ERRATUM TO: ON THE DIRAC COHOMOLOGY OF COMPLEX LIE GROUP REPRESENTATIONS

CHAO-PING DONG

School of Mathematics Shandong University Jinan 250100, China chaoping@sdu.edu.cn

Abstract. We correct an error in the paper [D]. For Proposition 1.3 and Theorem 1.4 there to hold, we need to assume that $\lambda_L + s\lambda_L$ is dominant for $\Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)$.

Let G be a connected complex semisimple Lie group. Fix a Borel subgroup B of G containing H. Let us put $\Delta^+(\mathfrak{g}_0,\mathfrak{h}_0) = \Delta(\mathfrak{b}_0,\mathfrak{h}_0)$ and set

$$\Delta^+(\mathfrak{g},\mathfrak{h}) = \Delta^+(\mathfrak{g}_0,\mathfrak{h}_0) \times \{0\} \cup \{0\} \times (-\Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)),$$

which is θ -stable. As deduced by Barbasch and Pandžić [BP], to find all the irreducible unitary representations with non-zero Dirac cohomology, it suffices to consider $J(\lambda_L, -s\lambda_L)$ such that $2\lambda_L$ is dominant integral regular for $\Delta^+(\mathfrak{g}_0, \mathfrak{h}_0)$, where $s \in W$ is an involution. For Proposition 1.3 of [D] to hold, we need the additional requirement that $\lambda_L + s\lambda_L$ is dominant for $\Delta^+(\mathfrak{g}_0, \mathfrak{h}_0)$. Without this condition, that proposition can fail, as illustrated by the following example, told to me by Vogan.

Example. Take $G = Sp(4, \mathbb{C})$, and identify \mathfrak{h}_0^* with \mathbb{C}^2 . Let us put

$$\Delta^{+}(\mathfrak{g}_{0},\mathfrak{h}_{0}) = \{(0,2), (1,-1), (1,1), (2,0)\}.$$

Take $\lambda_L = (2,1)$. Let s be the reflection in the root (2,0). Then $\lambda_R = -s\lambda_L = (2,-1)$. Let us consider the representation

$$J((2,1),(2,-1)).$$

Now $\lambda_L - \lambda_R = (0, 2)$, which is not dominant for $\Delta^+(\mathfrak{g}_0, \mathfrak{h}_0)$. Let w be the reflection in the root (1, -1). Then one can use the element $w \in W$ to conjugate $\lambda_L - \lambda_R$ to be the dominant one $\lambda := \{\lambda_L - \lambda_R\} = (2, 0)$, and use λ to define a θ -stable parabolic subalgebra $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$. But the point is that we should conjugate the Zhelobenko parameters λ_L, λ_R simultaneously using the same $w \in W$, which then become

$$J((1,2),(-1,2)).$$

DOI: 10.1007/s00031-013-9226-9

Received March 4, 2013. Accepted March 25, 2013. Published online May 10, 2013.

Now $2w\lambda_L = (2,4)$, which has a negative pairing with the root (1,-1) in \mathfrak{u} . Thus the above representation is not in the good range, and Proposition 1.3 of [D] fails: instead of being irreducible, the cohomologically induced module in the RHS of equation (8) of [D] now has five composition factors, one of which is J((2,1),(2,-1)). \square

Thus for Proposition 1.3 of [D] to hold, we need to assume that $\lambda_L + s\lambda_L$ is dominant for $\Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)$. Accordingly, the correct version of Theorem 1.4 of [D] is stated as follows.

Theorem 1.4'. Let $J(\lambda_L, -s\lambda_L)$ be an irreducible representation of G, where $2\lambda_L$ is dominant integral regular for $\Delta^+(\mathfrak{g}_0, \mathfrak{h}_0)$, and $s \in W$ is an involution such that $\lambda := \lambda_L + s\lambda_L$ is dominant for $\Delta^+(\mathfrak{g}_0, \mathfrak{h}_0)$. Let $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$ be the θ -stable parabolic subalgebra of \mathfrak{g} defined by λ . Then $J(\lambda_L, -s\lambda_L)$ is a unitary (\mathfrak{g}, K) -module if and only if $J_L(\lambda'_L, \lambda'_R)$ is a unitary $(\mathfrak{l}, L \cap K)$ -module. In such a case, if

$$H_D(J_L(\lambda'_L, \lambda'_R)) = m2^{[l_0/2]} F_{2\lambda_L - \rho(\mathfrak{u}) - \rho_c^L},$$

where $l_0 = \dim \mathfrak{a}$, m is a non-negative integer, and F_{ν} denotes the $\widetilde{K_L}$ -type with highest weight ν , then

$$H_D(J(\lambda_L, -s\lambda_L)) = m2^{[l_0/2]} E_{2\lambda_L - \rho_C}$$

where E_{μ} denotes the \widetilde{K} -type with highest weight μ . In particular, $H_D(J(\lambda_L, -s\lambda_L))$ is non-zero if and only if $H_D(J_L(\lambda_L', \lambda_R'))$ is non-zero.

Since $2\lambda_L$ is dominant integral regular, one sees easily that the additional assumption " $\lambda := \lambda_L + s\lambda_L$ is dominant for $\Delta^+(\mathfrak{g}_0, \mathfrak{h}_0)$ " is equivalent to the requirement that $J(\lambda_L, -s\lambda_L)$ is in the good range. Therefore, Theorem 1.4' handles exactly the irreducible unitary representations of G which are in the good range.

When $\lambda_L + s\lambda_L$ is not dominant, since we care the most about unitary representations, things can be remedied to a certain extent by adopting Parthasarathy's Dirac inequality, which requires that

$$||2\lambda_L|| \le ||\rho_c + \{\lambda_L + s\lambda_L\}||.$$

For instance, the representation considered in the above example is not unitary. It is elementary to deduce the following: fix any λ_L such that $2\lambda_L$ is dominant integral regular, and any involution $s \in W$ such that $\lambda_L + s\lambda_L$ is not dominant; there exists a positive integer N depending on λ_L and s such that

$$||2k\lambda_L|| > ||\rho_c + \{k\lambda_L + sk\lambda_L\}||,$$

where $k \geq N$ is an arbitrary integer. Theorem 1.4' cannot handle the possible unitary representations in the family $J(k\lambda_L, -sk\lambda_L)$, $1 \leq k < N$.

Finally, we take this opportunity to correct the typos in [D]:

Page 72, line -4: replace "by Λ^+ " with "by a subset of Λ^+ ".

Subsection 7.3: all the four places of $J(\lambda_L, -\lambda_L)$ should be $J(\lambda_L, \lambda_L)$.

Acknowledgement. I thank Professor Vogan sincerely for pointing out the error to me.

ERRATUM 597

References

- [BP] D. Barbasch, P. Pandžić, Dirac cohomology and unipotent representations of complex groups, in: Noncommutative Geometry and Global Analysis, Contemp. Math., Vol. 546, Amer. Math. Soc., 2011, pp. 1–22; also available at arXiv:1007.1289v1.
- [D] C.-P. Dong, On the Dirac cohomology of complex Lie group representations, Transform. Groups 18 (2013), 61–79.