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Abstract. Let G/K be an orbit of the adjoint representation of a compact connected Lie
group GG, o be an involutive automorphism of G and G be the Lie group of fixed points
of 0. We find a sufficient condition for the complete integrability of the geodesic flow of
the Riemannian metric on G/(G N K) which is induced by the bi-invariant Riemannian
metric on G. The integrals constructed here are real analytic functions, polynomial in
momenta. It is checked that this sufficient condition holds when G is the unitary group
U(n) and o is its automorphism determined by the complex conjugation.

Introduction

Let G/K be a homogeneous space of a compact Lie group G. We consider
the problem of the complete integrability of the geodesic flow of the Riemannian
metric on G/K which is induced by a bi-invariant Riemannian metric on G. This
problem was solved for some types of homogeneous manifolds including symmetric
spaces, spherical spaces, Stiefel manifolds, flag manifolds, orbits of the adjoint
actions, and others (see [Ma], [Mi], [GS], [My2], [MS], [BJ1], [BJ3], [MP]). Here
we consider the new family of homogeneous manifolds, namely, the suborbits of
orbits of the adjoint actions.

This paper is motivated by the paper [DGJ1], in which there were constructed
integrable geodesic flows of G-invariant metrics on the homogeneous space G / K=
SO(n)/(SO(n1) x --- x SO(ny)), n1 + -+ +n, =n (n; > 1, p >3). The method
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of the proof in [DGJ1] is based on investigations of bi-Poisson structures on the
Lie algebras u(n) and so(n) associated with Lie algebra deformations. We consider
the Lie-algebraic aspects of the integrability problem for such homogeneous spaces.
Our approach is based on the following observation: the space G/K is a G-suborbit
of the adjoint orbit G/K = U(n)/(U(n1) x -+ x U(n,)) of the Lie algebra u(n) of
the unitary group, i.e., G/K = Ad(G)(a), where a € u(n), and G/K = Ad(G)(a).
Moreover, G is the group of fixed points of the involutive automorphism o of U(n)
induced by the complex conjugation. In other words, the space G / K is uniquely
determined by the pair (G/K, o), where G/K = Ad(G)(a) is an arbitrary adjoint
orbit of the Lie group G in its Lie algebra g with a € (1 — o4)g, and o, is the
tangent automorphism of the Lie algebra g.

Let G be an arbitrary compact connected Lie group with an involutive auto-
morphism o : G — G and let G be the set of fixed points of . In this article we
investigate the integrability of the geodesic flow on the cotangent bundle 7 (G/K)
defined by a G-invariant metric on G / K which is induced by a bi-invariant Rieman-
nian metric on G. As a homogeneous space G / K we consider the homogeneous
space associated with the adjoint orbit G/K = Ad(G)(a) of an arbitrary point
a € (1—o4)g,ie., K =GN K. We find a sufficient purely algebraic condition for
the integrability of this geodesic flow on the symplectic manifold T*(G/K) (The-
orem 10, Propositions 14 and 15). We prove that this sufficient condition holds
when G is the unitary group U(n) and o is its automorphism defined by the com-
plex conjugation (Theorem 16). These results confirm the Mishchenko-Fomenko
conjecture [MF2], which says that a noncommutative integrability implies a Li-
ouville (complete) integrability by means of the integrals in the same functional
class (the geodesic flow of a metric on G/K induced by a bi-invariant metric on
G is integrable in a noncommutative sense by means of analytic, polynomial in
momenta functions [BJ1]). Our approach is based on the fact that G/K C G/K
is a totally real (Lagrangian) submanifold of the homogeneous Kéhler manifold
(the compact orbit) G/K, and T(G/K) C T(G/K) is a totally real submanifold
of T(G/K). However, to simplify calculations we reformulate this fact in some
algebraic terms (not explicitly, because explicit reformulation would be very com-
plicated from the point of view of calculations on T(T'(G/K))). Also, matters are
considerably simplified by using a very interesting observation of Bolsinov and Jo-
vanovié [BJ3] about the set of roots associated with the homogeneous space (orbit)
G/K and the results of Kostant [Ko] describing all maximal dimension orbits of
semisimple complex Lie algebras.

One calls a Hamiltonian system on T*M (completely) integrable if it admits
the maximal number of independent integrals in involution, i.e., dim M functions
commuting with respect to the Poisson bracket on T*M whose differentials are
independent in an open dense subset of T*M. This set of integrals is a complete
involutive subset of the algebra C°°(T*M). By Liouville’s theorem the integral
curves of an integrable Hamiltonian system under a certain additional compactness
assumption are quasiperiodic (are orbits of a constant vector field on an invariant
torus).

Let A% be the set of all G-invariant real analytic functions on the cotangent
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bundle T*M of M = G/K. This space is an algebra with respect to the canon-
ical Poisson bracket on the symplectic manifold T*M. The natural extension of
the action of G on M to an action on the symplectic manifold T*M is Hamil-
tonian with the moment mapping p" : T*M — g*. The functions of the type
hou® h:g" — R, are integrals for any G-invariant Hamiltonian flow on T*M,
in particular, for the geodesic flow corresponding to any G-invariant Riemannian
metric on M. In general, a complete involutive subset of {h o u®" h : g* — R}
is not a complete involutive subset of the algebra C*°(T*M). However, for the
compact Lie group G the problem of constructing a complete involutive set of
real analytic functions on T*(G/K) is reduced to the problem of finding a com-
plete involutive set of real analytic functions from the set A% (see [My3, §2], [BJ1,
Lem. 3], [Pa]). This is true also for the group G and the corresponding algebra
A% c C=(T*(G/K)).

The algebra of functions A9 on T*(G/K), where, recall, G/K is the adjoint
orbit, contains some complete involutive subset F of A ([MP, Thm. 3.10]; see
also [BJ2], [BJ3]). The homogeneous space G/K, as we remarked above, is a sub-
manifold of G/K and therefore T(G/K) is a submanifold of T(G/K). Moreover,
T(G/K) is a symplectic submanifold of T(G/K), where the symplectic_struc-
tures on these spaces are defined via isomorphisms T(G/K) ~ T*(G/K) and

T(G/K) = T*(G/K) using a standard G-invariant metric on G//K and its restric-
tion to G/K (see Proposition 4). The set F = {f|T(G/K)7 f € F} of restrictions is

an involutive subset of the algebra AG, This involutiveness of the functions from
F is a consequence of the fact that G / Gis a symmetric space and follows easily
from results published in [MF1], [TF]. The following observation is crucial in our
approach:

If the functions from the set 7 are independent at some point of the symplec-
tic submanifold T(G/K) C T(G/K), then the set F is a complete involutive

subset of the algebra A%,

Therefore we investigate some open dense subset O of T(G/K), where all func-
tions from the set F are independent (in the paper [MP] only the existence of such
a set was proved). We prove that ONT(G/K) # @ if G is the unitary group U(n)
and o is its automorphism determined by the complex conjugation (Theorem 16).

The present paper is also motivated by the following observation: in the above
mentioned paper [DGJ1] the first part of the proof of Theorem 4 needs an addi-
tional argumentation (see more detailed comments in Remark 17). Nevertheless,
the assertion of this theorem is true as follows from our result.

Note that the existence of complete commutative subalgebras of A® is an in-
teresting and non-trivial problem. In the review paper [BJ4] this problem was for-
mulated as Conjecture 6.1 in terms of the so-called integrable pairs of Lie groups
(G, K) (in the case of compact Lie groups). The present paper proves this conjec-
ture for a series of important particular cases.

Acknowledgement. 1 thank the anonymous referees for a thorough reading of
the manuscript and a comprehensive list of suggestions that helped me to improve
the presentation.
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1. Some definitions, conventions, and notations

All objects in this paper are real analytic, X stands for a connected manifold,
and £(X) for the space of real analytic functions on X.

We will say that some functions from the set £(X) are independent if their
differentials are independent at each point of some open dense subset in X. For
any subset F C &(X) denote by ddim, F the maximal number of independent

functions from the set F at a point z € X. Put ddim F def max,¢c x ddim, F.
Let 1 be a Poisson bi-vector on X and let A C £(X) be a Poisson subalgebra

of (£(X),n), i.e., A is a real vector space closed under the Poisson bracket {,} :

(f1, f2) = n(df1, df2) on X. Put (DA), 2 {df, : f € A} C T*X for any z € X.

Let B, denote the restriction of 7, to this subspace (D.A),. We say that a subset
F C Ais a complete involutive subset of the algebra (A, n) if at each point x of some

open dense subset in X the subspace V, & (dfy - f € F) C (DA), is maximal
isotropic with respect to the form B,, i.e., B,(V,,V;) = 0 and B,(v,V,) = 0 for
v € (DA), implies v € V.. In particular, any two functions fi, fo € F are in
involution on X, i.e., {f1, fa} = 0.

Definition 1. A pair (11,72) of linearly independent bi-vector fields (bi-vectors

for short) on a manifold X is called Poisson if nt def tim + tame is a Poisson bi-
vector for any t = (t1,t2) € R?, i.e., each bi-vector n* determines on X a Poisson
structure with the Poisson bracket {,}* : (f1, f2) = n'(df1,df2); the whole family
of Poisson bi-vectors {n'},cgr2 is called a bi-Poisson structure.

A bi-Poisson structure {n'} (we will often skip the parameter space) can be
viewed as a two-dimensional vector space of Poisson bi-vectors, the Poisson pair
(n1,m2) as a basis in this space.

Suppose that a linear subspace A C £(X) is a Poisson subalgebra of (£(X),n")
for each t € R?\ {0}. Let B. denote the restriction of n{ to the subspace (D.A).,
e X.

Definition 2. We say that the pair (A, {n'}) is Kronecker at a point = € X for
which ddim, A = ddim A if the linear space {B!,t € C?} is two-dimensional and

rankc B is constant with respect to (t1,t2) € C?\ {0}. We regard B.,t € C?, as a
complex bilinear form ¢; BS"? 4+, B{Y) on the complexification (DA)S c (TrX)C.

The definitions above are motivated by the following assertion of Bolsinov which
is fundamental for our considerations.

Proposition 3. [Bo] Let By and Bs be two linearly independent skew-symmetric
bilinear forms on a vector space V. Suppose that the kernel of each form B! =
t1B1 + toBs, t €R2, is non-trivial, i.c., 0<rZ min,cg dimker Bt. Put T = {t €
R? : dimker B* = r}. Then

(1) the subspace L def > ier ker BY is isotropic with respect to any form B,
t e R?, ie., BY(L,L) =0;

(2) the space L is mazimal isotropic with respect to any form BY, t € T if and
only if dimc ker Bt = r for all t € C?\ {0}.
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Consider a connected Riemannian manifold (M, g) and its connected Rieman-
nian submanifold (M, g), where g = g|7;7. The cotangent bundles 7* M and "M
are symplectic manifolds with the canonical symplectic structures {2 and Q respec-
tively. Using the metric g (resp. g) we can identify T*M with TM (resp. T*M
with TM)7 denoting by ¢ : TM — T*M (resp. ¢ : T™ — T*M) the corre-
sponding diffeomorphism. Let p : TM — M (resp. p: T™M — M ) be the natural

projection and let 6 (resp. €) be the canonical 1-form on T*M (resp. on T*M).
Proposition 4. The symplectic manifold (T],\\j7 cﬁ*ﬁ) s a symplectic submanifold
of (TM, ), i.e., p*Q = @*Q| 37 Moreover, 0*0 = p*0| .77
Proof. By the definition, 0,/ (Z') = &' (74w Z'), where 7w : T*M — M is the natural
projection, 2’ € Ty M, ¢ = w(z'), Z' € T (T*M).

If 2,y € T,M, then p(z) € T; M and, by the definition, p(z)(y) = gq(z,y).
Putting 2’ = ¢(x) € Ty M (to simplify the notation) and taking into account that
T o = p we obtain that for any Z € T, TM

% def def

= Il((ﬂ 0Q)ual) = l’l(p*mZ) = gq(l“,p*mZ).
Similarly, we obtain that
(7*0)5(Z) = 84(%, prsZ) forany Ge M, &€ TyM, Z € TsTM.

In other words, $*0 = ©*0| .57, because p|.57 = p and g|5; = g. Now to complete
the proof it is sufficient to note that {2 = df and Q=df. O

2. The integrability of geodesic flows

In this section, for any compact Lie algebra a by 3(a) we will denote its center
and by a, its maximal semisimple ideal, i.e., a = 3(a) & a,; for any real vector
space or any Lie algebra a by a® we will denote its complexification.

2.1. Commutator on Ag induced by canonical Poisson
structure on T*(G/K)

Let M = G/K be a homogeneous space of a compact connected Lie group G
with the Lie algebra g. There exists a faithful representation x of g such that its
associated bilinear form ®, is negative-definite on g (if g is semi-simple we can
take the Killing form associated with the adjoint representation of g). Let m = £+
be the orthogonal complement to £ with respect to ®,. Then

g=md¢t [Em]Cm (1)

The form ( , ) = —®, determines a G-invariant metric on G/K. This metric
identifies the cotangent bundle T*(G/K) and the tangent bundle T'(G/K). Thus
we can also talk on the canonical 2-form €2 on the manifold T(G/K). The sym-
plectic form © is G-invariant with respect to the natural action of G on T'(G/K)
(extension of the action of G on G/K).
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We can identify the tangent space T,(G/K) at the point o = p(e) with the
space m by means of the canonical projection p : G — G/K. Let AS (resp. AK)
be the set of all G-invariant (resp. Ad(K)-invariant) functions on T(G/K) (resp.
on m). There is a one-to-one correspondence between G-orbits in T(G/K) and
Ad(K)-orbits in m. Thus we can naturally identify the spaces of functions A% and
AE | For any smooth function f on m write grad,, f for the vector field on m such
that

df:(y) = (grad,, f(x),y) for all y e m.

The Poisson bracket of two functions f1, fo from the set AX = A% with respect
to the canonical Poisson structure n°*® (determined by the canonical 2-form Q)
has the form [MP, Lem. 3.1] :

{f1, f2}" (@) = —(z, [grady, f1(z), grady, fa(2)]), = cm. 2)

Now, let us consider an important (for our considerations) subspace of m. For
any « € m define the subspace m(z) C m putting

m(z) = {y em: [z,y] €em} = {y € m: (y,adz(8)) = 0}, (3)

in particular,
adz(m(z)) Cm and m(z)®adz(t) =m.

For any element x € g denote by g” its centralizer in g, i.e., the set of all z € g
satisfying [z,z] = 0. Put ¢* = g® N¢. Consider in m a nonempty Zariski open
subset:

R(m) = {zr € m:dimg” = ¢(m),dim &* = p(m)}, (4)

where g(m) (resp. p(m)) is the minimum of dimensions of the spaces g¥ (resp.t¥)
over all y € m.

Let (- )m be the projection of g into m along €. For each 2 € R(m) the spaces
m(z) and (g% )m C m(z) have the same dimensions:

dimm(z) = dimm — dimadz(¢) and dim(g*)m = dimg® — dim £*.

Moreover, for each € R(m) the maximal semi-simple ideal (g*)s = [g”, g*] of g*
is contained in the algebra €7, i.e.,

0%, "] = [¢*,¢°], if z € R(m) ()

(see [My3, Prop.10] or [Mi]). Therefore, dim(g” /") = rank g — rank 7, i.e.,
dim g* = rank g + (dim ¢* — rank ¢*) if z € R(m). (6)
It is clear that grad,, f(z) € m(x) for any f € AE. Moreover, since the Lie

group K is compact, for each x from some nonempty Zariski open subset of m the
space m(z) is generated by the vectors grad,, f(z), f € AK. For any x € R(m) the
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kernel of the 2-form BY : m(x) x m(z) — R, (y1,92) — —(z,[y1,92]), associated
with the Poisson structure ", is the space (g% )m:

{y e m(z) : (2, [y, m(z)]) = 0} = {y € m(z) : ([z,y], m(z)) = 0}
={yem(z):[r,y] € adz(t)}
= (0")m Nm(2) = (g")m-

Hence the number (r(m) 4+ dimm(x))/2, where
r(m) = dim(g*)m = dim g* — dim&* = ¢(m) — p(m), =z € R(m), (7)

is the maximal number of functions in involution from the set AX functionally
independent at the point z.
For an arbitrary element z € R(m), we have [My3, Prop.9]

[m(z), €] = 0. (8)

The compact Lie algebra ¢ is the direct sum € = 3(£) @ €, of the center and of
the maximal semisimple ideal. The center 3(¢) of ¢ will be denoted simply by 3
for short. Then we have the following orthogonal splittings with respect to the
invariant form (-,-): ¢ =3B €, g= (m P 3) B L.

Consider the set R(m @ 3) determined by (4) for the pair (g,¢;). Then for
any ¢ + z € m @ 3 such that z € R(m), z € 3 and z + z € R(m @ 3), we have
E2TZ = £7 because [3,€ = 0. However, £, contains the maximal semi-simple ideal
of the compact Lie algebra £*, and therefore (dim £* —rank ¢*) = (dim €2 —rank £7).
Thus by (6)

g(m) = dim g® = rank g + (dim €* — rank £*) = rank g + (dim ¢ — rank £%)

9
= rank g + (dim €% — rank €27%) = dim g*** = q(m @ 3). ©)

The following proposition will be often used in Subsections 2.2 and 2.3.

Proposition 5. Suppose that £ = g* for some a € g and o € R(m). Let go and
ty be the centralizers of the algebra ¥*° in g and € respectively. Let mg = go N m.
Then

(1) for any x € mo N R(m) (this set contains xo) we have mo(z) = m(x);

(2) for any x € mg N R(m) we have ¢ = ¢ and x € R(mg);

(3) a € go, g°° = g5° & (£7°),s and the direct sum go & (£7°)s is a subalgebra of
g of maximal rank;

(4) each element x of the set R(mg) is a regular element of the Lie algebra go
and its centralizer €5 in ¥y is the center 3(go) of go;

(5) r(m) = r(mo) = rank go — dim s(go).

Proof. Ttems (1) and (2) follow immediately from Proposition 2.3 [MP]. Tt is
clear that a € go because a € 3(£). By (5), (g%)s = (£*°), C ¢, ie., g* =
3(g%0) @ (£%0), and €¥0 = 3(£%0) @ (£*0),. Since by definition £%° C g¥°, we obtain

that [3(g™), 0] =0, i.e., 3(g™°) C go, and consequently, g5° def g% Ngo = 3(g™°).
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In other words, o is a regular element of the Lie algebra go and g% = g;° & (£7°),.
Since the Lie algebra (£70), is semisimple, go N (£°); = 0. The subalgebra go @
(£%0), C g is a subalgebra of maximal rank because it contains the centralizer g*°.

Each element z of the set R(mg) is also regular in gy because zy € R(mg) by

(2) and by definition of the set R(mg) (see (4)), dim g§ = dim g3° (= rank go).

By the definition, 3(*°) = €% N gy and 3(£*°) C 3(go). Since £° def g0

go, we obtain that £° = 3(¢*°) and £° C 3(go). But a,z¢p € go. Hence these
elements commute with the center 3(go) of go and, consequently, 3(go) C g* = ¢

and 3(go) C g*°. In other words, 3(go) C €N g® N go def €0, ie., €° = 3(g0).

Since dim¢;° = dim#e% for z € R(mg) and 3(go) C (g3 N ¥) def €2, item (4) is

proved. To complete the proof of the proposition it is sufficient to remark that
To € R(m) N R(mo),

r(m) = dim g*° — dim £*° = dim 3(g”°) — dim 3(¢*°) = dim g;° — dim €° = r(mg)

and o is a regular element of go, i.e., dim gj° = rankge. O

2.2. The bi-Poisson structure {nt(g,a)}: exact formulas and
involutive sets of functions

Consider the adjoint action Ad of G on the Lie algebra g. Suppose now in addition
that the Lie subgroup K is an isotropy group of some element a € g, i.e., K =
{g € G : Adg(a) = a} and £ = g*. Moreover, by invariance of the form (-, ),
t=3(t) D, acj(b), and ada(m) C m.

Using the invariant form (-, -} on the Lie algebra g, we identify the dual space g*
and g. So the orbit O = G/K is a symplectic manifold with the Kirillov—-Kostant—
Souriau symplectic structure wep. By the definition, the form we is G-invariant
and at the point a € O we have

UJO(G)([CLfl], [a7£2]) = —<CL7 [§1a€2]>7 v§17£2 €9,

where we consider the vectors [a,&1], [a,&2] € Tag = g as tangent vectors to the
orbit O C g at the point a € O. Let 7 : TO — O be the natural projection. Using
the closed 2-form 7*we on T'O (the lift of wp) we construct a bi-Poisson structure
on TO.

Consider on TO two symplectic forms: w1 = Q and ws = Q + T*we. Write
m = wi', m = wy ! for the standard Poisson bi-vectors associated with these
forms, i.e., n;(df1, df2) = —wi(&y,, €, ), where &y, , are the Hamiltonian vector fields
of the functions f; (df; = —wi(&y,,-)), i,j = 1,2. Then the family {n*(g,a) = n' =
tim + tama}, t1,t2 € R, is a bi-Poisson structure on TO [MP, Prop.1.6]. Putting
to =Nty =1—-—X A€ Rort; = —1, t = 1, we exclude consideration of
proportional bi-vectors. The corresponding bi-vectors are denoted by n*, A € R,
and n° (the singular bi-vector). The Poisson bracket of two functions f1, fo from
the set AKX = AG C £(TO) with respect to the Poisson structure n*, A € R or 5™
has the form [MP, Lem. 3.1]:

{f1. 2} (2) = —(x + Aa, [grady, fi(z), grady, f2(2)),
{f1, f2}"(2) = ~(a, [grady, fi(z), grady, fa(2)]).
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Notice that the structure n° (A = 0) is the canonical Poisson structure (see (2)).
Since the bi-Poisson structure {n'} is G-invariant it is sufficient to investigate
points in R(m) C m = T,(G/K), where the pair (AX n') is Kronecker.

The bi-Poisson structure {n'} determines at a point z € m = T,(G/K) the
bilinear forms Bf : (DAY), x (DA%), — R, where, recall, B! is the restriction
n'l(pac),- Let  be an element of R(m) C To(G/K). Since we identified the spaces
A% and AEK| B! determines the following complex-valued bilinear forms (which

we denote also by B!, B} and BS for short) on m(z) x m(z) [MP, (3.11)]:

By : (y1,42) = —((t1 + ta)x + taa, [y1,42]), t1,t2 € C,

By : (yi,y2) = —(x + Aa, [y1,90]), A€C, (10)

B+ (y1,y2) = —(a. [y1,92])-
Let m®(z) be the complexification of the space m(z), € R(m). It is easy to see
that the kernel of the form B; in m®(x) is the subspace of m®(z) given by

A_ Cloy . c
ker B = {y em-(x): [z + Aa, y] € adz(t")}
— {yemC(@): [o+ Aa, 4] € ad(z + Aa)(¢°)}

because ad z(¢°) = (m®(x))* in m® and [a, €¢] = 0. Thus
ker By = ((g°)7+) e Nm®(2),

where (-)mc denotes the projection onto m® along €©. However, ((g&)"*),c C
mC(x) because [a,m®] € m, [a,€¢] = 0, adz(¢*) € m® and by (3) y € m® is an
element of m®(x) if and only if [z,y] € mC. Thus,

kerB;‘ = ((gC)er)\a)mc, reC.
In particular, for A = 0 (for the canonical Poisson structure on T(G/K)),

ker By = ((6°) )me = ((6")m)"-

Since x € R(m), the (real) dimension of the space (g%)m is equal to the constant
r(m) = g(m) — p(m). Therefore a maximal isotropic subspace of the space m(x)
with respect to the form BY is of dimension (r(m) + dimm(z))/2. It is clear that

ker B = {y € m“(2) : [a, y] € adz(t%)} = m®(2) N (ad, " ad (%)),

—1 def _ . . oy
where ad;' == (ada|m)~!. As an immediate consequence of Proposition 3 we
obtain

Proposition 6. The pair (A% n'(g,a)) is Kronecker at a point x € R(m) if and
only if

(1) dime((g%)" ) me

= r(m) for each X € C;
(2) dimg ker BS' = r(m).
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Let O¥r(m) be a set of all points z € R(m) for which conditions (1) and (2) of
Proposition 6 hold. By Proposition 3 this set is a Zariski open (possibly empty)
subset of m.

Denote by I(g) the space of all Ad(G)-invariant polynomials on g. If h € I(g)
then it is clear that the function h* : g — R, h*(y) = h(y + Aa), A € R, is Ad(K)-
invariant on g. Therefore the set F(g,m) = {h*|m,h € I(g), A € R} is a subset
of AK = A% (of G-invariant functions on T'(G/K)). The following assertion was
proved in [MP] (see Proposition 3.6, Lemma 3.3 and Theorem 3.9).

Theorem 7 ([MP]). The Zariski open subset OX"(m) C R(m) of m is nonempty.
The set of functions F (g, m) is a complete involutive subset of the Poisson algebra
(A% ). Moreover, for each point x € OX*(m) C R(m) the space {grad,, f(z), f €
F(g,m)} C m(z) is a mazimal isotropic subspace of m(z).

By Theorem 7 the set

Qa(m) = {z € R(m) : dimc ker B = r(m)}

11
= {z € R(m) : dim (m(z) N (ad, " adz(¢))) = r(m)} ()
contains the dense open subset OX*(m) C m, in particular,
o . . -1
r(m) = min_ dlm(m(x) N (ad; adx(E))). (12)

Since m(z) = (adz(£))t in m and dimm(z) is constant for z € R(m), the set
Qo(m) C R(m) is a nonempty Zariski open subset of m. Put

M, (m) = {z € m : dime(g®)*T** = g(m) for each X € C}. (13)

Then
O¥'(m) = Qa(m) N M, (m) (14)

because Q,(m) C R(m) and (¢¢)**+*@ = (¢5)* for each A € C.
Lemma 8. The set M,(m) is a Zariski open subset of m.

Proof. The assertion of the lemma in more general form was used in the paper [BJ3,
83.4] (but without any proof). For completeness we will prove this lemma here.
Let V =m® @ Ca C g©. Since by (9), min dimc(gt)*T** = g(m), the set
zemC AeC

S ={y eV :dime(g%)? > q(m)}

is a Zariski closed subset of V. If y € S, then any non-zero (complex) scalar
multiple of y is also an element of S, so that one can consider a closed subvariety
PS in the projectivization PV of V.

Suppose that M,(m) is nonempty and z¢ € M,(m). Then by definition (xg +
Ca) NS = @. In other words, the intersection of the projective line P(xq, a) with
the set PS is empty. Clearly, any nearby line P(x,a), 2 € m® will also not intersect
PS. The set M,(m®) of all such x € m® is Zariski open in m®. Taking into account
that M,(m) = M,(m%) Nm we complete the proof. [
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2.3. Adjoint orbits and involutive automorphisms

Let o be an involutive automorphism of g and let g = g @ g’ be the decomposition
of g into the eigenspaces of ¢ for the eigenvalues +1 and —1 respectively:

g.9)cg, [¢.d]cCe [g.d]Cy.

Denote by G the closed connected subgroup of G with the Lie algebra g. Fix some
clement a € ¢’ (o(a) = —a) and consider the orbit O = Ad(G)( )=G/K ing
through this element a. It is clear that O is a submanifold (G suborblt) of the
G-orbit O = G/K of a and K = G N K. The form (-, -) determines a G-invariant
metric on ¢ O. This metric identifies the cotangent bundle T O and the tangent
bundle TO. Thus we can also talk on the canonical 2-form €2 on the manifold TO.

Since o(a) = —a, the algebra ¢ = g% is o-invariant. Suppose that the form
(-,-) = —®, is also o-invariant (if g is semi-simple its Killing form is invariant
with respect to an arbitrary automorphism of g). Then o(m) = m and we have
in addition to (1) the following orthogonal decompositions of algebras g, g, ¢ with
respect to the form (-, -):

g=tofomom’, g=tom, [Emcm [Ew]cm, t=tat, (15)

where A{?',ﬂl are subspaces of g, and ¥, m’ are subspaces of g’. In particular, (E,E)
is a symmetric pair of compact Lie algebras, i.e., s the fixed point set of the
involutive automorphism o|e.

Since kerada = € and m = £+ in g, then ad a( ) = m and the operator ad a|m :
m — m is invertible. Moreover, for m’ C m and m C m we have

ada(m’) C [g/,m|Nmcgnmcm, and ada(m)C[g,mNmcCg Nmcw,
and therefore dimm = dimm’. Since ker(ad a|m) = 0, we have
ada(m’) =m, and ada(m)=m'. (16)

Similarly as in the case of the pair (g,€), for any € m define the subspace
m(xz) C m putting

~ .\ def ~ ~ ~ ~
m(x) = {yem:[z,y] em} = {y € m: (y,adx(k)) =0},
Then, in particular, ad z(m(z)) C m and m(z) ® ad 2(8) = .

Let A% (resp. AZ) be the set of all G-invariant (resp. Ad(K)-invariant) func-

tions on T(G/K) (resp. on ). The Poisson bracket of two functions fi, fa € AEK
with respect to the canonical Poisson structure 7°*" (determined by the canonical

2-form € on TO) has the form (see (2)) :

{1, [} (2) = —(a, [gradg fi(x), gradg fa(2)]), = €m. (17)
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Note that by Ad(f()—invariance of the function fk, the vector gradg ﬁ(a:), k=12,
belongs to the subspace m(x) C m.

Since o(a) = —a, the center 3 = 3(£) of the reductive Lie algebra ¢ = g® is
o-invariant, i.e., 3 = 3® 3/, where 3 = 3N4g, 3 = 3Ng. It is clear that a € 3.
Then for each element b € 3/ we can consider the endomorphism ¢, : g — g on g

putting ¢q5(z) = ad; ' ([b,z]) for 2 € m and @, 4(2) = z for z € €, where, recall,

adgl def (adalm)~t. Remark that ¢, (m) C m because [&,m] C m. Moreover,

Ya.b(M) Cm and @, p(m’) C m’ because a,b € g’ (see also (16)).

It is clear that the endomorphism ¢, ; is symmetric and the group Ad(K)
commutes elementwise with ¢,, on m. Therefore, the operator ¢, |z is also
symmetric and the group Ad(K) commutes elementwise with ©Yap on m (K is
connected). Therefore the function H,y(z) = Hz, pap(z)), v € m, is Ad(K)-
invariant. Then H,,; (as a function on T(G/K) from the set AS = AE)is a
Hamiltonian function of the geodesic flow of some pseudo-Riemannian metric on
G/K if @4 p|s is non-degenerate.

Consider the space I(g) of all Ad(G)-invariant polynomials on g. As we re-
marked in the previous subsection, for each h € I(g) the function h* : g — R,
P y) = h(y + Aa), A € R, is an Ad(K)-invariant function on g. Therefore the
set F(g,m) = {h*m,h € I(g), A € R} is a subset of AX = A® (of G-invariant
function on T(G/K)) and the set F(g,m) = {h*|5,h € I(g), A € R} is a subset of
A = AC (of G-invariant function on T(G/K)). Put H* = h*|,, and H* = h|5.
The following lemma follows easily from the results of [MF1] (see also [TF, Chap.
6, 16, Lem.] or [DGJ1, Sec. 3]).

Lemma 9 ([DGJ1]). For any functions hy,ha, h € I(g) and arbitrary parameters
A1, A2, A € R we have {HM, H)?}ean = 0 and {H*, H,}°™ = 0.

Proof. Mainly to fix notations we will prove this lemma here. Since ¢ is an auto-
morphism of g and Ad(G) is a normal subgroup of Aut(g), we have f = hoo € I(g)
if h € I(g). However,

2grads h(x + Xa) = grad, h(x + Xa) + grad, f(xr — Xa) forany zeyg, (18
i g g

because o(a) = —a, and o(z) = x. The five functions hi\l,hgz, fl_/\l,fz_/\2 and
he,p commute pairwise on g ~ g* with respect to the standard (linear) Lie-Poisson
bracket on g [MF1]. This means that for any pair of functions Fy, F5 from this set
we have

(z,[grady Fi(x), grady Fa(z)]) =0 forall z€g.

Then by (18)
(z, [gradg by (x), grad; hy?(z)]) =0 forall zemCg.

Now taking into account that (grad h;‘j (z))m = grads ﬁ;” (z) € m(x), [z, m(z)] C
m for € m and Mm_LE, we obtain that

(z, [(gradg hy* (z))m, (gradg ha* (x))q]) = 0,

i.e., {HM, H)?}e () = 0. Similarly we can show that {H*, ﬁa,b}can =0. O
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As follows from the lemma above, the set F(g,m) is an involutive subset of
(Aﬁf(, 7°m). Let us define the numbers g(m), p(m), r(m) and the subset R(m) C m
similarly to the numbers g(m), p(m), r(m) and the subset R(m) C m, but for the
pair of algebras (g, ) (see (4)).

Let i@ : T(G/K) — §* be the standard moment map associated with the
natural action of G on (T(G/K),)). The subset {h o i h € £F*)} C

(T(G/K)) is a Poisson subalgebra of (£(T(G/K)), 7). Since the Lie group
G is compact, this subalgebra contains some complete involutive subset of func-
tions H(g*) [Br], [Myl]. By definition of the moment map ", the union of the
sets ’H(~ ) and F(g,m) C AK A€ is an involutive subset of the Poisson algebra

(E(T(G/K)), 7).

Theorem 10. Suppose that the Zariski open subset OX*(m)Nm of m is nonempty.
Then the set F(g,m) is a complete involutive subset of the algebra (AK,ncan)
Moreover, the set H(g*) U F(g,m) is a complete involutive subset of the algebra
(E(T(G/K)), ) and the functions from this set are integrals for the Hamiltonian
flow with the Hamiltonian function H,y on T(G/K).

Proof. Fix some point z € O¥*(m) N R(m) C m. Put

L, = {grad,, f(), f € F(g, m)} C m(z) C m,
L. = {gradg f(x), f € F(a, W)} C () C .

It is evident that L, = (Ly)7, where (-)7 denotes the projection onto m along
m in m = m®m’. Moreover, since x € m and £ = £ D ¥, we have adz(t) =
adz(t) ® ad z(¥'), where ad 2(¢) C m and adz(¥') C m’, and therefore

m(z) = m(z) ® (m(z) Nm’). (19)

By Lemma 9 the space L, is an isotropic subspace of m(z) with respect to the
form By : (y1,92) — —(z, [y1,y2]) on M(z) associated with Poisson bracket (17).
Therefore, in order to prove the theorem it is sufficient to show that this subspace
is maximal isotropic. _

To this end, suppose that (z, [y, L,]) = 0 for some y € m(z). Then {[z,y], L >
0 by invariance of the form (-,-). Taking into account that [z, m(z)] C
definition and m_Lm’, we obtain that

32

0= <[$7y]7zm> = <[m7y]7Lz> = <$7 [vaacD'

But y € m(z) by (19). Also, by Theorem 7 the space L, is a maximal isotropic
in m(z) and, consequently, y € L,. Then y € L,, because y € @ and L, N C
(Ly)# = Ly. In other words, L, is a maximal isotropic subspace in f(z) with
respect to the form B, defined by (17) on f(z).

Therefore the set F(g, m) is a complete involutive subset of the algebra A§ =

A€ with respect to the canonical Poisson structure on (T(G/K),Q). Then by [BJ1,
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Lem. 3] (see also [My3, §2], [Pa]) the set H(g*) U F (g, m) is a complete involutive
subset of the Poisson algebra (£(T(G/K)),7i®) on the manifold (T(G/K),Q).
By Lemma 9 the functions from the set F(g, m ) are integrals of the Hamiltonian
flow with the Hamiltonian function Ha,b on T(G/K). The functions from the set

H(g*) are also integrals for this flow because fI,Lb Cc A¢. O

Remark 11. First of all note that the Hamiltonian flow of the function ﬁa o (with
b = a) coincides with the geodesic flow determined by the Riemannian metric
(-,-) on G/K. The Hamiltonian function Ha » on TO is the restriction of the
Hamiltonian function H, () = (@, @ab(2))/2, x € m (considered as a G-invariant
function on TO from the set A¢ = AK o). Moreover, the function H, ; is associated
with the (pseudo)-Riemannian metric g, on O (deﬁned by the symmetric bilinear

form (z,y) = (2,0, o), ¥,y € m) and H,;, with its restriction g, = Jabl5-
Since grad,, Hop(z) = grads Hop(z) = @ap(z) € @ for each z € m, it is easy
to verify that the Hamiltonian vector field Xy, , of H,p on T'O is tangent to
the submanifold TO C TO (using, for instance, the exact expression for Xp, ,
on TO [MP, (3.6)]). As follows from Proposition 4, (TO, ) is a symplectic sub-
manifold of (T'O, 2). Therefore the Hamiltonian vector field Xg,, of Ha pon TO

coincides with the restriction Xg, , |5 and, consequently, the suborbit ((97 Jab) is
a totally geodesic submanifold of the orbit (O, gq). Taking into account that the
geodesic flow of the metric g, on T'O is integrable (see [MP, Thm. 3.10] or [BJ3]),
Theorem 10 above is an illustration to the phenomenon of a complete integrabil-
ity of the geodesic flow on a totally geodesic submanifold of a manifold with the
integrable geodesic flow.

Remark 12. Let g1 be some o-invariant subalgebra of g containing its maximal
semisimple ideal gs. Assume that the connected subgroup G; C G with the Lie
algebra g; is closed. Denote by a; € g1 the orthogonal projection of the element
a € g. Put & = gi* (¢ = g%). Since the algebra £ = g* contains the center 3(g)
of g, the space m = £+ is a subspace of the ideal g, and the space m; = ¢ C gy
coincides with m. Consequently, the bi-Poisson structures n'(g,a) and n'(g1,a1)
are either Kronecker or non-Kronecker simultaneously at a point z € R(m) Nm if
Rm)Nnm+# .

2.4. Conditional reduction theorem

We will use the notation introduced in the previous subsection. Suppose that the
set R(m) Nm is nonempty and that z¢ is a common element of this set and the
set R(m). Let go be the centralizer of £€7° in g. Put £ = £N gy and my = m N go.
Since o(zg) = xo and o(€) = £, we have o(£*0) = £"0. Therefore the spaces go, o
and my are g-invariant, i.e.,
goifo@mo, EOZEO@I:H(), Whereﬁozgoﬂﬁ, Eoigomf, ﬁoimomﬁv‘t.

By Proposition 5, zg € R(my), a € go and £y = g& (¢ = g*). Now we will prove
the following conditional reduction theorem which reduces the pair (g, ¢ = g%) to
the pair (go, % = g§) if the condition R(m) N m # & holds. To this end, define
the sets OX*(mg), Qq(mg) and M, (mg) similarly to the sets OX*(m), Q,(m) and
M, (m), but for the pair of algebras (go, o) (see (14), (11) and (13)).
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Theorem 13. Suppose that R(m)Nm # & and choose any point xg € R(m)NR(m).
The set OX*(m) Nm is nonempty if the set OX*(mg) Nmg is also. In particular,
if OKr(mo)yﬂ Mo # @ then the set F(g,m) is a complete involutive subset of the

algebra (AK  7jem).

Proof. Assume that OX"(mg) Nmy # @. By definition, zg € R(m) N R(m) and
T € Mg by the construction above. Therefore the set R(m)NR(m)NOXT (mg)Nmy is
anonempty Zariski open subset of mg. Thus the set R(m)NR(m)NOX* (mg)NR(mg)
is also nonempty. Fix some element x belonging to this set. To prove the theorem,
it is sufficient to show that x € O¥*(m).

Since x € R(m) Nmg, by Proposition 5 (1) we have that m(z) = mg(x). Then
by relations (10) the two bi-Poisson structures (g, a) and 7(go, ) determine on
the space m(z) = mg(x) the same families of skew-symmetric operators. In other
words, at the point € R(m) N R(mg) these bi-Poisson structures are Kronecker
simultaneously. Thus z € O¥"(m)Nm. O

As follows from Theorem 10, we have to establish when the set OX*(m) N m
is nonempty. Since the subsets Q,(m) C m and M,(m) C m are Zariski open
(see (12) and Lemma 8), we obtain by (14) that

OF"m)Nm#2 «— Qum)Nm#2 and M,(m)Nm# 2. (20)

By Proposition 5 (4) for any element z € R(m) N mg its centralizer €° in
to is the center 3(go) of the Lie algebra go. As follows from Theorem 13 and
relations (20), to prove a completeness of the set F(g, m) it is sufficient to show
that Qu(mg) Nmy # @ and My(mg) Nmy # &. Therefore we will investigate
the two open subsets Q,(m) Nm and M,(m) N m in more detail in the following
two subsections only in the case when for each element z € R(m) its centralizer
£ = g® N g” is the center 3(g) of g.

2.5. Necessary and sufficient conditions for the set Q,(m) Nm
to be nonempty

We will use the notation introduced in Subsection 2.3.

Proposition 14. Suppose that R(m)Nm # & and choose an arbitrary point xo €
R(m) N R(m). Let €0 = 3(g). The set Q,(m)Nm is nonempty if and only if

the subspace ¥ = (1 — o) contains reqular elements of the Lie algebra €. (21)

Proof. Let V' be some vector subspace of the space m for which V N R(m) # &.
Put
o . . 1
me(V) = xe‘grg}zl(m) dim (m(a:) N (ad, " ad a:({?))),

where, recall, ad; " &L (adalwm)~!. By (12), mqe(m) = r(m) and clearly mq(V) >

r(m). We have to show that m,(m) = 7(m) if and only if condition (21) holds.
We will prove this proposition using the moment map theory and the method

proposed in [Pa]. Since £ = 3(g), then by the dimension arguments ¢* = 3(g) for

all z € R(m). For our aim it is convenient to use the moment map constructed in
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our previous paper [MP]. To this end, here we briefly describe the main properties
of this moment map [MP, Rem. 3.2].
Consider on the vector space m the non-degenerate bilinear form

Blyr,y2) = (1,ad, " (12)),  y1,y2 € m.

Since the endomorphism adaly, : m — m is skew-symmetric (with respect to the
form (-,-)), the form S is also skew-symmetric. Identifying the tangent space T,m
with m for each z € m, we can consider 8 as a symplectic form on m. Since the
Ad-action of K on m preserves the form (3, this action of K is Hamiltonian with
the K-equivariant moment map

pim— e, pP(2)(Q) = —4(ad,  (2),[¢ 2]), V(e

(see [MP, Rem. 3.2]). In particular, for each ¢ € t the vector field (x(z) =
[¢,x] € Tym is the Hamiltonian vector field of the function f¢(z) = p”(2)(¢) on
the manifold X = m.

Let x € m, W, C T, m be the tangent space to the K-orbit in m and let VVfL
be the (skew)orthogonal complement to W, in T, m with respect to the form S. It
is easy to see that W, = ad z(£) and W/* = ad a(m(z)), i.e.,

dim (W, N W) = dim(ada(m(m)) Nad x(?)) = dim(m(m) N (ad; ' ad m(?)))

However, by the K-equivariance of the moment map u?, (x(z) € W, N WAL if
and only if ad* ((a) = 0, where a = p?(x) [GS]. In other words, the dimension
dim (W, N W/+)+ dim3(g) equals the codimension of the orbit Ad*(K) - « in &*
for each = € R(m) ((x(z) = 0 if and only if { € & = 3(g)).
Identifying the space ¢ with its dual £* by means of the form (-,-), we obtain
that
plim—t, pf(z) = 3 lad (2), zle

and dim (W, N W/+) = dim & — dim 3(g) if z € R(m). Thus

me(V) = zevn%i}%(m) dim £®) — dim 3(g) = min dim £(®) — dim 3(g),

where a(z) = () € £ and V N R(m) # 2.

Since 3(g) C &, the space m is contained in the maximal semi-simple ideal g, of
g. Notice also that p?(m) C [g, g]e C gs and by (16) pf(m) C [m’/,m]e C (¢')e = ¥'.

To determine the number min, g dim £*) we will show that the image p®(m)
contains an open subset in the space ¥ N g,. It is easy to calculate that, for any
tangent vector y € m = T m,

def _ _
Dr(9) 22 12 w0)(9) = Blaly (w0), yle + oty () ol

Taking into account relations (15) and (16) and the inclusion g € m C g, we
obtain that

Dyy(m') € ([ad; " (), m'] + [ad, ™ ('), m]), C (@) C &,
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and, similarly, D,,(m) C (g')e C &. In other words, Dy, (m) = Dy, (m') & D, (m).
The image uf(Tmm) C ¢ of the tangent map of the moment map p® at zg
coincides with the annihilator in #* ~ £ of the Lie algebra #*° of the isotropy group
{k € Ko : Adk(zg) = xo} of g € m [GS]. Since this annihilator coincides with the
orthogonal complement of the center 3(g) in €, we obtain that D,,(m) = ¢Ng,. But
ENgs = (¥ Ng.)® (ENgs) because o(gs) = gs. Therefore 1 (z)(M) = ¥ Ng, and,
consequently, the set ©%(m) contains some open subset in ¢ N g,. Also £ = £+
for any a € ¥, z € 3(g). Therefore

me(M) = min dim€* — dim 3(g) = mindim £* — dim 3(g). (22)
act’'Ng, act’

Since #*° = 3(g) is a commutative algebra, each element of the set R(m) is a
regular element of g, i.e., ¢(m) = rankg and r(m) = rankg — dim 3(g) (see (7)).
Also rank ¢ = rank g because ¢ = g*. Hence by (22) mq(m) = r(m) if and only if
the algebra £ contains regular elements of the Lie algebra ¢. O

2.6. Sufficient conditions for the set M,(m) N m to be nonempty

In this subsection we will give a sufficient condition for an open subset M,(m)Nm
of m to be nonempty. This condition is motivated by some trick used in the proof of
Theorem 3.4 in [BJ3]. Here we will use the notation introduced in Subsection 2.3.
Let t be a Cartan subalgebra of g containing the element a. The complex space
is a Cartan subalgebra of the reductive complex Lie algebra g©. Since £ = g°
and the commutative Lie algebra t contains a, t is also a Cartan subalgebra of
tC. Let A be the root system of g€ with respect to t©. Denote by Ag the set of
roots in A which vanish identically on a. This is the root system of (£©, ). Put
Am = A\ A¢. Then we have the direct decompositions

g(C:tC@Zga7 ECZ{C@ZQQ, mC:Zga7

acA acAg a€EAn

tC

where g® is the root space corresponding to the root a. We can choose a Weyl
basis { Eo,a € A} of g© mod t© such that E,, € g for each o € A and the compact
form g of g* is spanned by t and the vectors X, = (Eo — F_,), Yo = i(Ea+E_4),
a € A,

Proposition 15. Suppose that R(m) N m # & and € = 3(g) for all z € R(m).
Assume that there exists a system of simple roots w of A such that m C Ay and
some vector

Trw = anE_a—&- Z dsEs, co € C\{0},a€m, dgeC,BeAf,
aem ﬂEArt

where AT is the system of positive roots of A determined by m and A} = AnNAT,
belongs to the space m© C mC. Then the set M,(m)Nm is nonempty.

Proof. Since for € R(m) the algebra £* = 3(g) is commutative, the centralizer g*
is a Cartan subalgebra of g (see (5)), i.e., g(m) = rankg.
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The element e_ = Zaeﬂ caF_4 is a principal nilpotent element of the reductive
complex Lie algebra g© [Ko]. Since a € %, for each A € C the vector Tr + Aa is
an element of the affine subspace e_ + b, where b = € @ ZﬁeAJr g” is a Borel
subalgebra of g€. Then by [Ko, Lem. 10] dimc(g©)*~t*¢ = rank g®. But ¢(m) =
rank g. Thus z, € M,(m®)NmC (see the proof of Lemma 8). Since M, (m®)m®
is a nonempty Zariski open subset of m®, its intersection with the real form m ¢ m®
is nonempty. Taking into account that M,(m®)Nm = M,(m)Nm we complete the
proof. [

2.7. Integrable geodesic flows on SO(n)/(SO(n1) X - -+ X SO(ny))

In this subsection we show that the conditions of Theorem 10 hold for the homo-
geneous space SO(n)/(SO(ny) x -+ x SO(np)) ni+---+n, =n. The case p =2
is not interesting for us from the pomt of view of mtegrablhty because in this case
the considered homogeneous space G/ Kisa symmetric space and, consequently,
all G-invariant Hamiltonian flows on T(G (G/ K ) are integrable [Mi], [My2].

Consider the symmetric space G/G = U(n)/SO(n), where n > 4, with the
involution o on the Lie algebra of skew-hermitian matrices g = u(n) determined
by the complex conjugation. Then the Lie algebra g = (1 + o)g is the Lie algebra
so0(n) of all real skew-symmetric n x n matrices. The space g’ = (1 — o)g coincides
with the set isym(n), where sym(n) is the space of all real symmetric n x n
matrices.

Fix some element a € ¢/, a = diag(id1, ..., i 1,82, ..., iA2, .., iAp, ..., ENp),
where all real numbers Ay, ..., A, are pairwise different and the multiplicity of each
i\; is equal to n; > 1, ny + -+ - + n, = n. Without loss of generality (to simplify
calculations) we may assume that 1 <n; <ng <--- < np <n.

It is clear that the Lie algebra £ = g is the Lie algebra u(nq) & --- & u(n,)
(with the standard block-diagonal embedding) and  is the real part of this Lie
algebra, i.e., £ coincides with so(ny) @ --- & so0(np) (s0(1) = 0). In this case,
G/K =80(n)/(SO(n1) x --- x SO(n,)).

Putting (X,Y) = —TrXY (using the trace-form) we define an invariant scalar
product on g. To describe the space m = £ consider any matrix X € g as a
block-matrix consisting of rectangle elements X %! (™", which are rectangle complex
ny x ng matrices, 1 < k,1 < p. It is clear that (X*!)! = —XF and therefore any
element of u(n) is deﬁned by its blocks X*! with k < [. As a space, the Lie algebra
g = u(n) is a direct sum of its block-type subspaces V5! 1 < k <1 < p. In this
notation the Lie subalgebra £ is the direct sum Z?Zl Vi and m= Zlgkdgp kil
We will denote the corresponding to X*! element of the space V! by o(X*1).
Each subspace V*! is an £-module, i.e., [V g c VL.

First of all consider the simplest case when p = 2. In this case G/K =
U(n1 +n2)/(U(n1) x U(ng)) is a Hermitian symmetric space. Therefore there ex-
ists a Cartan subspace a in V1% = m (a maximal commutative subspace in V12)
consisting of real matrices (belonging to so(n)) [He, Chap. X, Sec. 2.1]. This n-
dimensional Cartan subspace a can be described by the “diagonal” matrices X !+2
in which all entries vanish with the exception of n; entries X;y’;, j=1...,n1 < ng,
which are arbitrary real numbers. Then the centralizer £*° of a regular element (of
the Cartan subspace) 2o = ¢(X.+?) € m C V2 in u(n1) Gu(ng) = V'@ V32 is a
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direct sum t, @ c,, where ¢, ~ u(ng—n;) and t. is a commutative algebra of dimen-
sion ny consisting of diagonal matrices diag(iz1,...,i%y,,21,...,i%n,,0,...,0),
z; € R. Notice that the maximal semisimple ideal of ¢, coincides with the maxi-
mal semisimple ideal of the centralizer of t, in u(n1) @ u(ns).

Suppose now that p>3. We will attempt to describe the centralizer £*° of some
generic element g € m constructing this element. To simplify our calculations
notice that each space VF* @ Vil @ VR k < [ is a Lie subalgebra of u(n) iso-
morphic to u(ng + n;), VF* @ VH ~u(ng) @ u(ng) and [VFL VR c VEE g VL
But U(ny, + ni)/(U(ni) x U(ny)) is a Hermitian symmetric space and therefore
we can use our calculations for the case p = 2. Since each subspace V! is a
t-module, we will construct the element zg selecting step by step its V*!-entries.
For our aim it is enough to consider the submodule Z?;ll Vaitl @Z?;lz VI of m.
Choosing in each £-module V733+1 of the first component the “diagonal” element
o(X1? +1) as above, we obtain that their common isotropy algebra is the direct
sum t, & c., where ¢, >~ u(n, —n,—1) and t, is of commutative algebra of dimen-
sion np,_1, consisting of the diagonal matrices diag(iz1,...,iTn,, 921, ..., Tny, . - .,
i1, ...y 8Tp, 4,001, ..., 0T, 1,0,...,0), z; € R, 1 < j < np_1. Notice that the
maximal semisimple ideal of ¢, coincides with the maximal semisimple ideal of
the centralizer of t. in £. Now we consider V = Zé’;f VIP as a t, @ c.-module
(not as a t-module) of complex dimension No X n,, N = nq + -+ + np_s.
Then V is the direct sum of t, @ cy-modules V) & V@, v 1V @ where
V) (of complex dimension Ny x n,_1) is a trivial c,-module. Therefore the
isotropy subalgebra of a real generic point from V(1) is the algebra t,, & c,,
where t,. C t. is the one-dimensional subalgebra consisting of the elements of
t. such that 21 = 20 = ... = 2, , = A\ Considering the module V(2 as the
space My, n,—n, , of complex Ny x (n, — n,_1) matrices, the ad-representation
of tix @ c. in V® is described as follows: ad(\, A)(B) = iAB — BA, where
(M A) €ERBuU(ny —np_1) 2t ® e, and B € My, pn,—p,_, ~ V.

If the number of rows No = nq +---+n,_2 in B is not less than the number of
columns (n, — n,_1), then for any real matrix B € My, n,-n,_, of the maximal
rank we have iA\B — BA = 0 if and only if A =i\ (is a scalar matrix). Therefore
in this case €0 = 3(g) for some (real) matrix zy € m.

If N3 < np —ny,—1, then for the real matrix B in which all entries vanish with
the exception of IV entries B; ; =1, j = 1,..., Ny, we obtain that iAB—BA = 0 if
and only if A is an element of a Lie algebra isomorphic to u(1) &u(n, —ny—1 — Na),
i.e., for some (real) matrix o € m we have dim 0 = 1+ dimu(n, — ny,—1 — Na).

Suppose now that p > 3 and ny + -+ + np_2 = np, — np_1. We showed above
that for some element oy € m its centralizer £*° is the one-dimensional center 3(g)
of g = u(n). Since 3(g) C & for each z € m, we have that dim€"° = p(m) and
dim B0 = p(m). Clearly these two properties hold for any points x € m which
are sufficiently closed to zg. Therefore we can suppose without losing generality
that xy € R(m), i.e., dimg* = ¢(m). But g(m) = rank(g) because the algebra
£0 C 3(g) is commutative (see (5)). Taking into account that any regular element
of the Lie algebra g = so(n) is regular in g = u(n), we obtain that zo € R(m).
Thus z¢ € R(m) N R(m) and €% = 3(g).

Now we can use Proposition 14 to prove that Q,(m)Nm # &. Indeed, since the
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space ' = (1 — o)t = isym(n1) & - - - & isym(n,) contains regular elements of the
Lie algebra ¢ = u(n1) & - - - ® u(ny), by this proposition Q,(m) Nm # 2.

Our element a € u(n) is a diagonal matrix diag(as,...,a,), a; € iR and is con-
tained in the Cartan subalgebra t of u(n) consisting of matrices h=diag(h1,...,hn),
hj € iR. The set A = {ejr = ¢j — €, j # k;j,k = 1,...,n}, ¢j(h) = hy, is
the standard system of roots of g€ with respect to t€. The algebra t and vec-
tors X, = B, — B, Yji = i, +iE.,, span g (by E., we denote the
matrix whose only nonzero element is 1 located at the position jk). To prove
that Ma(m) Nm # @ we will use the following observation (see [BJ2]): Since

np, < np+ -0+ Tp—1, there exists a permutation p of {1,2,...,n} such that
ap(jy 7# Gpi+1y, J = 1,...,m — 1. In other words, (¢; — €;41)(a) # 0 for each
j=1,...,n—1, where a = d1ag( p(1)5 Ap(2)s - - - 5 p(n)). As the Weyl group of (g, t)

is the permutatlon group of n elements, there exists the system of simple roots
7 of A such that a(a) # 0 for each a € m. Since the element ) . (Eo — E_,)
(real skew-symmetric matrix) belongs to the space m, then by Proposition 15,
M,(m)Nm # @, and by (20), O¥*(m) Nm # @.

Suppose now that p > 3and ny+---+np_1 <np. Put Ny =n1+---4+np_1. In
this case, since the last component ¢, ~ u(n,,) of ¢ is dominant in ¢, the calculation
problem can be reduced to the previous case with n, = ny +--- + np_;. To this
end we consider the representation of the Lie group K, C K with the Lie algebra
¢, ~ u(n,) in the t-submodule V = Zf;i V3P of m. Identifying V with the
space My, n, of complex N1 x n, matrices, the Ad-action of K, in V is described
as follows: k- B = Bk™', where k € K, = U(np), B € My, n,. Since the
number of rows N in B is less than its number of columns n,, then the Ad(XK))-
orbit of B in V contains a matrix in which the last n, — Ny columns vanish. In
other words, each element of m is Ad(K)-conjugated to some element of the first
component u(2N7) of the Lie algebra u(2N7)®u(n,—N1) C u(n) and, consequently,
dim€® > 1+ dimu(n, — N7) (dimj(g) = 1) for any = € R(m). But we showed
above that for some element o € m we have an equality, i.e., this element belongs
to the set R(m) Nm. Since the set R(m) is Zariski open in m, we can suppose
without losing generality that zo € R(m) N R(m) and €° = 3(g) @ u(n, — Ny).
Taking into account that u(2N7) @ u(n, — N1) is a maximal subalgebra of u(n)
(the pair (u(n),u(2N1) @ u(n, — N1)) is a symmetric pair), we obtain that the
centralizer gy of £° in g is the algebra u(2/N7) @ 3(g) containing the element a.
Now applying Theorem 13 and Remark 12 we reduce our problem to the case
when n, = ny + -+ + n,_1. In other words, OX*(m) N m # &, i.e., the condition
of Theorem 10 holds.

Thus the new proof of Theorem 4 in [DGJ1] is obtained, i.e., the following
theorem is proved.

Theorem 16 ([DGJ1]). We retain the notation of Theorem 10. Let G = U(n),
G =S0(n) and K = SO(ny) x -+ x SO(np), n=n1 + - +ny, with the standard
embedding off( C G CG. The set of functions F(g,m) is a complete involutive
subset of the Poisson algebra (Aé,ﬁcan). The set of functions H(g*) U F(g,m) s
a complete involutive subset of the algebra (E(T (G/K)) 7°™). The Hamiltonian
flow with the Hamiltonian function ﬁa,b on T'( G/K) is completely integrable by
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means of real-analytic integrals H(g*) U F(g,m).

Remark 17. Let § = so(n) and let £ = so(ny) @ -+ @ s0(np). Suppose that
np < ni+ -+ np_1. Then the set m = [ (g=m EBE) contains regular ele-
ments of the Lie algebra so(n) (see, for example, the proof of Theorem 16 above).
In [DGJ2] Dragovié, Gaji¢ and Jovanovié remarked that the first part of the proof
of their Theorem 4 published in [DGJ1] is not complete. Namely, relation (29)
of [DGJ1, Rem. 1], i.e., , the completeness of some family of integrals, holds for
all elements from some open dense subset O of so(n) (for the so-called generic
elements). However, although m contains regular elements of so(n), relation (29)
holds on m, ie., ONm # @, if and only if all ny,...,n, are < 2 (see [DGJ2,
p. 1287]). Therefore, relation (36) of [DGJ1], and, consequently, the first part of
the proof of Theorem 4 [DGJ1] needs an additional argumentation in the case
when n, > 3.
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