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Abstract. We prove that the Grothendieck–Springer simultaneous resolution viewed as
a correspondence between the adjoint quotient of a Lie algebra and its maximal torus is
Lagrangian in the sense of shifted symplectic structures. As Hamiltonian spaces can be
interpreted as Lagrangians in the adjoint quotient, this allows one to reduce a Hamiltonian
G-space to a Hamiltonian H-space where H is the maximal torus of G. We show that
this procedure coincides with an algebraic version of symplectic implosion of Guillemin,
Jeffrey and Sjamaar. We explain how to obtain generalizations of this picture to quasi-
Hamiltonian spaces and their elliptic version.

Introduction

The goal of this paper is to introduce symplectic implosion in the realm of
derived symplectic geometry.

0.1. Derived symplectic geometry

Pantev, Toën, Vaquié and Vezzosi [PTVV11] introduced the notions of closed dif-
ferential forms on derived stacks and defined shifted symplectic structures on such
stacks. As in the classical context, a symplectic structure is a closed non-degenerate
two-form on the stack, but now the form can have a nontrivial cohomological de-
gree. Moreover, the form is not strictly closed, but closed only up to homotopy.

One can also introduce Lagrangians in a shifted symplectic stack X. These
are morphisms f : L → X together with a trivialization of the pullback of the
symplectic form from X to L; moreover, we require the trivialization to be non-
degenerate in a certain sense. Note that Lagrangians L → X are not necessarily
embeddings: for instance, if L → X is a Lagrangian in an n-shifted symplectic
stack X and Y is an (n − 1)-shifted symplectic stack, then L × Y → X is also
Lagrangian. Moreover, in contrast to the classical setting, being a Lagrangian is
not a property but an extra structure.

The key result about derived Lagrangians is the fact that their derived in-
tersection carries a shifted symplectic structure. More precisely, if we have two
Lagrangians L1, L2 in an n-shifted symplectic stack X, the derived intersection
L1 ×X L2 is (n − 1)-shifted symplectic. More generally, if X ← L → Y is a La-
grangian correspondence and N → Y is another Lagrangian, L ×Y N → X also
carries a Lagrangian structure. This should be contrasted to the case of ordinary
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PAVEL SAFRONOV

differential geometry where the intersection of manifolds is a manifold only if the
intersection is transverse.

0.2. Hamiltonian reduction

Let us now explain how shifted symplectic structures give a new point of view on
Hamiltonian reduction (this perspective can be found in [Ca13] and [Sa13]).

Let BG = [pt/G] be the classifying stack of an algebraic group G. We can
identify the coadjoint quotient

[g∗/G] ∼= T∗[1](BG),

so it carries a 1-shifted symplectic structure generalizing the classical construction
of the symplectic structure on a cotangent bundle. Given a G-equivariant map
µ : M → g∗ one can ask when the induced map µ : [M/G] → [g∗/G] carries a
Lagrangian structure. An easy computation shows that a Lagrangian structure
on [M/G]→ [g∗/G] is the same as a closed G-invariant two-form on M satisfying
the moment map equation. In other words, Lagrangians in [g∗/G] are identified
with Hamiltonian G-spaces, i.e., G-spaces M together with a symplectic structure
on M preserved by G and a G-equivariant moment map µ : M → g∗ which is a
Hamiltonian for the G-action.

Given a Hamiltonian G-space, its Hamiltonian reduction is defined to be

M//G = [µ−1(0)/G] ∼= [M/G]×[g ∗/G] [pt/G].

Both [M/G] and [pt/G] are Lagrangians in [g∗/G], so M//G is a Lagrangian
intersection which, therefore, carries a symplectic structure. This recovers the
standard symplectic structure on the Hamiltonian reduction when 0 is a regular
value for the moment map µ and the G-action on µ−1(0) is free.

This picture generalizes to quasi-Hamiltonian reduction which is concerned with
group-valued moment maps M → G. In that case[

G
G

]
= BG×BG×BG BG

is the self-intersection of the diagonal in BG × BG, a 2-shifted symplectic stack,
so it carries a 1-shifted symplectic structure. Asking the same question for G-
equivariant maps M → G we get that Lagrangians in

[
G
G

]
are the same as quasi-

Hamiltonian G-spaces.
One can perform Hamiltonian reduction given any two Lagrangians in a 1-

shifted symplectic stack. Another example of a 1-shifted symplectic stack is
BunG(E), the moduli stack of G-bundles on an elliptic curve. Such “elliptic”
Hamiltonian reduction is useful to construct symplectic structures on the moduli
stacks of G-bundles on del Pezzo surfaces (see [Ca13]).

0.3. Symplectic implosion

Symplectic implosion was introduced by Guillemin, Jeffrey and Sjamaar as a way
to produce Hamiltonian T -spaces out of Hamiltonian K-spaces, where T ⊂ K is
the maximal torus in a compact Lie group K. It is defined in a rather ad hoc way
as a symplectic completion of the cross-section, which is roughly the preimage of
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the fundamental Weyl chamber under the moment map. It can also be interpreted
as a K-Hamiltonian reduction with respect to (T∗K)impl, the universal implosion
space. In [GJS01] it was shown that (T∗K)impl

∼= [G/N ]aff , the affinization of the
base affine space, where G is a complex reductive group having K as a maximal
compact subgroup and N ⊂ G is the maximal unipotent subgroup.

Symplectic implosion was generalized to the hyperKähler setting for K = SU(n)
by Dancer, Kirwan and Swann [DKS12]. As one expects hyperKähler implosion
for K to coincide with the holomorphic symplectic implosion for G, we will use
their definition to compare our results. The universal implosion (T∗K)HKimpl they
obtain is a hyperKähler space which is isomorphic to [G ×N b]aff in one of the
complex structures, where b is the Borel subalgebra of g = Lie(G). Symplectic
implosion for quasi-Hamiltonian spaces was defined in [HJS04] for a compact group
and in [DK15] for SL(n;C).

Since Hamiltonian spaces are interpreted as Lagrangians in the adjoint quotient,
to implode a Hamiltonian G-space to a Hamiltonian H-space one has to compose
the Lagrangian with a Lagrangian correspondence between [g/G] and [h/H ]. One
famous such correspondence is the so-called Grothendieck–Springer simultaneous
resolution

[g̃/G]

} }zz
zz

""E
EEE

E

[g/G] [h/H ],

where g̃ is the moduli space of Borel subgroups B ⊂ G together with an element
in their Lie algebras.

In this paper we show that this correspondence is Lagrangian (Corollary 3.3)
and, moreover, that the composition of a Lagrangian in [g/G], a Hamiltonian G-
space, gives the holomorphic symplectic implosion. More precisely, we compute the
symplectic implosion of the universal space, T∗G, and show that (T∗G)impl=G×Nb
(Proposition 3.10) which we regard as a stack instead of an affine scheme.

The Grothendieck–Springer correspondence has generalizations to the group
and elliptic cases. These are correspondences[

G̃
G

]
y yssss %%KK

KK[
G
G

] [
H
H

]
and

BunB(E)

z zvvv
v

$$II
II

BunG(E) BunH(E).

Another generalization is to parabolic subgroups P ⊂ G, which in the group
case is a correspondence [

P
P

]
x xqqq ''OO

O[
G
G

] [
M
M

]
,
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where M is the Levi factor of P .
We show (Corollary 3.6) that all these correspondences are Lagrangian, which

allows one to perform symplectic implosion in the quasi-Hamiltonian and elliptic
setting. The generalization of symplectic implosion to parabolics provides an in-
terpolation between the original unreduced space in the case P = G and the usual
symplectic implosion in the case P = B.

Having established the definition of symplectic implosion in our setting, we are
able to compute H-Hamiltonian reduction of the imploded space in terms of the
G-Hamiltonian reduction of the original space. Let us quote the result (Theorem
3.8) in the Hamiltonian case.

Theorem. Let X be a Hamiltonian G-space.
The H-Hamiltonian reduction of the symplectic implosion Ximpl at the zero

moment map value is isomorphic to the G-Hamiltonian reduction of X with respect
to the Hamiltonian G-space T∗(G/B), the Springer resolution of the nilpotent cone.

The H-Hamiltonian reduction of Ximpl at a regular semisimple moment map
value λ ∈ h is isomorphic to the G-Hamiltonian reduction of X along the adjoint
orbit of λ.

The discrepancy between the Hamiltonian reduction of the implosion and the
original space can be explained by noting that the procedure of implosion is not
invertible. However, every Lagrangian correspondence has an adjoint and we dis-
cuss in Section 3.6 the procedure dual to symplectic implosion (which may perhaps
be named “symplectic explosion”): it is an operation that takes Hamiltonian H-
spaces to Hamiltonian G-spaces using the Grothendieck–Springer correspondence
read backwards. We show (Proposition 3.12) that the composition of the symplec-
tic implosion and its dual is not the identity.

0.4. Structure of the paper

The paper is organized as follows. In Section 1 we recall the necessary material on
derived symplectic geometry from [PTVV11]. In Section 2 we explain how Hamil-
tonian and quasi-Hamiltonian reductions can be presented as Lagrangian inter-
sections which explains the symplectic structure. Finally, Section 3 is devoted to
symplectic implosion. First, we show that various versions of the Grothendieck–
Springer correspondence are Lagrangian. Second, we show that the universal im-
plosion in the Hamiltonian case coincides with the one obtained by [DKS12] in
the context of hyperKähler implosion if one interprets quotients as stacky quo-
tients instead of affine quotients. We end with a discussion of an operation dual
to symplectic implosion.

Acknowledgements. The author would like to thank Frances Kirwan for useful
comments and a seminar talk which prompted the writing of this paper and a
referee for extensive comments which improved the exposition of the paper. This
research was supported by the EPSRC grant EP/I033343/1.

1. Derived symplectic geometry

In this section we briefly recall the necessary basics of derived symplectic geom-
etry. The reader is invited to consult [PTVV11] for details and precise statements.
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All stacks we consider will be derived Artin stacks locally of finite presentation.
In particular, the cotangent complex LX of such a stack X is perfect and we have
its dual TX = L∗

X , the tangent complex.

1.1. Symplectic structures

Pantev, Toën, Vaquié and Vezzosi [PTVV11] define the de Rham algebra DR(X)
of a derived stack X. It is a commutative dg algebra together with an extra weight
grading and a de Rham differential ddR. Our convention is such that the de Rham
differential ddR has degree 1 and weight 1.

As a plain graded commutative dg algebra, we can identify

DR(X) ∼= Γ(X, Sym(LX [−1])) (1)

where the weight grading on the right-hand side is coming from the obvious grading
on the symmetric algebra.

A d-closed element of DR(X) of weight p and degree p + n is called a p-form
of degree n on X. A (d + ddR)-closed element of DR(X) of weight at least p and
degree p+n is called a closed p-form of degree n on X. Explicitly, a closed p-form
of degree n is a collection of elements ω0, ω1, . . . of DR(X) where ωi has weight
p+ i and degree p+ n which satisfy the equations

dω0 = 0,

ddRωi + dωi+1 = 0.

A way to think of these equations is that ωi is not strictly ddR-closed, but only
closed up to homotopy given by ωi+1. We denote by Ωp(X,n) the complex of
p-forms of degree n and by Ωp,cl(X,n) the complex of closed p-forms of degree n.
Note that the latter complex has differential given by d + ddR.

Example 1.1. Let X = [Y/G] be a quotient of a smooth scheme Y by a reductive
algebraic group G. Then we can identify

DR(Y ) ∼= Γ(Y, Sym(Ω1
Y [−1]))

and
DR(X) ∼= (DR(Y )⊗ Sym(g∗[−2]))G

where Γ(Y,−) refers to the derived space of global sections.
The weight grading on DR(X) is given by placing g∗ in weight 1. The de Rham

differential ddR on DR(X) is coming from the standard de Rham differential on
DR(Y ). The internal differential d on DR(X) is the sum of the internal differential
on DR(Y ) and the Cartan differential given on one-forms by α 7→ −ιa(−)α where
a : g→ Γ(Y,TY ) is the infinitesimal action map.

Suppose ω0 is a two-form of degree n. Then contraction with vector fields gives
a morphism

ω0 : TX → LX [n].

We say that ω = ω0+ω1+ · · · is non-degenerate if ω0 defines a quasi-isomorphism.
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Definition 1.1. An n-shifted symplectic structure on a derived stack X is a closed
non-degenerate two-form ω of degree n.

We will encounter the following two basic examples of symplectic stacks.

Example 1.2. Suppose X is an derived Artin stack. Then we can define the
shifted cotangent stack T∗[n]X as

T∗[n]X = SpecOX
Sym(TX [−n]).

In this setting one can define a Liouville one-form λ of degree n and a closed
two-form ω = ddRλ of the same degree n. A local calculation ([PTVV11, Prop.
1.21]) shows that ω is an n-shifted symplectic structure if X is a derived Deligne–
Mumford stack.

Example 1.3. Let G be an affine algebraic group. One has an equivalence of
symmetric monoidal dg-categories QCoh(BG) ∼= RepG. Under this equivalence
the cotangent complex LBG corresponds to the coadjoint representation g∗[−1]
placed in degree 1. Therefore, by (1) one has an equivalence of graded complexes

DR(BG) ∼= Γ(BG, Sym(g∗[−2])) ∼= C•(G, Sym(g∗[−2]))

where C•(G,−) refers to the group cohomology cochains.
By degree reasons the de Rham differential annihilates elements of

Sym(g∗[−2])G ⊂ DR(BG).

Therefore, the space of two-forms of degree 2 on BG is equivalent to the space of
closed two-forms of degree 2 which is equivalent to the set Sym2(g∗)G.

A two-form corresponding to cG ∈ Sym2(g∗)G is non-degenerate iff the induced
map g→ g∗ is an isomorphism. Therefore, in this case we get a 2-shifted symplectic
structure on BG (see [PTVV11, Sect. 1.2]).

1.2. Lagrangians

In ordinary symplectic geometry we say that a submanifold L ⊂ X of a symplectic
manifold is isotropic if the symplectic form restricts to zero on L. Since we are
working in the homotopical context, the form might restrict to zero only up to
homotopy.

Let X be an n-shifted symplectic stack.

Definition 1.2. An isotropic structure on a morphism f : L→ X is a homotopy
from f∗ωX to 0 in Ω2,cl(L, n).

Thus, an isotropic structure on a morphism f : L → X (not necessarily an
embedding) is a collection of differential forms h = h0 + h1 + · · · satisfying

f∗ω = (d + ddR)h.

Unpacking this definition, we see that we must have

f∗ω0 = dh0,

f∗ωi = ddRhi + dhi+1.
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Since h0 is not d-closed, it does not define a morphism TL → LL[n− 1] of com-
plexes. Instead, consider the morphism f∗TX → LL[n] defined as the composition

f∗TX
ω0−→ f∗LX [n]→ LL[n].

Then h0 is the null-homotopy of the composite

TL → f∗TX → LL[n].

If we denote by TL/X the homotopy fiber of TL → f∗TX , then we get a mor-
phism of complexes TL/X → LL[n− 1].

Definition 1.3. The isotropic morphism f : L→ X is Lagrangian if the induced
morphism TL/X → LL[n− 1] is a quasi-isomorphism.

Example 1.4. The point pt has a unique n-shifted symplectic structure for any
n. An isotropic structure on a projection X → pt is then a closed two-form of
degree (n− 1). It is Lagrangian iff the two-form is symplectic.

We have the following important theorem about Lagrangian intersections, see
[PTVV11, Thm. 2.9].

Theorem 1.1. Suppose L1, L2 → X are two Lagrangians into an n-shifted sym-
plectic stack. Then their intersection L1×XL2 carries an (n−1)-shifted symplectic
structure.

The symplectic structure is constructed from the following observation: both
Lagrangians carry a trivialization of the pullback of the symplectic structure on
X. Therefore, their intersection carries two such trivializations and their difference
defines an actual closed two-form.

We will need a slight generalization of this theorem ([Sa13, Thm. 1.2] and [Ca13,
Thm. 4.4]). Given a symplectic stack X, we denote by X the same stack with the
opposite symplectic structure.

Definition 1.4. A correspondence

L

� ���
��

� �<
<<

<

X Y

between n-shifted symplectic stacks X and Y is Lagrangian if the morphism L→
X × Y is Lagrangian.

Theorem 1.2. Suppose X ← C → Y is a Lagrangian correspondence and L →
Y is a Lagrangian, where X and Y are n-shifted symplectic stacks. Then the
intersection C ×Y L→ X is Lagrangian.

The previous theorem can be recovered if we let X = pt with its canonical
n-shifted symplectic structure.
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1.3. Examples of Lagrangians

Let us provide some further tools to construct Lagrangians.
Recall the following classical construction. Let Z → X be an embedding of

smooth manifolds. Then it is well known that the correspondence

T∗X ×X Z

{ {xxx
x

""F
FF

T∗X T∗Z

is Lagrangian. The map on the left is the obvious projection and the map on the
right is given by the pullback of differential forms. Let us prove an immediate
generalization of this construction to shifted cotangent stacks.

Proposition 1.3. Let f : Z → X be a morphism of derived Deligne–Mumford
stacks. Then the correspondence

T∗[n]X ×X Z

y ysss
s

%%KK
KK

T∗[n]X T∗[n]Z

is Lagrangian.

Proof. Let us recall the construction of the symplectic structure on the shifted
cotangent stack T∗[n]Z.

Consider the morphism

OZ→LZ [n]⊗TZ [−n] ↪→LZ [n]⊗Sym(TZ [−n])∼=(pZ)∗p
∗
Z(LZ [n])→(pZ)∗LT∗[n]Z [n],

where pZ : T∗[n]Z → Z is the projection. By adjunction it gives a morphism

λZ : OT∗[n]Z → LT∗[n]Z [n],

i.e., a degree n one-form on T∗[n]Z known as the Liouville one-form. The sym-
plectic structure on T∗[n]Z is defined to be ωZ = ddRλZ .

Let L=T∗[n]X×XZ∼=Spec SymOZ
(f∗TX[−n]) and denote the maps L→T∗[n]X

and L→ T∗[n]Z by gX and gZ respectively. Let λX and λZ be the Liouville one-
forms on T∗[n]X and T∗[n]Z. The pullbacks g∗XλX and g∗ZλZ are adjoint to

OZ→f∗LX [n]⊗f∗TX [−n] ↪→f∗LX [n]⊗Sym(f∗TX [−n])→LZ [n]⊗Sym(f∗TX [−n])

and

OZ → LZ [n]⊗ TZ [−n] ↪→ LZ [n]⊗ Sym(TZ [−n])→ LZ [n]⊗ Sym(f∗TX [−n])

respectively.
For any two dualizable objects V,W of a symmetric monoidal 1-category C with

duality data (ev,coev) and a morphism F : V →W the diagram

1
coevV / /

coevW

� �

V ∗ ⊗ V

id⊗F

� �
W ∗ ⊗W

F∗⊗id / / V ∗ ⊗W
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is commutative. Applying this to C = QCoh(Z), V = TZ [−n], W = f∗TX [−n] and
F : TZ [−n] → f∗TX [−n] the pushforward morphism, we deduce that g∗XλX and

g∗ZλZ are homotopic. This gives the isotropic structure on L→ T∗[n]X ×T∗[n]Z.
To show that it is Lagrangian, we have to check that the sequence

TL → g∗XTT∗[n]X ⊕ g∗ZTT∗[n]Z → LL[n] (2)

is a fiber sequence.
We denote the projection L→ Z by π. Then we have a fiber sequence

TL/Z → TL → π∗TZ (3)

where TL/Z
∼= π∗f∗LX [n] by the definition of L as the relative spectrum of

SymOZ
(f∗TX [−n]).

Pulling back similar fiber sequences for T∗[n]X and T∗[n]Z to L we obtain fiber
sequences

π∗f∗LX [n]→ g∗XTT∗[n]X → π∗f∗TX ,

π∗LZ [n]→ g∗ZTT∗[n]Z → π∗TZ .
(4)

To show that (2) is a fiber sequence it is enough to work étale-locally on X
and Z, so we may assume that both X and Z are given by spectra of semi-free
commutative dg algebras. Explicit computations in coordinates of the symplectic
structures ωX and ωZ given in the proof of [PTVV11, Prop. 1.21] then show that
ωX fits into a commutative diagram

p∗XLX [n]

id

� �

/ / TT∗[n]X

ωX

� �

/ / p∗XTX

id

� �
p∗XLX [n] / / LT∗[n]X [n] / / p∗XTX

(5)

and similarly for ωZ .
Combining (5) with fiber sequences (3) and (4) we obtain a commutative dia-

gram

π∗f∗LX [n]

id⊕f∗

� �

/ / TL
/ /

� �

π∗TZ

f∗⊕id

� �
π∗f∗LX [n]⊕ π∗LZ [n]

−id⊕id

� �

/ / g∗XTT∗[n]X ⊕ g∗ZTT∗[n]Z

−ωX⊕ωZ

� �

/ / π∗f∗TX ⊕ π∗TZ

−id⊕id

� �
π∗f∗LX [n]⊕ π∗LZ [n]

f∗⊕id

� �

/ / g∗XLT∗[n]X [n]⊕ g∗ZLT∗[n]Z [n]

� �

/ / π∗f∗TX ⊕ π∗TZ

id⊕f∗

� �
π∗LZ [n] / / LL[n] / / π∗f∗TX

where each row is a fiber sequence. Observe that in the outer columns the first,
second and fourth terms form a fiber sequence. Therefore, the corresponding terms
in the middle column also form a fiber sequence which shows that (2) is a fiber
sequence. �
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This theorem gives a large family of examples of derived Lagrangians. Given a
morphism f : Z → X, the normal sheaf NZ/X is defined to be the cofiber of the
map TZ → f∗TX . We define the n-shifted conormal bundle N∗[n](Z/X) to be

N∗[n](Z/X) = Spec SymOZ
(NZ/X [−n]).

The morphism f∗TX → NZ/X on the level of sheaves induces a morphism of
stacks

N∗[n](Z/X)→ T∗[n]X.

Corollary 1.4. Let f : Z → X be a morphism of derived Deligne–Mumford stacks.
Then the morphism

N∗[n](Z/X)→ T∗[n]X

from the shifted conormal bundle of Z inside X is Lagrangian.

Proof. We have a sequence of equivalences

(T∗[n]X×XZ)×T∗[n]ZZ ∼= Spec SymOZ
(f∗TX [−n])×Spec SymOZ

(TZ [−n]) SpecOZ

∼= Spec
(
SymOZ

(f∗TX [−n])⊗SymOZ
(TZ [−n]) OZ

)
∼= Spec SymOZ

(NZ/X [−n])
= N∗[n](Z/X).

Therefore, N∗[n](Z/X)→ T∗[n]X can be obtained as a composition of the zero
section Z → T∗[n]Z and the Lagrangian correspondence

T∗[n]X ×X Z

y ysss
s

%%KK
KK

T∗[n]X T∗[n]Z

By Theorem 1.2 this implies that the morphism itself is Lagrangian. �
Remark. Both the theorem and the corollary remain true for derived Artin stacks
if one replaces Lagrangian structures with isotropic structures. D. Calaque has
recently obtained a proof that these isotropic structures are Lagrangian even in
the case of derived Artin stacks.

2. Hamiltonian reduction

Let us present Hamiltonian and quasi-Hamiltonian reductions from the point of
view of Lagrangian intersections. The details can be found in [Ca13] and [Sa13].

2.1. Ordinary Hamiltonian reduction

The stack X = [g∗/G] ∼= T∗[1](BG) has a 1-shifted symplectic structure which we
are going to write down explicitly. The category of quasi-coherent sheaves on X is
equivalent to G-equivariant quasi-coherent sheaves on g∗. Under this equivalence
the cotangent complex of X is

LX
∼= (g⊗Og ∗ → g∗ ⊗Og ∗)
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in degrees 0 and 1 with the differential given by the coadjoint action.
From Example 1.1 we have that

DR(X) ∼= (DR(g∗)⊗ Sym(g∗[−2]))G.

The Liouville one-form λ[g ∗/G] on [g∗/G] is given by the identity function g∗ → g∗

viewed as an element of (Og ∗ ⊗ g∗)G ⊂ DR(X) of weight 1 and degree 2.
We define ω[g ∗/G] = ddRλ[g ∗/G]. It is a closed two-form of degree 1 by construc-

tion. The element ω ∈ (Lg ∗ ⊗ g∗)G can be described as follows. Given a tangent
vector to g∗ at some point, ω regards it as an element of g∗ using the vector space
structure on g∗. The symplectic structure ω[g ∗/G] induces an isomorphism

g⊗Og ∗ / /

id

� �

g∗ ⊗Og ∗

id

� �
g⊗Og ∗ / / g∗ ⊗Og ∗

.

Suppose we have a map µ : M → g∗ from a smooth scheme M . One might
wonder when the induced map µ : [M/G]→ [g∗/G] on the quotients is isotropic or
Lagrangian.

Let us recall that a Hamiltonian G-space M is the following collection of data:

• A smooth 0-shifted symplectic scheme (M,ω),
• A G-action on M preserving the symplectic structure,
• A G-equivariant moment map µ : M → g∗ satisfying

ddRµ(v) = ιa(v)ω

for all v ∈ g where a : g→ Γ(M,TM ) is the infinitesimal action map.

The following theorem was proved in [Ca13, Sect. 2.2.1] and [Sa13, Sect. 2.2]:

Theorem 2.1. Let M be a smooth scheme with a G-action. Then the data of a
Hamiltonian G-space on µ : M → g∗ is equivalent to a Lagrangian structure on
µ : [M/G]→ [g∗/G].

More generally, one can think of Lagrangians L → [g∗/G] as derived Hamilto-
nian G-spaces. Given such a Lagrangian we have the underlying symplectic stack
given by

Lsymp = L×[g ∗/G] g
∗

which carries a natural G-action and the reduction

Lred = L×[g ∗/G] [pt/G]

where [pt/G]→ [g∗/G] is given by the inclusion of the origin.
By Theorem 1.1 both of these carry a 0-shifted symplectic structure. Moreover,

if M is a Hamiltonian G-space, then

[M/G]symp
∼= M
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and

[M/G]red ∼= M//G = [µ−1(0)/G]

is the symplectic reduction of M .
Let us give two examples of Hamiltonian G-spaces.

(1) Recall that the cotangent bundle of a G-manifold X is naturally a Hamil-
tonian G-space and the Hamiltonian reduction T∗X//G recovers T∗(X/G). The
same construction works on the derived level as well.

Let X be a derived Deligne–Mumford stack with a G-action such that [X/G]
is also Deligne–Mumford. There is a morphism Y = [X/G] → BG. The 1-shifted
conormal bundle N∗[1](Y/BG)→ T∗[1](BG) is Lagrangian by Corollary 1.4. The
Hamiltonian reduction N∗[1](Y/BG)red is given by a composition of the Lagrangian
correspondences

BG T∗[1](BG)×BG Y Y

} }||
||
||
||

!!B
BB

BB
BB

B

}}||
||
||
||

!!B
BB

BB
BB

B

} }||
||
||
||

!!B
BB

BB
BB

B

pt T∗[1](BG) T∗[1]Y pt

where the composition of the two correspondences on the right gives

N∗[1](Y/BG)→ T∗[1](BG).

To relate it to the classical construction note that the shifted conormal complex
N∗

Y/BG[1] is the same as the relative cotangent complex LY/BG. But the morphism

[T∗X/G] → [X/G] can be identified with the total space of the bundle LY/BG.
Therefore,

N∗[1](Y/BG) ∼= [T∗X/G]

and so N∗[1](Y/BG)symp
∼= T∗X.

This construction remains valid for derived Artin stacks if one doesn’t require
non-degeneracy of the two-forms involved.

(2) Consider a coadjoint orbit O ⊂ g∗. Let GO be the stabilizer of a point in
O. Then the map

[O/G] ∼= [pt/GO]→ [g∗/G]

is isotropic since a two-form of degree 1 on [pt/GO] is necessarily zero. An easy
check shows that the zero isotropic structure is in fact Lagrangian. The isotropic
structure gives a two-form on O which is nothing else but the Kirillov–Kostant–
Souriau symplectic structure on a coadjoint orbit.

We define the Hamiltonian reduction of M with respect to G along a coadjoint
orbit O to be

M//OG = [µ−1(O)/G] = [(M ×g∗ pt)/G] ∼= [M/G]×[g∗/G] [O/G].

It is again a Lagrangian intersection, so it carries a symplectic structure.
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2.2. Quasi-Hamiltonian reduction

In this section we assume G is a reductive algebraic group. Choose a G-invariant
non-degenerate bilinear form cG on g that we denote by (−,−). By Example 1.3
it gives a 2-shifted symplectic structure on the classifying stack BG. Therefore,[

G
G

] ∼= BG×BG×BG BG,

a self-intersection of the diagonal BG, is a Lagrangian intersection and hence
it carries a natural 1-shifted symplectic structure. Here and in the future the
horizontal line denotes the adjoint quotient.

In [Sa13] we showed that this 1-shifted symplectic structure on
[
G
G

]
has the

following description. By Example 1.1 we have

DR
([

G
G

])
= (DR(G)⊗ Sym(g∗[−2]))G.

We have a two-form of degree 1

ω0 = − 1
2 (θ + θ,−)

and a three-form of degree 0

ω1 = 1
12 (θ, [θ, θ]),

where θ and θ are the Maurer–Cartan forms in Ω1(G)⊗g. The symplectic structure
on

[
G
G

]
is given by ω0 + ω1.

Let us recall [AMM97, Def. 2.2] that a quasi-Hamiltonian G-space is the fol-
lowing collection of data:

• A smooth scheme M with a two-form ω,
• A G-action on M preserving ω,
• A G-equivariant moment map µ : M → G satisfying

ddRω = µ∗ω1,

ιa(v)ω = −µ∗ω0(v)

for every v ∈ g.

Moreover, we require the following non-degeneracy condition: for every x ∈M we
have

ker(ωx) = {a(v) | Adµ(x)v = −v}.

Theorem 2.2. The data of a quasi-Hamiltonian G-space µ : M → G is equivalent
to a Lagrangian structure on

[M/G]→
[
G
G

]
.

As before, given a Lagrangian L→
[
G
G

]
we can regard it as a generalized quasi-

Hamiltonian G-space. Given such a Lagrangian, we define its reduction to be

Lred = L×[GG ] [pt/G]
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with [pt/G] ↪→
[
G
G

]
the inclusion of the unit element. It carries a 0-shifted sym-

plectic structure as an intersection of two Lagrangians. Note that

Lqsymp = L×[GG ] G

is not symplectic since G→
[
G
G

]
is not Lagrangian.

If L = [M/G] for a quasi-Hamiltonian G-space M , then we have Lqsymp
∼= M

and

Lred
∼= [µ−1(e)/G] = M//G

the usual quasi-Hamiltonian reduction of M .
More generally, a conjugacy class O ⊂ G gives a Lagrangian [OG ]→ [GG ] and we

define the quasi-Hamiltonian reduction of M with respect to G along O to be the
Lagrangian intersection

M//OG = [µ−1(O)/G] = [(M ×G O)/G] ∼= [M/G]×[GG ] [O/G].

3. Symplectic implosion

In this section G denotes a split connected reductive group over a characteristic
zero field k.

3.1. Grothendieck–Springer resolution

Let B ⊂ G be a Borel subgroup and p : B � H the abelianization map; we denote
by b and h the corresponding Lie algebras. The kernel of p is denoted by N whose
Lie algebra is denoted by n. The constructions we are about to describe can be
written in a way independent of the choice of the Borel, but we choose it for the
sake of exposition.

One defines the Grothendieck–Springer simultaneous resolution g̃ to be the vec-
tor bundle

g̃ = G×B b

over the flag variety G/B, see [CG97, Sect. 3.1.31].
We have a map g̃→ g given by

(g, x) 7→ Adg(x)

and g̃ can be described as the space of elements x of g together with a choice of a
Borel containing x.

There is a G-action on g̃ given by the left action on G. This makes g̃→ g into
a G-equivariant map.

We also have a map g̃→ h given by the composition

G×B b→ G×B h→ h

using the fact that B acts trivially on h.
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Combining all these maps we get a correspondence

[g̃/G]

} }zz
zz

""D
DDD

D

[g/G] [h/H ]

. (6)

Note that [g̃/G] ∼= [b/B].
Similarly, there is a group version of the Grothendieck–Springer resolution

given by
G̃ = G×B B,

where B acts on itself by conjugation. This gives a correspondence[
G̃
G

]
y yssss %%KK

KK[
G
G

] [
H
H

] (7)

where again [
G̃
G

]
∼=

[
B
B

]
.

3.2. Lagrangian structure

In this section we will slightly generalize the discussion, so choose a parabolic
subgroup P ⊂ G with Levi factor M . We denote the corresponding Lie algebras
by p and m. The reader may assume that P = B and M = H.

Pick a G-invariant non-degenerate symmetric bilinear pairing cG ∈ Sym2(g∗)G.
By restriction we get a bilinear pairing in Sym2(p∗)P . Similarly, we have a pullback
morphism

Sym2(m∗)M → Sym2(p∗)P .

Proposition 3.1. The morphism

Sym2(m∗)M → Sym2(p∗)P

is an isomorphism. Moreover, the composition

Sym2(g∗)G → Sym2(p∗)P ∼= Sym2(m∗)M

sends non-degenerate pairings to non-degenerate pairings.

Proof. We denote by u the Lie algebra of the unipotent radical of P , so p ∼= u⊕m.
Without loss of generality, we may assume that P is a standard parabolic subgroup,
i.e., it contains our chosen Borel B. Choosing a splitting H ⊂ B we get the root
decomposition

g ∼= h⊕
⊕
α∈Φ

gα

where Φ is the set of roots of g. We denote by Φ+ the set of positive roots with
respect to B and eα ∈ gα basis elements.
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We have the following description of standard parabolics (see [Bo91, Prop.
14.18]). Fix a subset I ⊂ ∆ of simple roots and denote by [I] the root sub-
system generated by the roots in I. We also denote Φ(I)+ = Φ+ − [I], the set of
positive roots of g not lying in [I ]. Then we have isomorphisms

u ∼=
⊕

α∈Φ(I)+

gα,

m ∼= h⊕
⊕
α∈[I]

gα.

The morphism Sym2(m∗)M → Sym2(p∗)P is clearly injective, so we have to
prove it is surjective. For this it is enough to show that any P -invariant symmetric
bilinear pairing (−,−) on p vanishes on u. Indeed, we have

0 = ([h, eα], eβ) + (eα, [h, eβ ]) = (α(h) + β(h))(eα, eβ)

for any h ∈ h and α, β two roots. If α ∈ Φ(I)+ and β ∈ [I], then α + β is never
zero, so (eα, eβ) = 0. One similarly shows that (eα, h) = 0 for any h ∈ h and
α ∈ Φ(I)+.

Finally, suppose a pairing in Sym2(g∗)G is non-degenerate and consider an ele-
ment x ∈ h ⊂ m. Since cG is non-degenerate, there is a y ∈ g such that (x, y) ̸= 0.
But since cG is H-invariant, y is necessarily in h ⊂ m. Next, consider eα ∈ gα ⊂ m
for α ∈ [I]. By non-degeneracy of cG there is a y ∈ g such that (eα, y) ̸= 0. Again
using H-invariance of the pairing we deduce that y ∈ g−α ⊂ m, which proves the
non-degeneracy of the pairing (−,−) restricted to m. �

We denote by cM ∈ Sym2(m∗)M the image of cG under

Sym2(g∗)G → Sym2(p∗)P ∼= Sym2(m∗)M

which is non-degenerate by the previous Proposition.
The choice of cG allows us to identify [g/G] ∼= [g∗/G] and [m/M ] ∼= [m∗/M ] and

therefore by Section 2.1 we obtain 1-shifted symplectic structures on [g/G] and
[m/M ]. Let us prove the following statement.

Theorem 3.2. The correspondence

[p/P ]

}}zz
zz

""F
FFF

F

[g/G] [m/M ]

(8)

is Lagrangian.

Proof. By construction the 1-shifted symplectic structures on [g/G] and [m/M ]
are exact. The primitive for the 1-shifted symplectic structure on [g/G] is given
by

cG ∈ Sym2(g∗)G ⊂ (O(g)⊗ g∗)G ⊂ (DR(g)⊗ Sym(g∗[−2]))G[2]
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and similarly for [m/M ]. By assumption both cG and cM restrict to the same ele-
ment of Sym2(p∗)P which gives the isotropic structure on the correspondence (8).

Denote L = [p/P ] and X = [g/G] × [m/M ]. To simplify the notation, let us
denote the trivial vector bundle with fiber V by V when the base space is clear.

Then the tangent complex TL is

TL = p[1]⊕ p

with the differential given by the adjoint action.
To show that the isotropic structure on L→ X is Lagrangian we have to prove

that
p[1]⊕ p→ g[1]⊕ g⊕m[1]⊕m→ p∗[1]⊕ p∗

is a fiber sequence of quasi-coherent sheaves on [m/M ] where the second morphism
is given by composing −cG and cM with the restriction morphisms g∗ → p∗ and
m∗ → p∗. For this it is enough to prove that

0→ p→ g⊕m→ p∗ → 0 (9)

is an exact sequence of vector spaces.
Clearly, the sequence is exact at the first and third terms. The Euler charac-

teristic of the sequence is

2 dim p− dim g− dimm = dimm+ 2dim u− dim g = 0,

which coincides with the dimension of the cohomology of the middle term, which
is, therefore, also zero. �
Corollary 3.3. The Grothendieck–Springer correspondence (6)

[g̃/G]

} }zz
zz

""D
DDD

D

[g/G] [h/H]

is Lagrangian.

Similarly, the group version of the Grothendieck–Springer correspondence (7)
is also Lagrangian. To show this, we need a lemma.

Recall that the choice of cG gave a 2-shifted symplectic structure on BG by
Example 1.3. Its restriction cM to M is also non-degenerate, so defines a 2-shifted
symplectic structure on BM .

Lemma 3.4. The correspondence

BP

� ���
��

  @
@@

@

BG BM

is Lagrangian. Moreover, the space of Lagrangian structures is contractible.
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Proof. By (1) we have an identification of graded complexes

DR(BP ) ∼= C•(P, Sym(p∗[−2])).

By assumption the symplectic structures on BG and BM determined by the
elements cG ∈ Sym2(g∗)G and cM ∈ Sym2(m∗)M pull back to the same element
Sym2(p∗)P ∈ DR(BP ) which gives an isotropic structure on the correspondence.
The space of such isotropic structures is a torsor over the space of closed two-forms
on BP of degree 1. From the explicit identification of DR(BP ) above we see that
every such form is zero.

To prove that this isotropic structure is Lagrangian we have to show that

TBP → f∗TBG×BM → LBP [2]

is a fiber sequence where f : BP → BG× BM .
In other words, we have to show that the sequence of P -representations

0→ p→ g⊕m→ p∗ → 0

is exact, which we have already checked in the course of the proof of the previous
theorem (see (9)). �

We have Map(S1
B,BG) ∼=

[
G
G

]
, so now we have to show that the functor

Map(S1
B,−) sends Lagrangian morphisms to Lagrangian morphisms. This follows

from the AKSZ formalism which we briefly recall.
Recall the notion of O-compact stacks and O-orientation on such stacks, see

[PTVV11, Sect. 2.1]. For instance, given a topological space Z we can regard it as
a constant derived stack ZB. If Z is a finite CW complex, the derived stack ZB is
O-compact. Moreover, if Z is a closed d-dimensional manifold, the derived stack
ZB has an O-orientation of degree d.

Theorem 3.5. Let L→ X be a Lagrangian morphism to an n-shifted symplectic
stack. Let Y be an O-compact stack equipped with an O-orientation of degree d.
Then the morphism

Map(Y, L)→ Map(Y,X)

is a Lagrangian morphism to an (n− d)-shifted symplectic stack.

The proof of this theorem is identical to the proof of the AKSZ theorem, see
[PTVV11, Thm. 2.5] (see also [Ca13, Thm. 2.10]), so we omit it. Let us present
two corollaries.

Besides S1
B, a natural example of an O-compact stack equipped with an O-

orientation of degree 1 is an elliptic curve E equipped with a trivialization of the
canonical bundle. We denote by

BunG(E) = Map(E,BG)

the moduli stack of G-bundles on the elliptic curve E. By [PTVV11, Thm. 2.5]
both BunG(E) and BunM (E) carry a 1-shifted symplectic structure.
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Corollary 3.6. The correspondences [
P
P

]
x xqqq &&NN

N[
G
G

] [
M
M

]
and

BunP (E)

| |xxx
xx

# #G
GGG

G

BunG(E) BunM (E)

are Lagrangian.

Both statements are obtained by applying Map(S1
B,−) and Map(E,−) to the

correspondence in Lemma 3.4.

Corollary 3.7. The group version of the Grothendieck–Springer correspondence
(7) [

G̃
G

]
y yssss %%KK

KK[
G
G

] [
H
H

]
is Lagrangian.

3.3. Symplectic implosion

Recall from Section 2.1 that one can interpret Lagrangians in [g/G] as Hamiltonian
G-spaces. Namely, given a Lagrangian L → [g/G], the space Lsymp = L ×[g/G] g
is a Hamiltonian G-space if it is a smooth scheme.

Since the Grothendieck–Springer correspondence (6) is Lagrangian, we can use
it and Theorem 1.2 to turn Lagrangians in [g/G] into Lagrangians in [h/H] which
are Hamiltonian H-spaces. If X is a Hamiltonian G-space, the composition of
the Lagrangian [X/G] → [g/G] and the Grothendieck–Springer correspondence is
given by

[X/G]×[g/G] [b/B] ∼= [([X/G]×[g/G] [b/N ])/H].

Thus, [X/G]×[g/G] [b/N ] is a Hamiltonian H-space.

Definition 3.1. The symplectic implosion of a Hamiltonian G-space X is the
Hamiltonian H-space

Ximpl = [X/G]×[g/G] [b/N ].

The moment map Ximpl → h ∼= h∗ is given by the projection map [b/N ] → h
on the second factor. We recall the classical construction of symplectic implosion
and its relation to our definition in Section 3.5.

The H-Hamiltonian reduction of the implosion is related to the G-Hamiltonian
reduction of the original space. Indeed, consider an inclusion [pt/H] ⊂ [h/H] of
an element of h which is always Lagrangian. Then we have

[Ximpl/H]×[h/H] [pt/H] = ([X/G]×[g/G] [b/B])×[h/H] [pt/H]
∼= [X/G]×[g/G] ([b/B]×[h/H] [pt/H ]),
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where we regard

[b/B]×[h/H] [pt/H ]

as a Lagrangian in [g/G]. Let us compute it in two opposite cases.

(1) If pt ↪→ h is the inclusion of the origin, then

[b/B]×[h/H] [pt/H] ∼= [n/B],

where we recall that n ⊂ b is the kernel of the projection b→ h.

Let us recall the nilpotent cone N ⊂ g of nilpotent elements of g [CG97, Sect.
3.2]. Its preimage under the Grothendieck–Springer resolution g̃ → g is the so-

called Springer resolution Ñ and can be identified with T∗(G/B), the cotangent
bundle of the flag variety [CG97, Lem. 3.2.2]. We have the following commutative
diagram

[b/B]

∼
� �

[n/B]

∼
� �

? _o o

[g̃/G]

� �

[Ñ/G]

� �

? _o o

[g/G] [N/G]? _o o

.

In particular, [n/B]symp
∼= Ñ ∼= T∗(G/B) is a Hamiltonian G-space where the

Hamiltonian structure is induced from the G-action of G/B.

(2) If pt ↪→ h is the inclusion of a regular semisimple element λ ∈ h ⊂ g, then

[b/B]×[h/H] [pt/H] ∼= [pt/H],

since any regular semisimple element of b is B-conjugate to an element of H. The
underlying Hamiltonian G-space of [pt/H] is the adjoint orbit of λ ∈ h ⊂ g.

We get the following statement.

Theorem 3.8. The H-Hamiltonian reduction of the symplectic implosion Ximpl

at the zero moment map value is isomorphic to the G-Hamiltonian reduction of X
with respect to the Hamiltonian G-space T∗(G/B).

The H-Hamiltonian reduction of Ximpl at a regular semisimple moment map
value λ ∈ h is isomorphic to the G-Hamiltonian reduction of X along the adjoint
orbit of λ.

3.4. Some generalizations

The definition of symplectic implosion (Definition 3.1) admits an immediate gen-
eralization to the quasi-Hamiltonian case since we have a similar Lagrangian cor-
respondence there as well.
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Definition 3.2. The group-valued symplectic implosion of a quasi-Hamiltonian
G-space X is a quasi-Hamiltonian H-space

Xqimpl = [X/G]×[GG ]
[
B
N

]
.

The relation between H-quasi-Hamiltonian reduction of implosion and G-quasi-
Hamiltonian reduction of the original space is similar to the Lie algebra case, so
let us just state the result.

Let NG ⊂ G be the variety of unipotent elements of G. Its pullback ÑG under
the group version of the Grothendieck–Springer resolution G̃→ G can be identified
with

ÑG
∼= G×B N

where B acts on N by conjugation. This generalizes the Lie algebra case where

Ñ ∼= G×B n ∼= T∗(G/B).

Since [
N
B

] ∼= [pt/H]×[HH ]
[
B
B

]
is a Lagrangian intersection, the projection

[
N
B

]
→

[
G
G

]
is Lagrangian. Therefore,

ÑG
∼=

[
N
B

]
×[GG ] G,

carries a natural quasi-Hamiltonian G-structure as described in Section 2.2.

Theorem 3.9. The H-quasi-Hamiltonian reduction of the group-valued symplec-
tic implosion Xqimpl at the unit moment map value is isomorphic to the G-quasi-

Hamiltonian reduction of X with respect to the quasi-Hamiltonian G-space ÑG.
The H-quasi-Hamiltonian reduction of Xqimpl at a regular semisimple moment

map value λ ∈ H is isomorphic to the G-quasi-Hamiltonian reduction of X along
the G-conjugacy class of λ.

Let us also give a version of implosion with more general parabolic subgroups.
We will only give it in the group-valued case; the Lie algebra case is identical. Let
P ⊂ G be a parabolic subgroup with U ⊂ P the unipotent radical and M = P/U
the Levi factor.

Definition 3.3. The partial group-valued symplectic implosion of a quasi-Hamil-
tonian G-space X is a quasi-Hamiltonian M -space

Xqimpl = [X/G]×[GG ]
[
P
U

]
.

For instance, if P = G, the implosion is isomorphic to X again, so partial
symplectic implosions interpolate between the original quasi-Hamiltonian space X
in the case P = G and the imploded space Xqimpl in the case P = B, a Borel
subgroup.
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3.5. Universal implosion

In this section we relate our definition of symplectic implosion with the one present
in the literature (see [GJS01] for the case of real symplectic manifolds and [DKS12]
for the case of holomorphic symplectic manifolds).

Let G = SLn(C), B ⊂ G the subgroup of upper-triangular matrices, b its
Lie algebra and H ⊂ G the subgroup of diagonal matrices. Dancer–Kirwan–
Swann [DKS12] show that the space Q = [G×B b]aff , the affinization of the stack
G×Bb, carries a stratified holomorphic symplectic structure together with a G×H-
action making it a stratified Hamiltonian (G × H)-space. This space is known
as the universal implosion space for the following reason. Given a Hamiltonian
G-space X [DKS12] define the holomorphic symplectic implosion of X to be the
G-Hamiltonian reduction of X×Q. It carries a residual H-action and is, moreover,
a Hamiltonian H-space.

Let us give a similar description of the symplectic implosion as given by Defi-
nition 3.1. We return to the general setting of a split connected reductive group
G.

The group G has two commuting G actions given by the left and right action,
so T∗G is a Hamiltonian (G×G)-space. For any Hamiltonian G-space we have

(X × T∗G)//G ∼= X, (10)

so T∗G acts as a kind of identity.
As both symplectic implosion and Hamiltonian reduction are fiber products,

the operations commute. Therefore, we have

Ximpl
∼= ((X × T∗G)//G)impl

∼= (X × (T∗G)impl)//G,

where (T∗G)impl is a Hamiltonian (G×H)-space.

Proposition 3.10. We have an isomorphism of (G×H)-spaces

(T∗G)impl
∼= G×B b.

Proof. Corollary 3.3 gives a Lagrangian morphism

[b/B]→ [g/G]× [h/H],

so let us find the corresponding Hamiltonian (G×H)-space.
First, pulling back this morphism along the universal bundle h→ [h/H ] we get

a Cartesian square

[b/N ] / /

� �

[g/G]× h

� �
[b/B] / / [g/G]× [h/H]

.

Pulling back this morphism along g→ [g/G] we get a Cartesian square

G×N b / /

� �

g× h

� �
[b/N ] / / [g/G]× h

.
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In particular, [b/B]symp
∼= G×N b.

Thus G×N b is the Hamiltonian (G×H)-space satisfying

Ximpl
∼= (X ×G×N b)//G

for any Hamiltonian G-space X. Substituting X = T∗G and using equation (10)
we conclude that

(T∗G)impl
∼= G×N b. �

One can give the following modular interpretation of (T∗G)impl: it parametrizes
Borel subgroups B ⊂ G together with an element in Lie(B) and an element in
B/[B,B].

Similarly, in the group case we have a quasi-Hamiltonian (G×G)-space G×G
with the property that

(X ×G×G)//G ∼= X

for any quasi-Hamiltonian space X. The universal group-valued implosion is then

(G×G)qimpl = G×N B.

Again, its affinization for G = SLn(C) is the universal group-valued implosion
space that Dancer and Kirwan use in [DK15] to define symplectic implosion for
quasi-Hamiltonian spaces.

3.6. Dual implosion

In this section we define a procedure dual to that of implosion, i.e., a way to go
from Hamiltonian H-spaces to Hamiltonian G-spaces. This procedure turns out
to be adjoint in a precise sense to symplectic implosion, but not its inverse.

Calaque [Ca13, Sect. 4.2.2] has defined a symmetric monoidal 1-category of La-
grangian correspondences LagrCorrn1 . Its objects are n-shifted symplectic stacks,
and morphisms from X to Y are given by Lagrangian correspondences X←L→Y .
Haugseng [Ha14, Sect. 11] extended this definition to a symmetric monoidal (∞, 1)-
category LagrCorrn(∞,1) of Lagrangian correspondences and showed that it has du-
als. Moreover, he defined a symmetric monoidal (∞,m)-category IsotCorrn(∞,m) for
any m of isotropic correspondences whose objects are n-shifted symplectic stacks,
morphisms from X to Y are given by isotropic morphisms L→ X × Y and higher
morphisms are given by iterated correspondences. He furthermore showed that
IsotCorrn(∞,m) has duals.

Let us give an explicit description of the duals and adjoints in IsotCorrn(∞,m) (see
[Ha14, Lem. 9.3]). Given an n-shifted symplectic stack X its dual is the opposite
symplectic stack X with the duality data given by the diagonal Lagrangian. Given
a morphismX ← L→ Y in IsotCorrn(∞,2) its right adjoint is given by the morphism
Y ← L→ X with the counit given by the correspondence of correspondences

L×X L

{ {vv
vv
vv
vv
v

##H
HH

HH
HH

HH

X L

OO

� �

X

X

d dHHHHHHHHH

;;vvvvvvvvv

.
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Let us discuss the operation adjoint to symplectic implosion in the above sense.
We will focus on the quasi-Hamiltonian case for simplicity. The Lie algebra and
elliptic cases are treated similarly.

Recall that the group-valued implosion of a Lagrangian L→
[
G
G

]
was defined to

be the Lagrangian intersection L×[GG ]
[
G̃
G

]
. Dually, given a Lagrangian L→

[
H
H

]
we can consider its intersection

L×[HH ]

[
G̃
G

]
∼= [(L×[HH ] G̃)/G].

Definition 3.4. The dual symplectic implosion of a quasi-Hamiltonian H-space
X is a quasi-Hamiltonian G-space

Xdimpl = [X/H]×[HH ] G̃.

Remark. Dual symplectic implosions of conjugacy classes in Levis have previously
appeared in [Bo10] where they were interpreted in terms of meromorphic connec-
tions on the disk.

As before, it can be given as a Hamiltonian reduction with respect to the univer-
sal dual implosion (H ×H)dimpl = G×N B which is a quasi-Hamiltonian (G×H)-
space.

Let us compare quasi-Hamiltonian reductions of the dual implosion and the orig-
inal space. Let O ⊂ G be a conjugacy class. Then the quasi-Hamiltonian reduction
of Xdimpl with respect to G along the conjugacy class O is

Xdimpl//OG ∼= [X/H]×[HH ]
[
B
B

]
×[GG ] [O/G].

Let us compute the fiber product on the right in the two opposite cases.

(1) Suppose O is the unit conjugacy class. Then[
G̃
G

]
×[GG ] [pt/G] ∼= [(G/B)/G] ∼= BB.

Here we regard BB as a Lagrangian in
[
H
H

]
with the morphism being the com-

posite
BB → BH →

[
H
H

]
with the latter map being the inclusion of the unit. The underlying quasi-Hamilto-
nian H-space of BB is BN .

(2) Let O be the G-conjugacy class of a regular semisimple element λ ∈ H ⊂ G.

Then its image Õ ⊂ G̃ in the Grothendieck–Springer resolution is a |W | : 1 cover
of O where W is the Weyl group. Therefore,

[Õ/G]→ [O/G]

is also a |W | : 1 cover. But [O/G] ∼= BH, so the quasi-Hamiltonian H-space

corresponding to [Õ/G] is identified with the finite set W with the moment map
given by sending the whole set to λ ∈ H. As we assume G (and hence H) is
connected, the action of H on W is necessarily trivial.
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Theorem 3.11. Let X be a quasi-Hamiltonian H-space.

The G-quasi-Hamiltonian reduction of Xdimpl along the unit coincides with the
H-quasi-Hamiltonian reduction of X along the quasi-Hamiltonian H-space BN .

The G-quasi-Hamiltonian reduction of Xdimpl along the conjugacy class of a
regular semisimple element λ ∈ H is a |W | : 1 cover of the H-quasi-Hamiltonian
reduction of X along λ.

Finally, we can use dual symplectic implosion to show that the procedure of
symplectic implosion is not invertible.

Proposition 3.12. The Lagrangian correspondence

[
B
B

]
x xqqq & &NN

N[
G
G

] [
H
H

]
defining group-valued symplectic implosion is not invertible if the semisimple rank
of G is nonzero.

Proof. Suppose that a 1-morphism L from X to Y in LagrCorrn(∞,1) has an inverse.
Then it has an inverse in IsotCorrn(∞,1) and hence in IsotCorrn(∞,2). But the latter
(∞, 2)-category has adjoints and so the unit and counit of the adjunction for L
have to be equivalences.

The right adjoint to
[
G
G

]
←

[
B
B

]
→

[
H
H

]
is

[
H
H

]
←

[
B
B

]
→

[
G
G

]
with the counit

given by the iterated correspondence

[
B
B

]
×[GG ]

[
B
B

]
y ysss

ss
ss
ss

%%KK
KK

KK
KK

K

[
H
H

] [
B
B

]
O O

� �

[
H
H

]
[
H
H

]
e eKKKKKKKKKKK

99sssssssssss

.

However,
[
B
B

]
→

[
H
H

]
is not an equivalence: the morphism on tangent complexes

at the unit element is given by b[1]⊕ b→ h[1]⊕ h which has a kernel. �
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