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Abstract. In this paper, we study the Dirac cohomology theory on a class of algebraic
structures. The main examples of this algebraic structure are the degenerate affine Hecke–
Clifford algebra of type An−1 by Nazarov and of classical types by Khongsap–Wang. The
algebraic structure contains a remarkable subalgebra, which usually refers to Sergeev
algebra for type An−1.

We define an analogue of the Dirac operator for those algebraic structures. A main
result is to relate the central characters of modules of those algebras with the central
characters of modules of the Sergeev algebra via the Dirac cohomology. The action of
the Dirac operator on certain modules is also computed. Results in this paper could be
viewed as a projective version of the Dirac cohomology of the degenerate affine Hecke
algebra.

1. Introduction

Throughout this paper, we work over the ground field C. Let W be a Weyl
group. It is well known that W admits a non-trivial central extension

1→ Z2 → W̃ →W → 1,

where W̃ is a distinguished double cover of W . The projective representations
of W are linear representations of W̃ which do not factor through W . Those
representations over C have been has been known for a long time from the work
of Schur, Morris, Read, Stembridge, and others [Mo1], [Mo2], [Re], [Sc], [St].

The degenerate affine Hecke–Clifford algebra for type An−1 (see Definition 4.2)
was introduced by Nazarov [Na] to study Young’s symmetrizers of the projective
representations of Sn. The degenerate affine Hecke–Clifford algebra for other clas-
sical types was later constructed by Khongsap–Wang [WK]. Those algebras could
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be viewed as the projective counterpart of the degenerate affine Hecke algebra of
Lusztig.

The purpose of this paper is to establish Dirac cohomology theory for those
classes of algebras. We first single out the algebraic structure (see Section 3) that
is necessary to prove several important results for the Dirac cohomology, and then
we show that the degenerate affine Hecke–Clifford algebras considered in [Na] and
[WK] satisfy that algebraic structure. Our approach is an analogue of the one
recently developed for degenerate affine Hecke algebras by Barbasch–Ciubotaru–
Trapa [BCT] (also see a recent extension by Ciubotaru [Ci2]).

In more detail, letHW be the associative algebra with certain important proper-
ties (see Definitions 3.1 and 3.3). The algebra HW contains a remarkable subalge-
bra, namely Seg(W ) (see again Definition 3.1), which is is the same as the Sergeev
algebra when W is of type An−1.) The Dirac type element in HW is defined as an
analogue of the one in [BCT] and has some nice properties. In specific examples
of HW in Section 4, the Dirac type element can be viewed as the square root of a
certain Casmir type element (Theorem 4.23).

For an HW -module (π,X), the Dirac cohomology is defined as

HD(X) = kerπ(D)/(kerπ(D) ∩ imπ(D)),

which is a Seg(W )-module. One of our main results (Theorem 3.5) says that if X is
irreducible and HD(X) is nonzero, then any irreducible Seg(W )-module in HD(X)
determines the central character of X . This is an analogue to a statement for
Harish-Chandra modules called Vogan’s conjecture [HP]. A key step in the proof
of Theorem 3.5 is to establish a canonical algebra homomorphism from the center
of HW to the center of Seg(W ) (Theorem 3.4). In the case of the degenerate affine
Hecke–Clifford algebra of type An−1, this homomorphism is shown to map onto the
even elements of the center of Seg(W ) via the study of the Dirac cohomology on
some modules (Corollary 7.21). The homomorphism indeed agrees with another
natural map arising from the Jucys–Murphy type elements (see more detail in
Remark 7.22), and hence the property of surjectivity has already been covered in
the result of [Ru].

For a Dirac cohomology in other settings (see, for example, [HP]), one may
apply the Dirac operator and Dirac cohomology developed in this paper to study
the representation theory of HW . More precisely, the action of the Dirac operator
provides information about the Seg(W )-module structure and central characters
of some HW -modules (see Corollary 4.24 and Theorem 4.25).

We provide evidences that the Dirac cohomology can be useful in the represen-
tation theory by computing the action of the Dirac operators in several cases. In
Section 5, we consider some basic modules for all classical types and show that the
Dirac operator acts identically to zero on those modules. Those modules for type
An−1 were constructed and studied by Hill–Kujawa–Sussan [HKS]. In Section 7,
we go further for type An−1 and compute the action of the Dirac type element
D on more interesting modules. We show that the Dirac cohomology of those
examples does not vanish, and this indeed coincides with the expectation from the
case of the degenerate affine Hecke algebra in [BCT]. While some computations
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can also be done for other classical types, the picture is more complete for type
An−1 to date.

This paper is organized as follows. In Section 2, we review some properties
of superalgebras. In Section 3, we define a certain algebraic structure HW and
develop the Dirac cohomology theory for HW . We provide examples of HW in
Section 4 and compute the square of the Dirac operator. In Section 5 and Section
7, we consider the Dirac cohomology for some particular modules. In Section 6,
we review properties of Sergeev algebra which is needed for the computation of
Section 7.

Acknowledgment. The author would like to thank Dan Ciubotaru and Peter
Trapa for the suggestion of this topic and many useful discussions. He also thanks
ProfessorWeiqiang Wang for his interest in the work and pointing out the reference
[Wa]. The author would also like to thank the referees for useful suggestions and
comments, and also thank one of the referees for pointing out the reference [Ru].

2. Preliminaries

2.1. Notation for modules

In this paper, all the algebras are associative with a unit over C. Let A be an
algebra. An A-module is denoted (π,X) or simply X , where X is a vector space
and π is the map defining the action of A on X . For a ∈ A and x ∈ X , the action
of a on x is written by π(a)x or a.x.

Let B be a subalgebra of A. Define IndA
B to be the induction functor, i.e.,

IndAB Y = A⊗B Y,

where Y is a B-module. The left adjoint functor of IndA
B is the restriction functor

denoted ResAB .

2.2. Superalgebras and supermodules

A super vector space V is a Z2-graded vector space V = V0 ⊕ V1. A super vector
subspace W of V is a subspace of V such that W = (W ∩ V0)⊕ (W ∩ V1). We say
an element a in V0 (resp. V1) has even (resp. odd) degree, denoted deg(v) = 0
(resp. deg(v) = 1).

A superalgebra A is an algebra with a super vector space structure A = A0⊕A1

and AiAj ⊆ Ai+j for i, j ∈ Z2. A subalgebra C of a superalgebra A is said to be a
supersubalgebra of A if C = (A0 ∩C)⊕ (A1∩C). A super ideal I of a superalgebra
A is an ideal of A such that I = (A0 ∩ I)⊕ (A1 ∩ I).

For superalgebras A and B, a superalgebra homomorphism from A to B is an
algebra homomorphism with f(Ai) ⊂ Bi for i ∈ Z2.

For superalgebrasA and B, the super tensor product of A and B, denoted A⊗̃B,
is a superalgebra isomorphic to A ⊗ B as vector spaces with the multiplication
determined by:

(a⊗ b)(a′ ⊗ b′) = (−1)deg(b) deg(a′)(aa′ ⊗ bb′),

where a, a′ ∈ A and b, b′ ∈ B are homogeneous elements.
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Let A be a superalgebra. An A-supermodule X is an A-module with a super
vector space structure X = X0 ⊕X1 and the property that Ai.Xj ⊆ Xi+j , where
i, j ∈ Z2. A supersubmodule Y of an A-supermodule X is a submodule of X such
that Y = (X0 ∩ Y )⊕ (X1 ∩ Y ). An A-supermodule X is irreducible if there is no
proper non-zero supersubmodule of X .

For an A-supermodule X = X0 ⊕ X1, define a map δ : X → X such that
δ(v) = v if v ∈ X0 and δ(v) = −v if v ∈ X1.

Let Modsup(A) be the category of A-supermodules. The morphisms in the
category Modsup(A) are the even homomorphisms between A-supermodules. Let
Π : Modsup(A) → Modsup(A) be a parity change functor. That means for an
A-supermodule, Π(M) and M are isomorphic as A-modules, but have opposite
Z2-grading.

2.3. Relations between irreducible supermodules and irreducible
modules

Let A = A0 ⊕ A1 be a superalgebra. Given an irreducible A-module (π, Y ), we
construct a supermodule as follows. Let (π, Y ) be an irreducible A-module such
that Y is identified with Y as vector spaces and the A-action on Y is determined
for any homogenous element a ∈ A and for v ∈ Y by

π(a)v = (−1)deg(a)π(a)v.

Let (πXY
, XY ) be an A-supermodule such that XY = Y ⊕ Y as vector spaces

and the action of A on XY = Y ⊕ Y is as: πXY
(a)(v, v) = (π(a)v, π(a)v). Let

(XY )0 = {(v, v) ∈ XY : v = v} and let (XY )1 = {(v, v) ∈ XY : v = −v}. It is
elementary to check that XY = (XY )0 ⊕ (XY )1 is an A-supermodule.

Lemma 2.1. Let Y be an irreducible A-module. Let XY = Y ⊕ Y be an A-
supermodule with the supermodule structure described above. Then

(1) XY is an irreducible A-supermodule if and only if Y and Y are non-isomor-
phic as A-modules.

(2) If Y and Y are isomorphic as A-modules, then there is a supermodule struc-
ture on Y .

Proof. For (1), we first prove that if XY is an irreducible A-supermodule, then
Y and Y are not isomorphic as A-modules. Suppose instead there exists an A-
module isomorphism f : Y → Y , and we will derive a contradiction. Recall that Y
is identified with Y as vector spaces and thus there exists a natural vector space
isomorphism θ : Y → Y such that (−1)deg(a)π(a)θ = θπ(a) for any homogenous
a ∈ A. Then θ ◦ f satisfies the property that for any homogenous element a ∈ A,

π(a)(θ ◦ f)(x) = (−1)deg(a)(θ ◦ f)(π(a)x) .

Then the map (θ ◦ f)2 is an A-module automorphism of Y . Thus, by Schur’s
lemma and a suitable normalization, we may assume (θ ◦ f)2 is an identity map.
Then as vector spaces

Y = ker(θ ◦ f − Id)⊕ ker(θ ◦ f + Id).
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For ε = 0, 1, let

Kerε = {(v, (−1)εv) ∈ XY : v ∈ ker(θ ◦ f − (−1)εId)} .
Then it is straightforward to verify that Ker0 ⊕Ker1 ⊂ XY gives a proper super-
submodule of XY .

We now prove that if Y and Y are not isomorphic as A-modules, XY is an
irreducible A-supermodule. Suppose instead that there exists a proper supersub-
module M of XY and we will get a contradiction. Let

M i =
{
v ∈ Y : (v, (−1)iv) ∈M ∩ (XY )i

}

for i ∈ Z2, which are regarded as vector subspaces of Y . We first see that M 0 ∩
M1 = 0. Otherwise, there exists some nonzero v ∈ Y such that (v, v) ∈ M and
(v,−v) ∈ M , and so (v, 0), (0, v) ∈ M . The irreducibility of Y and Y implies
M = XY , contradicting that M is proper. Furthermore, the irreducibility of Y
implies Y = M0 ⊕ M1 (as vector spaces). Define a map f : (π, Y ) → (π, Y )
determined by f(v) = (−1)iv for v ∈ M i (i ∈ Z2). One can check that f is an
A-module isomorphism and so this gives a contradiction.

We now consider (2). By (1), XY is not an irreducible A-supermodule. Let X ′

be an irreducible supersubmodule of XY . Then by the construction of XY , X
′

is isomorphic to Y = Y as A-modules. Then this gives a supermodule structure
on Y . �

We can also start with an irreducible A-supermodule and decompose it into
irreducible A-module(s).

Lemma 2.2. Let X be an irreducible A-supermodule. Let δ be a linear automor-
phism on X such that δ(v) = (−1)iv for v ∈ Xi (i = 0, 1). If X is not an
irreducible A-module, then there exists an irreducible A-submodule Y of X such
that

(1) δ(Y ) is also an A-submodule of X and δ(Y ) = Y ; and
(2) Y and δ(Y ) are non-isomorphic A-modules; and
(3) X = Y ⊕ δ(Y ) as A-modules.

Proof. (1) follows from a.δ(v) = (−1)deg(a)δ(a.v) for any homogenous element
a ∈ A and v ∈ Y . (2) and (3) are (a reformulation of) [BK, Lem. 2.3]. �

Lemma 2.3. Let X and X ′ be irreducible A-supermodules. If X and X ′ are iso-
morphic as A-modules, then X and X ′ are isomorphic, up to applying the functor
Π, as A-supermodules.

Proof. Suppose X and X ′ are also irreducible A-modules. Then X0, X1, X
′
0, X

′
1

are irreducible A0-modules. Then either X0 = X ′
0 or X0 = X ′

1 as A0-modules.
Then either X ∼= X ′ or X ∼= Π(X ′) as A-supermodules.

Suppose X is not an irreducible A-module. Let X = Y ⊕ δ(Y ) and X ′ = Y ′ ⊕
δ(Y ′) be the decomposition of X into A-modules as in Lemma 2.2. Without loss of
generality, we may assume Y = Y ′ as A-modules. Let f : Y → Y ′ be an A-module
isomorphism. Then f also induces an A-module isomorphism f : δ(Y ) → δ(Y ′)
such that f = δ◦f ◦δ. Then one can show that the map f⊕f is an A-supermodule
isomorphism by checking that the map preserves grading. In particular, we also
have Π(X) = X as A-supermodules in this case. �
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Let Irr(A) (resp. Irrsup(A)) be the set of irreducible A-modules (resp. irre-
ducible A-supermodules). Let ∼ be the equivalence relation on Irr(A): Y ∼ Y ′ if
and only if Y = Y ′ or Y = Y ′. Let ∼Π be the equivalence relation on Irrsup(A):
X ∼Π X ′ if and only if X = X ′ or X = Π(X ′).

Proposition 2.4. There is a natural bijection

Irrsup(A)/∼Π ←→ Irr(A)/∼ .

Proof. Lemmas 2.1 and 2.3 define a map from Irr(A)/∼ to Irrsup(A)/∼Π. Lemma
2.2 defines a map in the opposite direction. The two maps are inverse to each
other by Lemma 2.3. �

2.4. Central characters of supermodules

For a superalgebra A, let Z(A) be the center of A. Note that Z(A) is a supersub-
algebra of A. Recall that Z(A)0 is the set of even elements in Z(A).
Proposition 2.5. Let X be an irreducible A-supermodule. For z ∈ Z(A)0, z acts
on X by the multiplication of a scalar.

Proof. If X is an irreducible A-module, then the statement follows from (ordinary)
Schur’s lemma (for this case). If X is not an irreducible A-module, then we can
decompose X = Y ⊕ δ(Y ) as A-modules as in Lemma 2.2. Then z acts on the two
modules Y and δ(Y ) by scalars, denoted λ and λ′ respectively. Then for v ∈ Y ,

z.(v + δ(v)) =
λ+ λ′

2
(v + δ(v)) +

λ− λ′
2

(v − δ(v)).

Note that δ(v+δ(v)) = v+δ(v) and so v+δ(v) ∈ X0, and similarly v−δ(v) ∈ X1.
Then since z is of even degree, λ = λ′. �

By Proposition 2.5, we can define the following:

Definition 2.6. Let A be a superalgebra. Let (π,X) be an irreducible A-super-
module. Define the central character χπ to be the map from Z(A)0 to C such that
χπ(z) is the scalar of z acting on X .

The central character defined above is only for even elements in the center of a
superalgebra. However, the central character indeed determines the action of odd
elements in the center in the following sense:

Proposition 2.7. Let z ∈ Z(A)1. Let X be an irreducible A-supermodule. If X is
also an irreducible A-module, then z acts by zero on X. If X is not an irreducible
A-module, then z acts on the two irreducible A-submodules of X by two distinct
scalars

√
λ and −

√
λ, where λ is the scalar that z2 ∈ Z(A)0 acts on X.

Proof. For (1), suppose X is an irreducible A-module. Then by Schur’s Lemma,
z acts on X by a scalar denoted by λ. Meanwhile by Lemmas 2.1 and 2.3, X = X
as A-modules. This implies z also acts by −λ on X as z is an odd element. Hence
λ = 0.

Now suppose X is not an irreducible A-module. Then z2 is an even element in
the center and hence acts by a scalar, denoted λ. Then z acts on the irreducible
A-submodules of X by scalars

√
λ and −

√
λ. �
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3. Dirac cohomology for HW

3.1. HW and a Dirac type element in HW

Fix a real reflection group W . Let V be a representation of W . Fix a W -invariant
inner product on V . Let {a1, . . . , an} be an orthogonal basis for V .

Definition 3.1. An associative algebra HW = HW (V ) is said to have property
(∗) if it satisfies the following properties. First HW is an algebra generated by
symbols fw (w ∈ W ), ci (i = 1, . . . , n) and ai (i = 1, . . . , n) such that the map
from C[W ] to HW sending w to fw is an injection and the algebra has a natural
basis of elements having the form ak11 · · ·aknn cε11 · · · cεnn fw (k1, . . . , kn non-negative
integers, w ∈ W , εi = 0 or 1). Again we shall write w for fw for simplicity. Let
Seg(W ) be the subalgebra of HW generated by all w ∈ W and ci (i = 1, . . . , n).
Furthermore, the generators of HW satisfy the following relations:

waiw
−1 = w(ai), (3.1)

[ai, aj ] cicj ∈ Seg(W ) for i 6= j,

cjai = aicj for i 6= j, (3.2)

ciai = −ciai, (3.3)

cicj = −cjci for i 6= j and c2i = −1, (3.4)

wci = w(ci)w. (3.5)

Here w(ai) is the action of w on V . Furthermore, we identify the linear space
spanned by ci with V via the map ai 7→ ci and hence there is a natural action of
W on ci, and w(ci) represents such action of w on ci. Indeed, the algebra generated
by the those ci is isomorphic to the Clifford algebra on the vector space V , and
the subalgebra Seg(W ) is the smash product of the Clifford algebra and the group
algebra of W .
HW has a superalgebra structure with deg(ci) = 1, deg(ai) = deg(w) = 0

(i = 1, . . . , n and w ∈ W ).

In the rest of this section, HW denotes an algebra satisfying the property (∗).
Define a Dirac type element D in HW :

D =

n∑

i=1

aici. (3.6)

The following two properties will be used several times:

Lemma 3.2.

(1) wD = Dw for any w ∈W ;
(2) ciD = −Dci for any i.

Proof. (1) follows from the fact that {ai} forms an orthogonal basis and property
(3.1). (2) follows from the properties (3.2), (3.3), and (3.4). �

Two homogenous elements h1, h2 ∈ HW are said to supercommute if h1h2 =
(−1)deg(h1) deg(h2)h2h1 for any homogenous w ∈ Seg(W ).
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Definition 3.3. The algebra HW with the property (∗) is said to satisfy the
property (∗∗) if for any h ∈ HW such that h supercommutes with elements in
Seg(W ), D2h− hD2 = 0.

In the next section, we shall give examples which satisfy the algebraic structure
in Definitions 3.1 and 3.3. From now on, assume that HW satisfies the properties
(∗) and (∗∗).

3.2. Relation between central characters for HW and Seg(W )

Let d : HW → HW ,

d(h) = Dh− (−1)deg(h)hD.

A relation between Z(HW )0 and Z(Seg(W ))0 is the following:

Theorem 3.4. For any z∈Z(HW )0, there exists a unique element z̃∈Z(Seg(W ))0
such that

z − z̃ ∈ im d.

Let ζ : Z(HW )0 → Z(Seg(W ))0 be the map that ζ(z) is such unique element z̃ in
Z(Seg(W ))0. Then ζ is an algebra homomorphism.

Our main result in this paper is the following, which says the central character
of an HW -supermodule X is determined by the central characters of irreducible
Seg(W )-supermodules in the Dirac cohomology HD(X). Here HD(X) is defined
in the theorem.

Theorem 3.5. Let HW be an algebra satisfying property (∗) (Definition 3.1) and
property (∗∗) (Definition 3.3). Let (π,X) be an irreducible HW -supermodule with
the central character χπ (Definition 2.6). Let the Dirac cohomology HD(X) of X
be

HD(X) = kerπ(D)/(kerπ(D) ∩ imπ(D)).

Then HD(X) has a natural Seg(W )-module structure. Let (σ, U) be an irreducible
Seg(W )-module with the central character χσ (Definition 2.6) such that

HomSeg(W )(U,HD(X)) 6= 0.

Let ζ : Z(HW )0→Z(Seg(W ))0 be the map in Theorem 3.4. Let χσ : Z(HW )0→C,

χσ(z) = χσ(ζ(z)). (3.7)

Then χπ = χσ.

Since wD = Dw and ciD = −Dci by Lemma 3.2, kerπ(D) and kerπ(D) ∩
imπ(D) are invariant under the action of Seg(W ). Thus HD(X) has a natural
Seg(W )-module structure from theHW -module structure. The proofs of Theorems
3.4 and 3.5 are given at the end of the next subsection. Theorem 3.5 directly
follows from Theorem 3.4. Readers who only want to know how Theorem 3.4
implies Theorem 3.5 may jump to the end of the next subsection.
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3.3. Proof of Theorems 3.4 and 3.5

The proofs of the theorems basically follow from the ideas of proofs in [HP, Chap.
3] and [BCT, Sect. 4]. We provide some technical details for this specific case.

Let S≤j(V ) be the vector space of polynomials of x1, . . . , xn with degree less
than or equal to j. Let HjW be the vector space spanned by elements of the form

{
pw : w ∈ Seg(W ), p ∈ S≤j(V )

}
.

Note that H0
W ⊆ H1

W ⊆ · · · gives a filtration for HW . Define

HrW = HrW /Hr−1
W ,

for r = 0, 1, . . . and H−1
W = 0. Let HW =

⊕∞
j=0H

j

W . Note that HW has a natural
superalgebra structure from HW .

Let dj : HjW → H
j+1

W be the map induced from d and let d =
⊕∞

j=0 dj . For

any element h ∈ HW , we still write h for its corresponding element in HW . Let
bi = aici (i = 1, . . . , n). Let B be the supersubalgebra of HW generated by all bi.

Note that d(B) ⊂ B. Let d′ be the restriction of d to B.
In the following lemmas, one can see that ker d

′
, im d

′
, ker d, (ker d∩ im d)Seg(W )

and so on are supersubspaces by using the fact that D is an homogenous element.

Lemma 3.6. As supersubspaces of B,

ker d
′
= im d

′ ⊕ C.

Here C is regarded as the C-subalgebra of B generated by 1.

Proof. Note that any element in B can be uniquely written as a linear combination
of elements of the form pbi1bi2 . . . bir for 0 < i1 < . . . < ir ≤ n and p ∈ C[b21, . . . , b

2
n].

Note that D =
∑n
i=1 bi. Using the relations bibj = −bjbi (in B) for i 6= j and

b2i bj = bjb
2
i (in B) for any i, j, one can see that the action of d

′
is determined by

d
′
(pbi1bi2 . . . bir ) = 2

r∑

k=1

(−1)k−1b2ikpbi1 . . . b̂ik . . . bir ,

where p ∈ C[b21, . . . , b
2
n].

In order to apply the known cohomology of the Koszul complex, we identify B
with C[x1, . . . , xn] ⊗ ∧•Cn as vector spaces, where ∧•Cn is the exterior algebra,
via the linear isomorphism η from C[x1, . . . , xn]⊗ ∧•Cn to B determined by

η : p(x1, . . . , xn)⊗ ei1 ∧ . . . ∧ eik 7→ p(b21, . . . , b
2
n)bi1 . . . bik ,

where {e1, . . . , en} is the standard basis of Cn. Then, by the above description

of the action of d
′
, the map η−1 ◦ d′ ◦ η is a multiple of the differential map

in the standard Koszul resolution. Then the result follows from the well known
cohomology of the Koszul resolution. �
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Proposition 3.7. As supersubspaces of HW ,

kerd = im d⊕ Seg(W ).

Proof. By the property (∗) of HW , am1

1 am2

2 · · ·amn
n cε11 · · · cεnn w (mi ∈ Z≥0, εi ∈

{0, 1} and w ∈ W ) form a basis for HW . Then bm1

1 bm2

2 · · · bmn
n cε11 · · · cεnn w (mi ∈

Z≥0, εi ∈ {0, 1} and w ∈ W ) also form a basis for HW . Then as linear vector
spaces, we may identify HW with B ⊗ Seg(W ) via the following map:

bm1

1 bm2

2 · · · bmn

n cε11 · · · cεnn w 7→ bm1

1 · · · bmn

n ⊗ cε11 · · · cεnn w.

For any h ∈ HW , d(hw) = d(h)w for w ∈ W and d(hci) = d(h)ci. Then the map d

in HW is the same as d
′ ⊗ Id in B ⊗ Seg(W ) under the above identification. Then

by Lemma 3.6, one has

ker d = ker(d
′ ⊗ Id) = (ker d

′
)⊗ Seg(W )

= (im d
′ ⊕ C)⊗ Seg(W ) = im d⊕ Seg(W ). �

For any subspace H of HW , define HSeg(W ) to be the set of all elements su-
percommuting with elements in Seg(W ). If we view Seg(W ) as a subalgebra of

HW , we could similarly define H
Seg(W )

for any subspace H of HW . Proposition
3.7 implies the following:

Corollary 3.8. As supersubspaces of HW ,

(ker d)Seg(W ) = (im d)Seg(W ) ⊕ Z(Seg(W )).

Lemma 3.9. As supersubspaces of HW ,

(ker d)Seg(W ) = (ker d ∩ im d)Seg(W ) ⊕ Z(Seg(W )).

Proof. It is clear that Z(Seg(W )) and (ker d ∩ im d)Seg(W ) are subspaces of the
space (ker d)Seg(W ) and thus (ker d∩ im d)Seg(W )⊕Z(Seg(W )) ⊂ (ker d)Seg(W ). We
will prove another inclusion by induction on the degree of filtration of an element
in (ker d)Seg(W ).

Let h be an element in (ker d)Seg(W ) such that h ∈ HiW and h 6∈ Hi−1
W for some

i. When i = 0, H0
W = Seg(W ) and so the statement is clearly true. Now assume

i > 0. Let h be the image of h in HiW . Then by Corollary 3.8, h = d(h0) for

some unique h0 in Hi−1

W such that d(h0) ∈ (HiW )Seg(W ). For any representative
h′0 ∈ Hi−1

W of h0, let

h0 =
1

2n|W |

n∑

k=1

∑

i1<...<ik

∑

w∈W
(−1)k(ci1 · · · cik )wh′0w−1(ci1 · · · cik )−1.

By the uniqueness of the element h0, h0 supercommutes with any element in
Seg(W ). This implies h0 is also a representative of h0. Furthermore, h0 supercom-
mutes with elements in Seg(W ) and d(h0) ∈ (HiW )Seg(W ). By the property (∗∗),
d2(h0) = 0 and so d(h − d(h0)) = 0. By the induction hypothesis, h − d(h0) ∈
(im d)Seg(W ) ⊕ Z(Seg(W )). Hence, we also have h ∈ (im d)Seg(W ) ⊕ Z(Seg(W ))
since d(h0) ∈ (im d)Seg(W ). This completes the proof. �
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Lemma 3.10. (ker d)Seg(W ) is a supersubalgebra of HW and (ker d ∩ im d)Seg(W )

is a two-sided super ideal of (ker d)Seg(W ).

Proof. Let z1, z2 ∈ (ker d)Seg(W ). Then d(zi) = 0 and so Dzi = δ(zi)D. Now
d(z1z2) = D(z1z2) − δ(z1z2)D = δ(z1z2)D − δ(z1z2)D = 0. Hence z1z2 ∈
(ker d)Seg(W ). Hence (ker d)Seg(W ) is a subalgebra of HW .

We next show that (kerd ∩ im d)Seg(W ) is a two-sided ideal of (kerd)Seg(W ).
Let z ∈ (ker d)Seg(W ) and z′ ∈ (ker d ∩ im d)Seg(W ). We have to show zz′, z′z ∈
(ker d ∩ im d)Seg(W ). Write z′ = Dh − δ(h)D for some h ∈ HW . Since d(z) =
Dz − δ(z)D = 0,

zz′ = zDh− zδ(h)D = Dδ(z)h− zδ(h)D = Dδ(z)h− δ(zδ(h))D ∈ im d.

We also proved in the beginning that zz′ ∈ kerd and thus zz′ ∈ (ker d∩im d)Seg(W ).
The proof for z′z ∈ (ker d ∩ im d)Seg(W ) is similar. �

Proof of Theorem 3.4 Since z ∈ Z(HW )0 ⊂ ker dSeg(W ), by Lemma 3.9, there
exists a unique z̃ ∈ Z(Seg(W )) such that z− z̃ ∈ (ker d∩ im d)Seg(W ) ⊂ im d. Note
that z̃ is in Z(Seg(W ))0 since the decomposition in Lemma 3.9 is between super
vector spaces. Hence we have a map ζ : Z(HW )0 → Z(Seg(W ))0.

It remains to prove that ζ is an algebra homomorphism. To see that ζ is an
algebra map, let zi ∈ Z(HW ) ⊂ ker dSeg(W ) (i = 1, 2). Write zi = ζ(zi) + hi for
some hi ∈ (ker d ∩ im d)Seg(W ). Then z1z2 = ζ(z1)ζ(z2) + ζ(z1)h2 + ζ(z2)h1 +
h1h2. By Lemma 3.10, z1z2 − ζ(z1)ζ(z2) ∈ (ker d ∩ im d)Seg(W ). Thus ζ(z1z2) =
ζ(z1)ζ(z2). This completes the proof. �

Proof of Theorem 3.5. By our hypothesis, there exists a non-zero element v ∈
HD(X) such that v is in the isotypic component U of HD(X). Let ṽ be a
representative of v in kerπ(D). Now by Theorem 3.4 for any z ∈ Z(HW )0,
z− ζ(z) = Da− δ(a)D for some a ∈ HW . Then π(z− ζ(z))ṽ = π(Da− δ(a)D)ṽ =
π(Da)ṽ ∈ imπ(D). On the other hand, π(z − ζ(z))ṽ = χπ(z)ṽ − (χσ(ζ(z))ṽ + ṽ′)
for some ṽ′ ∈ kerπ(D) ∩ imπ(D) and so (χπ(z)− χσ(ζ(z)))ṽ ∈ imπ(D). We also
have (χπ(z)− χσ(ζ(z)))ṽ ∈ kerπ(D) as ṽ ∈ kerπ(D). Thus χπ(z)ṽ − χσ(ζ(z))ṽ ∈
imπ(D) ∩ kerπ(D). Since we choose v 6= 0, we can only have χπ(z) = χσ(ζ(z)) =
χσ(z). This completes the proof. �

4. Examples of HW and their Dirac cohomology theory

Let W be a classical Weyl group and let R = R(W ) be the root system associ-
ated to W . Let k : R → C be a function such that k(α1) = k(α2) if α1 = w(α2)
for some w ∈W . We shall write kα for k(α). For any α ∈ R, let sα be the simple
reflection associated to α.

Let e1, . . . , en be the standard basis of Rn. Let 〈 , 〉 be the inner product on Rn

such that 〈ei, ej〉 = δij .

4.1. Type An−1

Notation 4.1. Set W =W (An−1) to be the Weyl group of type An−1. The root
system R(An−1) of type An−1 is the set

R(An−1) = {ei − ej : 1 ≤ i 6= j ≤ n} .
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Fix a set R+ of positive roots

R+(An−1) = {ei − ej : 1 ≤ i < j ≤ n} .

We usually write α > 0 for α ∈ R+(An−1) and write α < 0 for −α ∈ R+(An−1).
The set of simple roots ∆ is

{ei − ei+1 : i = 1, . . . , n− 1} .

Since there is only one W -orbit for R(An−1), we simply write k for kα for any
α ∈ R(An−1). For i 6= j, let

αij =

{
ei − ej if i < j,
ej − ei if i > j.

(4.8)

Thus αij is always a positive root.
For a root α ∈ R(An−1), let sα be the corresponding simple reflection in

W (An−1). For simplicity, set sij = sαij
.

Definition 4.2 ([Na]).The degenerate affine Hecke–Clifford algebra for type An−1,
denoted HCl

W (An−1)
, is the associative algebra with a unit generated by the symbols

{xi}ni=1, {ci}
n
i=1 and {fw : w ∈W (An−1)} determined by the following properties:

(1) the map from the group algebraC[W (An−1)]=
⊕

w∈W (An−1)
Cw to HCl

W (An−1)

given by w 7→ fw is an algebra injection;
(2) xixj = xjxi for all i, j;
(3) xicj = cjxi for i 6= j and xici = −cixi for all i;
(4) cicj = −cjci for i 6= j and c2i = −1 for all i;
(5) fwci = cw(i)fw for w ∈ W (An−1) and for all i;
(6) fsi,i+1

xi−xi+1fsi,i+1
= k(−1+cici+1) for all i = 1, . . . , n−1 and fsi,i+1

xj =
xjfsi,i+1

for all i, j with |i− j| > 1.

We later simply write w for fw. The algebra has a superalgebra structure with
deg(ci) = 1, deg(w) = 0 for w ∈ W (An−1), and deg(xi) = 0.

For i 6= j, define cαij
as

cαij
=





√
2
2 (ci − cj) if i < j,
√
2
2 (cj − ci) if j < i.

(4.9)

Let s̃αij
= s̃ij = sijcαij

.
The superalgebra H

Cl
W (An−1)

admits a PBW type basis:

Proposition 4.3 ([Kl, Thm. 14.2.2]). The set

{xm1

1 · · ·xmn
n cε11 · · · cεnn w : m1, . . . ,mn ∈ Z≥0, ε1, . . . , εn ∈ {0, 1} , w ∈W (An−1)}

forms a basis for H
Cl
W (An−1)

.

The main statement of this subsection is Proposition 4.9, which says that
HCl
W (An−1)

satisfies property (∗) defined in Definition 3.1.
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Let s̃α = sαcα. For later convenience, we also set s̃ij = s̃αij
= sαij

cαij
, yi =

xici, y
′
i = yi +

√
2
2

∑
i6=j s̃i,j and x

′
i = −y′ici. Note that C[W (An−1)]

− embeds into

HCl
W (An−1)

via the map t̃α 7→ s̃α.

The notations y′i and x′i will be used to define the Dirac type element in
H

Cl
W (An−1)

and are inspired by the setting in the degenerate affine Hecke algebra in

[BCT].

Lemma 4.4.

(1) ciyj = −yjci for any i, j;

(2) s̃ijck = −cks̃ij for any i, j, k with i 6= j;

(3) ciy
′
j = −y′jci for any i, j;

(4) For α ∈ R+ and w ∈ Sn, ws̃αw−1 = s̃w(α) if w(α) > 0, and ws̃αw
−1 =

−s̃−w(α) if w(α) < 0.

The above lemma is elementary. We skip the proof.

We shall use the natural permutation of W (An−1) on the set {1, . . . , n} below.

Lemma 4.5. Let w ∈W (An−1). Then

wyiw
−1 − yw(i) =

√
2k

∑

β>0,w−1(β)<0,〈β,w(ei)〉6=0

s̃β.

In particular, for α > 0,

s̃αyis̃
−1
α + ysα(i) = −

√
2k

∑

β>0,s−1
α (β)<0,〈β,sα(ei)〉6=0

s̃β.

Proof. For w ∈ W (An−1), define l(w) = | {ei − ej ∈ R+(An−1) : w(ei − ej) < 0} |.
When l(w) = 1, w = sα for some α ∈ ∆. We consider three cases. When
〈ei, α〉 = 0, it is easy to see sαyisα − yi = 0. Now consider the case 〈ei, α〉 = 1. In
this case, we have

sαyisα = sαxicisα

= xi+1ci+1 + k(−1 + cici+1)cisα

= xi+1ci+1 + k(−ci + ci+1)sα

= xi+1ci+1 + ksα(ci − ci+1)

= yi+1 +
√
2ks̃α.

For 〈ei, α〉 = −1, by using sαs̃αsα = −s̃α and the computation in the case
〈ei, α〉 = 1, we have

sαyi+1sα = yi +
√
2ks̃α.

We now use an induction on l(w). Assume l(w) = k for some k > 1. Write
w = sαw

′ for some simple reflection sα and w′ ∈ W (An−1) with l(w
′) = k− 1. Set
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ε = 1 if 〈α,w(ei)〉 6= 0 and ε = 0 otherwise. Then

wyiw
−1 = sαw

′yiw
′−1sα

= sαyw′(i)sα +
√
2k

∑

β>0,w′−1(β)<0,〈β,w′(ei)〉6=0

sαs̃βsα (induction hypothesis)

= ysαw′(i) + ε
√
2ks̃α +

√
2k

∑

β>0,w′−1(β)<0,〈β,w′(ei)〉6=0

s̃sα(β) (calculation for l(w) = 1)

= ysαw′(i) + ε
√
2ks̃α +

√
2k

∑

β>0,w′−1(β)<0,〈sα(β),sαw′(ei)〉6=0

s̃sα(β)

= yw(i) +
√
2k

∑

β>0,w−1(β)<0,〈β,w(ei)〉6=0

s̃β .

This proves the first assertion. The second assertion follows from the first one with
the equation that

s̃αyis̃
−1
α = sαcαyi(−cαsα) = sα(c

2
α)yisα = −sαyisα. �

Lemma 4.6. For i 6= j, [x′i, x
′
j ]cicj = y′iy

′
j + y′jy

′
i ∈ Segn.

Proof.

y′iy
′
j + y′jy

′
i =

(
yi +

√
2
2 k

∑

k 6=i
s̃i,k

)(
yj + k

√
2
2

∑

l 6=j
s̃l,j

)

+
(
yj +

√
2
2 k

∑

l6=j
s̃l,j

)(
yi +

√
2
2 k

∑

k 6=i
s̃i,k

)

= yiyj + yjyi +
√
2
2 k

(∑

k 6=i
s̃i,kyj + yj

∑

k 6=i
s̃i,k + yi

∑

l6=j
s̃l,j +

∑

l 6=j
s̃l,jyi

)

+ 1
2k

2
(∑

k 6=i
s̃i,k

∑

l 6=j
s̃l,j +

∑

l 6=j
s̃l,j

∑

i 6=k
s̃i,k

)

=
√
2
2 k

(∑

k 6=i
s̃i,kyj + yj

∑

k 6=i
s̃i,k + yi

∑

l6=j
s̃l,j +

∑

l 6=j
s̃l,jyi

)

+ 1
2k

2
(∑

l6=j

∑

k 6=i
s̃l,j s̃i,k +

∑

l6=j

∑

k 6=i
s̃i,k s̃l,j

)

By Lemma 4.5, the term
√
2
2

(∑
k 6=i s̃i,kyj+yj

∑
k 6=i s̃i,k+yi

∑
l6=j s̃l,j+

∑
l 6=j s̃l,jyi

)

is in Seg(W (An−1)). This completes the proof. �

Lemma 4.7.

(1) wx′iw
−1 = x′w(i);

(2) cix
′
i = −x′ici and cjx′i = x′icj for i 6= j.
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Proof. For (1), it suffices to show when w = sα for some α ∈ ∆. Fix an i. By the
definition of x′i, it suffices to show sαy

′
isα = y′sα(i). We consider two cases. In the

case that 〈ei, α〉 = 0, sα(αi,j) > 0 for any j 6= i. Then sαs̃i,jsα = s̃i,sα(j) for any
j 6= i. Thus, the last equality in Lemma 4.5 becomes

sαy
′
is

−1
α = yi +

√
2
2 k

∑

j 6=i
s̃i,sα(j) = y′i

In the case that 〈ei, α〉 6= 0, let k = i − 1 or i + 1 such that α = αi,k . Then, by
Lemmas 4.4(4) and 4.5,

sαy
′
is

−1
α = ysα(i) +

√
2ks̃α −

√
2
2 ks̃α +

√
2
2 k

∑

j 6=i,k
s̃k,j

= yk +
√
2
2 k

∑

j 6=k
s̃k,j

= y′k.

For (2), it is straightforward from Lemma 4.4 and y′i = x′ici. �

Remark 4.8. The subalgebra of HCl
W (An−1)

generated by the elements yi and s̃i,j is

the degenerate spin affine Hecke algebra of type An−1 defined in [Wan, Sect. 3.3].
(Other classical types for the degenerate spin affine Hecke algebra are established
in [WK, Sect. 4].) The degenerate spin affine Hecke algebra can be regarded as a
more elementary analogue of the degenerate affine Hecke algebra, and the notions
of y′i can be regarded as the Drinfield presentation [Dr] under the analogue.

Proposition 4.9. The degenerate affine Hecke–Clifford algebra HCl
W (An−1)

satisfies

the property (∗) in Definition 3.1.

Proof. We set W in Definition 3.1 equal to W (An−1) and set ai in Definition 3.1
to be x′i. Using Lemmas 4.6 and 4.7, one can verify relations (3.1) to (3.5) in Def-
inition 3.1. By Proposition 4.3 and expressions of x′i, (x

′
1)
m1 · · · (x′n)mncε11 · · · cεnn w

(m1, . . . ,mn ∈ Z, ε1, . . . , εn ∈ {0, 1}, w ∈ W (An−1)) form a basis for HCl
W (An−1)

.

These verify the property (∗). �

4.2. Type Bn

For type Bn, we modify the original definition in [WK]. More precisely, the algebra
we considered in Definition 4.11 is a deformation of the algebra in [WK]. It is
not hard to do a similar modification for type An−1. The main reason for this
modification is to construct an explicit module in the next section, which cannot
be done in the original definition of [WK] (by our approach). Considering the
lack of existing literature for the representation theory of the degenerate affine
Hecke–Clifford algebra for other classical types, such examples may be interesting
and important.

Notation 4.10. Let W = W (Bn) be the Weyl group of type Bn. Let the set
R(Bn) of roots for type Bn be

R(Bn) = {±ei ± ej : 1 ≤ i < j ≤ n} ∪ {±ei : i = 1, . . . , n} .
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The roots ±ei±ej (i 6= j) are long, while the roots ±ei are short. Fix a set R+(Bn)
of positive roots:

R+(Bn) = {ei ± ej : 1 ≤ i < j ≤ n} ∪ {ei : i = 1, . . . , n} .

The set ∆ of simple roots is

{ei − ei+1 : i = 1, . . . , n− 1} ∪ {en} .

For i 6= j > 0, define αij as in (4.8), define αi,−j = ei + ej and define αi = ei. We
also define sij = sαi,j

, si,−j = sαi,−j
and si = sαi

.
We have a natural embedding R(An−1) ⊂ R(Bn). and a natural embedding

W (An−1) ⊂W (Bn) (i.e., the group W (An−1) being the group generated by si,i+1

for i = 1, . . . , n− 1).

Definition 4.11. Let NBn
∈ C. Let HCl

W (Bn)
= HCl

W (Bn)
(k, NBn

) be the associative

unital algebra generated by the symbols {xi}ni=1, {ci}
n
i=1 and {fw : w ∈W (Bn)}

subject to the relations of (3), (4), (5), (6) in Definition 4.2 and additionally,

(1) the map from the group algebra C[W (Bn)] =
⊕

w∈W (Bn)
Cw to HCl

W (Bn)

given by w 7→ fw is an algebra injection;
(2) fsncn = −cnfsn and fsnci = cifsn for i 6= n;
(3)

fsnxn + xnfsn = −
√
2kαn

,

fsnxj − xjfsn = 0 for j 6= n ;

(4) xixj − xjxi = NBn
cjci for i 6= j.

We shall again simply write w for fw.
When NBn

= 0, HCl
W (Bn)

(k, NBn
) coincides with the degenerate affine Hecke–

Clifford algebra of type Bn in [WK, Def. 3.9].
For NBn

6= 0, while xi and xj does not commute for i 6= j, we still have
x2i xj = xjx

2
i . The algebra HCl

W (Bn)
hence still has some nice properties such as

the commutation relations with intertwining operators (but we do not need this
in this paper).

For i 6= j > 0, define cαij
as in (4.9) and define

cαi,−j
=

√
2
2 (ci + cj).

Set s̃i,−j = si,−jcαi,−j
. We also set s̃α = s̃i = sici.

Since we have modified the original definition of the degenerate affine Hecke–
Clifford algebra for type Bn in [WK], we will give a proof for the existence of the
PBW type basis.

Proposition 4.12. The set

{xm1

1 · · ·xmn

n cε11 · · · cεnn w : m1, . . . ,mn ∈ Z≥0, ε1, . . . , εn ∈ {0, 1} , w ∈ W (Bn)}

forms a basis for H
Cl
W (Bn)

.
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Proof. We follow the argument in [Kl, Thm. 3.2.2]. We consider the algebra H̃

generated by {xi}, {ci} and {si,i+1}n−1
i=1 ∪ {sn} subject to the relations (3), (4),

(5), (6) in Definition 4.2 and the relation (2) (but not (1)) in Definition 4.18 (with
a trivial replacement of notations). We resolve the minimal ambiguities according
to the Bergman’s diamond lemma [Be]. For example, we may consider an ordering
s < cn < · · · < c1 < xn < · · · < x1, where s is any simple reflection inW (Bn). This
induces a semigroup ordering on 〈xi, ci, s〉 (i = 1, . . . , n and s runs for all simple
reflections) from the length of words and the lexicographical ordering. Then one
checks that

(si,i+1xi+1)xi = (xisi,i+1 − kαi,i+1
(−1 + ci+1ci))xi

= xisi,i+1xi − kαi,i+1
(−1 + ci+1ci)xi

= xixi+1si,i+1 + kαi,i+1
xi(−1 + cici+1)− kαi,i+1

(−1 + ci+1ci)xi

= xixi+1si,i+1

and

si,i+1(xi+1xi) = si,i+1(xixi+1 +NBn
cici+1)

= si,i+1xixi+1 +NBn
ci+1cisi,i+1

= xi+1si,i+1xi+1 + kαi,i+1
(−1 + cici+1)xi+1 +NBn

ci+1cisi,i+1

= xi+1xisi,i+1 − kαi,i+1
xi+1(−1 + ci+1ci)

+ kαi,i+1
(−1 + cici+1)xi+1 +NBn

ci+1cisi,i+1

= xixi+1si,i+1.

Similarly,

(snxn)xj = (−xnsn −
√
2kαn

)xj

= −xnsnxj −
√
2kαn

xj

= −xnxjsn −
√
2kαn

xj

= −xjxnsn −NBn
cjcnsn −

√
2kαn

xj

and

sn(xnxj) = snxjxn +NBn
sncjcn

= xjsnxn +NBn
sncjcn

= −xjxnsn −
√
2kαn

xj −NBn
cjcnsn.

Similarly, for i > j > k,

(xixj)xk = xjxixk +NBn
cjcixk

= xjxkxi +NBn
xjckci +NBn

cjcixk

= xkxjxi +NBn
ckcjxi +NBn

xjckci +NBn
cjcixk

= xkxjxi +NBn
ckcjxi +NBn

ckcixj +NBn
cjcixk.
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The calculation for xi(xjxk) is similar. Other minimal ambiguities can be checked
similarly.

Let I be the two-sided ideal of H̃ generated by the relations of W (Bn) (e.g.,

s2 − 1, si,i+1si+1,i+2si,i+1 − si+1,i+2si,i+1si+1,i+2). Then H̃/I ∼= HCl
W (Bn)

. Let

P be the subalgebra of H̃ generated by by xi and ci. It is straightforward to
check that (s2− 1)P = P(s2− 1), (si,i+1si+1,i+2si,i+1− si+1,i+2si,i+1si+1,i+2)P =
P(si,i+1si+1,i+2si,i+1 − si+1,i+2si,i+1si+1,i+2), and other similar equations. Those
equations can also be deduced from Lemma 4.14 and its proof below. �

Lemma 4.13. For any root α > 0, cis̃α = −s̃αci.

Lemma 4.14.

wyiw
−1 = yw(i) +

√
2

∑

α>0,w−1(β)<0,〈β,w(ei)〉6=0

kαs̃α.

In particular, for α > 0

s̃αyis̃
−1
α + ysα(i) = −

√
2

∑

α>0,s−1
α (β)<0,〈β,sα(ei)〉6=0

kβ s̃β .

Proof. The relation snxn+xnsn = −
√
2kα implies snyn− ynsn = −

√
2kαcn. The

latter equation is also equivalent to snyns
−1
n = yn+

√
2kαs̃n. The remaining proof

is just similar to the case of An−1 in the proof of Lemma 4.5. �

For i > 0, define yi = xici.

y′i = yi +
√
2
2

∑

α>0,〈α,ei〉6=0

kαs̃α. (4.10)

We also define y−i = yi and y
′
−i = y′i.

There is a natural permutation of W (Bn) on the set {±1, . . . ,±n}.

Lemma 4.15.

(1) For any w ∈W (Bn), wy
′
iw

−1 = y′w(i).

(2) For i 6= j, y′iy
′
j + y′jy

′
i ∈ Seg(W (Bn)).

Proof. For (1), it suffices to check when w = sα is a simple reflection. It is the
direct consequence of the expression (4.10) for y′i, Lemma 4.14, and the fact that
sαs̃αsα = −s̃α. For (2), using the expression (4.10), we have

y′iy
′
j + y′jy

′
i = yiyj + yjyi +

√
2
2

[ ∑

α>0,〈α,ej〉6=0

kα (yis̃α + s̃αyi) +
∑

α>0,〈α,ei〉6=0

kα (yj s̃α + s̃αyj)
]

+ 1
2

∑

α,β>0,〈α,ei〉6=0,〈β,ei〉6=0

kαkβ(s̃αs̃β + s̃β s̃α).
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Since yiyj + yjyi = NBn
, we only need to consider and show that the middle term

is in Seg(W (Bn)):
∑

α>0,〈α,ej〉6=0

(yis̃α + s̃αyi) +
∑

α>0,〈α,ei〉6=0

(yj s̃α + s̃αyj)

=
(∑

k 6=i
kαi,k

s̃i,kyj + yj
∑

k 6=i
kαi,k

s̃i,k + yi
∑

l 6=j
kαl,j

s̃l,j +
∑

l 6=j
kαl,j

s̃l,jyi

)

+
( ∑

k>0,k 6=i
s̃i,−kyj + yj

∑

k>0,k 6=i
s̃i,−k + yi

∑

l>0,l6=j
s̃j,−l +

∑

l>0,l6=j
s̃j,−lyi

)

+ kαi
(s̃iyj + yj s̃i) + kαj

(s̃jyi + yis̃i)

which is in Seg(W (Bn)) by Lemma 4.14. �

Proposition 4.16. The superalgebra HCl
W (Bn)

satisfies the property (∗).
Proof. Let x′i = −y′ici. We set W in Definition 3.1 to be W (Bn) and ai to be x′i.
With Lemma 4.15, one can verify relations (3.1) to (3.5) in Definition 3.1 (also
see more detail for type An−1 in Section 4.1). By Proposition 4.12, HCl

W (Bn)
has a

PBW type basis. These show the proposition. �

4.3. Type Dn

Notation 4.17. Let W (Dn) be the Weyl group of type Dn. Let the set R(Dn) of
roots for type Dn be

R(Dn) = {±ei ± ej : 1 ≤ i < j ≤ n} ⊂ R(Bn).
Let R+(Dn) = R(Dn) ∩ R+(Bn) be a fixed set of positive roots. We shall again
write α > 0 for α ∈ R+(Dn) and α < 0 for −α ∈ R(Dn). The set of simple roots
is given by

∆ = {ei − ei+1 : i = 1, . . . , n− 1} ∪ {en−1 + en} .
Since there is only one W -orbit for R(Dn), we simply write k for kα for any
α ∈ R(Dn).

We shall regard W (Dn) as the subgroup of W (Bn) generated by elements si,j
and si,−j for i, j > 0. We shall also keep using the notations in Notation 4.10.

Definition 4.18. Let NDn
∈ C. Let kB : R(Bn) → C such that kB |R(Dn) = k

and kBα = 0 for any short root α in R(Bn). Let H
Cl
W (Dn)

= HCl
W (Dn)

(k, NDn
) be the

supersubalgebra of HCl
W (Bn)

(kB , NDn
) generated by the elements w ∈ W (Dn) ⊂

W (Bn), {xi}ni=1 and {ci}ni=1.

Remark 4.19. We can explicitly write down the commutation formula from the
algebra structure of HCl

W (Bn)
. For example,

sn−1,−nxn−1 + xnsn−1,−n = snsn−1,nsnxn−1 + xnsnsn−1,nsn

= −snsn−1,nxnsn + snxn−1sn−1,nsn

= sn(−sn−1,nxn + xn−1sn−1,n)sn

= sn(k(−1 + cncn−1))sn

= k(−1 + cn−1cn).
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This agrees with a relation in [WK, Def. 3.6]. When NDn
= 0, HCl

W (Dn)
(k, 0) is

isomorphic to the degenerate affine Hecke–Clifford algebra of type Dn defined in
[WK, Def. 3.6]. (We remark that in [WK], their convention for ci satisfies c

2
i = 1

rather than c2i = −1.)
We again define

y′i = yi +
√
2
2 k

∑

α>0,〈α,ei〉6=0

s̃α = yi +
√
2
2 k

∑

j 6=i
s̃ij +

√
2
2 k

∑

j 6=i
s̃i,−j . (4.11)

Again, for notational convenience, set y′−i = y′i.

Lemma 4.20.

(1) ciy
′
j = −y′jci for any i, j;

(2) sαy
′
is

−1
α = y′sα(i);

(3) for i 6= j, y′iy
′
j + y′jy

′
i ∈ Seg(W (Dn)).

Proof. Note that y′i is defined as the one in (4.10) for type Bn in Section 4.2 since
we have kBα = 0 for any short root α ∈ R(Bn). Then the results can be established
by Lemma 4.14 and by investigating the proof of Lemma 4.15. �

Proposition 4.21. The algebra HCl
W (Dn)

satisfies the property (∗) in Definition
3.1.

Proof. This follows from H
Cl
W (Dn)

forming a supersubalgebra of HCl
W (Bn)

(kB , NDn
)

and Remark 4.19. �

4.4. Dirac element D

Let H = H
Cl
W (An−1)

, HCl
W (Bn)

, or H
Cl
W (Dn)

. Using (3.6), the Dirac element D for H

is defined as

D =

n∑

i=1

x′ici. (4.12)

Using the expressions in Section 4.1, the explicit form of the Dirac element D is
as:

(1) Type An−1 and Dn:

D =

n∑

i=1

xici +
√
2
∑

α>0

kαsαcα =

n∑

i=1

yi +
√
2
∑

α>0

kαs̃α.

(2) Type Bn:

D =

n∑

i=1

yi +
√
2

∑

α>0, α long

kαs̃α +
√
2
2

∑

α>0, α short

kαs̃α.

In types An−1 and Dn, we consider that all the roots are long.
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Lemma 4.22. ( ∑

α>0,α long

s̃α

)2
=

∑

α>0,β>0,sα(β)<0
α,β long

s̃αs̃β .

The above equality is also true if we replace all the long roots by short roots.
Similarly, we also have

( ∑

α>0,α long

s̃α

)( ∑

α>0,α short

s̃α

)
+

( ∑

α>0,α short

s̃α

)( ∑

α>0,α long

s̃α

)
=

∑

α>0,β>0,sα(β)<0

s̃αs̃β ,

where α and β run for all pairs of roots with distinct length.

Proof. We only prove for the first case, that is, the case of long roots only. It
suffices to show that ∑

α>0,β>0,sα(β)>0
α,β long

s̃αs̃β = 0.

Set R̃ = {(α, β) ∈ R+ ×R+ : sα(β) > 0, α and β are long}. Note that for any

(α, β) ∈ R̃, either sβ(α) > 0 or ssα(β)(α) > 0. We define a map ι : R̃ → R̃ such
that

ι(α, β) =

{
(β, sβ(α)) if sβ(α) > 0,

(sα(β), α) if ssα(β)(α) > 0.

It is not hard to verify that ι is well-defined and is an involution. For ι(α, β) =
(α′, β′), one can also check that s̃αs̃β + s̃α′ s̃β′ = 0. Thus each term s̃αs̃β in the
expression

∑
α>0,β>0,sα(β)>0 s̃αs̃β can be paired with another one and get canceled.

This proves the expression is zero. �

By Proposition 4.9, Proposition 4.16, and Proposition 4.21, H satisfies the prop-
erty (∗) and hence we can define Seg(W ) to be a subalgebra of H according to
Definition 3.1.

We compute the square of the Dirac element D. This is an analogue of [BCT,
Thm. 2.11].

Theorem 4.23. Let H = HCl
W (An−1)

, HCl
W (Bn)

, or HCl
W (Dn)

. Then

D2 = ΩH − ΩSeg(W ),

where

ΩH =

n∑

i=1

x2i ,

ΩSeg(W ) =
1
2

∑

α>0,β>0,sα(β)<0

|〈α, α〉||〈β, β〉|kαkβ s̃αs̃β .

Moreover, H satisfies the property (∗∗).
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Proof. We only do for types An−1 and Bn, and the case for type Dn follows from
type Bn.

By Lemma 4.5 and Lemma 4.14, for any α > 0,

kα

( n∑

i=1

yis̃α + s̃α

n∑

i=1

yi

)
= −
√
2kα

∑

β>0,sα(β)<0

kβ |〈β, β〉|s̃α s̃β. (4.13)

Now, by (4.13) and Lemma 4.22,

D2 =

( n∑

i=1

yi +
√
2
2

∑

α>0

kα|〈α, α〉|s̃α
)2

=

( n∑

i=1

yi

)2
+

√
2
2

n∑

i=1

yi
∑

α>0

kα|〈α, α〉|s̃α +
√
2
2

∑

α>0

kα|〈α, α〉|s̃α
n∑

i=1

yi

+ 1
2

(∑

α>0

kα|〈α, α〉|s̃α
)2

=
n∑

i=1

x2i − 1
2

∑

α>0,β>0,sα(β)<0

kαkβ |〈α, α〉||〈β, β〉|s̃α s̃β.

We can directly verify that ΩH is in the center of H and ΩSeg(W ) is in the center
of Seg(W ). Hence, H has the property (∗∗). �

We obtain the following Parthasarathy-Dirac-type inequality. Examples satis-
fying the hypothesis of Corollary 4.24 below will be considered in Section 7 (see
Proposition 7.12).

Corollary 4.24. Suppose an irreducible H-module (π,X) satisfies the property
that X admits a non-degenerate positive-definite Hermitian form such that the
adjoint operator of π(D) is −π(D). For any irreducible Seg(W )-module (σ, U),

HomSeg(W )(U,Res
H

Seg(W )X) 6= 0

only if
χπ(ΩH) ≤ χσ(ΩSeg(W )).

Proof. Let UX be an U -isotypical component of X and let u ∈ U . The corollary
follows from

0 ≤ 〈D.u,D.u〉 = 〈u,−D2.u〉 = −(χπ(ΩH)− χσ(ΩSeg(W )))〈u, u〉. �

The conclusion of this section is a version of Theorem 3.5 in specific cases.

Theorem 4.25. Let H = HCl
W (An−1)

, HCl
W (Bn)

, or HCl
W (Dn)

. Let (π,X) be an irre-

ducible supermodule of H with the central character χπ (Definition 2.6). Let D
be the Dirac element in H in (4.12). Define the Dirac cohomology HD(X) as in
Theorem 3.5. Then HD(X) has a natural Seg(W )-module structure. Suppose

HomSeg(W )(U,HD(X)) 6= 0,

for some Seg(W )-module (σ, U). Then χπ = χσ, where χσ is defined as in (3.7).

Proof. This immediately follows from Theorem 3.5, Proposition 4.9, and Theorem
4.23. �
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5. Examples of non-vanishing Dirac cohomology

5.1. Construction of some modules

In this section, we construct some modules for the degenerate affine Hecke–Clifford
algebra of classical types.

In type An−1, we follow the construction in [HKS, Sect. 4.1], which uses a
Jucys–Murphy-type element. For type Bn, we use a slightly different approach.
The underlying idea of the construction is to first consider a Seg(W )-module and
then try to extend the action to the entire degenerate affine Hecke–Clifford algebra.
However, we may not expect that this process always works, and indeed, we can
only do it for certain parameters.

Type An−1: Let Cln be the subalgebra of HCl
W (An−1)

generated by all ci. Define

S̃tW (An−1) to be an HCl
W (An−1)

-supermodule, which is identified with Cln as vector

spaces and the action of Hn on S̃tW (An−1) is determined by the following:

ci.1 = ci, (5.14)

sα.1 = 1, (5.15)

where 1 is the identity in Cln and

xi.v = k

( ∑

1≤j<i≤n
si,j(1− cicj)

)
.v,

where v is any vector in Cln and the actions of si,j and ci, cj are the ones defined in

(5.14) and (5.15). The notation S̃tW (An−1) stands for a Steinberg-type module as
it performs the role of Steinberg module in the degenerate affine Hecke algebra. It
is straightforward to check that the above actions define an HCl

W (An−1)
-module by

verifying the defining relations of HCl
W (An−1)

. Some details can be found in [HKS,

Prop. 4.1.1].

Type Bn: Let α be a long root in R(Bn) and let β be a short root in R(Bn). Set
NBn

= 2(n−1)k2
α+
√
2kαkβ . Let Cln be the subalgebra ofHCl

W (Bn)
generated by the

elements ci, which is isomorphic to the Clifford algebra. Let U(n) be an irreducible
supermodule of Cln. The actions of H

Cl
W (Bn)

on U(n)⊗̃U(n) are determined by the
following:

xi.(u⊗ v) = −(−1)deg(u)
√
−1

((
kα

(
c1 + c2 + · · ·+ ci−1

+ (n− i)ci
)
+

√
2
2 kβci

)
.u
)
⊗ (ci.v),

(5.16)

sn.(u⊗ v) = (−1)deg(u)
√
−1(cn.u)⊗ (cn.v),

si,j .(u⊗ v) = (−1)deg(u)
√
−1

(
ci − cj√

2
.u

)
⊗
(
ci − cj√

2
.v

)
, (5.17)

ci.(u⊗ v) = (−1)deg(u)(u⊗ ci.v). (5.18)

The above actions are indeed well defined:
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Proposition 5.1. For NBn
= 2(n − 1)k2

α +
√
2kαkβ , the actions (5.16)–(5.18)

above on U(n)⊗̃U(n) define an HCl
W (Bn)

(k, NBn
)-module.

Proof. The computation is straightforward for verifying the defining relations of
HCl
W (Bn)

. For example,

(si,i+1xi − xi+1si,i+1).(u⊗ v)
= − 1

2kα((−(n− i) + (n− i)cici+1).u)⊗ ((−1 + cici+1).v)

+ 1
2kα(((n− i− 2)− (n− i)cici+1).u)⊗ (1− cici+1).v)

= kαu⊗ ((−1 + cici+1).v)

= kα(−1 + cici+1).(u⊗ v).

Moreover, for i < j, note that

(
kα(c1 + c2 + · · ·+ ci−1 + (n− i)ci) +

√
2
2 kβci

)

·
(
kα(c1 + c2 + · · ·+ cj−1 + (n− j)cj) +

√
2
2 kβcj

)

+
(
kα(c1 + c2 + · · ·+ cj−1 + (n− j)cj) +

√
2
2 kβcj

)

·
(
kα(c1 + c2 + · · ·+ ci−1 + (n− i)ci) +

√
2

2
kβci

)

= −2(i− 1)k2
α + 2kα

(
− (n− i)kα −

√
2
2 kβ

)

= −2(n− 1)k2
α −
√
2kαkβ

and hence xixj−xjxi = (2(n−1)k2
α+
√
2kαkβ)cjci. Other relations can be verified

similarly (and more easily). �

Denote the above HCl
W (Bn)

-module by S̃tBn
.

Type Dn: Set NDn
= 2(n − 1)k2

α. Recall that HCl
W (Dn)

is a subalgebra of the

algebra HCl
W (Bn)

(kB , NDn
) (see kB in Definition 4.18). By checking the parameter

function, we have an HCl
W (Bn)

(kB , NDn
)-module S̃tBn

defined above. Denote by

S̃tDn
the restriction of S̃tBn

to an HCl
W (Dn)

-module.

5.2. Dirac cohomology

We keep using the notation in Section 5.

Proposition 5.2. Set NBn
= 2(n−1)k2

α+
√
2kαkβ (with the notations in Section

5.1) and set NDn
= 2(n− 1)k2. Let H = HCl

An−1
,HCl

Bn
(k, NBn

) or HCl
Dn

(k, NDn
). Let

X = S̃tAn−1
, S̃tBn

or S̃tDn
be an H-module defined in Section 5.1. The Dirac ope-

rator D acts identically as zero on X. In particular, HD(X) 6= 0.
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Proof. Type An−1: For v ∈ S̃tAn−1
,

π(D)v =
∑

1≤j<i≤n
sij(1− cicj)ci.v +

√
2k

∑

α∈R+

s̃α.v

=
∑

1≤j<i≤n
ksij(ci − cj).v +

√
2k

∑

α∈R+

s̃α.v

=
(
−
√
2

∑

1<j<i<n

ks̃ji +
√
2k

∑

α∈R+

s̃α

)
.v = 0.

Type Bn: Recall that S̃tBn
is isomorphic to U⊗̃U as vector spaces in the notation

of Section 5.1. For u⊗ v ∈ U ⊗̃U ,

(−1)deg(u)
√
−1π(D)(u⊗ v)

=

n∑

i=1

((
kα(c1 + c2 + · · ·+ ci−1 + (n− i)ci) +

√
2
2 kβci

)
.u
)
⊗ v

−
√
2kα

∑

1≤j<i≤n

(ci − cj√
2

.u
)
⊗ v −

√
2kα

∑

1≤j<i≤n

(ci + cj√
2

.u
)
⊗ v

−
√
2
2 kβ

n∑

i=1

(ci.u)⊗ v

=

n∑

i=1

((
2(n− i)ci +

√
2
2 kβci

)
.u
)
⊗ v −

√
2kα

n∑

i=1

(2(n− i)ci.u)⊗ v

−
√
2
2 kβ

n∑

i=1

(ci.u)⊗ v = 0.

Type Dn: Recall that HCl
W (Dn)

is a subalgebra of HCl
W (Bn)

(kB , NDn
) (see the

notation of kB in Definition 4.18). The Dirac operator for HCl
W (Dn)

is the same as

the Dirac operator for H
Cl
W (Bn)

(kB , NDn
). Then the vanishing result follows from

the result for type Bn, which has just been proven. �

6. Sergeev algebra

The main purpose of this section is to review several results about Sergeev
algebra, which will be useful for computing the Dirac cohomology of some modules
for HCl

W (An−1)
in the next section. Some results can also be formulated to other

types and one may refer to [WK, Sect. 2]. Starting from this section, we consider
type An−1 only and we shall usually use the notation Sn for W (An−1) (where Sn
represents the symmetric group). Write R for R(An−1) and R+ for R+(An−1).
Recall that ∆ is the set of simple roots in R.
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6.1. The superalgebra C[S̃n]
−

Let S̃n be the group generated by the elements ψ, t̃1,2, . . . , t̃n−1,n subject to the
following relations:

(t̃i,i+1)
2 = 1,

(t̃i,i+1 t̃i+1,i+2)
3 = 1 for i = 1, . . . , n− 1,

t̃i,i+1 t̃j,j+1 = ψt̃j,j+1 t̃i,i+1 for |i− j| > 1 ,

ψt̃i,i+1 = t̃i,i+1ψ for i = 1, . . . , n− 1 ,

ψ2 = 1.

Then S̃n is a double cover of Sn via the map determined by sending t̃αi
to the

transposition between i and i + 1, and ψ 7→ 1. We also sometimes write t̃αi,i+1

for ti,i+1 if we want to refer to the simple root αi,i+1. Denote by C[S̃n] the

group algebra of S̃n with a basis labeled as
{
ew̃ : w̃ ∈ S̃n

}
. Define C[S̃n]

− :=

C[S̃n]/〈eψ + 1〉. We shall simply write w̃ for the image of ew̃ in C[S̃n]
−. There is

a superalgebra structure on C[S̃n]
− with deg(t̃α) = 1 for all α ∈ ∆.

Lemma 6.1. Given an Sn-representation U and a C[S̃n]
−-module U ′, there exists

a natural C[S̃n]
−-module structure on U ⊗ U ′ characterized by

t̃α.(u⊗ u′) = (sα.u)⊗ (t̃α.u
′),

where α ∈ ∆, u ∈ U , and u′ ∈ U ′.

Define an equivalence relation on Irr(C[S̃n]
−): U ∼sgn U

′ if and only if U = U ′

or U = sgn⊗U ′ as C[S̃n]−-modules, where sgn is the sign representation of Sn and

the C[S̃n]
−-module structure of sgn⊗U ′ is defined in Lemma 6.1.

Proposition 6.2. There is a natural bijection

Irrsup(C[S̃n]
−)/∼Π ←→ Irr(C[S̃n]

−)/∼sgn .

Proof. It suffices to see that the equivalence relation ∼ in Proposition 2.4 is the
same as ∼sgn. This follows from deg(t̃α) = 1 for all α ∈ ∆ and definitions. �

6.2. Sergeev algebra

Definition 6.3. Recall that HCl
W (An−1)

is defined in Definition 4.2. The Sergeev

algebra, denoted Segn, is the subalgebra of HCl
W (An−1)

generated by the elements

w ∈W (An−1) = Sn and ci (i = 1, . . . , n). In other words, since HCl
W (An−1)

satisfies

the property (∗), Segn is the same as Seg(WAn−1
) in Definition 3.1. We shall use

notations in Section 4.1 (e.g., sα, cα, s̃α).
Let Cln be the supersubalgebra of Segn generated by ci (i = 1, . . . , n). There

exists a unique, up to applying the functor Π, irreducible supermodule of Cln. Let
U(n) be a fixed choice of an irreducible supermodule of Cln. The dimension of
U(n) is 2n/2 for n even and 2(n+1)/2 for n odd.

The relation between subalgebras Segn and C[S̃n]
− is the following.
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Lemma 6.4 ([Kl, Lem. 13.2.3]). Segn is isomorphic to C[S̃n]
−⊗̃Cln as superal-

gebras.

Proof. Define a map:

sα 7→ t̃α ⊗ cα (α ∈ ∆), ci 7→ 1⊗ ci (i = 1, . . . , n).

One can verify that the map is an isomorphism. �

For any α ∈ R+, define t̃α ∈ C[Sn]
− such that sα maps to t̃α ⊗ cα under the

map in the proof of Lemma 6.4.
Here is an analogue of Lemma 6.1:

Lemma 6.5. Given an Sn-representation U and a Segn-module U ′, there exists
a natural Segn-module structure on U ⊗ U ′ characterized by

sα.(u⊗ u′) = (sα.u)⊗ (sα.u
′),

and
ci.(u⊗ u′) = u⊗ (ci.u

′),

where α ∈ ∆, i = 1, . . . , n, u ∈ U , and u′ ∈ U ′.

6.3. Relation between supermodules of C[S̃n]
− and Segn

Recall from [BK] (our formulation here is a bit different) a natural functor F :

F : Modsup(C[S̃n]
−)→ Modsup(Segn),

X 7→ X ⊗ U(n).

The Segn-supermodule structure of X ⊗ U(n) is characterized by

sα.(x⊗ u) = −(−1)deg(x)(t̃α.x)⊗ (cα.u) (α ∈ ∆),

ci.(x⊗ u) = (−1)deg(x)x⊗ (ci.u) (i = 1, . . . , n).

It is straightforward to check that the above equations define a Segn-module. Next,
define

G : Modsup(Segn)→ Modsup(C[S̃n]
−),

Y 7→ HomCln(U(n), Y ).

The C[S̃n]
−-module structure is given by for θ ∈ HomCln(U(n), Y ),

(t̃α.θ)(u) = (sαcα).θ(u) (α ∈ ∆).

Proposition 6.6 ([BK, Thm. 3.4]). The functors F and G form an adjoint pair,
i.e., there is a natural isomorphism

HomSegn(F (U), U ′) = Hom
C[S̃n]−

(U,G(U ′)).
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Furthermore, if n is even, G ◦F = Id and F ◦G = Id. If n is odd, G ◦F = Id⊕Π
and F ◦G = Id⊕Π, where Π is defined in Section 2.2.

Let UCln be a Segn-module defined by

UCln = Ind
Segn
C[Sn]

triv = Segn⊗C[Sn] triv,

where C[Sn] is regarded as the subalgebra of Segn generated by the elements
fsα for all α ∈ ∆ and triv is the trivial representation of C[Sn]. In particular,
dimC UCln = 2n.

We define a corresponding C[S̃n]
−-module Uspin as follows. If n is even, define

Uspin = G(UCln). If n is odd, by [Kl, Prop. 13.2.2] and [Kl, Thm. 22.2.1],G(UCln) =

M ⊕Π(M) for some irreducible C[S̃n]
−-module M . Then define Uspin =M .

An immediate consequence of Proposition 6.6 is given below.

Lemma 6.7. F (Uspin) = UCln .

7. Spectrum of the Dirac operator for type An−1

We have seen the action of the Dirac operator on certain modules. In this
section, we will go further for type An−1 and compute the action of D on some
interesting HCl

W (An−1)
-modules. We shall see that Theorem 4.25 for HCl

W (An−1)
has

interesting consequences. We shall write HCl
n for HCl

W (An−1)
for simplicity. We keep

using the notations in Section 4.1 and Section 6.

7.1. Further notation for the root system of type An−1

A partition of n is a sequence of positive integers (n1, . . . , nr) such that n1 ≥
n2 ≥ . . . ≥ nr and n1 + · · · + nr = n. For a partition λ = (n1, . . . , nr) of n, let
Iλ = {1, . . . , n} \ {n1, n1 + n2, . . . , n1 + · · ·+ nr} and let

∆λ = {ei − ei+1 : i ∈ Iλ} .

Let Vλ be the real span of ∆λ in Rn and let R+
λ = Vλ ∩ R+.

7.2. Central characters for HCl

n

The center of HCl
n plays a role in the following computations.

Proposition 7.1 ([Kl, Thm. 14.3.1]). The center Z(HCl
n ) of HCl

n is the set of all
symmetric polynomials in C[x21, x

2
2, . . . , x

2
n]. In particular, any element in Z(HCl

n )
is of even degree.

Definition 7.2. Recall that the central character χπ : Z(HCl
n )0 → C of an irre-

ducible supermodule (π,X) is defined in Definition 2.6. By Proposition 7.1, we
can also write χπ : Z(HCl

n )→ C.
For an element γ = (a1, . . . , an) ∈ Cn, define χ′

γ : C[x21, . . . , x
2
n] → C such

that χ′
γ(x

2
i ) = ai. Define χγ to be the restriction of χ′

γ to Z(HCl
n ). For the central

character χπ ofX , there exists a unique γ ∈ Cn, up to permutations of coordinates,
such that χπ = χγ . We may also say that γ is the central character of X .

An HCl
n -module (π,X) is said to be quasisimple if any element in Z(HCl

n ) acts
by a scalar. In this case, γ defined as above is still called the central character
of X .
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7.3. Induced modules

Let us recall a construction of some HCl
n -modules in [HKS, Sect. 4], which is indeed

modified from the module of type An−1 in Section 5.1. There are also some similar
constructions of HCl

n -modules in [Wa, Sect. 4]. Fix a partition λ = (n1, n2, . . . , nr)
of n. Let Sλ be the subgroup of Sn generated by si,i+1 for i = {1, . . . , n} \
{n1, n1 + n2, . . . , n1 + · · ·+ nr}. It is easy to see that Sλ is isomorphic to Sn1

×
. . . × Snr

. Let H
Cl
λ be the supersubalgebra of HCl

n generated by all w ∈ Sλ, xi
(i = 1, . . . , n) and ci (i = 1, . . . , n). Let Segλ be the supersubalgebra of HCl

λ

generated by all w ∈ Sλ and ci (i = 1, . . . , n). Let S̃tλ be an HCl
λ module which is

identified with Cln as vector spaces and the action of HCl
λ is characterized by:

ci.1 = ci (i = 1, . . . , n), sα.1 = 1 (sα ∈ Sλ),

xi.v =

( ∑

nk−1+1≤j<i≤nk

si,j(1− cicj)
)
.v (i = nk + 1, . . . , nk+1),

where v is any vector in Cln and the actions of si,j and ci, cj are the ones defined
in (5.14) and (5.15). It is straightforward to check that the above actions define an
HCl
λ -module by verifying the defining relations of HCl

λ . Some details can be found
in [HKS, Prop. 4.1.1].

Lemma 7.3. The element x2i acts on S̃tλ by a scalar (i − nk − 1)(i− nk) where
k = 0, . . . , r − 1 and i = nk + 1, . . . , nk+1 .

Proof. Direct computation, or see [HKS, Prop. 4.1.1]. �

Define the Dirac-type element Dλ in HCl
λ as:

Dλ =

n∑

i=1

yi +
√
2k

∑

α∈R+

λ

s̃α.

Proposition 7.4. The element Dλ acts as zero on the HCl
λ -module S̃tλ.

Proof. It follows a similar computation of type An−1 in the proof of Proposition
5.2. �

Define

Xλ = Ind
H

Cl
n

HCl
λ

S̃tλ = H
Cl
n ⊗HCl

λ
S̃tλ (7.19)

with the map πλ defining the action of HCl
n on Xλ. Since Z(HCl

n ) ⊂ Z(HCl
λ ), any

element of Z(HCl
n ) acts by a scalar on S̃tλ. With the definitions for Xλ and Z(HCl

n ),
we have that Xλ is quasisimple (Definition 7.2). The central character of Xλ can
be represented by

(1(1− 1), . . . , n1(n1 − 1)︸ ︷︷ ︸
n1terms

, . . . , 1(1− 1), . . . , nr(nr − 1)︸ ︷︷ ︸
nrterms

) ∈ R
n.

To compute the Dirac cohomology of the above induced modules, we need some
more information discussed in the next subsections.

153



KEI YUEN CHAN

7.4. Sn-structure and Segn-structure of (πλ, Xλ)

We continue to fix a partition λ of n. Recall that in Definition 4.2(1), HCl
n contains

C[Sn] as a subalgebra. Let (πV , V = C
n) be the Sn-representation such that

elements in Sn permute the coordinates.

Lemma 7.5. The restriction of Xλ to C[Sn] is isomorphic to

C[Sn]⊗C[Sλ] Res
C[Sn]
C[Sλ]

( n⊕

i=0

∧iV
)
,

as C[Sn]-modules.

Proof. Note that the restriction of S̃tλ to C[Sλ] is isomorphic to Res
C[Sn]
C[Sλ]

(
⊕n

i=0∧iV ).
Then HCl

n ⊗HCl
λ
S̃tλ and C[Sn]⊗C[Sλ]Res

C[Sn]
C[Sλ]

(⊕n
i=0∧iV

)
are isomorphic as C[Sn]-

modules. �

It is well known that we have the following C[Sn]-isomorphism:

C[Sn]⊗C[Sλ] Res
Sn

Sλ

( n⊕

i=0

∧iV
)
∼=

(
C[Sn]⊗C[Sλ] triv

)
⊗

n⊕

i=0

∧iV.

Here the module in the right-hand side is viewed as the tensor product of two
Sn-representations. The isomorphism is given by

w ⊗ (v1 ∧ · · · ∧ vi) 7→ (w ⊗ 1)⊗ (πV (w)v1 ∧ · · · ∧ πV (w)vi).

Note that the space ⊕ni=0∧iV can be identified with Cln via the map determined
by

ei1 ∧ · · · ∧ eir 7→ ci1 · · · cir ,

where {e1, . . . , en} is the standard basis of V = Cn. Thus Xλ = Ind
H

Cl
n

HCl
λ

S̃tλ can be

identified with, as vector spaces,
(
C[Sn]⊗C[Sλ] triv

)
⊗ UCln via the identification

in Lemma 7.5 and the above identification between ⊕ni=1∧i V and Cln. Then if we
translate the action of the subalgebra Segn under the above identifications, then
we have:

πλ(w)(w
′ ⊗ 1⊗ ci1 . . . cir ) = ww′ ⊗ 1⊗ cw(i1) . . . cw(ir),

πλ(ci)(w
′ ⊗ 1⊗ ci1 . . . cir ) = w′ ⊗ 1⊗ cici1 . . . cir .

We have just proven that:

Lemma 7.6. As Segn-supermodules,

Res
H

Cl
n

Segn
Xλ = (C[Sn]⊗C[Sλ] triv)⊗ UCln ,

where the supermodule in the right hand side has the Segn-supermodule structure
described in Lemma 6.5.

Recall that F is the functor defined in Section 6.3.
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Proposition 7.7. As Segn-supermodules,

Res
H

Cl
n

Segn
Xλ = F ((C[Sn]⊗C[Sλ] triv)⊗ Uspin),

where (C[Sn]⊗C[Sλ] triv)⊗Uspin has C[S̃n]
−-supermodule described in Lemma 6.1.

Proof. By Lemma 7.6, it suffices to show

(C[Sn]⊗C[Sλ] triv)⊗ UCln = (C[Sn]⊗C[Sλ] triv)⊗ Uspin ⊗ U(n).

By Lemma 6.7, there is a Segn-module isomorphism f from UCln to F (Uspin) =
Uspin ⊗ U(n). Then define a vector space isomorphism of Segn-modules

(C[Sn]⊗C[Sλ] triv)⊗ UCln → (C[Sn]⊗C[Sλ] triv)⊗ Uspin ⊗ U(n)

determined by

(w ⊗ 1)⊗ (ci1 . . . cir ⊗ 1) 7→ (w ⊗ 1)⊗ f(ci1 . . . cir ⊗ 1).

Using the module structure described before Lemma 7.6, one can check the linear
isomorphism is Segn-equivariant. �

7.5. Hermitian form on (πλ, Xλ)

We continue to fix a partition λ of n. In this subsection, we shall construct a Her-
mitian form on the H

Cl
n -module (πλ, Xλ) such that the adjoint operator of πλ(D)

with respect to such form is −πλ(D). We will see this makes the computation for
the Dirac cohomology HD(X) of those modules X much easier.

Recall that Segλ is a subalgebra of HCl
λ .

Lemma 7.8. There exists a Segλ-invariant positive definite Hermitian form on

S̃tλ.

Proof. Since Res
H

Cl
λ

Segλ
S̃tλ = Res

Segn
Segλ

UCln as Segλ-modules, it suffices to consider

the case when λ = (n). Recall that UCln = Segn⊗C[Sn] triv in Section 6.3. Define
〈· , ·〉 : UCln × UCln → C such that for 1 ≤ i1 < · · · < ir ≤ n and 1 ≤ j1 < · · · <
js ≤ n,

〈ci1ci2 · · · cir ⊗ 1, cj1cj2 · · · cjs ⊗ 1〉 =
{
1 if {i1, . . . , ir} = {j1, . . . , js} ,
0 otherwise .

It is straightforward to check that 〈 , 〉 satisfies the desired properties. �

We denote the Segλ-invariant Hermitian form on S̃tλ in the above lemma by

〈· , ·〉λ. Recall that Xλ = HCl
n ⊗HCl

λ
S̃tλ. We define a bilinear form 〈· , ·〉 on Xλ

characterized by:

〈w1 ⊗ v1, w2 ⊗ v2〉 = δw1Sλ,w2Sλ
〈πλ(w−1

2 w1)v1, v2〉λ

where w1, w2 ∈ Sn and δw1Sλ,w2Sλ
= 1 if w1Sλ = w2Sλ and δw1Sλ,w2Sλ

= 0
otherwise.
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Lemma 7.9. 〈· , ·〉 defined above is a positive definite Hermitian form.

Proof. This follows from the property that 〈· , ·〉λ is positive definite and Hermitian.
�

We next compute the adjoint operator of πλ(D) with respect to 〈· , ·〉. We begin
with some lemmas.

Lemma 7.10. For v1, v2 ∈ S̃tλ, 〈D ⊗ v1, 1⊗ v2〉 = 〈1⊗ v1, D ⊗ v2〉 = 0.

Proof. For α ∈ R+ \R+
λ , one has

〈s̃α ⊗ v1, 1⊗ v2〉 = 0.

With the equality

D = Dλ +
√
2k

∑

α>0,α∈R+\R+

λ

s̃α,

one has 〈D ⊗ v1, 1 ⊗ v2〉 = 〈Dλ.v1, v2〉λ. Then we have 〈D ⊗ v1, 1 ⊗ v2〉 = 0 by
Proposition 7.4. The proof for 〈1⊗ v1, D ⊗ v2〉 = 0 is similar. �

Lemma 7.11. Suppose β1 6= β2 and β1, β2 ∈ R+ \R+
λ . Then sβ1

sβ2
6∈ Sλ.

Proof. In the following, we implicitly use several times the fact that any element
in Sλ cannot send a positive root not in Rλ to a negative root. If 〈β1, β2〉 = 0,
then sβ1

sβ2
(β2) = −β2 < 0. Since β2 6∈ Rλ, sβ1

sβ2
/∈ Sλ. If 〈β1, β2〉 = −1, then

sβ2
(β1) = β1+β2 > 0. Moreover, sβ1

sβ2
(sβ2

(β1)) = −β1 < 0. Since β1 +β2 /∈ Rλ,
sβ1

sβ2
/∈ Sλ. If 〈β1, β2〉 = 1, then either sβ1

(β2) > 0 or sβ2
(β1) > 0. In the case

that sβ1
(β2) > 0, sβ1

sβ2
(β2) = −sβ1

(β2) < 0. Then since β2 /∈ Rλ, sβ1
sβ2

/∈ Sλ.
A similar argument by considering (sβ1

sβ2
)−1 can prove another case. �

Proposition 7.12. The adjoint operator of πλ(D) with respect to 〈· , ·〉 is −πλ(D).

Proof. It suffices to show that

〈Dw1 ⊗ v1, w2 ⊗ v2〉 = 〈w1 ⊗ v1,−Dw2 ⊗ v2〉

for any w1, w2 ∈ Sn and v1, v2 ∈ Xλ. To this end, we consider two cases. Suppose
w1Sλ = w2Sλ. Then,

〈Dw1 ⊗ v1, w2 ⊗ v2〉 = 〈w−1
2 Dw1 ⊗ v1, 1⊗ v2〉

= 〈Dw−1
2 w1 ⊗ v1, 1⊗ v2〉

= 〈D ⊗ (w−1
2 w1).v1, 1⊗ v2〉

= 0 (by Lemma 7.10).

Similarly, we also have

〈w1 ⊗ v1, Dw2 ⊗ v2〉 = 0.

and so 〈Dw1 ⊗ v1, w2 ⊗ v2〉 = 〈w1 ⊗ v1,−Dw2 ⊗ v2〉.
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Now we suppose that w1Sλ 6= w2Sλ. Without loss of generality, assume that
w−1

2 w1 is a minimal representative in w−1
2 w1Sλ.

〈w−1
2 w1D ⊗ v1, 1⊗ v2〉 =

〈
w−1

2 w1

√
2
∑

α>0

ks̃α ⊗ v1, 1⊗ v2
〉

=
〈
1⊗ v1,

√
2
∑

α>0

ks̃αw
−1
1 w2 ⊗ v2

〉

= −〈1⊗ v1, Dw−1
1 w2 ⊗ v2〉+ 〈1⊗ v1, w−1

1 w2D ⊗ v2〉

+
〈
1⊗ v1,

√
2
∑

α>0

ks̃αw
−1
1 w2 ⊗ v2

〉
.

It remains to show

〈1⊗ v1, w−1
1 w2D ⊗ v2〉+

√
2
〈
1⊗ v1,

∑

α>0

ks̃αw
−1
1 w2 ⊗ v2

〉
= 0.

By Lemma 7.11, there exists at most one β ∈ R+ \ Rλ such that w−1
1 w2sβ ∈ Sλ.

If such β does not exist, then the two terms in the left-hand side of the above
equation are both zero and so the equation holds. If such unique β exists, let
β′ = −w−1

1 w2(β). Note that β′ > 0, otherwise w−1
1 w2sβ 6∈ Sλ. Then

〈1⊗ v1, w−1
1 w2D ⊗ v2〉+

√
2
〈
1⊗ v1,

∑

α>0

ks̃αw
−1
1 w2 ⊗ v2

〉

=
√
2k〈1⊗ v1, w−1

1 w2s̃β ⊗ v2〉
+
√
2k〈1⊗ v1, s̃β′w−1

1 w2 ⊗ v2〉 (by definition of D and 〈· , ·〉)
= −
√
2k〈1⊗ v1, s̃β′w−1

1 w2 ⊗ v2〉
+
√
2k〈1⊗ v1, s̃β′w−1

1 w2 ⊗ v2〉 (by Lemma 4.4(4))

= 0.

This completes the proof. �

Proposition 7.13. Let (πλ, Xλ) be the HCl
n -module as in (7.19). Then

kerπλ(D) = kerπλ(D
2)

and
kerπλ(D) ∩ imπλ(D) = 0.

In particular, HD(Xλ) = kerπλ(D
2).

Proof. It is clear that kerπλ(D) ⊂ kerπλ(D
2). For v ∈ kerπλ(D

2), we have
〈πλ(D)v,−πλ(D)v〉 = 〈πλ(D2)v, v〉 = 0 by Proposition 7.12. Since 〈· , ·〉 is positive
definite by Lemma 7.9, πλ(D)v = 0. This proves the first equation, kerπλ(D) =
kerπλ(D

2). The equation kerπλ(D) ∩ im πλ(D) = 0 follows from the first one.
�
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7.6. Dirac cohomology of Xλ

Let Pn be the set of partitions of n. One can attach an element in Pn to a point
in Rn via the Jacobson-Morozov triple. The map, denoted Φ1 : Pn → Rn can be
explicitly described as:

(n1, n2, . . . , nr) 7→ (−n1+1,−n1+3, . . . , n1−1︸ ︷︷ ︸
n1 terms

, . . . ,−nr+1,−nr+3, . . . , nr−1︸ ︷︷ ︸
nr terms

).

There is another way to attach an element in Pn to a point in Rn via the central
characters of the modules Xλ. This map, denoted Φ2 : Pn → Rn, is:

(n1, n2, . . . , nr) 7→ (
√
(1−1)1, . . . ,

√
(n1−1)n1︸ ︷︷ ︸

n1 terms

, . . . ,
√
(1−1)1, . . . ,

√
nr(nr−1)︸ ︷︷ ︸

nr terms

).

The first interesting computational fact is the following:

Lemma 7.14. For a partition λ of n, |Φ1(λ)| = |Φ2(λ)|, where |.| denotes the
standard Euclidean norm in Rn.

Proof. This follows from the computation that

ni∑

k=1

(−ni + 2k − 1)
2
=

ni∑

k=1

k(k − 1) =
1

3
(ni − 1)ni(ni + 1). �

For each λ ∈ Pn, define a Sn-representation:

Wλ =
(
Ind

C[Sn]
C[Sλ]

triv
)
∩
(
Ind

C[Sn]
C[Sλt ]

sgn
)
,

where sgn and triv are respectively the sign and trivial representations of Sλ, and
λt is the conjugate of λ. It is well known that Wλ exhausts the list of irreducible
representations of Sn.

Define
Ω

C[S̃n]−
= 2k2

∑

α>0,β>0,sα(β)<0

t̃αt̃β ∈ C[S̃n]
−.

Let P dist
n be the set of partitions of n with distinct parts. Recall that we

denote by Irrsup C[S̃n]
− (resp. Irrsup Segn) the set of irreducible supermodules of

C[S̃n]
− (resp. Segn). Recall that the equivalence relation ∼Π on Irrsup C[S̃n]

− or
Irrsup Segn is defined in Section 2.3.

Proposition 7.15 ([Ci1, Part of Thm. 1.0.1] (also see [St])).There exists a bijec-

tion Ψ1 : Pdist
n → Irrsup C[S̃n]

−/∼Π such that for each partition λ of n, there exists
a representative (σ, U) ∈ Ψ1(λ) with the properties that

k2|Φ1(λ)|2 = χσ(ΩC[S̃n]−
)

and
Hom

C[S̃n]−
(U,Wλ ⊗ Uspin) 6= 0.
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Proof. In [Ci1, Thm. 1.0.1], the set IrrC[S̃n]
−/∼sgn is considered instead of the

set Irrsup C[S̃n]
−/∼Π. By Proposition 6.2, there is a natural bijection between

IrrC[S̃n]
−/∼sgn and Irrsup C[S̃n]

−/∼Π. Then one can now apply [Ci1, Thm. 1.0.1].
�

Here is an analogue of Proposition 7.15. Recall that ΩSegn (i.e., ΩSeg(WAn−1
)) is

defined in Theorem 4.23.

Proposition 7.16. There exists a bijection Ψ2 : Pdist
n → Irrsup Segn /∼Π such

that there exists a representative (σ, U) ∈ Ψ2(λ) with the properties that

k2|Φ2(λ)|2 = χσ(ΩSegn
)

and
HomSegn(U, F (Wλ ⊗ Uspin)) 6= 0.

Proof. Note that for an irreducible C[S̃n]
−-supermodule U , F (U) is either an ir-

reducible supermodule or the direct sum of two irreducible supermodules of op-
posite grading. Thus we could define Ψ2(λ) to be the unique equivalence class in
Irrsup Segn /∼Π containing the irreducible supermodule(s) in F (U) for a represen-
tative U ∈ Φ1(λ), where Φ1 is defined in Proposition 7.15.

It remains to check those two properties. Recall that F (U) = U⊗U(n) and that
the action of Segn on F (U) is defined in Section 6.3. Then for u⊗ u′ ∈ U ⊗U(n),

ΩSegn .(u⊗ u
′) = 2k2

∑

α,β>0,sα(β)<0

s̃αs̃β .(u⊗ u′)

= 2k2

( ∑

α,β>0,sα(β)<0

t̃αt̃β .u

)
⊗ u′

= χσ(ΩC[S̃n]−
)u⊗ u′.

Thus for any irreducible supermodule (σ′, U ′) in F (U), χσ′(ΩSegn
) = χσ(ΩC[S̃n]−

).

Then combining this with Lemma 7.14 and Proposition 7.15, we have shown the
first property.

The second property follows from

HomSegn(F (U
′), F (Wλ ⊗ Uspin)) = Hom

C[S̃n]−
(U ′, G ◦ F (Wλ ⊗ Uspin)) 6= 0,

where the last equality follows from Propositions 6.6 and 7.15. �

Lemma 7.17. For a partition λ of n with distinct parts, there exists a represen-
tative U ∈ Φ2(λ) such that

HomSegn
(U,Res

H
Cl
n

Segn
Xλ) 6= 0.

Proof. This follows from

HomSegn(U,Res
H

Cl
n

Segn
Xλ)

= HomSegn(U, F ((C[Sn]⊗C[Sλ] triv)⊗ Uspin)) (by Proposition 7.7)

⊇ HomSegn(U, F (Wλ ⊗ Uspin)) (by definition of Wλ).

The statement now follows from Proposition 7.16. �
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The following theorem states that the induced modules (πλ, Xλ) with λ of dis-
tinct parts have non-zero Dirac cohomologies.

Theorem 7.18. Let λ be a partition of n with distinct parts. Let (πλ, Xλ) be the
HCl
n -module defined in (7.19). Let Ψ2 be the map defined in Proposition 7.16. Then

there exists a representative U in Ψ2(λ) such that

HomSegn(U,HD(Xλ)) 6= 0.

In particular, HD(Xλ) is non-zero.

Proof. For a fixed λ ∈ Pdist
n , let U be a Segn-module with the property in Lemma

7.17. Then there exists a non-zero vector v in the isotypical component U of Xλ.
By Theorem 4.23, Lemma 7.3, and Proposition 7.16, πλ(D

2)v = (χπλ
(ΩHCl

n
) −

χΨ2(λ)(ΩSegn))v = (k2|Φ2(λ)|2 − χΨ2(λ)(ΩSegn))v = 0. Hence, v ∈ ker(πλ(D
2)).

By Proposition 7.13, v ∈ HD(Xλ) = kerπλ(D
2). This proves the theorem. �

The Dirac cohomology HD(Xλ) also provides a way to realize irreducible Segn-
supermodules.

Corollary 7.19. For each of λ ∈ Pdist
n , there exists a unique irreducible Segn-

supermodule U , up to the equivalence of ∼Π, such that HomSegn(U,HD(Xλ)) 6= 0.
Let [HD(Xλ)] be an irreducible submodule of HD(Xλ). Then

Irrsup Segn =
⊔

λ∈Pdist
n

{[HD(Xλ)],Π([HD(Xλ)])} ,

where
⊔

means the disjoint union.

Proof. For the first assertion, the existence has been proved in Theorem 7.18 and
we only have to prove the uniqueness. Let (σ′, U ′) be an irreducible Segn-module
such that

HomSegn(U
′, HD(Xλ)) 6= 0.

Then χπλ
= χσ

′

by Theorem 4.25 and Theorem 7.18. On the other hand, by
Proposition 7.16, (σ′, U ′) is in Φ2(λ

′) for some λ′ ∈ P dist
n . Then

HomSegn(U
′, HD(Xλ′)) 6= 0

and by Theorem 4.25 again, χπλ′
= χσ

′

. Thus χπλ′
= χπλ

and so λ = λ′. This
implies the uniqueness.

The second assertion follows from the first assertion and the bijectivity of Φ2

in Proposition 7.16. �

Let K(HCl
n ) (resp. K(Segn)) be the Grothendieck group of finite-dimensional

HCl
n -supermodules (resp. finite-dimensional Segn-supermodules). Then the Dirac

cohomologyHD induces a map, still denotedHD, fromK(HCl
n ) toK(Segn). Corol-

lary 7.19 implies the following:
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Corollary 7.20. The image of HD : K(HCl
n ) → K(Segn) has finite index in

K(Segn).

Recall that the algebra homomorphism ζ : Z(HCl
n ) → Z(Segn)0 is defined in

Theorem 3.4. We also have:

Corollary 7.21. The map ζ : Z(HCl
n )→ Z(Segn)0 is surjective.

Proof. It suffices to show that dim(im ζ) ≥ dimZ(Segn)0. By Theorem 4.25 and
Theorem 7.18, for any partition λ ∈ Pdist

n , there exists (σλ, Uλ) ∈ Irrsup Segn, such
that χπλ

= χσλ . Since the central characters {χπλ
}λ∈Pdist

n
are linearly independent

over C, {χσλ}λ∈Pdist
n

are also linearly independent. Then we have that dim(im ζ) is

not less than the cardinality of Pdist
n . Now the statement follows from the fact that

dimZ(Segn)0 is equal to the cardinality of Irrsup(Segn)/∼Π, which is the same as
the cardinality of Pdist

n . �

Remark 7.22. The author would like to thank Professor Weiqiang Wang for point-
ing out that there is a canonical surjective superalgebra morphism from HCl

n to
Segn [Kl, Rem. 15.4.7]. Denote the map to be ζ ′. According to [Kl, Rem. 15.4.7],
the map ζ ′ sends xi to the Jucys–Murphy type element

ζ ′(xi) =
∑

1≤j<i
si,j(1− cicj),

and ζ ′ is an identity on Segn. It is straightforward to check that ζ ′(D) = 0. By
considering

z = ζ(z) +Dh+ hD

and applying ζ ′ on both sides, ζ ′(z) = ζ(z). Hence ζ ′ agrees with ζ on Z(HCl
n ).

The author would like to thank one of the referees for pointing out that the map
ζ ′ has already been proven to be surjective in [Ru] as a special case. This in turn
gives another way to see that ζ is surjective.
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