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Abstract. We observe that word reading is a crystal morphism. This leads us to prove
that for SLn(C) the map from all galleries to Mikovic̀–Vilonen cycles is a surjective
morphism of crystals. We also compute the fibers of this map in terms of the Littelmann
path model.

Introduction

Both the Littelmann path model [Lit95] and the set of Mikovic̀–Vilonen (MV)
cycles [MV07] [BG01] give constructions of the crystal associated to a simple mod-
ule of a connected reductive group G over the field of complex numbers C. The
path model consists of paths in the real vector space spanned by the weight lattice,
and the elements of the set of MV cycles are certain closed subsets of the affine
Grassmannian G of the group G∨ that is Langlands dual to G.

By considering piecewise linear paths contained in the one-skeleton of the stan-
dard apartment in the affine building [Ron09] of G∨ and interpreting them as
one-skeleton galleries, Gaussent and Littelmann assigned a closed subset of the
affine Grassmannian G [GL05], [GL12] to each of these piecewise linear paths.
They showed that if the path is LS then the closed subset associated to it is an
MV cycle. (LS paths were introduced by Lakshmibai and Seshadri [LS91] and were
the first paths to be studied [Lit94].) This association defines a bijection which
was shown to be an isomorphism of crystals by Baumann and Gaussent [BG08].

We work with the special linear group G = SLn(C). In this case piecewise linear
paths are parametrised by combinatorial arrangements which we call galleries—
with respect to this identification, the set of LS paths corresponds to the set of
semistandard Young tableaux with columns of maximal length n−1. In this setting,
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Gaussent, Littelmann and Nguyen showed that the closed subset associated to any
gallery is an MV cycle [GLN13]. To do this they considered the monoidWn of words
in the alphabet An ∶= {1, . . . , n} and the associated plactic monoid Pn = Wn/∼
which is defined as the quotient of Wn by the ideal ∼ generated by the following
relations:

(a) For x ≤ y < z, y x z = y z x.
(b) For x < y ≤ z, x z y = x y z.
(c) The relation 1 ⋯ n = ø, where ø is the trivial word.

Relations (a) and (b) are the well-known Knuth relations [Knu70]. A gallery
γ, and in particular a semi-standard Young tableau, defines a word w(γ) in Wn.
The classes in the plactic monoid are in bijection with the set of words of semi-
standard Young tableaux. To associate an MV cycle to any gallery the authors
of [GLN13] show that the closed subset associated to a gallery γ depends only on
the class [w(γ)] ∈ Pn of its word in the plactic monoid. (Actually, relation (c) was
overlooked in [GLN13]. In the appendix (Appendix 3) we show that the closed
subset associated to two words related by it stays the same.)

Crystals, however, are not mentioned in [GLN13]. In this paper we show that
their map is a surjective morphism of crystals and determine its fibers (Theorem
2.2). To do so we observe that, considering words as galleries, the map that assigns
the word w(γ) to the gallery γ is a morphism of crystals (Proposition 1.2). As
a direct consequence we obtain that it is an isomorphism onto its image when
restricted to each connected component.

Acknowledgements. The author would like to thank Peter Littelmann for intro-
ducing her to the topic, Stéphane Gaussent for useful discussions, Michael Ehrig
and Bea Schumann for their comments, and Daniel Juteau for his helpful sugges-
tions. The author would also like to thank both referees for their time and their
skilful comments—and for an observation that led to writing the appendix.

1. Galleries, words, and crystals

1.1. Galleries and their words

The combinatorics developed in this section is related to the representation theory
of the group SLn(C), where n ∈ Z>0 is a fixed positive integer. Throughout this
paper, all representations will be representations of SLn(C). A shape is a finite
sequence of positive integers d = (d1, . . . , dr), each ds less than or equal to n − 1.
An arrangement of boxes of shape d is an arrangement of r columns of boxes such
that column s (read from right to left) has ds boxes.

Example 1. An arrangement of boxes of shape (1,1,2,1):

.

A gallery of shape d is a filling of an arrangement of boxes of the given shape with
letters from the ordered alphabet An ∶= {1, . . . , n ∶ 1 < ⋯ < n} such that entries are
strictly increasing along each column of boxes. We will denote the set of galleries
of shape d by Γ(d), the set of all galleries by Γ, and, given a gallery γ, we will
denote its shape by d(γ).
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Example 2. A gallery of shape (1,1,2,1):

3 1 5 2

2
.

Let Wn denote the word monoid on An. To a word w = a1 ⋯ ak ∈ Wn is
associated the gallery γa1 ⋯ ak

= γw ∶= ak . . . a1 . The word of a gallery of shape
(m) (this means it has a single column of length m) is the word in Wn that
corresponds to reading its entries from top to bottom and writing them down
from left to right. We will sometimes call galleries of shape (m) column galleries.
The word of an arbitrary gallery is the concatenation of the words of each of its
columns read from right to left—concatenation of two galleries γ2 ∗ γ1 is done
starting with γ1 from the right. We denote the word of a gallery δ by w(δ). Note
that if w′ ∈Wn is a word, then w(γw′) = w′.

Example 3. The galleries β = 3 2 1 5 2 and γ = 3 1 5 2

2
both have word

25123 = w(γ) = w(β).
Characters, cocharacters, weights, and coweights

In this section we recall some basic facts and establish some notation. First con-
sider the group GLn(C) of invertible n × n matrices, and in it the maximal torus
TGLn

(C) of diagonal matrices. Then maximal tori for SLn(C)=[GLn(C),GLn(C)]
and PSLn(C) = GLn(C)/C× Id are given by TSLn

(C) ∶= TGLn
(C) ∩ SLn(C) and

TPSLn
(C) ∶= can(TGLn

(C)) respectively, where can ∶ GLn(C) → PSLn(C) is the
canonical map.

We want to look at paths in V ∶= X⊗ZR, where

X = X(TSLn
(C)) = Hom(TSLn

(C),C×)

is the set of characters of TSLn
(C) and the corresponding full weight lattice. For

this consider R
n with inner product (−,−) and orthonormal basis {ε1, . . . , εn}.

Then V ≅ {w ∈ Rn ∶ (w, e1 + ⋯ + en) = 0} ≅ R
n/R(e1 + ⋯ + en) and we make the

following identifications:

X∨ = X∨(TSLn
(C))) = Hom(C×,TSLn

(C))

= {a1ε1 +⋯ + anεn ∶ ai ∈ Z;
n

∑
i=1

ai = 0} = ZΦ∨,

X = X(TSLn
(C)) = Hom(TSLn

(C),C×) =
n

⊕
i=1

Zεi/⟨
n

∑
i=1

εi⟩ ≅

Hom(C×,TPSLn
(C)) = X∨(TPSLn

(C))), and
X(TPSLn

(C))) = Hom(TPSLn
(C),C×)

= {a1ε1 +⋯ + anεn ∶ ai ∈ Z;
n

∑
i=1

ai = 0} = ZΦ,

where Φ and Φ∨ are the sets of roots and coroots, respectively. The inner product
(−,−) restricts to the pairing between X and X∨. In particular, the root data
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(X(TSLn
(C))),X∨(TSLn

(C))),Φ,Φ∨) associated to (SLn(C),TSLn
(C))) is dual

to that (X(TPSLn
(C))),X∨(TPSLn

(C))),Φ∨,Φ) of (PSLn(C),TPSLn
(C))). We

choose the set of simple roots ∆ = {αi = εi − εi+1 ∶ 1 ≤ i < n}, which in this case
coincides with the corresponding set of simple coroots α∨i = αi ∈ ∆∨. We write
Φ+ and Φ∨,+ for the corresponding sets of positive roots and coroots, respectively.
The corresponding i-th fundamental weight is ωi = ε1 +⋯+εi, for i ∈ {1, . . . , n−1}.
We will also consider the following hyperplane and half-spaces associated to a pair
(α,n) ∈ Φ ×Z:

Hα,n = {x ∈ V ∶ (α,x) = n},
H+α,n = {x ∈ V ∶ (α,x) ≥ n},
H+α,n = {x ∈ V ∶ (α,x) ≤ n}.

The dominant Weyl chamber is identified with the intersection ⋂αi∈∆Hαi,0.

1.2. Littelmann paths

Each gallery defines a piecewise linear path in V ≅ X⊗ZR as follows. To a column
with entries the integers 0 ≤ l1 < ⋯ < lk ≤ n, we associate the path π ∶ [0,1] →
V, t ↦ t(εl1+ ⋯ + εlk). The path associated to a gallery δ is defined to be the
concatenation of the paths of its columns, beginning with the right-most one, just
as when reading the word. We will denote it by πδ . A gallery δ is dominant if
the image πδ([0,1]) of its corresponding path is contained in the dominant Weyl
chamber. See Theorems 1.1 and 1.4 below for the representation-theoretic meaning
of paths.

Example 4. Let n = 3. In the picture below (the shaded region is the dominant

Weyl chamber), we see that the gallery ν = 1 1

2
is dominant while δ = 2 3 1

is not. Note that πν = π 1

2

∗ π
1

and π
1
∗ π

3
∗ π

2
.

ε1

ε2

ε3

πδ([0,1])

πν ([0,1])

Remark 1. The paths associated to galleries are examples of Littelmann paths;
see [Lit95] and Theorem 1.4 below. The images π([0,1]) of these paths are one-
skeleton galleries in the standard apartment of the affine building of type A. This
is explained in [GL12].
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1.3. Crystals and representation theory

We recall the crystal structure on the set of all galleries. We refer to [BG01]
and [Kas95]. For this section only, let (X,X∨,Φ,Φ∨) be a root datum, G the
corresponding complex reductive group, and ∆ = {αi ∶ i ∈ {1, . . . , n − 1}} a choice
of simple roots.

A crystal is a set B of vertices together with maps

eαi
, fαi

∶B→ B∪{0} (the root operators),

and wt ∶B→ X

for each i ∈ {1, . . . , n−1} such that for every b, b′ ∈ B and i ∈ {1, . . . , n−1}, b′ = eαi
(b)

if and only if b = fαi
(b′), and, in this case, setting εαi

(b′′) ∶= max{n ∶ enαi
(b) ≠ 0}

and φαi
(b′′) ∶= max{n ∶ fn

αi
(b′′) ≠ 0} for any b′′ ∈ B, the following properties are

satisfied.

(1) wt(b′) = wt(b) + αi,
(2) φ(b) = εαi

(b) + (wt(b), α∨i )
A crystal is in particular a graph, and is hence a disjoint union of its connected
components. If B is a crystal and b ∈ B is a vertex, we will denote the connected
component of B in which it lies by Conn(b). A crystal morphism is a map F ∶
B→ B′ between the underlying sets of two crystals B and B′ such that wt(F(b)) =
wt(b) and such that it commutes with the action of the root operators. A crystal
morphism is an isomorphism if it is bijective. Given an integrable module M of
the quantum group Uq(g) of the Lie algebra g of G, Kashiwara constructed a
crystal BM that is the “combinatorial skeleton” of M [Kas91]. If M = L(λ) is a
simple module of highest weight λ ∈ X+ then BM is a connected crystal denoted by
B(λ), which has the property that there exists a unique element bλ ∈ B(λ) such
that eibλ = 0 for all i ∈ {1, . . . , n − 1}. Such an element is called a highest weight
vertex. The crystal B(λ) also has the characterising property that dim(L(λ)µ) =
#{b ∈ B(λ) ∶ wt(b) = µ}. If M = ⊕m

i=1 L(λi) is semisimple, then the connected
components of BM contain exactly one highest weight vertex of BM each. They
are in one-to-one correspondence with the crystals B(λi) that correspond to the
simple summands L(λi) of M.

1.4. Crystal structure on the set of galleries

Let γ be a gallery of shape d = (d1, . . . , dr). Define wt(γ) ∶= πγ(1) ∈ X. Note that
this is well defined. In Example 4, wt(ν) = 2ε1 + ε2 and wt(δ) = ε1 + ε2 + ε3 = 0.
In general wt(γ) = ∑n

i=1 λiεi, where λi ∶= #{i′s in γ}. We recall the action of
the root operator fαi

(respectively eαi
) on γ. The definition we provide here is

a straightforward generalization of the crystal operators on Young tableaux given
in [Kas95] and a translation of the crystal operators on paths [Lit95] or galleries
[GL05]. See also Section 7.4 of [HK02].

The action of the root operators eαi
, fαi

.

(a) Tag the columns of γ with a sign σ ∈ {+,−,∅} in the following way. If both i

and i+ 1 appear in a column or if they do not appear, the column is tagged
with a (∅). If only i appears, it is tagged with a (+), and if only i + 1
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appears, with a (−). The resulting sequence of tags is sometimes called the
i-signature of γ.

(b) Ignore the (∅)-tagged columns to produce a sub-gallery, and then ignore
all pairs of consecutive columns tagged (− +), and get another sub-gallery.
Continue this process, recursively obtaining sub-galleries, until a final sub-
gallery is produced with tags of the form

(+)s(−)r.

To apply the operator fαi
(resp. eαi

), modify the column corresponding
to the rightmost (+) (resp. leftmost (−)) in the final sub-gallery tags, and
replace the entry i with i + 1 (resp. i + 1 with i). If s = 0 (resp. r = 0), then
fαi
(γ) = 0 (resp. eαi

(γ) = 0).
It is easy to check that the above operations define a crystal structure on the

set of galleries Γ.

Example 5. To apply the crystal operator fα2
to

γ = 3 1 5 2

2
,

one obtains that the corresponding taggings of the columns read from left to right
are − +∅+. The first sub-gallery obtained is

3 1 2

2
,

which is tagged by − + +. The next sub-gallery is then 2 , hence

fα2
(γ) = 3 1 5 3

2
.

We also obtain that fα1
(γ) = 0.

1.5. Word reading and paths

The path model. We begin this section with what is known as the Littelmann path
model. Theorem 1.1 below is proven (in a more general context) as Theorem 7.1
in [Lit95].

Theorem 1.1. If γ ∈ Γ is a dominant gallery, then Conn(γ) ≅ B(wt(γ)).
Word reading. The following proposition is very important for our purposes. It is
well known for semistandard Young tableaux (see, for example, [Kas95], Section
5.3). Let d = (d1, . . . , dr) be a shape, ld = ∑r

j=1 dj the number of boxes in the
arrangement of boxes of shape d and ld = (1, . . . ,1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ld−times

.
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Proposition 1.2. The map

Γ(d) → Γ(ld)
γ ↦ γw(γ)

is a crystal morphism.

Proof. First note that since the weight of a gallery only depends on the entries of
its boxes, wt(γ) = wt(γw(γ)). If two single-column galleries γ1, γ2 are labelled by
(+) and (−) respectively, then the word associated to their concatenation γ2 ∗ γ1
is in turn labelled by (− +). If the gallery γ is not labelled, then γw(γ) is labelled
either by (− +) or by ∅. It is therefore enough to show that for any i ∈ {1, . . . , n−1}
and any gallery γ of shape (m), fαi

(w(γ)) = w(fαi
(γ)). This is shown in [Kas95],

Section 5.3, Proposition 5.1. We give a proof nevertheless, for the comfort of the
reader.

Let γ be a column gallery of shape (m) with entries 1 ≤ a1 < ⋯ < am ≤ n and
i ∈ {1, . . . , n−1}. If γ is labelled by (∅) or by (−) then fαi

(w(γ)) = w(fαi
(γ)) = 0.

If γ is labelled by (+), then, for some k ∈ {1, . . . , r}, ak = i, and since the column
is labelled by only a (+), ak+1 > ak + 1. Hence, fαi

(γ) is obtained from γ by
replacing i = ak by i + 1, with no need of reordering the entries, and therefore
fαi
(w(γ)) = w(fαi

(γ)). ◻
Proposition 1.2 allows an enhanced version of Theorem 1.1 which we state in

Theorem 1.4 (it is well known but the author has not found an explicit reference).
To prove it we need the following lemma which characterizes dominant galleries as
highest weight vertices.

Lemma 1.3. A gallery ν ∈ Γ is dominant if and only if eαi
(ν) = 0 for all i ∈

{1, . . . , n − 1}.
Proof. Let ν ∈ Γ be a gallery. First notice the following two things.

1) Since entries are strictly increasing in columns, the gallery ν is dominant if
and only if γw(ν) is dominant.

2) For a word w ∈Wn, the condition ei(γw) = 0 for all i ∈ {1, . . . , n − 1} means
that to the right of each i+1 in γw is at least one i. This is equivalent to γw
being dominant.

Now assume that ei(ν) = 0 for all i ∈ {1, . . . , n}. By Proposition 1.2 this is
equivalent to ei(γw(ν)) = 0 for all i ∈ {1, . . . , n}, which by 2) above is equivalent
to γw(ν) being dominant, which is in turn equivalent to ν being dominant by 1)
above. ◻
Theorem 1.4 (The type A path model). The connected components of Γ are all
of the form Conn(δ) ≅ B(wt(δ)) for a dominant gallery δ.

Proof. By Theorem 1.1 it is enough to show that for every gallery ν there is a
dominant gallery δ ∈ Conn(ν) that belongs to the same connected component as
ν. To see this, consider a gallery ν ∈ Γ(d) of shape d. Its word, seen as the
gallery γw(ν), lies in the crystal Γ(ld). As is explained in Section 13 of [Lit96],
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this is the crystal BM associated to the representation M ∶= L(ω1)⊗l(w(ν)), where
l(w(ν)) is the length of the word w(ν). The representation M is semisimple, hence
γw(ν) lies in a connected component Conn(γw(ν)) ≅ B(λ) isomorphic to the crystal
associated to a simple module L(λ) of highest weight λ ∈ X+, with highest vertex
bλ ∈ Γ(ld). Proposition 1.2 implies that Conn(ν) ≅ Conn(γw(ν))—hence there
exists a gallery δ ∈ Γ(d) such that γw(δ) = bλ. In particular, since γw(δ) is a highest
weight vertex, by Lemma 1.3 it is dominant, hence by 1) in the proof of Lemma
1.3, so is δ. ◻
Example 6. A connected crystal of galleries of shape (2,1) and the crystal formed
by its word-readings, regarded as galleries, in the case n = 3. Both crystals are
isomorphic to the crystal B(ω1 + ω2) associated to the simple module L(ω1 + ω2)
for SL3(C).
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2
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ss
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1.6. Equivalence of galleries

We say that a gallery of shape d = (d1, . . . , dr) is a semi-standard Young tableau if
d1 ≤ ⋯ ≤ dr and if the entries are weakly increasing from left to right in rows. We
will denote the set of all semi-standard Young tableaux of shape d by Γ(d)SSYT.

Example 7. The gallery

1 2 2

4

is a semi-standard Young tableau. Note that the galleries considered in Example
6 are not.
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We say that two galleries γ, δ are equivalent (γ ∼ δ) if there exists a crystal
isomorphism φ ∶ Conn(γ) ∼Ð→Conn(δ) such that φ(γ) = δ. The plactic monoid is
the quotient Pn =Wn/∼ of Wn by the ideal ∼ generated by the following relations:

(a) For x ≤ y < z, y x z = y z x.
(b) For x < y ≤ z, x z y = x y z.
(c) The relation 1 ⋯ n = ø, where ø is the trivial word.

If two words have equal classes in the plactic monoid, we say they are plactic
equivalent.

Lemma 1.5. Two galleries δ and γ are equivalent if and only if their words w(δ)
and w(γ) are plactic equivalent.

Proof. Let δ and γ be two galleries, and assume that their words w(δ) and w(γ)
are plactic equivalent. Then by Main Theorem C (b) in [Lit96] this is equivalent to
γw(δ) ∼ γw(γ). Proposition 1.2 implies that word reading induces isomorphisms of
crystals Conn(ν) ∼→w(Conn(ν)), ν ↦ γw(ν) for any gallery ν, where w(Conn(ν))
is the crystal of all words of elements in Conn(ν). This concludes the proof. ◻
Remark 2. Lemma 1.5 implies that our definition of equivalence of galleries coin-
cides with Definition 5 in [GLN13] (after adding the relation 1⋯n = ø).
Remark 3. The crystal structure we have defined coincides with the usual crystal
structure on the set of semi-standard Young tableaux (see [HK02, Sect. 7.4]).

The following lemma is well known (originally Theorem 6 in [Knu70]) and sim-
ilar to Theorem 1 in [GLN13], but note that we have an extra restriction on the
length of the longest column of the galleries we consider. The reason for this is
that we consider the representation theory of SLn(C), where we have only n − 1
fundamental weights.

Lemma 1.6. Given any gallery γ there exists a unique semi-standard Young tab-
leau γSS such that γ ∼ γSS.
Proof. Let γ be a gallery and let w be a representative of minimal length of the
class in the plactic monoid Pn of its word w(γ). Let γSS be the semistandard
Young tableau obtained by applying Robinson-Schensted-Knuth insertion (see, for
example, [S61], second definition in Part I) to w read from right to left (the reason
for this is that we want to keep the word reading convention of [GLN13]). Now
we use a result of C. Schensted (Theorem 2 in [S61], the general version from Part
II): the number of rows (or the length of the longest column) of γSS equals the
length of the longest decreasing subsequence of w (read from right to left!). Since
w is a minimal length representative, we claim that it cannot have a decreasing
subsequence of length n. Indeed, for any i ≤ n, the relations (a) and (b) above imply
that for j ≤ i,1⋯ij and j1⋯i are plactic equivalent. Hence if w has a subsequence
of length n it follows by induction that it is plactic equivalent to a word of the form
w11⋯nw2, which is plactic equivalent to w1w2. The word w1w2 has length strictly
less than that of w, which contradicts the minimality assumption on the length of
w. Schensted’s result then implies that γSS has columns of length at most n − 1.
By Theorem 6, [Knu70], γSS is the unique semistandard Young tableau such that
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its word w(γSS) is plactic equivalent to w. The latter is in turn plactic equivalent
to w(γ); hence, by Lemma 1.5, γ ∼ γSS. ◻

Example 8. For n = 3, the galleries
1 1

2
, 1 2 1 , and 1 2 1 3 2 1 are all

equivalent to the semi-standard Young tableau
1 1

2
.

2. Galleries and MV cycles

2.1. Setup and notation

For a C-algebra A and an algebraic group G consider its A-rational points G(A) ∶=
Mork−alg(C[G],A), where C[G] is the coordinate ring of G. We shall make abuse
of notation and write SLn(A),TSLn

(A),PSLn(A) and TPSLn
(A) for the A-rational

points of the groups that we consider. We refer the reader to Chapter 13 of [Kum02]
for proofs of the statements in this subsection.

Consider the map p ∶ SLn(C) → PSLn(C) = SLn(C)/µn, where µn is the group
of n-th roots of unity. The set G = PSLn(C((t)))/PSLn(C[[t]]) is the affine Grass-
mannian associated to PSLn(C), where C((t)) and C[[t]] are the C-algebras of
formal power series and Laurent power series, respectively. It carries the structure
of an ind-variety; this means it is the direct limit of projective varieties, and that
all the maps are closed immersions. Each cocharacter λ ∈ Mor(C×,TPSLn

(C))
determines a C-algebra morphism C[PSLn] → C[C×] = C[t, t−1] ⊂ C((t)); there is

actually a bijection Mor(C×,TPSLn
(C)) 1∶1←→ TPSLn

(C((t)))/TPSLn
(C[[t]]). We

will write tλ for the point in G determined by the cocharacter λ.
The group SLn(C((t))) acts on G naturally via the map p′ ∶ SLn(C((t))) →

PSLn(C((t))) that is induced by p. See Section 6 of [GLN13] for a more complete
discussion of this. The SLn(C[[t]])-orbits in G coincide with the PSLn(C[[t]])-
orbits and are parametrised by the dominant integral weights

X+ ⊂Mor(TSLn
(C),C×) ≅Mor(C×,TPSLn

(C)).
Explicitly:

G = ⋃
λ∈X+

SLn(C((t)))tλ.

To each dominant integral weight λ ∈ X+ is associated a projective variety Xλ ⊂ G
that is defined as the closure of the SLn(C[[t]])-orbit of tλ in G, with respect to
its topology as an ind-variety.

2.2. Bott–Samelson varieties

In this section we write T for TSLn
(C). Let B ⊃ T be the Borel subgroup of upper

triangular matrices in SLn(C) and let U be its unipotent radical. It is generated by
the images Uα(a) of the one-parameter subgroups Uα ∶ C× → SLn(C), a ↦ Id+aEij

associated to the roots α = εi − εj ∈ Φ. Note that p(U) and U are isomorphic. For
λ ∈ X+ and µ ∈ X such that µ ≤ λ (λ − µ = ⊕n−1

i=1 Z≥0αi), let Z(λ)µ be the set of
irreducible components of the closure

U(C((t)))tµ ∩PSLn(C[[t)]]tλ = U(C((t)))tµ ∩ SLn(C[[t)]]tλ.
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The geometric Satake equivalence implies that Z(λ)µ can be identified with a
basis for the C-vector space L(λ)µ (see Corollary 7.4 in [MV07]). The set Z(λ) =
⋃µ≤λ Z(λ)µ is the set of MV cycles in Xλ; see Theorem 3.2 of [MV07]. This
set carries the structure of a crystal isomorphic to B(λ) [BG01]. For each i ∈
{1, . . . , n − 1} we denote by ∼ei, ∼fi the crystal operators on the set Z(λ) defined by
Braverman and Gaitsgory (see Section 3.3 of [BG01]).

To each shape d we assign the dominant integral weight λd = ωd1
+⋯+ωdr

∈ X+

as well as an affine Bott–Samelson desingularization Σd

πdÐ→ Xλd
that is defined as

follows. Let Uα,n ∶ C× → SLn(C((t))) be the one-parameter subgroup defined by
b ↦ Uα(btn). For i ≤ r let µi ∶= ∑j≤i ωdr−j+1

and let li be the line segment that
joins µi and µi+1. Let:

Pdi
be the subgroup of SLn(C((t))) that is generated by the elements Uα,n(b)

for b ∈ C, and such that µi ∈ H+α,n, and let Qdi
be the subgroup of Pdi

generated
by the elements of the root subgroups for roots (α,n) such that the line segment
li joining µi and µi+1 is contained in the corresponding hyperplane li ⊂ H+α,n.

The affine Bott–Samelson variety is defined as the quotient Σd ∶= P0×⋯×Pr/Q0×
⋯×Qr−1 ×Pr of P0 ×⋯×Pr by the left action of the group Pr Q0 ×⋯×Qr−1 ×Pr

given by:

(q0, . . . , qr) ⋅ (p0, . . . , pr) = (p0q0, q−10 p1q1, . . . , q
−1
r−1prqr).

It is well known that the quotient Σd is a smooth projective variety and that

the map Σd

πdÐ→ Xλd
defined by [g0, . . . , gr] ↦ g0⋯gr−1tλd has image Xλ and is

a desingularization [GL12]. The maximal torus TSLn
(C) acts by multiplication

on the left-most coordinate. The choice of a generic dominant coweight η ∶ C× →
TSLn

(C) induces a C
×-action with set of fixed points in bijection with the set Γ(d)

of galleries of shape d (see Lemma 1 in [GLN13]). Given a gallery γ ∈ Γ(d) we
denote its corresponding Bia lynicki-Birula cell by Cγ ∶= {x ∈ Σd ∶ lim

t→0
η(t) ⋅x = γ} ⊂

Σd. One of the main results in [GLN13] (Theorem 2) establishes that the closure
of the image πd(Cγ) is an MV cycle in Z(λd(γSS)), where γSS is the semi-standard
Young tableau γSS from Lemma 1.6 associated to γ.

2.3. Galleries and MV cycles

The following theorem is the combination of Theorem 2 in [GL05] and Section 6
in [GL12] for part (a), and Theorem 25 in [BG08] for part (b)

Theorem 2.1. Let d = (d1, . . . , dr) be a shape such that d1 ≤ ⋯ ≤ dr and consider
the desingularization πd ∶ Σd → Xλd

.

(a) If δ ∈ SSYT(λd) is a semi-standard Young tableau, the closure πd(Cδ) is an
MV cycle in Z(λd). This induces a bijection SSYT(λd)

ϕdÐ→ Z(λd).
(b) The bijection ϕd is a morphism of crystals.

Remark 4. The set of one-skeleton LS galleries considered in [GL12] coincides with
the set of semi-standard Young tableaux (see [GL12, Prop. 18 i]).

Let d be a shape. For λ ∈ X+, let nλ
d = #{γ ∈ Γ(d)dom ∶ λd(γ) = λ} and let

X+d ∶= {λ ∈ X+ ∶ nλ
d ≠ 0}. Here Γ(d)dom is the set of all dominant galleries of shape
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d. Fix λ = λ1ω1 + ⋯ + λn−1ωn−1 and Z ∈ Z(λ)µ for some µ ≤ λ. By Theorem 2.1
there exists a unique semi-standard Young tableau γλ

µ,Z ∈ SSYT(λ) of shape λ ∶=
(dλ1 , . . . , dλkλ

), where kλ ∶= ∑n−1
i=1 λi and dλj ∶= i for λi−1 < j ≤ λi, λ0 ∶= 0, such that

ϕλ(γλ
µ,Z) = Z.

Theorem 2.2.

(a) The map

Γ(d) ϕdÐ→ ⊕
λ∈X+

d

Z(λ)

δ ↦ πd(Cδ)
is a well-defined surjective morphism of crystals.

(b) If C is a connected component of Γ(d), the restriction ϕd∣C is an isomor-
phism onto its image.

(c) The number of connected components C of Γ(d) such that ϕd(C) = Z(λ)
(for λ ∈ X+d) is equal to nλ

d .

(d) The fibre ϕ−1d (Z) is given by

ϕ−1d (Z) = {γ ∈ Γ(d) ∶ ϕd(γ) = Z} = {γ ∈ Γ(d) ∶ γ ∼ γλ
µ,Z}.

We consider the direct sum ⊕λ∈X+
d
Z(λ) in the category of crystals, regarding

the Z(λ) as abstract crystals.

Proof. Let d be a shape and δ ∈ Γ(d) as in the statement of the Theorem. By
Lemma 1.6 there exists a unique semi-standard Young tableau δSS such that δ ∼
δSS . By Theorem 3.1(b) (Theorem 2(b) in [GLN13] up to a small correction; see
the Appendix) and Lemma 2,

πd(Cδ) = πd(δSS)(CδSS
). (1)

Now let r be a root operator. By definition of equivalence of galleries r(δ) ∼
r(δSS). Note also that d(r(δ)) = d and d(r(δSS)) = d(δSS). Lemma 2 and Theo-
rem 3.1(b) again imply

πd(Cr(δ)) = πd(δSS)(Cr(δSS)).
Theorem 2.1(b) says that

πd(δSS)(Cr(δSS)) = ∼r(πd(δSS)(CδSS
)),

and since (1) implies ∼r(πd(Cδ)) = ∼r(πd(δSS)(CδSS
)), the proof of part (a) of The-

orem 2.2 is complete.
Parts (b), (c), and d. are a direct consequence of Theorem 1.4: Indeed, since

the action of the root operators does not affect the shape of a gallery, Theorem 1.4
implies that the set Γ(d) is a disjoint union Γ(d) = ⊔η∈Γ(d)dom Conn(η). The above
argument and Theorem 2.1 imply that ϕd(Conn(η)) = Z(wt(η)) for η ∈ Γ(d)dom
and that ϕd is a crystal isomorphism onto its image when restricted to Conn(η).
◻
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3. Appendix

Here we state Theorem 2 in [GLN13] with a small correction, which we prove.
What is missing in the formulation given in [GLN13] is the relation 1 ⋯ n = ø.
The proof we provide shows the failure of Theorem 3.1 without it.

Theorem 3.1. Let γ be a gallery of shape d, and let γSS be the unique semistan-
dard Young tableau such that the words w(γ) and w(γSS) are plactic equivalent.
Let c be the shape of γSS. Consider the Schubert varieties Xλc

⊂ Xλd
and the

desingularizations πd ∶ Σd → Xλd
and πc ∶ Σc → Xλc

.

(a) The closure πd(Cγ) ⊂ Xλd
is an MV cycle in Z(λc).

(b) Let γ′ be a second gallery of shape d′. Then γ ∼ γ′ if and only if πd(Cγ) =
πd′(Cγ′).

For the proof we need the following description of the image πd(Cγ). Let γ be
a gallery of shape d = (d1, . . . , dr). Assume that the boxes of column i (read from
right to left) are filled in with integers 1 ≤ li1 < ⋯ < liri ≤ n. Define γ0 ∶= 0 and let l1
be the line segment that joins the origin and the point γ1 ∶= εl1

1

+⋯ + εl1r1 . Define

γj+1 ∶= γj + εlj+1
1

+⋯εlj+1rj+1

recursively; lj+1 is the line segment joining γj and γj+1.

Let Φ+γi
∶= {(α,n) ∈ Φ+ ×Z ∶ γi ∈ H+α,n} and Φ+γi,γi+1

= {(α,n) ∈ Φ+γi
∶ li ⊄ H−α,n}. Fix

some total order on Φ+γi,γi+1
and let

Uγi
(ai) ∶= ∏

(α,n)∈Φ+γi,γi+1

Uα,n(aiα,n), where ai ∶= (aiα,n)(α,n)∈Φ+γi,γi+1 ∈ C
#Φ+γi,γi+1

and the product is taken in the chosen fixed order. Then Proposition 4.19 in [GL12]
(or Corollary 3 in [GLN13]) says:

π(Cγ) = {Uγ0
(a0)⋯Uγr−1

(ar−1)twt(γ) ∶ aj ∈ C#Φ
+

γi,γi+1 }.

Consider also, for 0 ≤ k ≤ r − 1 the truncated images

T≥kγ ∶= Uγk
(ak)⋯Uγr−1

(ar−1)twt(γ),

T≤kγ ∶= Uγ0
(a0)⋯Uγk

(ak).

Given a weight µ ∈ X and (α,n) ∈ Φ×Z, the relation t−µUα,n t
µ = Uα,n−(λ,α) (see

[St68], Section 6) implies that the group Uµ generated by all the subgroups Uβ,m

such that λ ∈ H−β,m stabilises tµ, and by Proposition 3 in [GLN13], Uwt(γ<k)T
≥k
γ =

T≥kγ , where γ<k is the gallery consisting of the first k − 1 columns of γ, read from
right to left. We will use this below.

Proof of Theorem 3.1. The only thing missing in the proof in [GLN13] is the fol-
lowing claim.

Claim. Let γ and δ be galleries, let b be the shape of γ ∗ δ, and a be the shape of

γ ∗ γ1⋯n ∗ δ. Then πa(Cγ∗γ1⋯n∗δ) = πb(Cγ∗δ).
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Let η = γ ∗ γ1⋯n ∗ δ, and assume γ has k columns. Then

π(Cη) = T≤kη Uηk+1
(ak+1)⋯Uηk+n

(ak+n)T≥k+n+1η .

Now, note that the sets Φ+ηk+i,k+i+1
are disjoint for i ∈ {1, . . . , n} (for example, if γ

and δ are trivial and n = 3, then Φ+η0,1
= {(ε1 − ε2,0), (ε1 − ε3,0)},Φ+η1,2

= {(ε2 −
ε3,0)},Φ+η2,3

= ∅). This implies that for i ∈ {1, . . . , n} the products Uηk+i
(ak+i)

all belong to the group Uwt(γ), which stabilises T≥k+n+1η . Since wt(γ1⋯n) = 0,
T≥k+n+1η = T≥k+1γ∗δ . Hence π(Cη) = T≤kη T≥k+n+1η = T≤kγ∗δ T

≥k+1
γ∗δ = πb(Cγ∗δ) and the

claim follows. ◻
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