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Abstract. We study singular hyperkahler quotients of the cotangent bundle of a complex
semisimple Lie group as stratified spaces whose strata are hyperkahler. We focus on one
particular case where the stratification satisfies the frontier condition and the partial
order on the set of strata can be described explicitly by Lie theoretic data.

1. Introduction

Let G be a complex reductive group, or equivalently, the complexification K¢
of a compact connected Lie group K. Kronheimer [K| showed that the cotangent
bundle T*G can be endowed with a hyperkéhler structure. That is, there exist
three complex structures Iy,Is,I3 on T*G that are Kéahler with respect to a
common metric and satisfy I1Iol3 = —1. Moreover, the action of K x K on
G by left and right multiplications lifts to an action on T*G which preserves the
hyperkéahler structure and has a hyperkdhler moment map, i.e., a moment map
for each of the three Kahler forms [DS1, Lem. 2]. By the hyperkahler quotient
construction [HKLR, §3(D)], we can thus produce many examples of hyperkéhler
manifolds by taking hyperkahler quotients of T*G by closed subgroups of K x K.

These quotients, of course, might have singularities. For example, Dancer [Da,
pp. 88-89] showed that the hyperkéhler quotient of T*SL(2,C) by U(1) x U(1) at
level zero is isomorphic to the Do-surface 22 — zy? = z: a complex surface with two
isolated singularities. Nevertheless, hyperkédhler quotients by non-free actions can
always be partitioned into locally closed manifolds each carrying a hyperkéhler
structure [DS2, Thm. 2.1]. This is the orbit type partition and is analogous to
Sjamaar—Lerman results on singular symplectic quotients [SL]. Moreover, since
the pieces are locally closed, these partitions have an additional structure: a partial
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order given by S < T if S C T. The partition is said to satisfy the frontier
condition if SNT # @ = S < T. We say that a locally finite partition into locally
closed manifolds is a stratification if it satisfies the frontier condition. For example,
the orbit type partition of a singular symplectic quotient is a stratification, but it
is not known if the same is true for hyperkahler quotients.

In this paper, we study certain hyperkahler quotients of T*G by closed sub-
groups of K x K and describe their decomposition into hyperkéahler manifolds and
the partial order on it. More precisely, we focus on a generalization of Dancer’s
example above to any complex semisimple group G. That is, we consider the
hyperkahler quotient of T*G by Tk X Tk, where Tk is a maximal torus in K. In
particular, we will show that in this case, the orbit type partition is a stratification.

Although the definition involves a group G, the quotient will be shown to depend
only on the underlying Lie algebra g. Thus, we denote it by D(g). The structure of
the stratification of D(g) is particularly rich and can be described combinatorially
from the root system ® of g. We will show that the set of strata is in bijection
with the set of root subsystems of ® and the partial order corresponds to inclusions
of subsystems. In particular, we can compute the stratification structure of D(g)
explicitly for any given g (see §6 for examples).

The strata can also be described individually. Denote by D(g)g the stratum
corresponding to a root subsystem W C ®. Then, there is always a top stratum
D(9)top := D(g)a and a bottom stratum D(g)bottom := P(g)z. We will show that
D(g)top is a connected open dense subset of real dimension 4(dimg — 21k g) and
D(9)bottom a finite set of |IW| elements, where W is the Weyl group of g. Note that
this generalizes Dancer’s example that D(s[(2,C)) is a complex surface with two
isolated singularities. To describe the intermediate strata, let gy be a semisimple
Lie algebra with root system ¥ and Wy the Weyl group of gy. Then, for any root
subsystem ¥ C &, the stratum D(g)y is isomorphic as a hyperkéhler manifold to
a disjoint union of |W|/|Wyg| copies of D(gw)top-

We will also describe a coarser stratification which keeps the property that the
strata are disjoint unions of copies of spaces D(gw )top- In this case, the set of strata
is in bijection with the set of root subsystems modulo the Weyl group action, or
equivalently, the set of conjugacy classes of regular semisimple subalgebras of g.

To obtain these results, we will first prove a Kempf—Ness type theorem for the
hyperkahler quotient of T*G by any closed subgroup H of K x K. That is, we
will show that the hyperkahler quotient is homeomorphic to the GIT quotient
Spec(Clug ' (0)]H¢) where pic is the complex part of the hyperkiihler moment map.
This requires first showing that TG has global Kahler potentials that are proper,
and we give a complete proof of that fact. With this theorem, we can study D(g)
and its orbit type partition algebraically and obtain the above results. The proofs
about the stratification of D(g) rely on the fact that we are quotienting by a torus
and hence can use a weight decomposition.

Organization of the paper. In §2, we give the necessary background on stratified
spaces, singular hyperkéhler quotients, root subsystems, and the hyperkahler space
T*G. We then state precisely the results of this paper in §3. We prove the Kempf—
Ness type theorem in §4, and prove all facts about the stratification of D(g) in §5.
Finally, we give examples in §6.
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2. Preliminaries

2.1. Stratified spaces and singular quotients

Stratified spaces are generalizations of manifolds that allow singularities. Roughly
speaking, they are spaces that can be decomposed into manifolds (of possibly
different dimensions) which fit together nicely. There is no universally agreed
definition of stratified spaces but, for the purpose of this paper, we use the following
one (cf. [SL, Def. 1.1] [DK, Def. 2.7.3]).

Definition 2.1. Let M be a topological space. A stratification of M is a partition
P of M satisfying the following conditions:

e Manifold condition. The elements of P are topological manifolds in the sub-
space topology.

e Local condition. P is locally finite and its elements are locally closed.

e Frontier condition. For all S,T € P, we have SNT # @ = S C T.

The elements of P are called the strata and the pair (M, P) a stratified space.

There is a natural relation on the partition P of a stratified space M given
by S < T if § C T. It follows from the local closedness of the strata that this
relation is a partial order. We call (P, <) the stratification poset and view it as an
abstract partially ordered set (poset). In this framework, the frontier condition is
equivalent to

S = U T, forall SeP.

T<S

Thus, the stratification poset (P, <) provides key structural information about M:
it captures the precise way in which the strata fit together. One of the main goals
of this paper is to describe this poset for the space D(g) in terms of combinatorial
data associated to g.

We will use Hasse diagrams to visualize the stratification posets. These are the
diagrams obtained by drawing a node for each i € P and an edge upward from
node ¢ to node j if i < j but there is no k£ such that ¢ < k < j. In particular,
the highest dimensional strata are on the top and lowest dimensional ones on the
bottom. For example, the following figure represents a stratification of the filled
equilateral triangle and the corresponding Hasse diagram:

Many interesting examples of stratified spaces come from quotients by non-free
actions. We review next three classes of examples.



194 MAXENCE MAYRAND

Smooth quotients. If a compact Lie group K acts smoothly, but not necessarily
freely, on a smooth manifold M, then the quotient M /K has a natural stratifica-
tion. It is described as follows. For each closed subgroup H C K, let (H) be the
conjugacy class of H in K. We say that p € M has orbit type (H) if its stabilizer
subgroup K, is in (H), and denote the set of points of orbit type (H) by

M(H) = {p eM: Kp S (H)}
The orbit type partition P = {Mx,)/K : p € M} is a stratification of M/G in
the sense of Definition 2.1, except for the fact that the strata may have connected

components of different dimensions. In any case, we can refine the partition to get
a genuine stratification. See [DK, §2.7] for details.

Kahler quotients. Recall that if M is a symplectic manifold, K a compact Lie
group acting freely on M by preserving the symplectic form, and p : M — € a
moment map for this action, then the Marsden—Weinstein reduction [MW]
Mj/K = pu~'(0)/K

is a smooth symplectic manifold (we consider only quotients at level zero in this
paper). Moreover, if M is Kéhler and K preserves the Kéhler structure, then
M/ K is also Kdhler [HKLR, Thm. 3.1] and is called the Kdhler quotient of M
by K. Sjamaar—Lerman [SL] generalized this construction to non-free actions by
showing that M//K has a natural stratification in which the strata are Kahler. The
strata are (M /| K) k) := p~'(0)(x,)/K for p € p~1(0) with the quotient metric
and the Kéhler form is characterized by the fact that its pullback to x='(0)x,)
is the restriction of the K&hler form of M. (Again the strata may not be of pure
dimension, but we can refine the partition.)

Hyperkdhler quotients. Some of the results of Sjamaar—Lerman for singular Ké&hler
quotients have analogues in hyperkahler geometry. Let M be a hyperkahler mani-
fold with complex structures I, Is, Is and corresponding Kahler forms wq,ws, ws.
If K is a compact Lie group acting on M by preserving the hyperkéhler structure,
then a hyperkihler moment map is a map u = (u, 2, u3) : M — (£)3 such
that u; is a moment map with respect to w;. We call the triple (M, K, u) a tri-
Hamiltonian space. A standard result of [HKLR, Thm. 3.2] says that, if K acts
freely, the hyperkdhler quotient

MK = p~(0)/ K
is smooth and hyperkéhler in a canonical way.
More generally, Dancer—Swann [DS2, Thm. 2.1] proved that, for non-free K-
actions, M /// K can be partitioned into smooth hyperkéhler manifolds. As for
Kahler quotients, this is the orbit type partition

P={(M}JK)x, :penu*0)}
where (M /) K) gy := 1~ (0)(zy/ K. Thus, the manifold condition is satisfied and
it follows from the results on smooth quotients that the local condition also holds.
However, it is not known if the frontier condition holds. The issue is that to
prove this condition in the Kéhler case, Sjamaar-Lerman use a local normal form
for the moment map, but there is no known equivalent in the hyperkéhler setting.
The space D(g) that we study in this paper is an example of a hyperkdhler
quotient by a non-free action whose orbit type partition is a stratification.
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2.2. Root subsystems and regular subalgebras

The stratification poset of D(g) is very rich and its description in terms of Lie
theoretic data will occupy a good part of the paper. A crucial ingredient is the
notion of root subsystems and regular subalgebras, which we review in this section.
The results of this section can be found, for example, in [OV, Chap. 6].

Let g be a complex semisimple Lie algebra with Cartan subalgebra t, & C t*
the set of roots, and g = t & P, ¢ Jo the Cartan decomposition. A subset ¥ of
® is called a root subsystem if

(1) e, peVanda+pecd=a+peV,

(2) a €V <— —aecV.

Equivalently, ¥ is a root subsystem if (span, ¥) N ® = ¥. A root subsystem is
always a root system itself. We use the notation ¥ < & to say that ¥ is a root
subsystem of ®. This gives a partial order on the set of root subsystems.

Root subsystems are closely related to the notion of regular subalgebras. Recall
that a subalgebra h of g is called regular if there exists a Cartan subalgebra t of g
such that [t,h] C b (this notion was studied by Dynkin [Dy] who introduced this
terminology). We denote by Cq4 the set of conjugacy classes of regular semisimple
subalgebras of g. Since all Cartan subalgebras are conjugate, every element of Cgq
has a representative which is regular with respect to a fixed Cartan subalgebra {.

Proposition 2.1. The set of semisimple subalgebras of g that are regular with
respect to t is in one-to-one correspondence with the set of root subsystems of ®.
The correspondence associates to W < ® the subalgebra

gu =ty @ @ Jas (1)

acV¥
where ty is the span of the coroots h, for a € V.

Recall that if k is the number of simple factors of g, there is an (Rsg)* family
of non-degenerate symmetric invariant bilinear forms on g which are positive
definite on the real span of the coroots. We call those bilinear forms admissible.
Equivalently, a bilinear form is admissible if its restriction to some (and hence
all) compact real form(s) is negative definite. For example, the Killing form is
admissible.

Proposition 2.2. Any admissible bilinear form on g remains admissible on gy .
Also, ty is a Cartan subalgebra of gy, (1) is the corresponding Cartan decompo-
sition, and the map t* — t§, restricts to an isomorphism of abstract root systems
from spang U to the root system of gy with respect to the above bilinear form.

Let Wy = We = W(g,t) be the Weyl group of g with respect to t. It acts on
the set of root subsystems by w- ¥ :={w-a:a¢c ¥},

Proposition 2.3. Let Uy and Vo be two root subsystems. Then, gy, = gw, if
and only if there exists w € Wy such that w - ¥y = Uy, Thus, the map ¥ — gy
descends to a bijection {root subsystems of ®}/We — Cq.

There is also a natural partial order on Cy induced by inclusion: we say that
[h1] < [h2] if there exists an inner automorphism ¢ of g such that ¢(h1) C ha.
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Let b be a regular semisimple subalgebra of g, say h = gy for some ¥ C .
Then, the Weyl group Wy of h can be viewed as a subgroup of Wy, namely,
the one generated by the simple reflections s, for a € W. In particular, the index
|Wq : Wy| := |Wy|/|Wy]| is a well-defined positive integer. We define the embedding
number of h in g to be

mg(h) = [Wg : Wy|{w- ¥ :w e Wy}, (2)

where the second factor is the number of root subsystems in the Wy-orbit of W.
The embedding number is thus a positive integer which depends on the particular
way in which h embeds in g. It depends only on the conjugacy class of h and
hence descends to a map mg : C; — N. Note that we always have mgy(g) = 1 and
mg(0) = |Wy|. These numbers will be important for our study of the stratified
space D(g), as they will count the number of connected components of the strata.

2.3. The hyperkéahler space T*G

Let G be a complex reductive group. Then, T*G, being the cotangent bundle of a
complex manifold, has a canonical holomorphic symplectic form. Kronheimer [K]
showed that there is a hyperkéhler structure on T*G compatible with this form.
In other words, if I, I, I3 are the three complex structures of this hyperkéahler
structure and wy, ws, w3 the associated Kéhler forms, then I; is the natural complex
structure on T*G and wy + iw3 the canonical holomorphic-symplectic form. This
hyperkéahler structure is constructed by an infinite-dimensional version of the
hyperkahler quotient construction where the role of the moment map is played
by a system of nonlinear ODEs called the Nahm equations. It requires a choice
of a compact real form K of G and an invariant inner-product on ¢ = Lie(K).
However, since all compact real forms are conjugate, the hyperkahler structure
does not depend on K in an essential way. But it does depend on the invariant
inner-product on £, or equivalently, on an admissible bilinear form on g = Lie(G).

Recall that for any hyperkihler manifold (M, g, I, I>, I), if (a1, as, az) € R3 lies
in the 2-sphere, then the endomorphism aq/; + asls + asls is a complex structure
with respect to which (M, g) is Kéhler. Hence, M has a 2-sphere of complex
structures. In the case of T*G, there is an isometric SO(3)-action which rotates
these complex structures so, from the point of view of Kahler geometry, they are
all equivalent.

The hyperkédhler space T*G also has a large group of symmetries: Dancer—
Swann [DS1] showed that the action of K x K on G by left and right multiplications
lifts to an action on T*G which preserves the hyperkahler structure and has a
canonical hyperkdhler moment map (which comes from evaluating solutions to
Nahm equations at the endpoints of the interval on which they are defined [DS1,
Lem. 2]). Moreover, this action commutes with the SO(3)-action.

Let H be a closed subgroup of K x K and p the induced hyperkéhler moment
map for the action of H on T*@, i.e., the composition of Dancer-Swann’s hyper-
kihler moment map T*G — (€ x £)* ® R? with the restriction map (€ x £)* @ R? —
h* @ R3. Write uc := po + iusz for the complex part of u and ug := p for the real
part of pi. There is an algebraic description of pc which is useful for computations.
First, there is a complex algebraic isomorphism 7T*G — G x g* given by translating
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every cotangent space to the identity using left multiplication. On the latter space,
the action of K x K is (a,b)-(g, &) = (agb™!, Adj £) and this extends to an algebraic
action of G x G which preserves the canonical holomorphic-symplectic form. Then,
uc is the composition of the map

G x g* — g* X g*v (gvf) — (Ad; ga _5) (3)

with the restriction g* x g* — hg and is a holomorphic-symplectic moment map
for the action of Hc C G x G on T*@G. See [DS1, §4] and [B, §2] for details.

3. Statement of results

In this section, we state precisely the main results of this paper. The proofs
will be in the subsequent sections.

Let G be a connected complex semisimple Lie group, K a compact real form of
G, and H a closed subgroup of K x K. There is a canonical hyperkdhler moment
map for the action of K x K on T*G [DS1, §3], which is in fact unique since here K
is semisimple. Let u = (ug, uc) be the induced hyperkéhler moment map for the
H-action as in §2.3. By §2.1, the hyperkahler quotient T*G/J/H can be partitioned
into smooth hyperkéhler manifolds, but it is not known if this is a stratification in
the sense of Definition 2.1.

We first give an algebraic description of the topological space T*G// H and its
orbit type partition which works for all H and needs no reference to the hyperkéhler
setting. Recall that the set of polystable points ,LFI(O)ps is the set of points in
p1z"(0) whose Hc-orbit is closed. The inclusion g (0)P% < pz'(0) descends to a
bijection from ' (0)P%/He to the GIT quotient Spec(Clug ' (0)]5¢) [L1, §1.1] and,
moreover, this map is a homeomorphism in the Euclidean topology [L2, §2.1] [FC,
Thm. 2.1]. Thus, the H¢-orbit type partition on M(El(O)pS/H(C induces a partition
on Spec(Clug"(0)]#¢) sometimes called the algebraic or Luna stratification [L1,
§II1.2], [PV, §6.9).

Theorem 3.1. We have u~1(0) C puz'(0)P* and this inclusion induces a homeo-
morphism
T*Gfjf H — pg'(0)"/He = Spec(Clug ' (0)]7¢).

Moreover, the H-orbit type partition of T*G/JJ H coincides with the Hc-orbit type
partition of ,uél(O)pS/Hc and the homeomorphism restricts to biholomorphisms on
the strata.

The proof follows from a slight generalization of the classic Kempf-Ness theorem
to varieties with global Kahler potentials. The main step is to show that every
point is analytically semistable, i.e., that the closure of the Hc-orbit of every point
in pz'(0) intersects g’ (0). One has to go to the gauge-theoretic point of view
using Nahm equations and do some analysis since pugr has no explicit algebraic
description as a map on T*G (the issue is that the passage from T*G to Nahm
equations relies on an existence result in analysis and hence is not explicit). Note
that the theorem implies that the pieces in the orbit type partition of yz'(0)P/He
are smooth, which is not immediately obvious since pi 1(0) might be singular. In
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addition, the theorem says that with respect to any element in the 2-sphere of
complex structures, T*G/J/ H has the structure of a complex affine variety.
We are mostly interested in the special case

D(G) == T*G/)) (Tx x Tx)

where Tk is a maximal torus in K. Note that D(G) does not depend on the choice
of maximal torus since they are all conjugate. On the other hand, the hyperkéhler
structure does depend on the choice of admissible bilinear form on g. A crucial
ingredient in the description of D(G) is that, in fact, it depends only on g and its
bilinear form. More precisely:

Theorem 3.2. Let G be the universal cover of G. Then, there is a homeomor-

phism D(G) — D(G) which preserves the orbit type partition and restricts to
hyperkdhler isomorphisms on the strata.

This justifies the notation D(g) instead of D(G). The main point about taking
H = Tx x Tk is that the GIT quotient Spec(C[ug'(0)]*¢) can be studied with a
weight decomposition. This enables us to prove:

Theorem 3.3. The orbit type partition of D(g) is a stratification.

More precisely, the proof relies on an explicit description of the orbit type
partition. Let O C g be a regular semisimple adjoint orbit and consider the action
of T := (Tk)c on the cotangent bundle T*O C gx g* by ¢t-(X,n) = (Ad; X, Ad} n).
Let t° be the annihilator of t in g*. Using Theorem 3.1, we get the following
description, which is well suited for computations.

Proposition 3.4. The space D(g) is homeomorphic to (T*O N (g x t°))Ps/T.
Moreover, the (Tk X Tk)-orbit type partition of D(g) coincides with the T-orbit
type partition of (T*O N (g x t°))P5/T.

In particular, the orbit type strata of D(g) are of the form (T*ON (g x t°))’ /T
for some closed subgroups Z of T' (we use the subscript Z instead of (Z) since T
is abelian). Let ® be the root system of g and view it as a subset of Hom(7, C*).
For every root subsystem ¥ < &, let

Zy:={teT:at)=1forall o € U}
— (T oy)ps (4)
D(g)w := (T7ON (g x )7, /T
Theorem 3.5. The map
{root subsystems of ®} — {orbit type strata of D(g)}, ¥ +— D(g)w

s an isomorphism of posets.

In particular, there is a top stratum D(g)iop := D(g)e corresponding to the
root system @ itself and a bottom stratum D(g)pottom := D(g)z corresponding to
the trivial root subsystem @. Recall from §2.2 that any admissible bilinear form
on g remains admissible on gy. Hence, it induces a natural hyperkahler structure
on D(gy)top- Let W be the Weyl group of g and Wy the Weyl group of gy.
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Theorem 3.6.

(1) D(g)top is a connected open dense subset of real dimension 4(dimg—2rkg).

(2) D(g)bottom 1S a finite set of |W| elements.

(3) For all ¥ < @, the stratum D(g)g is isomorphic as a hyperkihler manifold
to a disjoint union of |W : Wy| copies of D(gw)top-

A stratification can always be refined arbitrarily by taking submanifolds of the
strata. It is thus desirable to get a stratification as coarse as possible. We describe
next one way of coarsening the orbit type stratification of D(g). Recall from §2.2
that Cq is the set of conjugacy classes of regular semisimple subalgebras of g and
mg : Cg — N the map of embedding numbers (2). For each [h] € Cq, let

D)y = |J Do)

[ow]=[b]

Theorem 3.7. The partition P = {D(g)y) : [b] € Cy} is a stratification of D(g)
and the map Cg — P, [b] = D(g)y) an isomorphism of posets. Moreover, D(g)[q] =
D(9)tops D(9)[0) = D(8)vottom and D(g)y is isomorphic as a hyperkdhler manifold
to a disjoint union of mg(h) copies of D(h)top-

We will give examples of this stratification in §6.

4. A Kempf-Ness theorem for T*G// H

The purpose of this section is to prove Theorem 3.1 relating the hyperkahler
quotient T*G /) H with the GIT quotient Spec(C[ug "' (0)]7¢).

4.1. Kahler quotients with global Kahler potentials

Let G be a complex reductive group with maximal compact subgroup K and M a
smooth complex affine variety on which G acts algebraically.

Recall that the Kempf-Ness theorem [KN], [PV, §6.12], [Sc, Cor. 4.7] states
that if M C C" is endowed with the standard Kéhler structure and G acts linearly
on C"” and K by isometries, then there is a canonical moment map g for the
action of K on M such that the Kihler quotient p~!(0)/K is homeomorphic to
the GIT quotient Spec(C[M]%). However, in our case, the Kihler structures on
T*@G cannot be obtained from embeddings in C", so we need a slight generalization
of this theorem.

More precisely, suppose that M has a Kéhler structure (compatible with its
natural complex structure) which is induced by a global Kéahler potential f €
C*(M,R) that is K-invariant, proper and bounded from below. For example, if
M is isometrically embedded in C™, f can be the norm function. Let I be the
complex structure of M and w = 2i90f the Kahler form. For each X € ¢, let X#
be the vector field on M induced by the K-action and define

pe M=, up)(X)=df(IX})

forall pe M and X € ¢.

Proposition 4.1. The map u is a moment map for the action of K on M.
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Proof. We have w = —da where a = i(0 — 9)f. Moreover, df(IX#) = a(X#)
so ix#a = uX where u~ (p) := u(p)(X). Now, the Lie derivative £y% commutes
with @ and 0 since K acts by biholomorphisms, so Ly#a = i(0 — 0)Lx#f = 0,
by K-invariance of f. Hence, ixy#w = d(ix#a) = du’. To prove K-equivariance
of u, define, for all k € K, the map ¢y : M — M, p+— k-p. Then, df o I o dip, =
d(f otpr) oI =df oI and X[ = dyy((Adg-1 X)), so

p(k - p)(X) = df (I(dyn((Ady-1 X)}))) = df (I(Adg-1 X)F) = p(p)(Ady-1 X).

Hence, p(k-p) = Adj pu(p) forall k € K andpe M. O

Proposition 4.2. We have p=1(0) € MP® and this inclusion induces a homeo-
morphism p~'(0)/K — MP/G = Spec(C[M]%). Moreover, the K-orbit type
partition of u~(0)/K coincides with the G-orbit type partition of MP/G and the
homeomorphism restricts to biholomorphisms on the strata.

Proof. Let M be the set of p € M such that the closure of G -p intersects u=1(0)
and let M?P% be the set of p € M?*® such that G - p is closed in M?* (‘a-ss’
stands for analytically semistable and ‘a-ps’ stands for analytically polystable).
Then, Sjamaar showed that p=1(0) C M?Ps [Sj, Prop. 2.4] and that this inclusion
descends to a homeomorphism p~1(0)/K — M?*Ps /G [Sj, Rem. 2.6] (see also [HL])
with the desired properties regarding orbit type partitions [Sj, Thm. 2.10]. Thus, it
suffices to show that M?%° = M so that M P5 = MPS. This is proved by adapting
the standard proof of the Kempf-Ness theorem, replacing the norm function by
f- Let pg € M. Since G acts algebraically, there is a closed orbit G - g in
G -po. We claim that G - qo intersects p~1(0). Since f is proper and bounded
from below, f(G - qo) attains a minimum f(go - qo) for some gy € G. Thus,
by defining F, : G — R, F,(g) = f(g-p), we get (dFy,)q, = 0. Moreover, if
R, : G — G, R(a) = ag then F,, = F, 0o Ry, s0 (dFy,.q,)1 = 0. Then, for all
X €t we have (dF,),(iX) = df (IX}) = pu(p)(X), so in particular u(go - qo)(X) =
(dFy.40)1(iX) = 0. Hence, 1u(go - go) = 0, so G - py intersects p~1(0). O

4.2. Application to T*G /) H

We want to apply Proposition 4.2 to certain Kahler potentials on T*G. These
potentials are obtained from the Nahm equations, i.e., the system of ordinary
differential equations

T =1, T3], To=[T3Ti], T3=[T1, Tzl

where the T}’s take values in €. For each X € £, let TX be the maximally extended
solution to Nahm equations with initial condition 7% (0) = X. Let W be the open
set of X € €3 such that T¥ is defined at least on [0, 1]. Then, Dancer-Swann [DS1,
§3] showed that W is star-shaped about 0, K x W is diffeomorphic to T*G, and
there is a global Kéhler potential for the complex structure I; of T*G given by

1
FEKxW R <k,X>H/ ITX @I + |15 (1) 2 d.
0
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The diffeomorphism T*G =2 K x W intertwines the standard K x K-action on
T*G with the action (a,b) - (k, X) = (akb™',Ady X) on K x W, so F is K x K-
invariant and bounded from below. The main difficulty is to show that F' is proper.
Since F' is independent of K, it suffices to show that the maps

1
fi W =R, XH/ 1T (2)]2 dt
0

are proper (the sum of two real-valued functions that are proper and bounded from
below is proper). We prove this by the following three lemmas.

Lemma 4.3. Let T be a solution to Nahm equations on an interval I. Then,
| T;||1? is convex on I for alli.

Proof. We have 4|7} ||? = ATy, T1) = 2(T1, [Ty, Ts]) so

%Hmz = 2T, [Ty, T3)) + 2(Ty, T2, Ts) + [Tz, T3])
= 2(T1, [T», T3]) + 2([T3, T, T2) + 2([11, T2], T3])
= 2||[Ty, T5]1? + 2| [T, Tl ||* + 2| [Ty, T2) |-
Similar statements hold for |73 and ||T3]|>. O

Lemma 4.4. Let T be a solution to Nahm equations on [0,s). If [ | T;|[?dt < oo
for some i, then T can be extended past s.

PT‘OOf. Let F : ES — E?’, F(Xl,XQ,Xg) = ([X27X3]7[X37X1],[X17X2D so that
Nahm equations become T'(t) = F(T(t)). We want to show that there exists
to < s such that the unique solution to the initial value problem S(t) = F(S(t)),
S(tg) = T(to) exists on [tg,to + &) for some £ > s — tg. From the existence and
uniqueness theorem for first-order systems of ODEs, ¢ can be taken to be b/M
where b > 0 and
M = sup{[|F(X)|| : | X = T(to)[| < b};

see [CL, Chap.1 (Thm. 2.3 and 5th paragraph of p. 19)]. Note that F is a homoge-
neous polynomial of degree 2, so there exists C' > 0 such that ||F(X)| < C|X]|?
for all X € €. Hence, M < C(||T(to)|| + b)? and it suffices to show that there
exists tg < s and b > 0 such that

b
@ +or ~ " )
We have 4|T1|2 = 2(Ty, [Tb, T3]) = 2([T1,T»], T3) = 4||T3|*> and similarly
4\ Ty|2 = LTy ||?, so the maps ||T;||? differ by constants. Hence, since Jo I T3)12dt
< oo for some i, we also have [ ||T||?dt < co. Moreover, ||T|? is convex (Lemma
4.3) so the fact that [; [|T]|?dt < oo implies that there exists § > 0 such that
|T(t)||?> < <L forall t € (s — 4, s). Let b > C. By taking ¢ small enough, we may

assume that C(1 4 bv/6)? < b. Then, for all ty € (s — §,5) we have

2
+b> —C(1+b/s—1)  <b
0

Cls = )T ()] +1) < s —to) (e

and hence (5) follows. O
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Lemma 4.5. The maps f; fori =1,2,3 are proper.

Proof. We need to show that f; ([0, A]) is compact for all A > 0. We first show
that f; ([0, A]) is bounded, and then that it is closed in €* (which does not follow
from continuity since the domain W of f; is open in £3).

Let € > 0 be such that S, := {X € & : ||X|| = e} € W. Then, fi(S.) is
compact and hence attains a minimum M > 0. Let X € & with || X]| > ¢ and
write X = sY where Y € S. and s > 1. Then, T%Y (t) = sTY (st), so

1 s 1
fi(X) = / IS (st)|%dt = / T (1)) 2t > s / ITY (0)2dt = sfi(Y) = sM.

Since [|X| = se, we get | X|| < £ fi(X) and hence f; ([0, A]) is bounded for all
A>0.

To show that f; ([0, A]) is closed in €3, let X, € W be a sequence that converges
to some X € €3 and satisfies f;(X,) < A for all n. Suppose, for contradiction,
that X ¢ W. Since W is star-shaped about 0, we must have {t > 0:tX € W} =
(0,s) for some s < 1. Moreover, f;(tX) = tfot |1 T (u)]|?du — oo as t — s, as
otherwise T is defined on [0, s] by Lemma 4.4 so TX(t) = sTX(st) is defined
on [0,1] and hence sX € W. Thus, there exists ¢ < s such that f;(tX) > A.
But tX € W, so there exists > 0 such that the open ball B, (tX) is contained
in W and f;(Y) > A for all Y € B,(tX). Let n be such that X, € B,(X).
Then, [tX, —tX| < tr < rso f;(tX,) > A. But since ¢ < 1 we have f;(X,) =
fol |77 ()| 2du > tfg T (w)||2du = fi(tX,) > A, a contradiction. Thus,

X € W and hence f; ([0, A]) is closed in €3. O
By the isometric SO(3)-action rotating the complex structures, we have proved:

Proposition 4.6. Let I be any element in the 2-sphere of complex structures on
T*G. Then, there is a global Kdhler potential for I which is K x K-invariant,
proper, and bounded from below.

We can now prove the relation between T'G /) H and Spec(C[ug ' (0)]H¢):

Proof of Theorem 3.1. Denote by pf and ,uf{ *K the moment maps for H and

K x K on T*G that we are getting from the Kahler potential F' as in Proposition
4.1. Then, pfl is equal to the composition of ,u]{gXK with the projection #* x £ —
h*. Moreover, since G is semisimple, so is K X K, and hence moment maps for
K x K are unique. Thus, pff must be the same moment map as the one considered
in Theorem 3.1. Since F' is proper, we can apply Proposition 4.2 to the Kéhler
quotient iz *(0)/H. The hyperkihler quotient 7*G/// H is obtained by taking the

subspace of ug'(0)/H given by pug'(0) N pg ' (0)/H, so we get the theorem. [

5. Stratification of D(g) into hyperkihler manifolds

5.1. D(G) depends only on the Lie algebra of G

In this section we prove Theorem 3.2 which says that D(G) := T*G/J) (Tx % Tk)
depends only on the Lie algebra g of G. This will be used in §5.3 to identify the
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strata of D(g) := D(G) as the top stratum of spaces D(h) for some semisimple
subalgebras h C g (Theorem 3.6).

The first step is the explicit algebraic expression for D(G) claimed in Proposition
3.4. By Theorem 3.1 we have D(G) = pugz"(0)P*/(T x T) and from (3),

pet(0) ={(g:6) € G x °: Adj € € t°}.

Let O be a regular semisimple orbit in g, say O = G -7 for some 7 € t*°8. Then, the
map G — O, g — Adg 7 is a principal T-bundle and the associated vector bundle
G X7 t° (using the coadjoint action on t°) is isomorphic to the cotangent bundle
T*0 via (g,€) = (Ad, 7,Ad; €) (see, e.g., [CG, Lem. 1.4.9]). Thus, we have

D(G) = {(9,€) € G xp 0 : A€ € YT = (T*O N (g x )™/,

where T acts on T*O C g x g* by the adjoint and coadjoint actions. Moreover, the
action of T on G x t° is free so the (T' x T)-orbit type partition of D(G) coincides
with the T-orbit type partition of (T*O N (g x t°))P*/T. Another way of viewing
this is to use reduction in stages [SL, §4] to get D(G) = (T*G//(1 x Tk))/[/(Tk x 1)
and note that by Theorem 3.1, T*G/J/ (1 x Tx) = G xp t° =T*0O.

We already see that D(G) depends only on g as an algebraic variety since T*ON
(g x t°) depends only on g and T acts by the adjoint representation. Moreover,
we have proved Proposition 3.4. But it remains to show that the hyperkéhler
structures on the strata are also independent of coverings.

If a group K acts on a set M and A C K, let My :={p€ M : K, = A}. The
following simple observation will be useful here and in §5.3.

Lemma 5.1. Let (M, K,u) and (N, L,v) be tri-Hamiltonian spaces, f : K —
L a Lie group homomorphism and F : M — N an f-equivariant hyperkdhler
map (isometric, tri-holomorphic and tri-symplectomorphic) which sends p~1(0) to
v=10). If K and L act freely, then F descends to a hyperkdhler map F : MJJJK —
N/JJ L. More generally, if F(Ma) C Np for some A C K and B C L, then the
restriction F': (M [/ K)ay — (N L)) is a hyperkdihler map.

Proof. Suppose first that K and L act freely. Since the three symplectic forms on
M/J/K are uniquely characterized by the fact that their pullback to p~1(0) are the
restrictions of the symplectic forms of M [HKLR, proof of Thm. 3.2] (and similarly
for NJJ/ L), it is immediate that [ is a symplectomorphism for each of them. A
hyperkahler structure is uniquely determined by its metric and three symplectic
forms, so it suffices to show that F is an isometry. Let g be the metric on M
and 7 : p~1(0) — p~1(0)/K the quotient map. Then, 7 is a principal K-bundle
and the metric § on p~'(0)/K is uniquely determined by 7*g(u,v) = g(u,v)
for all horizontal tangent vectors u,v on p~'(0). A similar statement holds for
the metric A on N JJ/ L. Since F is an isometry and is f-equivariant, it follows
that F' maps horizontal vectors of u~1(0) to horizontal vectors of v~1(0). Let
p: v~ 10) — v~1(0)/L be the quotient map. Then, for all horizontal vectors
u,v on p~1(0), we have 7*(F*h)(u,v) = F*p*h(u,v) = p*h(dF(u),dF(v)) =
h(dF (u),dF(v)) = g(u,v), so F*h = g.

Now suppose that F(M4) C N for some A C K and B C L. Recall from [DS2,
§2] that M 4 is a hyperkéhler submanifold of M on which Ng(A)/A acts freely and
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(M4, Nc(A)/A, u|p, ) is a tri-Hamiltonian space. The hyperkéhler structure on
(MJJ/K)(ay = 1~ 1(0)(a)/K is given by identifying this space with M4//(Ng(A)/A).
Thus, we may repeat the argument above with M and N replaced by M4 and Np.
|

We can now prove Theorem 3.2. The idea is to use Lemma 5.1 on the covering
T*G — T*G and show that the map D(G) — D(G) that it induces is a homeomor-
phism preserving the stratifications.

Proof of Theorem 3.2. Let m : G — G be the covering map and K, K maximal
compact subgroups of G and G respectively with the same Lie algebra ¢ C g.
Then, the map F : G x g — G x g, (9, X) — (n(g), X) is hyperkiihler since it
descends from the identity map on the space of solutions to Nahm equations on
¢ (see the description of Kronheimer [K]). Let Tz and Tk be maximal tori in K
and K respectively, with the same Lie algebra t; C €. Then, F' is equivariant with
respect to the covering Tz X Tz — T'x x T . Moreover, if i and p are the moment
maps for the actions of Tz x Tz and Tx x Tk respectively, then po F' = i so F'
maps ji~1(0) to p~1(0). Thus, Lemma 5.1 ensures that F descends to a continuous
map F : D(G) — D(G) which is hyperkihler on the strata that it preserves. But,
the diagram

D(G) - D(G)

! J

(T*ON (g x £2))P5 )T —— (T*ON (g x °))P/T

commutes, where the vertical and bottom maps are homeomorphisms preserving
the orbit type partition, so F is also a homeomorphism preserving the orbit type
partition. By Lemma 5.1, F restricts to hyperkihler maps on the strata, and since
they are also homeomorphisms, they are hyperkahler isomorphisms. [

We may now use the notation D(g) instead of D(G).

5.2. Stratification poset

Recall that the relation S < T if S C T on a partition P of a topological space is
a partial order whenever the elements of P are locally closed. In particular, this
holds for the orbit type partition of D(g). To prove that this partition also satisfies
the frontier condition (and hence is a stratification), we will first prove Theorem
3.5 identifying the poset of strata with the poset of root subsystems. The frontier
condition will then be an easy consequence of this identification.

By Proposition 3.4, the (T x Tk )-orbit type decomposition of D(g) is the same
as the T-orbit type decomposition of (T*O N (g x t°))P%/T. It will be convenient
to identify g* with g using the non-degenerate invariant bilinear form, and hence
t° with t+ C g. Then, D(g) = (TON (g x t+))P%/T, where T acts by the adjoint
action on both factors. Thus, the orbit type partition of D(g) is of the form
P = {D(g)z : Z € I} for some collection Z of closed subgroups of T (where
D(g)z = (TON (g x t4)Y/T). Our first objective is to identify the collection
T precisely. Let ® be the root system of g with respect to t. We use the same
notation as in (4) for Zy and D(g)y.
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Lemma 5.2. The stabilizer subgroup of (X,Y) € g x g under the adjoint T-action
is Zo(X,y), where

O(X,Y)=®nNspang{a € & : (X,,Ys) # (0,0)}.

Moreover, ®(X,Y) is a root subsystem of .

Proof. Let ®'(X,Y) = {a € @ : (X4, Yas) # (0,0)}. The weights spaces for the
action of T on gx g are g, X go for a € ®U{0}. Thus, ¢ fixes (X,Y) if and only if ¢ €
Zyr(x,y), 80 we want to show that Zg/(x,y) = Za(x,y). Since ®'(X,Y) C &(X,Y)
we have Zg(x,y) € Za/(x,y). Conversely, let t € Zg/(x y)and 8 € ®(X,Y). Then,
B =2 wea(x,y) Naa for some ng € Z, s0 B(t) = [[neq (x,y) a(t)" =

Any set of the form ® Nspany, ¥ for some subset ¥ C @ is a root subsystem, so
®(X,Y) is a root subsystem. [

This means that there is some collection J of root subsystems of ® such that
the orbit type partition is P = {D(g)y : ¥ € J}. The next lemma shows that J
is, in fact, the set of all root subsystems of ®.

Lemma 5.3. D(g)y # & for any root subsystem ¥ < ®.

Proof. Take 0 # X, € go for all € ¥ and let X =3 4 X4 Then, (1,X) €
(TON (g x t)). Recall that a point is polystable if and only if 0 is in the interior
of t