. The
restricted root system of g with respect to a defines hyperplanes in a— namely the
zero sets of the restricted roots. The Weyl group W of X is the group generated by
the reflections along those hyperplanes with respect to the metric that a inherits
from ToF ⊂ ToX. Hence we can associate to X a Coxeter complex (a,W ). Let
a1 be the unit sphere in a, then we also get a spherical Coxeter complex (a1,W ).
It is well known that up to isometry the Coxeter complex is independent of the
choices. We fix a Weyl sector in a which we denote by a+ and call a positive sector.
Then a+1 will be called the positive chamber.4 The rank of X is the usual rank and
equals rk(X) = dim a. To keep the notation consistent with buildings we will call
maximal flats in X affine apartments.

The ideal boundary and Busemann functions ([9, Part II, Chap. 8]). We denote
by ∂∞M the ideal boundary; equipped with the cone topology ∂∞M is naturally
a topological space. For every o ∈ M and every x ∈ ∂∞M we denote by γox the
unique unit-speed geodesic ray joining o to x, i.e., γox(0) = o and γox in the class
of x. For o, p, q ∈M the Gromov product on M is defined by

(p | q)o = 1
2 (d(o, p) + d(o, q)− d(p, q)).

Let o ∈ M and x, y ∈ ∂∞M . Then (· | ·)o : ∂∞M × ∂∞M → [0,∞], the Gromov
product with respect to o, is given by

(x | y)o = lim
t→∞

(γox(t) | γoy(t))o = lim
t→∞

t− 1
2d(γox(t) | γoy(t)).

We remark that the convexity of the distance function guarantees the existence of
the limit in [0,∞].

Given x ∈ ∂∞M the Busemann function with respect to x, which will be denoted
by bx : M ×M → (−∞,∞), is defined by

bx(o, p) = lim
t→∞

d(o, γpx(t))− d(p, γpx(t)) = lim
t→∞

d(o, γpx(t))− t.

It holds that −d(o, p) ≤ bx(o, p) = −bx(p, o) ≤ d(o, p) and bx(o, p) + bx(p, q) =
bx(o, q) for o, p, q ∈ M . Moreover, it follows directly that bx(o, γox(s)) = s for all
s ≥ 0 and for all s ∈ R if γox is extended bi-infinitely.

An easy argument in Euclidean geometry yields that the level sets of Busemann
functions in Rn with respect to x in the boundary sphere are affine hyperplanes
orthogonal to the direction x. In general Busemann level sets with respect to one
coordinate are called horospheres and the collection of horospheres is independent
of the choice of the other coordinate.

The isometry group Iso(M) acts naturally by homeomorphisms on ∂∞M , since
they map equivalence classes of geodesic rays to equivalence classes of geodesic rays.
Moreover, by definition of the Busemann function, it follows bx(o, p) = bg·x(g·o, g·p)
for every g ∈ Iso(M).

4Usually a+ is called a positive Weyl chamber. However, as we will consider Euclidean
buildings and symmetric spaces at the same time and we want to distinguish between
spherical chambers and cones, we change the usual notation.
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The building at infinity ([13, Chap. 3], [23], [29], [32], [22]). Let M now be either a
symmetric space or a Euclidean building. To keep notation simple, we will denote
by (a,W ) also the Coxeter complex over which a Euclidean building is modeled.
Moreover, a1 is the unit sphere in a and hence (a1,W ) a spherical Coxeter complex.
We fix a positive Weyl sector a+ ⊂ a and the respective positive chamber a+1 =
a1 ∩ a+. Let S denote the generating set of W consisting of reflections along the
walls of a+. By definition we have rk(M) = dim a.

The ideal boundary ∂∞M carries naturally the structure of a spherical building
∆∞M modeled over the spherical Coxeter complex (a1,W ). The building ∆∞M
will be called the building at infinity.

For a Euclidean building E the building at infinity arises as follows: Let A ⊂ E
be an affine apartment. Then A being the image of (a,W ) under a chart implies
that A is decomposed into conical cells. Each conical cell defines a simplex in
∂∞E by taking the geodesic rays contained in the cell for all times. One can show
that two conical cells define the same set in ∂∞E if and only if they have finite
Hausdorff distance. In the latter case we say the conical cells are equivalent. Taking
all conical cells in E modulo the equivalence relation yields a simplicial structure
on ∂∞E; which can be shown to be a spherical building over the spherical Coxeter
complex (a1,W ).

In a very similar way we get the building at infinity of symmetric spaces X:
Every maximal flat F with fixed basepoint can be isometrically identified with
a. Then the conical cells of a descend to conical cells in F ⊂ X. Again taking
all conical cells in X modulo the equivalence relation of finite Hausdorff distance
gives ∂∞X a simplicial structure, which yields a spherical building modeled over
(a1,W ).

Apartments in ∆∞M correspond to the ideal boundaries of affine apartments
of M . It is well known that ∆∞X is a thick building. We call a Euclidean building
thick if in the case rk(E) ≥ 2 we have that ∆∞E is thick, and in the case rk(E) = 1
we have that |∂∞E| ≥ 3, i.e., E 6= R.

In particular the following important property holds: To every two points p, q ∈
M ∪ ∂∞M we find an affine apartment A in M such that p, q ∈ A ∪ ∂∞A. We say
that A joins p and q.

Given two affine apartments A,A′ in a Euclidean building E that have a common
chamber at infinity, i.e., c ∈ ∆∞E such that c ⊂ ∂∞A and c ⊂ ∂∞A

′, then the
intersection A ∩ A′ contains a Weyl sector with c being its boundary at infinity.
Such a Weyl sector is called a common subsector of A and A′.

The type map ([22, Sec. 4.2.1], [18, Sec. 2.4]). To the visual boundary ∂∞M with
the building structure ∆∞M there exists a map typ : ∂∞M → a+1 , called type
map. Given x ∈ ∂∞M there is a chamber cx ∈ ∆∞M with x ∈ cx and an affine
apartment A with cx ⊂ ∂∞A. Then this yields an isometry from cx to a+1 with
respect to the Tits metric on cx and the angular metric on a+1 . In this way we can
assign to each element of ∂∞M an unique element of a+1 . It can be shown that
the image is independent of the chamber and the apartment chosen, hence we get
a well-defined map typ : ∂∞M → a+1 . The type map is consistent with the types
of the spherical building ∆∞M , i.e., two simplices of ∆∞M are of the same type
if and only if they are mapped to the same face of a+1 under typ. Hence we also
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call the faces of a+1 types (a+1 will be a face of itself). When speaking of types we
denote σ = a+1 , i.e., a simplex of ∆∞M is a chamber if and only if it is of type σ.
Faces of σ will usually be denoted by τ . The set of simplices in ∆∞M of type τ
will be denoted by Flagτ (M), or just by Flagτ if M is clear from the context and
will be called flag space. If we consider chambers we denote this by Flagσ and call
it full flag space.

We (ambiguously) call elements in ξ ∈ σ = a+1 types. However, from the context
it is clear if an element or a simplex is meant. We denote by int(τ) the interior of
a simplex (and set the interior of a point to be the point itself). Given a simplex
x ∈ Flagτ (M) and ξ ∈ τ , we denote by xξ the unique point in x ⊂ ∂∞M of type ξ.

Let F : M1 → M2 be an isometry between either two symmetric spaces or two
thick Euclidean buildings. Restricting F to the ideal boundary ∂∞M1 induces a
building isomorphism F∞ : ∆∞M1 → ∆∞M2. The map F∞ is in general not type
preserving. However, that M1,M2 are isometric implies that they are modeled over
the same Coxeter complex and hence have the same fundamental chamber σ. Then
we can associate to F a type map Fσ : σ → σ such that typ(F∞(x)) = Fσ(typ(x))
for every x ∈ ∂∞M1 and Fσ is an isometry with respect to the angular metric.
Moreover, F (Flagτ (M1)) = FlagFσ(τ)(M2).

The G-action and flag manifolds ([13, Chap. 3], [18, Sec. 2.4]). Let X be a sym-
metric space and G = Iso0(X). Then the cone topology on ∂∞X induces a topology
on ∆∞X such that all flag spaces are compact. Moreover, given x ∈ Flagτ (X), let
Px denote the stabilizer of x under the G-action. Then we can identify Flagτ (X) '
G/Px with the identification being G-equivariant and homeomorphic; the group
Px is a parabolic subgroup of G and G/Px is equipped with the quotient topology
of the topological group G. Moreover, Flagτ (X) ' G/Px yields a smooth structure
on Flagτ (X) (inherited from G/Px) making it a compact connected manifold. The
spaces G/Px are called Furstenberg boundaries or flag manifolds (motivating our
notion of flag space). Let K be a maximal compact subgroup of G. Then already
K acts transitively on the flag manifolds and given x ∈ Flagτ (X) we can identify
Flagτ (X) ' K/Kx K-equivariant and homeomorphically, where Kx = stabK(x).
Moreover, we remark that the G-action is type preserving, i.e., gσ = id for all
g ∈ G.

The opposition involution. An important map for us will be the opposition invo-
lution ι : a→ a, which is given by ι = −id ◦w0 with w0 ∈W the maximal element
of the Coxeter group with respect to the generating set S. If W is an irreducible
Weyl group, then ι = id if and only if W is not of type An with n ≥ 2, D2n+1 with
n ≥ 2 or E6 [33, 2.39]. Moreover, we remark that we can restrict ι : a+1 → a+1 and
that ι is an isometry with respect to the angular metric.

Opposite simplices ([18, Sec. 2.2, 2.4]). There is a natural notion of opposition in
spherical buildings. This corresponds to the following: Let x, y ∈ ∆∞M and let
A∞ be an apartment in ∆∞M such that x, y ∈ A∞. Since A∞ can be identified
with the unit sphere a1, there is a natural map −id : A∞ → A∞. Then x is the
opposite of y, denoted by x op y, if and only if x = −id(y). The action of the
spherical Coxeter group W leaves the type invariant. Therefore, assume for the
moment that W is modeled in A∞ and x is a face of the positive chamber. Denote
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by w0 : A∞ → A∞ the maximal element of W . Then w0(y) is a face of the positive
chamber and of the same type as y and hence y is of type −id ◦w0(x) = ιx. Hence
all simplices opposite of elements in Flagτ are contained in Flagιτ . For later use
we denote

Aop
τ :={(x1, y1, x2, y2)∈(Flagτ×Flagιτ )2 |x1, x2 op y1, y2},

Aτ :={(x1, y1, x2, y2)∈(Flagτ×Flagιτ )2 |xi opyi or xi opyj , i, j=1, 2, i 6=j}.
(1)

Opposition of simplices has the following important connection to bi-infinite
geodesics: Let z1, z2 ∈ ∂∞M and A ⊂ M an affine apartment with z1, z2 ∈ ∂∞A.
Then one can show that there exists a bi-infinite geodesics joining z1 and z2 if
and only if there exists one in A. From Euclidean geometry it follows that the
zi can be joined by a bi-infinite geodesic in A if and only if z1 = −id(z2) with
−id : ∂∞A → ∂∞A as before. This can easily be seen to be equivalent to the
unique simplices τzi ∈ ∆∞M containing the zi in its interior being opposite, i.e.,
τz1 op τz2 , and typ(z1) = ιtyp(z2).

We will call points z1, z2 ∈ ∂∞M opposite if they can be joined by a bi-infinite
geodesic and denote this also by z1 op z2. Moreover, for every ξ ∈ τ and (x, y) ∈
Flagτ × Flagιτ with x op y, it follows that xξ is opposite to yιξ.

Symmetric spaces, Langlands decomposition ([13, Sec. 2.17], [18, Sec. 2.10]). In
case of a symmetric space X and given x ∈ Flagτ (X), the set of simplices opposite
to x is an open and dense subset of Flagιτ (X) (which can be deduced from the
Bruhat decomposition of G/P ). Moreover, for (x, y) ∈ Flagτ (X) × Flagιτ (X) we
have x op y if and only if the pair is in the unique open and dense G-orbit in
Flagτ (X) × Flagιτ (X). In particular, it follows in this case that Aτ and Aop

τ are
open and dense subsets of (Flagτ × Flagιτ )2.

Every parabolic subgroup Px has a natural decomposition Px = KxAxNx called
the Langlands decomposition, where Kx is compact and Nx is nilpotent. The group
Nx is called horospherical subgroup and is unique, while Kx and Ax are not. The
horospherical subgroup has several important properties; it leaves the Busemann
function with respect to xξ ∈ x ∈ Flagτ (X) invariant, i.e., bxξ(o, p) = bxξ(n·o, p) =
bxξ(o, n · p) for all n ∈ Nx and ξ ∈ τ ; given a geodesic ray γxξ with endpoint in
x ⊂ ∂∞X, we have d(γxξ(t), n · γxξ(t)) → 0 for t → ∞ for all n ∈ Nx; moreover,
Nx acts simply transitive on the set of simplices opposite to x. If x is a chamber,
i.e., x ∈ Flagσ(M), then Nx acts simply transitive on the set of maximal flats
containing x in its boundary.

Parallel sets ([13, Sec. 2.11, 2.20], [18, Sec. 2.4], [22, Sec. 4.8]). Let (x, y) be a point
of Flagτ (M)× Flagιτ (M) with x op y and let ξ be an element of int(τ). Then the
parallel set with respect to x, y, denoted by P (x, y), is the set of all points that lie
on a bi-infinite geodesic joining xξ to yιξ.

The parallel sets split metrically as products, i.e., P (x, y) ' Fxy × CS(x, y),
where Fxy is an isometrically embedded Rn such that x, y ⊂ ∂∞Fxy and x, y are
simplices of maximal dimension in the sphere ∂∞Fxy, in particular the dimension
of the spherical simplices x, y equals n− 1. Then it follows that the parallel set is
independent of the choice of type ξ ∈ int(τ), as for each type ξ ∈ int(τ) geodesics
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in M joining xξ, yιξ are of the form (γxξyιξ(t), p) with γxξyιξ a geodesic in Fxy
joining xξ, yιξ and p is a point in CS(x, y).

The space CS(x, y) is called a cross section. In the case of a symmetric space X
the cross section is itself a symmetric space without Euclidean de Rham factors;
in the case of a Euclidean building the cross section is again a Euclidean building.
In both cases the rank is given by rk(CS(x, y)) = rk(M)− dimFxy.

Let τ be a face of σ = a1. Let aτ be the subspace of a defined by τ , i.e.,
the smallest subspace of a containing τ and 0. Let ξ1, . . . , ξk ∈ a be the corners
of the spherical simplex τ . Then aτ = spani=1,...,k ξi. It is immediate that we
can also identify P (x, y) ' aτ × CS(x, y). We can additionally impose that this
identification is such that x ' ∂∞a+τ where a+τ := (aτ ∩ a+).

Lemma 1.1. Let (x, y) ∈ Flagτ × Flagιτ with x op y and be p, q ∈ P (x, y). Let
π : P (x, y) ' aτ×CS(x, y)→ aτ be the projection to the first factor. Then for each
ξ ∈ τ we have that bxξ(p, q) = (bxξ)|aτ (π(p), π(q)), i.e., the Busemann function is
independent of the second factor of the product.

Proof. Let γqxξ denote the geodesic ray from q to xξ. Moreover, be q = (q1, q2)
under the identification P (x, y) ' aτ × CS(x, y). Then we have that γqxξ '
(γq1xξ , q2) where γq1xξ is the geodesic ray in aτ from q1 to xξ. Using that metrically
P (x, y) ' aτ × CS(x, y) and p = (p1, p2) we derive the equalityd(p, γqxξ(t)) =√
d(p1, γq1xξ(t))

2 + d(p2, q2)2). If we set K2 := d(p2, q2)2, then we have bxξ(p, q) =

limt→∞
√
d(p1, γq1xξ(t))

2 +K2 − t. As p1, γq1xξ(t) ∈ aτ , it reduces to Euclidean

geometry, i.e., d(p1, γq1xξ(t)) =
√
bxξ(p1, γq1xξ(t))

2 +K1 with K1 the squared
distance from p1 to the (now) bi-infinite geodesic γq1xξ . It follows that we have
bxξ(p1, γq1xξ(t)) = t+ bxξ(p1, q1). Using a substitution t = s−1 and a Taylor series
for the root expression below yields

bxξ(p, q) = lim
t→∞

√
(t+ bxξ(p1, q1))2 +K1 +K2 − t

= lim
s→0

s−1(
√

(1 + 2sbxξ(p1, q1) + s2(bxξ(p1, q1)2 +K1 +K2)− 1)

=bxξ(p1, q1). �

We will also need the following lemma.

Lemma 1.2. Let (x, y) ∈ Flagτ × Flagιτ with x op y and ξ ∈ τ . Moreover let
p1, p2 ∈ P (x, y). Then bxξ(p1, p2) = −byιξ(p1, p2).

Proof. Let γi, i = 1, 2 be bi-infinite geodesics with γi(0) = pi, γi(+∞) = xξ and
γi(−∞) = yιξ, which exists by assumption. The γi are parallel and denote by C
their distance. Then the Flat Strip Theorem (see, e.g., [9]) implies that the convex
hull of γ1(R) ∪ γ2(R) is isometric to a flat strip R× [0, C] ⊂ R2 with γi identified
with R× 0, R× C respectively.

It follows that the level sets of the Busemann function bxξ(· , p2) in R × [0, C]
are given by hyperplanes orthogonal to γi, i.e., are of the form s × [0, C] and the
same holds for byιξ(· , p2). In addition, γi joining xξ to yιξ implies bxξ(· , p2)|γi =
−byιξ(· , p2)|γi . Then the claim is a direct consequence. �
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Retracts ([29]). Lastly, we need to introduce the notion of retracts of M to affine
apartments with respect to chambers at infinity. For the construction we will
distinguish between Euclidean buildings and symmetric spaces.

Let E be a Euclidean building. Let A ⊂ E be an affine apartment and x ⊂
∂∞A a chamber of the building at infinity. Then there exists a 1-Lipschitz map
ρx,A : E → A which is an isometry when restricted to any affine apartment A′ with
x ⊂ ∂∞A′ (i.e., any affine apartment that contains the chamber x in its boundary),
and the identity on A [29, Prop.1.20]. We call this map a (horospherical) retract
with respect to x. Horospherical retracts have the following important property:

Lemma 1.3. Let ρx,A : E → A be a horospherical retract with respect to x ∈
Flagσ(E). Then bxξ(o, p) = bxξ(ρx,A(o), p) = bxξ(o, ρx,A(p)) for all o, p ∈ E and
ξ ∈ σ.

Proof. To o ∈ E there exists an affine apartment Ao containing o and x ⊂ ∂∞Ao.
As mentioned, the horospheres with respect to xξ in Ao are hyperplanes orthogonal
to the direction xξ.

By construction, the two affine apartments A, Ao have the same chamber in its
boundary, which implies that they have a common subsector. Hence ρx,A is the
identity on the non-empty intersection A∩Ao. Moreover, ρx,A is an isometry when
restricted to Ao. Since ρx,A leaves each horosphere intersecting A ∩ Ao invariant,
it has to map the level set of bxξ(· , p) in Ao to the corresponding level set in A.
The other equality follows, for example, from the symmetry bxξ(o, p) = −bxξ(p, o).
�

Let X be a symmetric space, A ⊂ X be a maximal flat (an affine apartment
for us) and x ⊂ ∂∞A a chamber at infinity. To any o ∈ X there exists a unique
maximal flat Ao with o ∈ Ao and x ⊂ ∂∞Ao. Then we define ρx,A(o) := nx,Ao · o
for nx,Ao the unique element in Nx that maps Ao to A. Again we call ρx,A : X → A
a (horospherical)retract.

For later reference: To every affine apartment A ⊂M and a chamber x ⊂ ∂∞A
we have a well-defined map ρx,A : M → A such that

bxξ(o, p) = bxξ(ρx,A(o), p) = bxξ(o, ρx,A(p)) (2)

for all o, p ∈M and ξ ∈ σ. Moreover, it is known that two opposite chambers x, y ∈
Flagσ are contained in an unique apartment A∞ of ∆∞M and this corresponds
to an unique affine apartment Axy ⊂M . Hence to x, y ∈ Flagσ with x op y we set
ρx,y := ρx,Axy .

Lemma 1.4. Let x, y ∈ Flagτ with x op y and o ∈M . Then for all ξ ∈ τ we have
that ρcx,cy (γoxξ(t)) is a geodesic in P (x, y), where cx, cy ∈ Flagσ such that x is a
face of cx, y is a face of cy and cx op cy.

We remark that x op y implies that such cx, cy ∈ Flagσ always exist. Namely,
take an apartment containing x and y. Take cx ∈ Flagσ such that x is a face of
cx. Take cy ∈ Flagσ the unique opposite chamber in the apartment. Then x op y
implies that y is a face of cy.
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Proof. For a symmetric space X this follows since ρcx,cy is the same element of
G for all points γoxξ(t) and that G < Iso(X). Hence ρcx,cy (γoxξ(t)) is the image
of a geodesic under an isometry. The image ρcx,cy (γoxξ(t)) is a geodesic ray with
endpoint xξ in an affine apartment joining x and y. Then y op x implies that if we
extend ρcx,cy (γoxξ(t)) bi-infinitely it joins xξ to yιξ, i.e., this geodesic is contained
in P (x, y).

Consider a Euclidean building E. Denote by Axy the unique affine apartment
joining cx and cy. Let A be an affine apartment containing o and cx ⊂ ∂∞A.
Then it follows that γoxξ(t) ∈ A for all t ∈ R+. As ρcx,cy is an isometry on affine
apartments containing cx, it follows that ρcx,cy (γoxξ(t)) ⊂ Axy is the image of
a geodesic under an isometry. Since one of the endpoints is xξ, we can extend
the geodesic in Axy uniquely to a bi-infinite geodesic joining xξ and yιξ. Thus
ρcx,cy (γoxξ(t)) ⊂ P (x, y). �

2. Cross ratios

Let M be a symmetric space of non-compact type or a thick Euclidean building.
Let σ be the fundamental chamber of the associated spherical Coxeter complex
and τ a face of σ. For any type ξ ∈ σ such that ξ ∈ int(τ) and any o ∈M we define
a Gromov product ( · | · )o,ξ : Flagτ (M)× Flagιτ (M)→ [0,∞] with base-point o by

(x|y)o,ξ := lim
t→∞

t− 1
2d(γoxξ(t), γoyιξ(t))

for (x, y) ∈ Flagτ (M) × Flagιτ (M) and γoxξ(t), γoyιξ(t) the unit speed geodesics
from o to xξ, yιξ, respectively. Using this we define the (additive)cross ratio cro,ξ :
Aτ → [−∞,∞] with respect to (o, ξ) by

cro,ξ(x1, y1, x2, y2) := −(x1|y1)o,ξ − (x2|y2)o,ξ + (x1|y2)o,ξ + (x2|y1)o,ξ

where Aτ is the set of quadruples (x1, y1, x2, y2) ⊂ (Flagτ (M) × Flagιτ (M))2 as
in equation (1). If ξ ∈ int(τ), we also denote Aξ := Aτ . By definition cro,ξ has the
following symmetries, whenever all factors are defined,

cro,ξ(x1, y1, x2, y2) = −cro,ξ(x1, y2, x2, y1) = −cro,ξ(x2, y1, x1, y2)

cro,ξ(x1, y1, x2, y2) = cro,ξ(x1, y1, w, y2) + cro,ξ(w, y1, x2, y2) (3)

cro,ξ(x1, y1, x2, y2) = cro,ξ(x1, y1, x2, v) + cro,ξ(x1, v, x2, y2).

The last two symmetries are called cocycle identities.

Notation: Let τ be the face of σ and be ξ ∈ ∂τ . Then we drop for any (x, y) ∈
Flagτ ×Flagιτ the projection maps in the Gromov product (and in the cross ratio)
for notational reasons, i.e., (x|y)o,ξ := (πξ(x), πιξ(y))o,ξ, where τξ is the face of τ
containing ξ in its interior and πξ : Flagτ → Flagτξ , πιξ : Flagιτ → Flagιτξ are the
obvious projection maps.

Proposition 2.1. Let M be a symmetric space or thick Euclidean building, o ∈
M , (x, y) ∈ Flagτ (M) × Flagιτ (M) with x op y and cx, cy ∈ Flagσ(M) such that
x is a face of cx, y is a face of cy and cx op cy. Then for every ξ ∈ τ

(x | y)o,ξ = 1
2bxξ(o, ρcy,cx(o)) = 1

2byιξ(o, ρcx,cy (o)).
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Proof. In the case of a symmetric space let Nx be the horospherical subgroup of
Px = stab(x) and be nx(o, y) ∈ Nx the unique element such that nx(o, y) · o ∈
P (x, y): Extend γox bi-infinitely and let z ∈ Flagιτ be such that γox(−∞) ∈ z.
Then nx(o, y) ∈ Nx is the unique element with nx(o, y)(z) = y. By construction
we have nx(o, y) · o ∈ P (x, y).

We define in the same way ny(o, x) ∈ Ny and set γxy(t) := nx(o, y) · γoxξ(t) and
γyx(t) := nx(o, y) · γoyιξ(t). Then γxy, γyx are geodesics in P (x, y) with the same
(un-ordered) end points. Hence they are parallel. Moreover, nx(o, y) ∈ Nx implies
that d(γoxξ(t), γxy(t))→ 0 for t→∞ and similarly d(γoyιξ(t), γyx(t))→ 0.

The triangle inequality yields that (x|y)o,ξ = limt→∞ t − 1
2d(γxy(t), γyx(t)).

By construction γxy, γyx are parallel geodesics; hence by the Flat Strip Theorem
(see, e.g., [9]) the distance d(γxy(t), γyx(t)) decomposes into a part parallel to the
geodesics and the distance of the images of the geodesics, which is a constant and
will be denoted by C.

The part parallel to the geodesics is bxξ(γyx(t), γxy(t)) — or in the same way
byιξ(γxy(t), γyx(t)). Using that we have geodesics asymptotic to xξ we derive that
bxξ(γyx(t), γxy(t))) = 2t+ bxξ(γyx(0), γxy(0)). Altogether

(x|y)o,ξ = lim
t→∞

t− 1
2d(γoxξ(t), γoyιξ(t)) = lim

t→∞
t− 1

2d(γxy(t), γyx(t))

= lim
t→∞

t− 1
2 (
√

(2t+ bxξ(γyx(0), γxy(0)))2 + C2) (4)

=− 1
2bxξ(γyx(0), γxy(0)) = 1

2bxξ(γxy(0), γyx(0)),

while the second to last equality follows using Taylor series at s = 0 after substitut-
ing s = t−1 (see also the calculations in Example 2.6).

In the case of a Euclidean building E, let Ao be an affine apartment containing
γoxξ(t), let dx ∈ Flagσ be such that dx ⊂ ∂∞Ao and x ⊂ dx. Moreover, be
dy ∈ Flagσ a chamber opposite to dx such that y is a face of dy and let Axy be the
unique affine apartment that dx and dy define.

Then the affine apartments Ao and Axy have a common subsector. Hence there
exists Tx ≥ 0 such that for t ≥ Tx the geodesic γoxξ(t) is parallel to a geodesic γxy
in the subsector, denote the distance of the geodesic rays by Cx; Extend γxy bi-
infinite in Axy such that it is in the same horosphere with respect to xξ as γoxξ(t)
for all (positive) time. That γxy is in Axy with one endpoint being xξ implies that
γxy joins xξ and yιξ and hence γxy ⊂ P (x, y).

In the same way we construct γyx ⊂ P (x, y) to γoyιξ such that those geodesics
are parallel for t ≥ Ty — denote the distance by Cy. Since γxy, γyx join the same
points at infinity, they are parallel — denote the distance by C0. Then the triangle
inequality together with the Flat Strip theorem yields for t ≥ max{Tx, Ty} that
d(γoxξ(2t), γoyιξ(2t)) is smaller than or equal to

d(γoxξ(2t), γxy(t)) + d(γxy(t), γyx(t)) + d(γyx(t), γoyιξ(2t))

=
√
t2 − C2

x +
√
bxξ(γyx(t), γxy(t))2 + C2

0 +
√
t2 − C2

y .
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Since γxy and γyx are asymptotic to xξ, we derive that bxξ(γyx(t), γxy(t))) =
2t+ bxξ(γyx(0), γxy(0)). Therefore

(x | y)o,ξ≥ lim
t→∞

2t− 1
2

(√
t2 − C2

x+
√

(2t+bxξ(γyx(0), γxy(0)))2+C2
0 +
√
t2−C2

y

)
.

We substitute t = s−1. Then a Taylor expansion for the root expressions at s = 0
yields that (x|y)o,ξ ≥ − 1

2bxξ(γyx(0), γxy(0)) = 1
2bxξ(γxy(0), γyx(0)).

We claim that limt→∞ bxξ(γyx(t), γxy(t))) − bxξ(γoyιξ(t), γoxξ(t)) = 0: By con-
struction bxξ(γxy(t), γoxξ(t)) = 0. As we have bz(p, q) + bz(q, o) = bz(p, o), it is
enough to show that limt→∞ bxξ(γoyιξ(t), γyx(t)) = 0.

By construction we have that the geodesic γyx joins xξ and yιξ. Therefore
bxξ(γoyιξ(t), γyx(t)) = lims→∞ d(γoyιξ(t), γyx(t− s))− s. Moreover,

d(γoyιξ(t), γyx(t− s)) ≤ d(γoyιξ(t), γyx(Ty)) + |t− s− Ty|.

Applying the Flat Strip Theorem with an according Taylor expansion as before,
we derive that limt→∞ d(γoyιξ(t), γyx(Ty))− t→ −Ty. In particular,

lim
t→∞

bxξ(γoyιξ(t), γyx(t)) ≤ lim
t→∞

( lim
s→∞

d(γoyιξ(t), γyx(Ty))− t+ s+ Ty − s) = 0.

It follows from the definition of Busemann functions that if q ∈ M lies on a
bi-infinite geodesics joining z, w ∈ ∂∞M , then bz(p, q) + bw(p, q) ≥ 0. Hence we
derive bxξ(γoyιξ(t), γyx(t)) + byιξ(γoyιξ(t), γyx(t)) ≥ 0. Since by construction we
have byιξ(γyx(t), γoyιξ(t)) = 0, it follows bxξ(γoyιξ(t), γyx(t)) ≥ 0; which yields the
claim.

We have d(γoyιξ(t), γoxξ(t)) ≥ bxξ(γoyιξ(t), γoxξ(t)) → bxξ(γyx(t), γxy(t)), for
t→∞. Thus

(x|y)o,ξ ≤ lim
t→∞

t− 1
2bxξ(γyx(t), γxy(t)) = 1

2bxξ(γxy(0), γyx(0)).

Altogether (x|y)o,ξ = 1
2bxξ(γxy(0), γyx(0)).

Consider a symmetric space or a Euclidean building M and let γxy, γyx be the
accordingly constructed geodesics. Then bxξ(γxy(0), γoxξ(0)) = 0 while γoxξ(0) = o
and also byιξ(γyx(0), o) = 0. For notational reasons set ρx := ρcx,cy and ρy := ρcy,cx
Then ρy(o), γyx(0) ∈ P (x, y). Together with equation (2) and Lemma 1.2 this yields

bxξ(γxy(0), γyx(0)) =bxξ(γxy(0), ρx(o)) + bxξ(ρx(o), ρy(o)) + bxξ(ρy(o), γyx(0))

=bxξ(o, ρy(o))− byιξ(ρy(o), γyx(0)) = bxξ(o, ρy(o)).

In a similar way it follows also that bxξ(γxy(0), γyx(0)) = byιξ(o, ρx(o)). Finally the
equality (x|y)o,ξ = 1

2bxξ(γxy(0), γyx(0)) implies the claim. �

Corollary 2.2. Let (x, y) ∈ Flagτ × Flagιτ and o ∈ M . Then (x|y)o,ξ = ∞ ⇐⇒
x��op y.
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Proof. Let (x, y) ∈ Flagτ×Flagιτ be such that x��op y. Let A be an affine apartment
containing x, y in its boundary. Let p ∈ A and γpxξ , γpyιξ be the unit speed
geodesics joining p to xξ, yιξ, respectively. A straightforward argument in Eucli-
dean geometry yields that d(γpxξ(t), γpyιξ(t)) = 2αt with α depending on the angle
of the geodesics. Then x��op y implies that γpxξ(t) 6= γpyιξ(−t) and hence α < 1,
i.e., (x|y)p,ξ =∞.

Now let γoxξ , γoyιξ be the unit speed geodesics joining o to xξ, yιξ, respectively.
Since γoxξ and γpxξ define the same point in the ideal boundary, we can derive by
the convexity of the distance functions along geodesics in non-positive curvature
that d(γoxξ(t), γpxξ(t)) ≤ d(o, p) for all t ≥ 0. Thus

(x|y)o,ξ = lim
t→∞

t− 1
2d(γoxξ(t), γoyιξ(t))

≥ lim
t→∞

t− 1
2d(γpxξ(t), γpyιξ(t))− d(o, p) =∞.

Let (x, y) ∈ Flagτ ×Flagιτ be such that x op y. Then by the above proposition
(x|y)o,ξ = 1

2bxξ(o, ρcx,cy (o)) ≤ d(o, ρcx,cy (o)), i.e., (x|y)o,ξ <∞. �

The above corollary implies that Aξ is the maximal domain of definition for
cro,ξ. As mentioned, in the case of a symmetric space X is the set Aξ is an open
and dense subset of (Flagτ (X) × Flagιτ (X))2, i.e., the cross ratio is generically
defined.

Proposition 2.3. Let o, ô ∈M , (x, y) ∈ Flagτ×Flagιτ and ξ ∈ τ . Then (x|y)o,ξ =
(x|y)ô,ξ + 1

2bxξ(o, ô) + 1
2byιξ(o, ô).

Proof. If x��op y, then by the above corollary (x|y)o,ξ =∞ = (x|y)ô,ξ.
If x op y, let ρx,y, ρy,x be any horospherical retracts as in Proposition 2.1. Then

bxξ(o, ρy,x(o)) = bxξ(o, ô) + bxξ(ô, ρy,x(ô)) + bxξ(ρy,x(ô), ρy,x(o)).

By construction ρy,x(o), ρy,x(ô) ∈ P (x, y). Moreover x, y are opposite and hence
by Lemma 1.2 and equation (2)

bxξ(ρy,x(ô), ρy,x(o)) = −byιξ(ρy,x(ô), ρy,x(o)) = −byιξ(ô, o) = byιξ(o, ô).

Together with Proposition 2.1 the claim follows. �

Proposition 2.4. Let o, ô ∈ M . Then cro,ξ(x1, y1, x2, y2) = crô,ξ(x1, y1, x2, y2)
for all (x1, y1, x2, y2) ∈ Aξ.

Proof. Plugging in the above proposition in the definitions of cro,ξ and crô,ξ yields
directly the result. �

Definition 2.5. Given (x1, y1, x2, y2) ∈ Aξ, we define the cross ratio with respect
to ξ ∈ σ to be crξ(x1, y1, x2, y2) = cro,ξ(x1, y1, x2, y2) for some o ∈M .

Example 2.6 (see also [21]). Consider the symmetric space X = H2×H2, where
H2 is the hyperbolic plane. The ideal boundary ∂∞(H2×H2) can be identified with
S1 × S1 × [0, π/2] — this is in such a way that the unit-speed geodesic ray from
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a base-point (o1, o2) ∈ H2 × H2 to the point in (x1, x2, α) ∈ S1 × S1 × [0, π/2] ∼=
∂∞(H2 ×H2) is given by (γo1x1

(cos(α)t), γo2x2
(sin(α)t)).

The types are exactly determined by the angle α and the opposition involution
equals the identity. In particular every type is self-opposite.

Fix o = (o1, o2) ∈ H2 × H2 and x = (x1, x2, α), y = (y1, y2, α) ∈ ∂∞(H2 × H2)
and set γ1 := γo1x1 , γ̂1 := γo1y1 , γ2 := γo2x2 and γ̂2 := γo2y2 . Then

(x|y)o,α = lim
t→∞

t− 1
2

√
|γ1(cos(α)t)γ̂1(cos(α)t)|2 + |γ2(sin(α)t)γ̂2(sin(α)t)|2.

Using limt→∞ |γ1(cos(α)t)γ̂1(cos(α)t)| − 2 cos(α)t = −2(x1|y1)o1 , if α 6= π/2

(x|y)o,α = lim
t→∞

t−
√

(−(x1|y1)o1 + cos(α)t)2 + (−(x2|y2)o2 + sin(α)t)2

= lim
t→∞

t−
√
t2 − 2t(cos(α)(x1|y1)o1 + sin(α)(x2|y2)o2) + (x1|y1)2o1 + (x2|y2)2o2 .

We substitute t = s−1. Then a Taylor expansion for the root expression at s = 0
yields that

(x|y)o,α = lim
s→0

1

s
(1− (1− s(cos(α)(x1|y1)o1 + sin(α)(x2|y2)o2) + o(s))

= cos(α)(x1|y1)o1 + sin(α)(x2|y2)o2 .

Therefore crα = cos(α) log |crH2 |+ sin(α) log |crH2 |, where crH2 is the usual mul-
tiplicative cross ratio on ∂∞H2.

Lemma 2.7. Let X be a symmetric space. Then for every o ∈ X the Gromov
product (· | ·)o,ξ : Flagτ (X)× Flagιτ (X)→ [0,∞] is continuous. In particular also
crξ is continuous.

Proof. Since Flagτ (X),Flagιτ (X) are manifolds it is enough to consider sequential
continuity. Therefore let (x, y) ∈ Flagτ (X)×Flagιτ (X) and let xi → x and yi → y.

If x��op y, we have (x|y)o,ξ =∞. We set (x|y)o,ξ(t) := (γoxξ(t)|γoyιξ(t))o with the
Gromov product on the right-hand side the usual Gromov product on the metric
space (X, d). As X is non-positively curved, the function t 7→ (x|y)o,ξ(t) is mono-
tone increasing. Let C > 0 be given. Then there is tC ∈ R+ such that (x|y)o,ξ(tC) ≥
C + 2. Since the topology on Flagτ (X) is induced by the cone topology, we have
that (xi)ξ → xξ in the cone topology and similarly for yi and y. Hence we find
L ∈ N such that d(γo(xi)ξ(tC), γoxξ(tC)) < 1 and d(γo(yi)ιξ(tC), γoyιξ(tC)) < 1 for
all i ≥ L. Hence by the triangle inequality (xi|yj)o,ξ(tC) > (x|y)o,ξ(tC)−2 > C for
all i, j ≥ L. As C was arbitrary, this yields limi,j→∞(xi|yj)o,ξ =∞, which proves
continuity for x��op y.

Assume xopy. Let K=stabG(o). We know that K acts transitively on Flagτ (X)
and we have a K-equivariant, homeomorphic identification Flagτ (X) ' K/Kx.
Therefore xi → x implies that we find ki ∈ K such that kixi = x and ki → e ∈ G.
Now, x op y and opposition being an open condition, together with yi → y and
ki → e, imply that there exists L ∈ N such that kiyj op x for all i, j ≥ L. Thus
there exists a unique nij ∈ Nx such that nijkiyj = y for i, j ≥ L. From ki → e and
yj → y it follows nij → e ∈ G for i, j →∞. We set gij := nijki and by construction
gij → e, gijxi = x, gijyj = y. Hence (xi|yj)o,ξ = (x|y)gijo,ξ. Proposition 2.3 and
gij → e yield that (xi | yj)o,ξ → (x | y)o,ξ. �
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Lemma 2.8. Let (x, y) ∈ Flagτ × Flagιτ and x op y. Moreover, let ξi ∈ τ be a
sequence with ξi → ξ0 ∈ τ . Then we have (x|y)o,ξi → (x|y)o,ξ0 . In particular,
crξi(x, y, z, w)→ crξ0(x, y, z, w) for all (x, y, z, w) ∈ Aop

τ .

Proof. Let cx, cy ∈ Flagσ such that cx op cy, x is a face of cx and y is a face of cy.
Then Proposition 2.1 and equation (2) imply (x|y)o,ξ = 1

2bxξ(ρcx,cy (o), ρcy,cx(o))
for all ξ ∈ τ . Denote px := ρcx,cy (o), py := ρcy,cx(o) and by Axy the unique affine
apartment with cx, cy ⊂ ∂∞Axy.

Every affine apartment can be isometrically identified with Rr where r is the
rank of M . We identify Axy with Rr such that 0 ' px. Let vξ ∈ Axy ' Rr be of
norm one and such that the line from 0 through vξ is the geodesic ray in Axy from
px to xξ. Then Euclidean geometry yields that bxξ(px, py) = 〈vξ, py〉. In particular,
we get

(x|y)o,ξi = 1
2 〈vξi , py〉. (5)

Moreover ξi → ξ0 implies that vξi → vξ0 and hence the claim follows. �

The assumption of opposition in the above lemma is needed, since there are
(x, y) ∈ Flagτ × Flagιτ with x��op y but there are faces x0 of x and y0 of y with
x0 op y0. Then if ξi ∈ int(τ) converge to ξ0 such that ξ0 ∈ int(τ0) and τ0 is the
type of x0, we get (x|y)o,ξi =∞9 (x0|y0)o,ξ0 (as the latter is finite).

We recall that any isometry F : M1 → M2 induces a building isomorphism
F∞ : ∆∞M1 → ∆∞M2 together with a type map Fσ : σ1 → σ2 with the property
that F (Flagτ (M1)) = FlagFσ(τ)(M2).

Proposition 2.9. Let F : M1 → M2 be an isometry between either symmetric
spaces or thick Euclidean buildings, F∞ : ∆∞M1 → ∆∞M2 the induced building
isomorphism and ξ ∈ σ1. Then

crξ1(x1, y1, x2, y2) = crFσ(ξ1)(F∞(x1), F∞(y1), F∞(x2), F∞(y2))

for all (x1, y1, x2, y2) ∈ Aξ1 . Equivalently, crξ1 = F ∗∞crFσ(ξ1) with F ∗∞ denoting the
pullback under F∞.

Proof. Let ξ1 ∈ τ and (x, y) ∈ Flagτ (M1)×Flagιτ (M1). Since the Gromov product
(· | ·)o,ξ1 is defined in terms of a limit of distances involving unit speed geodesics and
isometries leave those invariant, it follows that (x | y)o,ξ1=(F∞(x)|F∞(y))F (o),Fσ(ξ1).
Therefore (x1, y1, x2, y2)∈Aξ1 implies (F∞(x1), F∞(y1), F∞(x2), F∞(y2))∈AFσ(ξ1)
by Corollary 2.2. Finally, crξ1 = cro,ξ1 = F ∗∞crF (o),Fσ(ξ1) = F ∗∞crFσ(ξ1) by Propo-
sition 2.4. �

Corollary 2.10. Let g ∈ Iso(M) and ξ0 be the center of gravity of σ with respect
to the angular metric. Then crξ0 = g∗crξ0 . In case of a symmetric space X and
g ∈ G we have crξ,X = g∗crξ,X for all ξ ∈ σ.

Proof. For the center of gravity ξ0 ∈ σ we have gσ(ξ0) = ξ0 for all g ∈ Iso(M), as
gσ : σ → σ is an isometry with respect to the angular metric. Then the first claim
follows. In case of a symmetric space and g ∈ G, we know gσ = idσ, which implies
the second claim. �
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Example 2.11. We want to determine the Gromov products and cross ratios of
the symmetric spaces X(n) := SL(n,R)/SO(n,R). For a deeper description of the
symmetric space X(n) see [13].

The ideal boundary ∂∞X(n) can be identified with eigenvalue flag pairs (λ, F ),
where F = (V1, . . . , Vl) is a flag in Rn, i.e., the Vi are subspaces of Rn with

Vi  Vi+1, Vl = Rn, and λ = (λ1, . . . , λl) ∈ Rl such that λi > λi+1,
∑l
i=1miλi = 0

for mi = dimVi − dimVi−1 and
∑l
i=1miλ

2
i = 1. In particular, 2 ≤ l ≤ n. The

action of g ∈ SL(n,R) on an eigenvalue flag pair is given by g · (λ, F ) = (λ, g · F ),
where g · (V1, . . . , Vl) = (g · V1, . . . , g · Vl) and F = (V1, . . . , Vl).

The ”eigenvalues” λ in the eigenvalue flag pairs (λ, F ) determine the type of any
point in the ideal boundary. Namely, the set of pairs (λ1, . . . , λl), (m1, . . . ,ml), λi ∈
R,mi ∈ N\{0} with λi > λi+1,

∑l
i=1miλi = 0,

∑l
i=1miλ

2
i = 1 and

∑l
i=1mi = n

parametrize the Weyl chamber σ. We have that λ = (λ1, . . . , λl) is in the interior
of the chamber if and only if l = n.

Faces of σ can be characterized in the following way: Two pairs as above
(λ1, . . . , λl), (m1, . . . ,ml) and (λ′1, . . . , λ

′
l), (m

′
1, . . . ,m

′
l) are in the interior of the

same face if and only if mi = m′i for all i = 1, . . . , l. In particular we can identify the

set of faces of σ with {(m1, . . . ,ml) ∈ Nl | l ≥ 2,mi 6= 0,
∑l
i=1mi = n}. For τ '

(m1, . . . ,ml) we have Flagτ = {(V1, . . . , Vl) | Vi  Vi+1, dimVi − dimVi−1 = mi}.
The action of the opposition involution is given by ι(λ1, . . . , λl) = (−λl, . . . ,−λ1)
and ι(m1, . . . ,ml) = (ml, . . . ,m1). Hence, if V = (V1, . . . , Vl) ∈ Flagτ and W =
(W1, . . . ,Wl) ∈ Flagιτ , then dimVi+ dimWl−i = n. In this situation V op W ⇐⇒
Vi ⊕Wl−i = Rn for all i = 1, . . . , l − 1.

Let V = (V1, . . . , Vl), Y = (Y1, . . . , Yl) ∈ Flagτ and W = (W1, . . . ,Wl), Z =
(Z1, . . . , Zl) ∈ Flagιτ such that V, Y op W,Z. Let ij = dimVj . Then fix a basis
(v1, . . . , vn) such that Vj = span{v1, . . . , vij}. In the same way we fix a basis (w1, . . .
. . . , wn), (y1, . . . , yn) and (z1, . . . , zn) for W,Y,Z, respectively. Additionally, fix an
identification ∧nRn ∼= R. We set Vj ∧Wl−j := v1 ∧ . . .∧ vij ∧w1 ∧ . . .∧wn−ij (we
have Wl−j = span{w1, . . . , wn−ij}) and in the same way for the other flags. Then
the term (Vj ∧Wl−j)(Yj ∧ Zl−j)(Vj ∧ Zl−j)−1(Yj ∧Wl−j)

−1 can be shown to be
independent of all choices for all j = 1, . . . , l − 1; compare, e.g., [27].

Let V,W, Y, Z be as before and λ = (λ1, . . . , λl) a type with λ ∈ int(τ). Then

crλ(V,W, Y, Z) = n

l−1∑
j=1

(λj − λj+1) log
(∣∣∣Vj ∧Wl−j

Vj ∧ Zl−j
Yj ∧ Zl−j
Yj ∧Wl−j

∣∣∣),
using the above conventions — see the appendix for a proof. We remark that some
specifics of those cross ratios are known already and have been used for analysing
Hitchin representations and more general Anosov representations (see, e.g., [25],
[27]).

Let M = M1 × · · · ×Mk be a product of either symmetric spaces or Euclidean
buildings. Then the building at infinity ∆∞M is the spherical join of the buildings
∆∞Mi [22, Sec. 4.3]. In particular, the Weyl chamber σ decomposes as a spherical
join σ = σ1 ◦ · · · ◦ σk. Hence we get a surjective map

π : σ1 × · · · × σk × S+
k → σ, (6)
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where S+
k := {µ = (µ1, . . . , µk) ∈ [0, 1]k | Σk1µ

2
i = 1}. We remark that π is in

general not injective, since it is independent of the exact choice of the type ξi ∈ σi
if µi = 0.

Let ξ = π(ξ1, . . . , ξk, µ) with µ = (µ1, . . . , µk) ∈ S+
k and let x = (x1, . . . , xk) ∈

Flagτ (M) ' Flagτ1(M1)× · · · ×Flagτk(Mk)5 such that ξ ∈ int(τ) and ξi ∈ int(τi).
For simplicity we assume µi 6= 0 for all 1 ≤ i ≤ k; if some µi = 0 essentially the
same formula holds, but the factor Flagτi(Mi) is not apparent in the decomposition
of Flagτ (M).

We remark that the unit-speed geodesic from some point (o1, . . . , ok) ∈ M to
xξ is of the form (γo1xξ1 (µ1t), . . . , γokxξk (µkt)), where γoixξi denote the unit speed
geodesics in the factors Mi joining oi to (xi)ξi ; cp. also Example 2.6.

Let y = (y1, . . . , yk) ∈ Flagιτ (M) ' Flagιτ1(M1) × · · · × Flagιτk(Mk) and be x
and ξ as above. Then similar calculations as in Example 2.6, yield that

(x | y)(o1,...,ok),π(ξ1,...,ξk,µ) = µ1(x1 | y1)o1,ξ1 + · · ·+ µk(xk | yk)ok,ξk .

Proposition 2.12. Notations as before. Moreover, let z ∈ Flagτ (M) and w ∈
Flagιτ (M). Then

crπ(ξ1,...,ξk,µ)(x, y, z, w) = µ1crξ1(x1, y1, z1, w1) + · · ·+ µkcrξk(xk, yk, zk, wk)

for (x, y, z, w) ∈ Aπ(ξ1,...,ξk,µ).

3. Vector valued cross ratios

So far, we have constructed families of cross ratios on subsets of the spaces (Flagτ×
Flagιτ )2 which are parametrized by ξ ∈ int(τ). In this section we show that such a
family gives rise to a single vector valued cross ratio containing all the information
of the family. The vector valued cross ratio has the same symmetries as the usual
cross ratios (cp. equations (3)) justifying the name cross ratio.

We recall that σ = a+1 ; hence every type can be viewed as vector in a of norm
one.

Lemma 3.1. Let τ be a face of σ and ξ0, ξ1, . . . , ξj ∈ τ such that there exist

ai ∈ R with ξ0 =
∑j
i=1 aiξi. Then for (x, y) ∈ Flagτ × Flagιτ with x op y we have

(x | y)o,ξ0 =
∑j
i=1 ai(x | y)o,ξi . In particular, crξ0(x, y, z, w)=

∑j
i=1 aicrξi(x, y, z, w)

for all (x, y, z, w) ∈ Aop
τ .

Proof. Let cx, cy ∈ Flagσ such that cx op cy, x is a face of cx and y is a face of
cy. We recall the notation of the proof of Lemma 2.8: We denote px := ρcx,cy (o),
py := ρcy,cx(o) and by Axy the unique apartment with cx, cy ⊂ ∂∞Axy. Moreover,
let Axy ' Rr such that px ' 0, in particular Axy inherits an inner product. Let
vξ ∈ Axy ' Rr be of norm one and such that the line from px ' 0 through vξ
is the geodesic ray in Axy from px to xξ. Then we know from equation (5) that
(x|y)o,ξi = 1

2 〈vξi , py〉.

5Actually we would have a spherical join instead of the product. However, we can
naturally identify a simplex in a join with the product of the simplices in the different
factors — and that is what we do here for simplicity.
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By the definition of the vξi it is immediate that vξ0 =
∑j
i=1 aivξi , where we have

the addition inherited to Axy under the identification with Rr such that px ' 0.
Hence

(x|y)o,ξ0 = 1
2 〈vξ0 , py〉 =

j∑
i=1

1
2ai〈vξi , py〉 =

j∑
i=1

ai(x|y)o,ξi . �

Let ξ1, . . . , ξr ∈ a be the corners of σ = a+1 . Then every subset J ⊂ {1, . . . , r}
defines a simplex in σ, i.e., a face τ of σ. In the same way every simplex τ ⊂ σ
gives a subset Jτ ⊂ {1, . . . , r}.

Given a simplex τ we recall that aτ = spanj∈Jτ ξj ⊂ a. Moreover, we define
ατj ∈ aτ for j ∈ Jτ by 〈ατj , ξi〉 = δij for all i ∈ Jτ ; this yields well defined vectors,
as the ξi with i ∈ Jτ form a basis of aτ . We recall that a was naturally equipped
with an inner product.

The ξj correspond to normalized fundamental weights of the root system and
the ασj to possibly rescaled roots.

Definition 3.2. Let τ be a face of σ and Jτ , ατj as above. Then we define a (vector
valued)cross ratio crτ : Aτ → aτ ∪ {±∞} by

crτ (x, y, z, w) :=
∑
i∈Jτ

crξi(x, y, z, w)ατi .

Here we set crτ (x, y, z, w) := −∞ if x��op y or z��op w and crτ (x, y, z, w) := ∞ if
x��op w or z��op y.

It is straightforward to see that crτ has the same symmetries as in equations
(3), where the addition is now in the vector space aτ .

The vector valued cross ratio contains the full information of the collection of
cross ratios from the previous section:

Lemma 3.3. Let ξ ∈ int(τ). Then we have 〈crτ (x, y, z, w), ξ〉 = crξ(x, y, z, w)
for (x, y, z, w) ∈ Aop

τ and crτ (x, y, z, w) = ±∞ = crξ(x, y, z, w) for (x, y, z, w) ∈
Aτ\Aop

τ .

Proof. If (x, y, z, w) ∈ Aτ\Aop
τ , then the equality is immediate. Hence assume

(x, y, z, w) ∈ Aop
τ . Then

〈crτ (x, y, z, w), ξ〉 =
∑
i∈Jτ

crξi(x, y, z, w)〈ατi , ξ〉.

Since 〈ατj , ξi〉 = δij for all i ∈ Jτ , we derive that 〈
∑
i∈Jτ 〈α

τ
i , ξ〉ξi, ατj 〉 = 〈ξ, ατj 〉 for

all in j ∈ Jτ . Moreover, it is immediate that the ατj form a base of aτ . Thus we get
that

∑
i∈Jτ〈α

τ
i , ξ〉ξi=ξ. Therefore Lemma 3.1 implies

∑
i∈Jτ 〈α

τ
i , ξ〉crξi(x, y, z, w)=

crξ(x, y, z, w). �

The above lemma also holds for ξ ∈ ∂τ as long as (x, y, z, w) ∈ Aop
τ , but does

not hold for general (x, y, z, w) ∈ Aτ ; in this case crξ(x, y, z, w) might be finite
while crτ (x, y, z, w) is not (compare the discussion just after Lemma 2.8).

The following corollary captures the topological properties of crτ in case of
symmetric spaces. It is an immediate consequence of the lemma above and Lemma
2.7.
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Corollary 3.4. Let X be a symmetric space. The map crτ restricted to Aop
τ is

continuous and for all ξ ∈ int(τ) the map 〈crτ (·), ξ〉 : Aτ → R ∪ {±∞} is
continuous.

Let πτ : a → aτ be the orthogonal projection. Then it is straightforward to
show that πτ (ασi ) = ατi for all i ∈ Jτ and πτ (ασj ) = 0 for all j /∈ Jτ . Then we can
derive that crτ (x, y, z, w) = πτ (crσ(x, y, z, w)) for all (x, y, z, w) ∈ Aop

σ .

Translation vectors and periods. We assume for this section that τ is self-opposite,
i.e., τ = ιτ . Moreover denote by Isoe(M) the subgroup of Iso(M) such that gσ = id
for all g ∈ Isoe(M) — in particular G = Isoe(X) for a symmetric space X. Let
g ∈ Isoe(M) such that g stabilizes two points g± ∈ Flagτ with g− op g+. Since
g is an isometry, it maps every geodesic connecting points of the interior of g−

and g+ to another geodesic connecting the same points. In particular g stabilizes
P (g−, g+) set-wise.

In the preliminaries we have seen that P (g−, g+) splits as a product aτ ×
CS(g−, g+) such that g± are identified with the positive and negative, respectively,
maximal dimensional simplices in aτ , i.e., g+ ' ∂∞a+τ where a+τ := aτ ∩ a+. Note
that g descends to an isometry gaτ of aτ . Since aτ is Euclidean and gaτ stabilizes
each boundary point of aτ , gaτ acts as a translation on aτ . More precisely, there
exists a translation vector `τg ∈ aτ such that gaτ (p) = p+ `τg for all p ∈ aτ .

Proposition 3.5. Let g ∈ Isoe(M) such that g± ∈ Flagτ with g− op g+ are sta-
bilized by g. Let `τg denote the translation vector along the first factor of P (g−, g+)

' aτ × CS(g−, g+). Then crτ (g−, g · x, g+, x) = 1
2 (`τg + ι`τg), for any x ∈ Flagτ

with x op g±.

Proof. We remark that crτ (g−, g ·x, g+, x) is independent of the choice of x op g±;
this follows from the symmetries of crτ together with Proposition 2.9. Therefore,
we fix one x ∈ Flagτ with x op g±.

Let o ∈ P (g−, g+) and ξi with i ∈ Jτ be the corners of τ . By assumption x op g±

and hence g · x op g±. Then Proposition 2.3 yields

(g± | g · x)o,ξi = (g± |x)g−1·o,ξi = (g± |x)o,ξi + 1
2bg±ξi

(g−1 · o, o) + 1
2bxιξi (g

−1 · o, o).

Moreover, we have bg±ξi
(g−1 · o, o) = bg±ξi

(o, g · o). Plugging this in the definition of

crξi several terms cancel such that crξi(g
−, g·x, g+, x) = 1

2bg+ξi
(o, g·o)− 1

2bg−ξi
(o, g·o).

Since o, g·o ∈ P (g−, g+) and g+ιξi ∈ g
+ is the point opposite to g−ξi ∈ g

−, Lemma 1.2

implies bg−ξi
(o, g · o) = −bg+ιξi

(o, g · o). Altogether we get that crξi(g
−, g ·x, g+, x) =

1
2bg+ξi

(o, g · o) + 1
2bg+ιξi

(o, g · o).
Since o was arbitrary in P (g−, g+) we can assume that its first coordinate under

the identification P (g−, g+) ' aτ × CS(g−, g+) is 0 ∈ aτ . Moreover, we can use
Lemma 1.1 to see that only the first factor matters for the Busemann functions
bgξi , bgιξi . As g acts as a translation on aτ , we have that g · 0 = `τg . Therefore
bg+ξi

(o, g · o) = 〈ξi, `τg〉 (cp. the arguments around equation (5)). By assumption

τ = ιτ , hence ι restricts to an isometry ι : aτ → aτ . Together with ι2 = id, this
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yields 〈ιξi, `τg〉 = 〈ξi, ι`τg〉. Altogether we derive

crτ (g−, g · x, g+, x) =
∑
i∈Jτ

1
2 (〈ξi, `τg〉+ 〈ξi, ι`τg〉)ατi .

It is immediate that 〈crτ (g−, g · x, g+, x), ξi〉 = 1
2 (〈ξi, `τg〉+ 〈ξi, ι`τg〉) for all i ∈ Jτ .

Since the ξi with i ∈ Jτ form a basis of τ , it follows that crτ (g−, g · x, g+, x) =
1
2 (`τg + ι`τg). �

Let g ∈ Isoe(M) be as before. Then the term crτ (g−, g · x, g+, x) is also called
period — in analogy to rank one spaces. In particular, the periods give rise to the
translation vector of the first factor of the parallel set if ι = id.

Geometric interpretation of the cross ratio. Let x, z ∈ Flagτ and y, w ∈ Flagιτ
with x, z op y, w. Pick cx, cz, dy, dw, d

′
w ∈ Flagσ such that x is a face of cx and

accordingly the other chambers and that cx op dy, dw as well as cz op dy, d
′
w. Then

we use the following notations for the horospherical retracts ρx := ρcx,dy , ρw :=
ρdw,cx , ρz := ρcz,d′w and ρy := ρdy,cz .

Lemma 3.6. Let (x, y, z, w) ∈ Aop
τ and let ρx, ρw, ρz and ρy as above. Moreover,

be o in the unique affine apartment joining cx and dy. Then for all i ∈ Jτ we have
2crξi(x, y, z, w) = bxξi (o, ρxρwρzρy(o)).

Proof. Denote by Axy the unique affine apartment joining cx and dy. Then ρdy,cx
restricted to Axy is the identity, i.e., ρdy,cx(o) = o. Therefore Proposition 2.1
implies that 2(x | y)o,ξi = bxξi (o, o) = 0.

By definition ρy(o) is contained in the unique affine apartment joining cz and
dy. Then in the same way it follows that (z | y)ρy(o),ξi = 0. Moreover, equation (2)
yields byιξi (o, ρy(o)) = byιξi (o, o) = 0.

We can use Proposition 2.3 and again equation (2) to derive that

2(z | y)o,ξi = 2(z | y)ρy(o),ξi + bzξi (o, ρy(o)) + byιξi (o, ρy(o)) = bzξi (o, ρzρy(o)).

In a very similar way we get

2(z |w)o,ξi = bzξi (o, ρzρy(o)) + bwιξi (o, ρwρzρy(o))

2(x |w)o,ξi = bxξi (o, ρxρwρzρy(o)) + bwιξi (o, ρwρzρy(o)).

Using that crξi(x, y, z, w) = −(x | y)o,ξi − (z |w)o,ξi + (x |w)o,ξi + (z|y)o,ξi , we
get 2crξi(x, y, z, w) = bxξi (o, ρxρwρzρy(o)). �

Proposition 3.7. Let ρx, ρw, ρz and ρy as before. Let o be in the unique affine
apartment joining cx, dy such that we have under the identification P (x, y) ' aτ ×
CS(x, y) that π(o) = 0 ∈ aτ , where π is the projection to the first factor (also
assume x ' a+τ ). Then 2crτ (x, y, z, w) = π(ρxρwρzρy(o)).

Proof. By construction we have that o, ρxρwρzρy(o) are in the unique affine apart-
ment joining cx and dy. Then by Lemma 1.1 and from similar arguments as around
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equation (5) we can derive that bxξi (o, ρxρwρzρy(o)) = 〈ξi, π(ρxρwρzρy(o))〉 for all
i ∈ Jτ . Together with Lemma 3.6 and the definition of crτ we get

2crτ (x, y, z, w) =
∑
i∈Jτ

〈ξi, π(ρxρwρzρy(o))〉ατi .

The ξi ∈ aτ for i ∈ Jτ form a basis of aτ . Moreover, for all i ∈ Jτ we have that
〈2crτ (x, y, z, w), ξi〉 = 〈ξi, π(ρxρwρzρy(o))〉. Thus it follows that 2crτ (x, y, z, w) =
π(ρxρwρzρy(o)). �

4. Cross ratio preserving maps

We assume in this section that τ is self-opposite, i.e., τ = ιτ .

Definition 4.1. Let Mi, i = 1, 2 be either both symmetric spaces or thick Eucli-
dean buildings. A map f : Flagτ1(M1) → Flagτ2(M2) is called ξ1-Moebius map
(or cross ratio preserving) if there exists ξi ∈ int(τi) such that crξ1(x, y, z, w) =
crξ2(f(x), f(y), f(z), f(w)) for all (x, y, z, w) ∈ Aτ1 , we in particular assume that
f(Aτ1) ⊂ Aτ2 .

If f is a ξ1-Moebius map with respect to ξ1, ξ2, we also denote this by crξ1 =
f∗crξ2 . If ξ1 is clear from the context, we sometimes call f just a Moebius map.
Moreover, for any map f : Flagτ1(M1)→Flagτ2(M2) we denote f∗crξ2(x, y, z, w) :=
crξ2(f(x), f(y), f(z), f(w)) for x, y, z, w ∈ Flagτ1(M1).

Lemma 4.2. Let x, y ∈ Flagτ . Then there exists z ∈ Flagτ with z op x, y.

Proof. We take cx, cy ∈ Flagσ such that x is a face of cx and y is a face cy. Then
there exists cz ∈ Flagσ with cz op cx, cy [2, 5.1]. Be z the face of cz which is of
type τ . Then z ∈ Flagτ with z op x, y. �

Lemma 4.3. Let f : Flagτ1(M1) → Flagτ2(M2) be a ξ1-Moebius map. Then for
x, y ∈ Flagτ1(M1) we have that x op y if and only if f(x) op f(y).

Proof. Let x, y ∈ Flagτ1(M1) be given. Choose z1, z2, z3 ∈ Flagτ1(M1) such that
z3 op x; z2 op y, z3 and z1 op x, z2. From Corollary 2.2 we know that crξ1(x,y,z2,z3)
= r and crξ1(x, z1, z2, z3) 6= ±∞, i.e., x op y ⇐⇒ r 6= −∞. Since crξ1 = f∗crξ2 , we
can derive that f(z2) op f(z3) and therefore we have f(x) op f(y) ⇐⇒ r 6= −∞.
In particular, f(x) op f(y)⇐⇒ x op y. �

A map f : Flagτ1(M1) → Flagτ2(M2) such that for all x, y ∈ Flagτ1(M1) it
holds that x op y if and only if f(x) op f(y) is called opposition preserving.

Lemma 4.4. Let f : Flagτ1(M1) → Flagτ2(M2) be a ξ1-Moebius map. Then f is
injective.

Proof. Assume there exist x 6= y ∈ Flagτ1(M1) with f(x) = f(y). Take a ∈
Flagτ1(M1) with a op x and a��op y: For example take an apartment which contains
x and y. Take a opposite of x in this apartment. Then x 6= y implies that a��op y—
opposite points are unique in apartments.

In addition, choose z, w ∈ Flagτ1(M1) such that z op a and w op z, x. Then
crξ1(x, a, z, w) 6= ±∞ and crξ1(y, a, z, w) = −∞ or is not defined; but

crξ1(x, a, z, w) = f∗crξ2(x, a, z, w) = f∗crξ2(y, a, z, w) = crξ1(y, a, z, w),

contradicting crξ1(x, a, z, w) 6= crξ1(y, a, z, w). Hence f(x) 6= f(y) if x 6= y. �
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Definition 4.5. A surjective ξ1-Moebius map is called a ξ1-Moebius bijection.

When restricting to the full flag space we can apply the following result due to
Abramenko and van Maldeghem.6

Proposition 4.6 (Corollary 5.2 of [2]). Let f : Flagσ(M1) → Flagσ(M2) be a
surjective map that preserves opposition. Then f extends in a unique way to an
automorphism of the building f : ∆∞M1 → ∆∞M2.

Lemma 4.7. Let B = B1 ◦ · · · ◦Bk and B′ = B′1 ◦ · · · ◦B′k′ be joins of irreducible
thick spherical buildings. Moreover, be f : B → B′ a building isomorphism. Then
k = k′ and there exists a permutation s on k numbers such that f = f1 × · · · × fk
with fi : Bi → B′s(i) building isomorphisms.

Proof. That f is a building isomorphism implies that B and B′ are modeled
over the same spherical Coxeter complex, i.e., over the Coxeter complex to W =
W1 × · · · ×Wk, where Wi are irreducible Coxeter groups. The irreducibility of the
buildings Bi, B

′
i yields then that k = k′.

Assume without loss of generality that |W1| ≤ |Wi| for all i = 1, . . . , k. Let x1 be
a chamber in B1. Then x1 is a simplex in B. We know that Res(x1) is a spherical
building over the spherical Coxeter complex to W2 × · · · ×Wk. As f is a building
isomorphism, we derive that f(Res(x1)) = Res(f(x1)) is a spherical building over
W2×· · ·×Wk. If f(x1) would not correspond to a chamber in an irreducible factor
B′i, then there would be a subgroup W ′ of W isomorphic to W2 × · · · ×Wk such
that the projection of W ′ to each Wi is non-trivial (as W1 is minimal). This would
yield a decomposition of W2 × · · · ×Wk into k Coxeter groups, which contradicts
the irreducibility of the factors. In particular, up to reordering Res(f(x1)) is a
spherical building over W1 ×W3 × · · · ×Wk and W1 is isomorphic to W2. Thus
f(x1) = y2 for a chamber y2 ∈ B′2. Since f is a building isomorphism it maps
all simplices of the same type as x1 to simplices of the same type as y2 i.e., it
maps the chambers of B1 to chambers of B′2. In particular, f induces a building
isomorphism f1 = f |B1

: B1 → B′2 (B1 is naturally a subset of B, namely the
set of simplices of B fully contained in B1) and thus f = f1 × f0 for a building
isomorphism f0 : B2 ◦ · · · ◦ Bk → B′1 ◦ B′3 . . . ◦ B′k. A straightforward induction
yields the result. �

We remark that multiplying the metric of a space M by some positive constant
α, yields that the Gromov product on Flagτ (αM) is given by (· | ·)ξ,αM = α(· | ·)ξ,M
and hence also crξ,αM = αcrξ,M . Moreover, there is a natural identification of
Flagτ (αM) with Flagτ (M).

Lemma 4.8. Let Mi = M1
i ×· · ·×Mk

i be products of either irreducible symmetric
spaces or irreducible thick Euclidean buildings. Moreover, be f : Flagσ(M1) →
Flagσ(M2) a ξ1-Moebius bijection. Then there exists a permutation s on k numbers

such that f = f1 × · · · × fk with fi : Flagσ(M̂ i
1) → Flagσ(M

s(i)
2 ) a ξi1-Moebius

6We remark that every spherical building is 2-spherical as in the notation of [2].
Moreover, the buildings at infinity of symmetric spaces and thick Euclidean building are
thick; hence we can apply their result.
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bijection and M̂ i
1 is the space M i

1 with its metric rescaled (for the types ξi1 see the
proof).

Proof. Let f : ∆∞M1 → ∆∞M2 be the building isomorphism from Proposition
4.6. From Lemma 4.7 we get a permutation s on k letters and building isomor-

phisms fi : ∆∞M
i
1 → ∆∞M

s(i)
2 such that

f = f1 × · · · × fk : ∆∞M
1
1 ◦ · · · ◦∆∞M

k
1 → ∆∞M

s(1)
2 ◦ · · · ◦∆∞M

s(k)
2 .

Moreover, we know from Proposition 2.12 that crξi = µ1
i crξ1i + · · · + µki crξki with

ξji ∈ σ
j
i for i = 1, 2 and j = 1, . . . , k and µi ∈ S+

k such that ξi = πi(ξ
1
i , . . . , ξ

k
i , µi)

with πi as in the proposition (the numbers in the exponent are for indexing, not
powers). Fix (x0, y0, z0, w0) ∈ Flagσ2

(M2
1 ) ◦ · · · ◦Flagσk(Mk

1 ) with x0, z0 op y0, w0.
Then for any (x1, y1, z1, w1) ∈ Aσ1 we get

µ1
1crξ11 (x1, y1, z1, w1) + (µ2

1crξ21 . . .+ µk1crξk1 )(x0, y0, z0, w0)

= µ
s(1)
2 f∗1 cr

ξ
s(1)
2

(x1, y1, z1, w1) + f∗0 (µ
s(2)
2 cr

ξ
s(2)
2
· · ·+ µ

s(k)
2 cr

ξ
s(2)
2

)(x0, y0, z0, w0)

with f0 = f2 × · · · × fk. The equality also holds when we replace (x0, y0, z0, w0)
with (z0, y0, x0, w0). Moreover, we have that (µ2

1crξ21 · · ·+ µk1crξk1 )(x0, y0, z0, w0) =

−(µ2
1crξ21 · · ·+ µk1crξk1 )(z0, y0, x0, w0). Hence we derive that

µ1
1crξ11 (x1, y1, z1, w1) = µ

s(1)
2 f∗1 cr

ξ
s(1)
2

(x1, y1, z1, w1).

As (x1, y1, z1, w1) was arbitrary in Aσ1
we get µ1

1crξ11 = µ
s(1)
2 f∗1 cr

ξ
s(1)
2

. In the same

way it follows for all i = 1, . . . , k that µi1crξi1 = µ
s(i)
2 f∗i cr

ξ
s(i)
2

.

If we rescale the metric on M i
1 by µ

s(i)
2 /µi1 — denote this space by M̂ i

1 — then

fi : ∆∞M̂
i
1 → ∆∞M

s(i)
2 restricts to a Moebius bijection on the chamber sets, i.e.,

we get a Moebius bijection fi : Flagσ(M̂ i
1)→ Flagσ(M

s(i)
2 ). �

We will need the following fact:

Theorem 4.9 ([4]). Let T1, T2 be geodesically complete trees with |∂∞Ti| ≥ 3.
Then every isometry from T1 to T2 restricted to the boundary is a Moebius bijection
and every Moebius bijection f : ∂∞T1 → ∂∞T2 can be uniquely extended to an
isometry.

Let T be a rank one thick Euclidean building; in particular T is a tree. Then
every geodesic segment in T lies in an affine apartment, i.e., in a bi-infinite geodesic.
This means that T is geodesically complete (in the notation of [4]). Moreover, by
definition of thickness for rank one Euclidean buildings we have that |∂∞T | ≥ 3.

We remark that rk(T ) = 1 implies that the positive chamber of the Coxeter
complex σT consists of a single point. Thus ∆∞T = Flagσ(T ) = ∂∞T . Hence
there is a unique Gromov product (· , ·)oT for any oT ∈ T on ∂∞T

2 and a unique
cross ratio crT on AT ⊂ ∂∞T 4.
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Recall that a locally compact Euclidean building with discrete translation group
is called a combinatorial Euclidean building. Moreover, given a metric realization
(B, dB) of a spherical building as a CAT(1) space, the cone EB over B is the
quotient of B× [0,∞)/∼ for the equivalence relation (b1, t) ∼ (b2, s)⇐⇒ s = 0 = t
with bi ∈ B and s, t ∈ [0,∞). The metric on EB is given by dEB ((b1, t), (b2, s)) =
s2 + t2 − 2st cos(dB(b1, b2)).

Proposition 4.10. Let E1, E2 be irreducible thick combinatorial Euclidean build-
ings. Then every Moebius bijection f : Flagσ(E1)→ Flagσ(E2) is the restriction of

an isometry F : Ê1 → E2 to the boundary where Ê1 is E1 with its metric rescaled.
If E1 is not the cone over a spherical building, then F is unique.

Proof. If the rank is one, then the result follows from the theorem above.
If the rank is at least 2, Struyve has shown in [31] that every isometry between

∂∞E1 and ∂∞E2 with respect to the Tits metric is induced by an isometry after
rescaling the metric on E1. The isometry is unique if E1 is not the cone over a
spherical building. We know that f induces a building isomorphism f : ∆∞E1 →
∆∞E2 and this yields an isometry f : ∂∞E1 → ∂∞E2 with respect to the Tits
metric when viewing simplices as subsets of ∂∞Ei. Hence we can apply the result
of Struyve. �

The non-uniqueness for cones over spherical buildings arises, for example, as
follows: Let EB be a cone over a spherical building B. Then clearly the identity map
id : Flagσ(EB)→ Flagσ(EB) is a Moebius bijection. However, every homothety of
EB , i.e., every map Fλ : EB → EB , (b1, t) 7→ (b1, λt) for λ ∈ (0,∞), is an isometry
from Fλ : λ2EB → EB , where λ2EB is the space EB with its metric rescaled by
λ2. In particular, every Fλ extends the map id : Flagσ(EB) → Flagσ(EB) as an
isometry after rescaling the metric on the domain of Fλ by λ2.

Corollary 4.11. Let E1 and E2 be combinatorial Euclidean buildings and let f :
Flagσ(E1)→ Flagσ(E2) be a Moebius bijection. Then one can rescale the metric of

E1 on irreducible factors — denote this space by Ê1 — such that f is the restriction
of an isometry F : Ê1 → E2 to the boundary. If none of the irreducible factors is
a cone over a spherical building the isometry F is unique.

Proof. This follows from Lemma 4.8 and the proposition above. �

Symmetric spaces. We want to show that the above proposition and corollary hold
in a similar way for symmetric spaces. We will see that we essentially only need
to show that Moebius bijections are homeomorphisms. Therefore we analyze some
topological properties of Moebius bijections for the case of symmetric spaces.

In this section we only consider symmetric spaces X. For r ∈ R, ξ ∈ int(τ) and
x2, y1, y2 ∈ Flagτ (X) we define

B+
r,ξ(y1, x2, y2) := {x1 ∈ Flagτ (X) | (x1, y1, x2, y2) ∈ Aξ, crξ(x1, y1, x2, y2) > r},

B−r,ξ(y1, x2, y2) := {x1 ∈ Flagτ (X) | (x1, y1, x2, y2) ∈ Aξ, crξ(x1, y1, x2, y2) < r}.

Those sets are open by the continuity of crξ and the fact that Aξ is open. However,
it can happen that they are empty — which holds if x2 ��op y1, y2.
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Proposition 4.12. Let X be a symmetric space. The sets B−r,ξ(y1, x2, y2) varying
over all r ∈ R and all x2, y1, y2 ∈ Flagτ form a subbase of the topology on Flagτ (X)

Proof. As mentioned, those sets are open. Thus it is enough to show that any open
neighborhood U of a point x ∈ Flagτ (X) contains an open neighborhood V which
can be written as a finite intersection of sets of the form B−r,ξ(y1, x2, y2).

Let x ∈ Flagτ (X) and let any neighborhood U of x be given. We set K :=
Flagτ\U . Then K is compact and x /∈ K.

For any a ∈ K, choose ya ∈ Flagτ (X) such that ya op a and ya��op x. In
addition, choose wa, za ∈ Flagτ (X) such that wa op a, x and za op ya, wa. This
yields crξ(x, ya, za, wa) = −∞ and crξ(a, ya, za, wa) > ra for some ra ∈ R and
hence x ∈ B−ra,ξ(ya, za, wa), x /∈ B+

ra,ξ
(ya, za, wa), a ∈ B+

ra,ξ
(ya, za, wa).

Varying over all a ∈ K the sets B+
ra,ξ

(ya, za, wa) cover K and by compactness
we find a finite number of points ai ∈ K, i = 1, . . . , l such that the according
sets already cover K. We set V :=

⋂
ai:i=1,...,lB

−
rai ,ξ

(yai , zai , wai). As a finite

intersection of open sets, V is open. Furthermore, x ∈ V and hence V is non-
empty. By construction V ⊂ KC and hence V ⊂ U . �

Lemma 4.13. Let f : Flagτ1(X1) → Flagτ2(X2) be a ξ1-Moebius bijection. Then
f is a homeomorphism.

Proof. Since f leaves the cross ratio invariant and is a bijection, it is immediate that
f(B−r,ξ1(y, z, w)) = B−r,ξ2(f(y), f(z), f(w)). This means that f yields a bijection of
subbases of the topology and hence f is a homeomorphism. �

As mentioned, for a symmetric space X the boundary Flagτ (X) can be identified
homeomorphically with G/Px for Px = stab(x) and x ∈ Flagτ (X). Hence Flagτ (X)
can be given the structure of compact connected manifold (without boundary) —
inherited from G/Px. Using this there is a different way to characterize Moebius
bijections captured in the following lemma.

Lemma 4.14. Let X1, X2 be symmetric spaces. Assume that dim Flagτ1(X1) =
dim Flagτ2(X2) and let f : Flagτ1(X1) → Flagτ2(x2) be a continuous ξ1-Moebius
map. Then f is a homeomorphism, in particular f is a ξ1-Moebius bijection.

Proof. Since f is a ξ1-Moebius map and hence injective, f : Flagτ1(X1) → Im(f)
is a bijection, with Im(f) denoting the image. Moreover, f∗crξ2 = crξ1 implies
f(B−r,ξ1(y, z, w)) = B−r,ξ2(f(y), f(z), f(w)) ∩ Im(f). Then Proposition 4.12 yields
that f maps a subbase of the topology on Flagτ1(X1) into a subbase of the topology
on Im(f) equipped with the subset topology. Hence f : Flagτ1(X1)→ Im(f) is open
and therefore a homeomorphism.

We derive that Im(f) is compact connected submanifold of Flagτ2(X2) of the
same dimension. However, Flagτ2(X2) is a compact connected manifold without
boundary and hence the only such submanifold is Flagτ2(X2) itself, i.e., Im(f) =
Flagτ2(X2), which proves the claim. �

Theorem 4.15. Let X1, X2 be symmetric spaces of rank at least two with no
rank one de Rham factors and let f : Flagσ(X1) → Flagσ(X2) be a ξ1-Moebius
bijection. Then one can multiply the metric of X1 by positive constants on de
Rham factors — denote this space by X̂1 — such that f is the restriction of a unique
isometry F : X̂1 → X2 to Flagσ(X1).
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Proof. We know that a ξ1-Moebius bijection f : Flagσ(X1) → Flagσ(X2) can
uniquely be extended to a building isomorphism f : ∆∞X1 → ∆∞X2. Moreover,
f is a homeomorphism on the chamber sets Flagσ(Xi) by Lemma 4.13. Then for
such maps the result is known [13, Sec. 3.9]. �

Actually all we need for the above result is that f : Flagσ(X1) → Flagσ(X2)
is opposition preserving and a homeomorphism. However, when dealing also with
rank one factors we really need Moebius maps.

Corollary 4.16. Let X1 and X2 be symmetric spaces of non-compact type and
let f : Flagσ(X1) → Flagσ(X2) be a Moebius bijection. Then one can rescale the

metric of X1 on de Rham factors — denote this space by X̂1 — such that f is the
restriction of an unique isometry F : X̂1 → X2 to the boundary.

Proof. This follows from Lemma 4.8 together with the theorem above and the fact
that Moebius bijections of rank one symmetric spaces can be uniquely extended
to isometries. For the latter result see [8]. �

Rescaling on irreducible factors. In this generality it is not possible to drop the
scaling on the irreducible factors in the Corollaries 4.11, 4.16 and Theorem 4.15.
For example consider the following situation: Let M0 be a symmetric space or a
combinatorial Euclidean building. We set M1 := µ−11 M0, M2 := µ−12 M0 for µi > 0
with µ2

1 + µ2
2 = 1 and M := M1 ×M2 — here Mi = µ−1i M0 means we take the

space M0 with its metric multiplied by µ−1i . Moreover, we define f : Flagσ(M)→
Flagσ(M) by f(x, y) := (y, x).

Let ξ ∈ int(σ0) and σ0 the fundamental of the space M0. Consider the cross
ratio crπ(ξ,ξ,(µ1,µ2)),M = µ1crξ,M1

+µ2crξ,M2
— cp. Proposition 2.12. As mentioned,

we have µ1crξ,M1
= crξ,M0

= µ2crξ,M2
and hence f is a π(ξ, ξ, (µ1, µ2))-Moebius

bijection.
We see that f is induced by a map F := F1 × F2 : M1 ×M2 → M2 ×M1,

such that Fi : Flagσ(Mi) → Flagσ(Mj), i 6= j is the identity (under the natural
identification with Flagσ(M0)). As F and hence the Fi shall be isometries, it follows
that F (p, q) = (q, p) and clearly F is an isometry only after rescaling on de Rham
factors.

Let M1 be a symmetric space or a combinatorial Euclidean building and assume
that the image of crσ,M1

lies not in a proper subspace of aM1
. Then the above

situation is essentially the only possibility where rescaling can appear:
Let M1,M2 be irreducible. In addition, be f : Flagσ(M1) → Flagσ(M2) a

ξ1-Moebius bijection, i.e., crξ1 = f∗crξ2 . Then we know that we can rescale the
metric on M1 by some positive number µ1, such that f is induced by an isometry
F : µ1M1 →M2. Thus Proposition implies 2.9 f∗crξ2 = crξ′1,µ1M1

= µ1crξ′1,M1
for

ξ′1 ∈ σ1 with Fσ(ξ′1) = ξ2.
However, it follows from the assumption on crσ,M1

together with Lemma 3.3 that
crξ 6= αcrξ′ for ξ 6= ξ′ ∈ σ1 and any α ∈ R. Therefore crξ1,M1

= f∗crξ2 = µ1crξ′1,M1

implies ξ1 = ξ′1 and µ1 = 1 — in particular f is induced by an isometry without
rescaling the metric.

We remark that for symmetric spaces with ι = id the image of crσ is all of a.
This follows from the fact that every vector of a can be realized as a translation
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vector of a hyperbolic element in G. Then the periods of those elements in G
are exactly those translation vectors, as seen in Proposition 3.5. Hence the above
discussion applies.

Corollary 4.17. Let M either be a symmetric space or a combinatorial Euclidean
building with none of the irreducible factors being a cone over a spherical building.
In addition, assume that the image of crσ is not contained in a proper subspace of a.
Let ξ0 ∈ σ be the center of gravity of σ. Then there is a one-to-one correspondence
between Iso(M) and ξ0-Moebius bijections.

Proof. Let g ∈ Iso(M) and gσ : σ → σ the induced map. Then gσ is an isometry
with respect to the angular metric, hence gσ stabilizes the center of gravity ξ0 of
σ. Therefore Proposition 2.9 yields a ξ0-Moebius bijection for each g ∈ Iso(M).

On the other hand, by Corollaries 4.11 and 4.16, we know that each ξ0-Moebius
bijection is induced by a unique isometry — after possible rescaling on irreducible
factors. However, following the above discussion we can exclude rescaling of the
metric:

Let f be a ξ0-Moebius bijection and let f = f1 × · · · × fk be the decomposition
on irreducible factors M1, . . . ,Mk as in Lemma 4.8. Assume w.l.o.g. that f1 :
Flagσ(M1) → Flagσ(M2), i.e., M1,M2 are isometric after possibly rescaling the
metric. From Proposition 2.12 we know crξ0 = µ1crξ1,M1

+ µ2crξ2,M2
+ · · · +

µkcrξk,Mk
. However, ξ0 ∈ σ being the center of gravity of σ and M1,M2 isometric

after possibly rescaling the metric implies µ1 = µ2 and ξ1 ' ξ2. Then f1 is a ξ1-
Moebius bijection between irreducible spaces. From the above discussion it follows
that it is induced by an isometry without rescaling the metrics. The same argument
implies the result for all fi and hence the claim follows. �

General Euclidean buildings. In this section we consider general Euclidean build-
ings, i.e., in particular non-locally compact ones. The goal is again to show that
Moebius bijections are induced by isometries. However, now we will need the vector
valued cross ratio crσ to derive such a result.

Let E be a thick Euclidean building considered with the complete apartment
system. Let x ∈ Flagτ (E) and y ∈ Flagιτ (E) with x op y and τ is a codimension 1
face of σ— in this case x, y are called panels of the building ∆∞E. Then metrically
we have the splitting P (x, y) ' aτ × CS(x, y), where CS(x, y) is a Euclidean
building of rank rk(E)− dim aτ = 1, i.e., CS(x, y) is an R-tree. This tree is called
a wall tree and will be denoted by Txy. One can show that the isomorphism type
of Txy does not depend on the choice of y ∈ Flagιτ (E) with y op x [23]; hence the
isomorphism class of Txy will be denoted by Tx.

We recall that the residue of an element z ∈ ∆∞E is defined by Res(z) = {w ∈
∆∞E |z ( w}. In case of a panel x ∈ ∆∞E we have that Res(x) consists of all the
chambers in ∆∞E containing x.

It is known that one can naturally identify Res(x) ' ∂∞Tx. Let us describe
this identification: Fix y op x and consider Txy in the isomorphism class Tx. Let
o ∈ P (x, y). Then we can identify P (x, y) ' aτ × Txy such that o ' (0, oT ) and
x ' ∂∞a+τ ; recall that a+τ = aτ ∩ a+. Then there is a one-to-one correspondence of
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chambers in Res(x) with (specific) Weyl sectors in P (x, y) with tip o [29, Cor. 1.9.].7

The affine apartments in P (x, y) ' aτ × Txy containing o are of the form aτ × γ,
where γ is a bi-infinite geodesic ray in Txy passing through oT (those are easily seen
to be isometric to Rr). By definition every Weyl sector is contained in an affine
apartment; hence we can derive that every Weyl sector with tip o and boundary
chamber c ∈ Res(x) is contained in a+τ × γoT z where γoT z is a geodesic ray in Txy
from oT to a boundary point z ∈ ∂∞Txy. This yields a one-to-one correspondence
of Res(x) with geodesic rays emanating from oT . As those rays are in one-to-one
correspondence with ∂∞Txy, we get Res(x) ' ∂∞Tx as claimed.

Remark 4.18. It follows that for z ∈ ∂∞Txy, c ∈ Res(x) and d ∈ Res(y) we have
that z ' c and z ' d under Res(x) ' ∂∞Txy, Res(y) ' ∂∞Txy respectively if and
only if the Weyl sectors with tip o = (0, oT ) defining c, d are contained in a+τ ×γoT z,
a−τ × γoT z, respectively.

By definition Res(x) is the set of chambers that contain x. Hence there is a
unique corner ξx of σ such that cξx /∈ x for every chamber c ∈ Res(x). In the same
way we get a type from y and it is immediate that this type equals ιξx — following
for example from the fact that x ∈ Flagτ implies that y ∈ Flagιτ .

Lemma 4.19. Let x, y be opposite panels in ∆∞E and Txy the associated tree. Let
zc, zd ∈ ∂∞Txy, c ∈ Res(x) such that c ' zc under Res(x) ' ∂∞Txy and d ∈ Res(y)
such that d ' zd under Res(y) ' ∂∞Txy. Then (c|d)o,ξx = sin(α)(zc|zd)oT where
o ' (0, oT ) under P (x, y) ' aτ × Txy and α ∈ (0, π) does only depend on σ and
the type of x.

Proof. Let γc, γd be the geodesics in P (x, y) from o to cξx and dξy , respectively. The
splitting P (x, y) ' aτ ×Txy yields geodesics γx, γy in aτ from 0 and γzc , γzd in Txy
emanating from oT such that γc(t) = (γx(t), γzc(t)) and γd(t) = (γy(t), γzd(t)) —
while γc, γd are unit speed, the geodesics γx, γy, γzc and γzd are not. It is clear
that the geodesics γx, γy do not depend on the choice of c, d and are in opposite
directions (since the γc, γd are): The geodesics γc, γd are along those corners of
Weyl sectors that are not contained in aτ . Since Weyl sectors are isometric to
convex subsets of Rr, it reduces to Euclidean geometry; for example γx is the
geodesic in aτ from 0 to the point in x of type πτx(ξx), where πτx is the orthogonal
projection from σ to τx and τx is the type of x.

Let now γx, γy, γzc and γzd be the geodesics as above but reparametrized such
that they are unit speed. Then the above discussion implies d(γx(t), γy(t)) = 2t.
Let α be the angle of ξx and πτx(ξx). Then γc(t) = (γx(cos(α)t), γzc(sin(α)t)).
Basic facts of trees imply that d(γzc(t), γzd(t)) = 2t− 2(zc|zd)oT for t ≥ (zc|zd)oT
(see, e.g., [4]). Altogether,

(c|d)o,ξx = lim
t→∞

t− 1
2

√
4 cos2(α)t2 + (2 sin(α)t− 2(zc|zd)oT )2

= lim
t→∞

t−
√
t2 − 2t sin(α)(zc|zd)oT + (zc|zd)2oT = sin(α)(zc|zd)oT ,

while the last equality follows from a Taylor series in the same way as we have
seen several times before. �

7Here Weyl sector includes also all translates in an affine apartment of the Weyl
sectors we have considered so far.
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Corollary 4.20. The natural cross ratio on ∂∞Txy is given by

crTxy (z1, w1, z2, w2) = sin(α)crξx(c1, d1, c2, d2)

where ξx ∈ σ is the corner not contained in τx, the type of x, α is the angle between
ξx and τx, ci ' zi under Res(x) ' ∂∞Txy and di ' wi under Res(y) ' ∂∞Txy.

The thickness of E means that ∆∞E is thick and therefore for every panel x
we have that |∂∞Tx| ≥ 3 (as Res(x) ' ∂∞Tx), i.e., Tx is thick and geodesically
complete. Therefore Theorem 4.9 implies that the whole isometry class Tx has a
natural cross ratio crTx .

Definition 4.21. Let E1, E2 be thick irreducible Euclidean buildings. A building
isomorphism φ : ∆∞E1 → ∆∞E2 is called tree-preserving or ecological, if for
every panel x ∈ ∆∞E1 we have that φ|Res(x) : Res(x) → Res(φ(x)) is induced by
an isometry φx : Tx → Tφ(x) — i.e., (φx)|∂∞Tx ' φ|Res(x) under the identification
Res(x) ' ∂∞Tx

Theorem 4.22 (Tits, [32, Thm. 2]). Let E1, E2 be two thick irreducible Eucli-
dean buildings and φ : ∆∞E1 → ∆∞E2 an ecological isomorphism. Then φ extends
to an isomorphism, i.e., an isometry after possibly rescaling the metric on E1.

In a similar way as before, we call a surjective map f : Flagσ1
(E1)→ Flagσ2

(E2)
such that crσ1

(x, y, z, w) = f∗crσ2
(x, y, z, w) for all (x, y, z, w) ∈ Aσ1

a σ1-Moebius
bijection. We remark that to identify the image of crσ1

with the one of crσ2
it is

already necessary that E1 and E2 are modeled over the same Coxeter complex,
i.e., σ1 ' σ2 =: σ.

It is immediate that such a map is a ξ0-Moebius map, for ξ0 the center of gravity
of σ. We assumed f to be surjective, hence f is a ξ0-Moebius bijection and therefore
f can be extended uniquely to a building isomorphism f : ∆∞E1 → ∆∞E2 by
Proposition 4.6.

We recall that the affine Weyl group Ŵ = W nTW of the Coxeter complex over
which a Euclidean building is defined gives a collection of hyperplanes, namely the
hyperplanes of the finite reflection group W together with all its translates under
TW . Each hyperplane defines two half spaces which we call affine half apartments.
The image of an affine half apartment under a chart map is again called affine half
apartment.

In spherical buildings the hyperplanes associated to the spherical Coxeter group
define walls in apartments and those walls separate the apartments in two halfs,
called half apartments. One can show that the boundary of an affine half apartment
H ⊂ E defines a half apartment in H∞ ⊂ ∆∞E and to every half apartment
in H∞ ⊂ ∆∞E we find an affine half apartment H ⊂ E which has H∞ as its
boundary.

Now, let f : ∆∞E1 → ∆∞E2 be a building isomorphism and let x, y be
opposite panels. The identifications ∂∞Txy ' Res(x), ∂∞Txy ' Res(y) together
with f |Res(x) : Res(x) → Res(f(x)), f |Res(y) : Res(y) → Res(f(y)) induce two
maps fx, fy : ∂∞Txy → ∂∞Tf(x)f(y).
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Lemma 4.23. Notations as above; in particular let x, y be opposite panels and
fx, fy : ∂∞Txy → ∂∞Tf(x)f(y) are induced by f |Res(x) : Res(x) → Res(f(x)),
f |Res(y) : Res(y)→ Res(f(y)). Then fx = fy.

Proof. Let z ∈ ∂∞Txy, i.e., z is an equivalence class of geodesic rays. Every ray γz
in the class starting at a branching point defines an affine half apartment aτ×γz in
E1 and thus (the equivalence class of rays) defines a half apartment H∞ ⊂ ∆∞E1.
Then it follows from Remark 4.18 that c ' z with c ∈ Res(x) if and only if c is
contained in the half apartment H∞ and in the same way d ' z with d ∈ Res(y) if
and only if d is contained in the half apartment H∞. By assumption, f is a building
isomorphism, i.e., f(H∞) ⊂ ∆∞E2 is a half apartment with f(x), f(y) ∈ f(H∞).
The metric splitting P (f(x), f(y)) ' aτ × Tf(x)f(y) yields that we find an affine
half apartment aτ × γw with γw a geodesic ray in Tf(x)f(y) and boundary point
w ∈ ∂∞Tf(x)f(y) such that the boundary of this affine half apartment is exactly
f(H∞). By definition f(c), f(d) ∈ f(H∞). Hence from Remark 4.18 we get that
f(c) ' w ' f(d). Therefore fx(z) = w and fy(z) = w. �

Theorem 4.24. Let E1, E2 be thick irreducible Euclidean buildings and let the
map f : Flagσ(E1) → Flagσ(E2) be a σ-Moebius bijection. Then the induced
isomorphism f : ∆∞E1 → ∆∞E2 is ecological and hence can be extended to an
isomorphism F : E1 → E2, i.e., an isometry after possibly rescaling the metric
on E1.

Proof. What we need to show is, given a panel x ∈ ∆∞E1, the induced map
fx : ∂∞Tx → ∂∞Tf(x) is the restriction of an isometry. This implies that f is
ecological and therefore by the Theorem of Tits induced by an isomorphism.

We fix y op x to get a tree Txy in the class of Tx. Since we are considering
isometry classes of trees, it is enough to show that fxy : ∂∞Txy → ∂∞Tf(x)f(y) is
induced by an isometry.

Corollary 4.20 implies that for z1, w1, z2, w2 ∈ ∂∞Txy and c1, c2 ∈ Res(x),
d1, d2 ∈ Res(y) with zi ' ci, wi ' di there is some α ∈ (0, π) with

crTxy (z1, w1, z2, w2) = sin(α)crξx(c1, d1, c2, d2) = sin(α)f∗crξx(c1, d1, c2, d2),

while the last equality follows from f being a σ-Moebius bijection. By construction
fxy : ∂∞Txy ' Res(x) → ∂∞Tf(x)f(y) ' Res(f(x)) is defined in the way that
f(c1) ' fxy(z1) under ∂∞Tf(x)f(y) ' Res(f(x)) and similar for c2. In light of
Lemma 4.23 we have that f(di) ' fxy(wi). Applying again Corollary 4.20 this
yields that sin(α)f∗crξx(c1, d1, c2, d2) = f∗xycrTf(x)f(y)(z1, w1, z2, w2); we remark
that the α is the same as before as the simplices σ1 and σ2 coincide. Hence fxy
is a Moebius bijection. Since Txy is a geodesically complete tree and the thickness
of E1 implies that |∂∞Txy| ≥ 3, we can apply Theorem 4.9 to derive that fxy is
induced by an isometry. �

Corollary 4.25. Let E1, E2 be thick Euclidean buildings and let f : Flagσ(E1)→
Flagσ(E2) be a σ-Moebius bijection. Then we can rescale the metric on the irre-

ducible factors of E1 — denote this space by Ê1 — such that f is the restriction of
an isometry F : Ê1 → E2 to the boundary.
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Proof. Since f can be extended to a building isomorphism (as we have seen before),
f is opposition preserving for each type of simplex. This, together with Lemma 3.3
and f being a σ-Moebius bijection, yield that f∗crξ = crξ for every type ξ ∈ σ.

Let σ = σ1 ◦ · · · ◦σk be the decomposition of σ corresponding to the decomposi-
tion of Ei into irreducible factors; the decompositions coincide as both buildings
are thick and modeled over the same spherical Coxeter complex. Moreover, be
f = f1 × · · · × fk the decomposition from Lemma 4.8.

Then f∗crξ = crξ for all ξ ∈ σ implies that each fi is a σi-Moebius bijection.
Thus the above theorem yields the claim. �

Corollary 4.26. Let E1, E2 be thick irreducible Euclidean buildings. In addition,
assume that there exists a wall tree Tx for a panel x ∈ ∆∞E1 which has more
than one branching point. Let f :Flagσ(E1)→Flagσ(E2) be a σ-Moebius bijection.
Then f can be extended to an isometry F :E1→E2 (without rescaling the metric).
Moreover, if E1 is not a Euclidean cone over a spherical building then every wall
tree has more than one branching point.

Proof. From Theorem 4.24 we know that we can rescale the metric by some µ ∈ R+

such that f is induced by an isometry F : µE1 → E2, where µE1 is E1 with the
metric rescaled by µ. Let x ∈ ∆∞E1 be a panel such that the wall tree Tx has
more than one branching point. Then clearly the wall tree of x ∈ ∆∞µE1 is µTx.
Let fx : ∂∞Tx → ∂∞Tf(x) be the induced map from f on the wall tree. Since F
restricted to the boundary is f , the map induced from F on ∂∞µTx equals fx.
Therefore we have crTx = f∗xcrTf(x) = crµTx = µcrTx (the first equality follows
from f being a σ-Moebius bijection, the second from fx = F |∂∞µTx).

By assumption, Tx has two branching points. The distance of those two points
can be given in terms of the cross ratio — i.e., let p, q ∈ Tx be the branching points,
then there exist z1, z2, w1, w2 ∈ ∂∞Tx such that d(p, q) = crTx(z1, w1, z2, w2) [4,
Lem. 4.2]. Since this distance d(p, q) is non-zero, we derive from crTx(z1, w1, z2, w2)
= µcrTx(z1, w1, z2, w2) that µ = 1. Hence F is an isometry without rescaling the
metric on E1.

The second claim is a direct consequence of Propositions 4.21 and 4.26 in [23].
�

The second claim of Theorem B follows now from the fact that every σ-Moebius
bijection splits as a product of σi-Moebius bijections on irreducible factors, as in
the proof of Corollary 4.25. The corollary above implies that those σi-Moebius
bijections induce isometries without the need of rescaling.

5. Appendix

Here, we determine the cross ratios that we construct explicitly for the symmetric
spaces X(n) := SL(n,R)/SO(n,R). We will use the notation as in Example 2.11.

The map g · SO(n,R) 7→ ggt yields an identification of X(n) with the space
Pn = {A ∈ Mat(n × n,R)|A = At ∧ det(A) = 1 ∧ A is positive definite}. The
action of g ∈ SL(n,R) on A ∈ Pn is given by g · A = gAgt. By definition of the
cross ratio, it will be enough to determine (· | ·)In,λ with In being the identity
matrix in Pn and λ = (λ1, . . . , λl) being identified with some type.

Let τ = (i1, . . . , il), ij ∈ {1, . . . , n} such that il = n, ij < im for 1 ≤ j <
m ≤ l ≤ n and let Sτ be the corresponding standard flag, i.e., Sτ = (Vi1 , . . . , Vil)
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for Vij = span{e1, e2, . . . , eij}. Let Sιτ be the standard opposite flag to Sτ , i.e.,
Sιτ = (V ∗il−1

, . . . , V ∗i1 ,R
n) with V ∗ij = span{en, en−1, . . . , eij+1}. Furthermore, be

λ = (λ1, . . . , λl) ∈ Rl such that λj > λj+1,
∑l
j=1mjλj = 0 for mj = dimVij −

dimVij−1 if j > 1, m1 = dimVi1 and
∑l
j=1mjλ

2
j = 1.

Claim. Notations as before; k, h ∈ SO(n,R) and denote by ĥi the i-th column of

the matrix h and accordingly k̂i. Then

(kSτ |hSιτ )In,λ = n

l−1∑
j=1

(λj+1 − λj) log | det( k̂1 | · · · | k̂ij | ĥ1 | · · · | ĥn−ij )|.

Proof. We show the claim for types λ = (λ1, . . . , λn) ∈ int(σ) and the full standard
flag S = (V1, . . . , Vn) where Vi = span{e1, . . . , ei} (the ei being the standard base
of Rn). The claim follows then in full generality from Lemma 2.8.

Since (· | ·)In,λ is invariant under the SO(n,R) action, it is enough to determine
(kS|S)In,λ or (S|kS)In,λ for arbitrary k ∈ SO(n,R). Proposition 2.1 implies that
(S|kS)In,λ = 1

2bSλ(In, nkS(In,S) · In), where Sλ is a point in the ideal boundary
∂∞X(n) determined by the eigenvalue flag pair (λ,S) and nkS(In,S) ∈ NkS,
i.e., the element in the horospherical subgroup to kS such that nkS(In,S) · In ∈
P (kS,S).

We first determine nkS(In,S) ·In. Let kw ∈ SO(n,R) be the standard antidiago-
nal matrix with −1 in the upper right corner. Then kwS = W with W the
standard opposite flag, i.e., W = (V ∗1 , . . . , V

∗
n ) with V ∗i = span{en, . . . , en−i+1}.

Since any k ∈ SO(n,R) stabilizes In, the maximal flat through kS and In is the
unique maximal flat (i.e., affine apartment) that joins kS and kW = kkwS. This
yields nkS(In,S) = nkS(kkwS,S); here nkS(kkwS,S) ∈ NkS is the unique element
mapping kkwS to S.

We know NkS = kNSk
−1 = kNSk

t and NS is the group of upper triangular
matrices with ones on the diagonal. Thus we are looking for nS ∈ NS such that
knSk

tkkwS = S, i.e., knSkw ∈ stab(S); which is equivalent to knSkw being upper
triangular.

Let ki denote the i-th row of k. Then it is straightforward to check that the
(n+ 1− j)-th column of ns is given by

∑j
i=1 ai,n+1−jki, with ai,n+1−j such that

k1,n−j+1 · · · kj,n−j+1

k1,n−j+2 · · · kj,n−j+2

... · · ·
...

k1,n · · · kj,n



a1,n+1−j
a2,n+1−j

...
aj,n+1−j

 =


1
0
...
0

 . (7)

We set A := kns. Then nkS(In,S) · In = (knSk
t) · In = knSn

t
Sk
t = AAt.

The Busemann function on X(n) is well known — see Lemmata 2.4, 2.5 in [16].

Namely, for p ∈ Pn we have bSλ(p, In) = n log(
∏n−1
j=1 (det ∆−j (p))λn−j−λn+1−j ),

where ∆−j (p) is the lower right j × j-minor of p -, e.g., ∆−1 (p) = pn,n. This yields

(S|kS)In,λ = n
2

∑n−1
j=1 (λn+1−j − λn−j) log det(∆−j (AAt)).
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Let (J)i,j = δi,n+1−j , where δi,j is Kronecker’s delta, i.e., J is the antidiagonal.
Then AJ is upper triangular with the diagonal of the form a1,n, . . . , an,1. Then
one can easily show that ∆−j (AAt) = ∆−j (AJ)∆−j (JAt); and thus det ∆−j (AAt) =

det ∆−j (AJ) det ∆−j (JAt) = a2n,1 · · · a2n+1−j,j .
If we apply Cramer’s rule to equation (7), we get

aj,n+1−j =(−1)j+1det

k1,n−j+2 · · · kj−1,n−j+2

... · · ·
...

k1,n · · · kj−1,n

/det


k1,n−j+1 · · · kj,n−j+1

k1,n−j+2 · · · kj,n−j+2

... · · ·
...

k1,n · · · kj,n

.

for j ≥ 2 and a1,n = k−11,n. Thus det ∆−n−j(AA
t) = det( e1 | · · · | en−j | k1 | · · · | kj )2.

Let k̂i denote the i-th column of k ∈ SO(n,R). Then (kS|S)In,λ = (S|ktS)In,λ =

n
∑n−1
j=1 (λn+1−j − λn−j) log | det( e1 | · · · | ej | k̂1 | · · · | k̂n−j )|,.

Let k, h ∈ SO(n,R). Then the i-th column of h−1k is given by h−1k ·ei = h−1k̂i.
Then

det( e1 | · · · | ej |h−1k̂1 | · · · |h−1k̂n−j ) = det( ĥ1 | · · · | ĥj | k̂1 | · · · | k̂n−j )

yields

(h−1kS|S)In,λ = n

n−1∑
j=1

(λn+1−j − λn−j) log | det( ĥ1 | · · · | ĥj | k̂1 | · · · | k̂n−j )|.

Therefore (kS|hS)In,λ = n
∑n−1
j=1 (λj+1 − λj) log | det( k̂1 | · · · | k̂j | ĥ1 | · · · | ĥn−j )|.

�

Proposition 5.1. Let λ = (λ1, . . . , λl) be a type, and τ such that λ ∈ int(τ).
Let V = (V1, . . . , Vl), Y = (Y1, . . . , Yl) ∈ Flagτ and let W = (W1, . . . ,Wl), Z =
(Z1, . . . , Zl) ∈ Flagιτ . Then

crλ(V,W, Y, Z) = n

l−1∑
j=1

(λj − λj+1) log
(∣∣∣Vj ∧Wl−j

Vj ∧ Zl−j
Yj ∧ Zl−j
Yj ∧Wl−j

∣∣∣),
using the above conventions.

Proof. As mentioned in Example 2.11, the term is independent of the choices made.
By the transitivity of the SO(n,R) action, we know that every flag V ∈ Flagτ can
be written as kSτ for Sτ ∈ Flagτ the standard flag and some k ∈ SO(n,R). Then

the columns k̂i are such that Vj = span{k̂1, . . . , k̂ij}. In the same way every flag
W ∈ Flagιτ can be written as hSιτ for Sιτ ∈ Flagιτ the standard flag and some
h ∈ SO(n,R).

Fixing the identification ∧nRn ' det, we get | det( k̂1 | · · · | k̂ij | ĥ1 | · · · | ĥn−ij )|
= |Vj ∧Wl−j |. Thus the claim follows from the lemma above. �
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