ERRATA TO "STRUCTURE OF SOME \mathbb{Z}-GRADED LIE SUPERALGEBRAS OF VECTOR FIELDS"

N. CANTARINI

Dipartimento di Matematica
Pura ed Applicata Università di Padova, 35131 Padova, Italy cantarin@math.unipd.it

S.-J. CHENG

Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan
chengsj@mail.ncku.edu.tw

V. KAC
Department of Mathematics
MIT, Cambridge
MA 02139, USA
kac@math.mit.edu

We shall give here the correct description of the Lie superalgebra $E(3,8)$ presented at the end of [Section 5.3, CK]. The superalgebra $E(3,8)$ has even part $E(3,8)_{\overline{0}}=$ $W_{3}+\Omega^{0}(3) \otimes s l(2)+d \Omega^{1}(3)$ where W_{3} acts in the natural way on $\Omega^{0}(3) \otimes s l(2)+d \Omega^{1}(3)$ while, for $X, Y \in W_{3}, f, g \in \Omega^{0}(3), A, B \in \operatorname{sl}(2), \omega_{1}, \omega_{2} \in d \Omega^{1}(3)$, we have:

$$
\begin{gathered}
{[X, Y]=X Y-Y X-\frac{1}{2} d(\operatorname{div} X) \wedge d(\operatorname{div} Y) ; \quad\left[f \otimes A, \omega_{1}\right]=0} \\
{[f \otimes A, g \otimes B]=f g \otimes[A, B]+\operatorname{tr}(A B) d f \wedge d g ; \quad\left[\omega_{1}, \omega_{2}\right]=0}
\end{gathered}
$$

The odd part of $E(3,8)$ is $E(3,8)_{\overline{1}}=\Omega^{0}(3)^{-\frac{1}{2}} \otimes \mathbb{C}^{2}+\Omega^{2}(3)^{-\frac{1}{2}} \otimes \mathbb{C}^{2}$ where $E(3,8)_{\overline{0}}$ acts on $E(3,8)_{\overline{1}}$ as follows: for $X \in W_{3}, f \in \Omega^{0}(3)^{-\frac{1}{2}}, g \in \Omega^{0}(3), v \in \mathbb{C}^{2}, A \in \operatorname{sl}(2), \omega \in$ $d \Omega^{1}(3), \sigma \in \Omega^{2}(3)^{-\frac{1}{2}}$,

$$
\begin{gathered}
{[X, f \otimes v]=\left(X . f+\frac{1}{2} d(\operatorname{div} X) \wedge d f\right) \otimes v} \\
{[g \otimes A, f \otimes v]=(g f+d g \wedge d f) \otimes A v ; \quad[g \otimes A, \sigma \otimes v]=g \sigma \otimes A v} \\
{[\omega, f \otimes v]=f \omega \otimes v ; \quad[\omega, \sigma \otimes v]=0}
\end{gathered}
$$

Here, W_{3} acts on $\Omega^{2}(3)$ by Lie derivative.
Let us now describe the bracket between two odd elements. We identify W_{3} with $\Omega^{2}(3)^{-1}$ and $\Omega^{3}(3)^{-1}$ with $\Omega^{0}(3)$. In addition, we identify $\Omega^{2}(3)^{-\frac{1}{2}}$ with $W_{3}^{\frac{1}{2}}$ and we denote by X_{ω} the vector field corresponding to the 2 -form ω under this identification.

DOI: 10.1007/s00031-004-9005-8.
Received May 21, 2004.

Let us note that if $\omega_{1}, \omega_{2} \in \Omega^{2}(3)^{-\frac{1}{2}}$, then the Lie derivative $X_{\omega_{1}}\left(\omega_{2}\right)$ of ω_{2} along $X_{\omega_{1}}$ is a nontwisted 2-form. Let $\omega_{1}, \omega_{2} \in \Omega^{2}(3)^{-\frac{1}{2}}, f_{1}, f_{2} \in \Omega^{0}(3)^{-\frac{1}{2}}, v_{1}, v_{2} \in \mathbb{C}^{2}$. Then we have:

$$
\begin{gathered}
{\left[f_{1} \otimes v_{1}, f_{2} \otimes v_{2}\right]=d f_{1} \wedge d f_{2} \otimes v_{1} \wedge v_{2}} \\
{\left[\omega_{1} \otimes v_{1}, \omega_{2} \otimes v_{2}\right]=\left(X_{\omega_{1}}\left(\omega_{2}\right)-\left(\operatorname{div} X_{\omega_{2}}\right) \omega_{1}\right) v_{1} \wedge v_{2}} \\
{\left[f_{1} \otimes v_{1}, \omega_{1} \otimes v_{2}\right]=f_{1} \omega_{1} \otimes v_{1} \wedge v_{2}-\frac{1}{2}\left(f_{1} d \omega_{1}-\omega_{1} d f_{1}\right) \otimes v_{1} \cdot v_{2}+\frac{1}{2} d f_{1} \wedge d\left(\operatorname{div} X_{\omega_{1}}\right) \otimes v_{1} \wedge v_{2}}
\end{gathered}
$$

By $v_{1} \cdot v_{2}$ we denote an element in the symmetric square of \mathbb{C}^{2}, i.e., an element in $\operatorname{sl}(2)$, and by $v_{1} \wedge v_{2}$ an element in the skew-symmetric square of \mathbb{C}^{2}, i.e., a complex number. In particular, if E, F, H is the standard basis of $s l(2)$ and e_{1}, e_{2} is the standard basis of \mathbb{C}^{2} then $E=e_{1}^{2} / 2, F=-e_{2}^{2} / 2, H=-e_{1} \cdot e_{2}$, and $e_{1} \wedge e_{2}=1$.

We point out that under these identifications between $S^{2} \mathbb{C}^{2}$ and $s l_{2}$ and $\Lambda^{2} \mathbb{C}^{2}$ and \mathbb{C}, the commutator between two odd elements in the Lie superalgebra $E(3,6)$ becomes (see [Section 5.3, CK]):

$$
\left[\omega_{1} \otimes u_{1}, \omega_{2} \otimes u_{2}\right]=\left(\omega_{1} \wedge \omega_{2}\right) \otimes\left(u_{1} \wedge u_{2}\right)+\frac{1}{2}\left(d \omega_{1} \wedge \omega_{2}+\omega_{1} \wedge d \omega_{2}\right) \otimes u_{1} \cdot u_{2}
$$

for $\omega_{1}, \omega_{2} \in \Omega^{1}(3)^{-\frac{1}{2}}, u_{1}, u_{2} \in \mathbb{C}^{2}$.
Here are other corrections to [CK]:
p. 220: (I18) should be $(\Pi(\Lambda(2)), S(0,2)+\Lambda(2))$;
p. 220: (I19) should be $\left(\Pi(\Lambda(2)), S(0,2)+\mathbb{C} 1+\mathbb{C} \xi_{1}+\mathbb{C} \xi_{2}\right)$;
p. 224 , line $18 \uparrow$: change the sign of the third summand to + ;
p. 224 , line $14 \uparrow$: change the sign after E to + ;
p. 230 , line $3 \uparrow$: should be $W(m, n)_{k}$;
p. 237 , line $18 \uparrow$: replace $S(n, 1)+\mathfrak{a}$ by $S(n, 1), S(n, 1)+\mathbb{C} E$;
p. 244, line $15 \uparrow$: replace $\widehat{S H O^{\prime}}(2,2)$ by $S K O^{\prime}(2,3 ; 1)$;
p. 244, line $14 \uparrow$: replace $\widehat{S H O}(2,2)$ by $S K O(2,3 ; 1)$;
p. 266, line $7 \uparrow$: replace $d t^{-\frac{1}{2}}$ by $d t^{\frac{1}{2}}$ in the second summand;
p. 266, line $1 \uparrow: d\left(f d t^{-\frac{1}{2}}\right) g d t^{-\frac{1}{2}}-f(d t)^{-\frac{1}{2}} d\left(g d t^{-\frac{1}{2}}\right)$ is interpreted as $\left(g f^{\prime}-g^{\prime} f\right)$;
p. 269: in the list of the irreducible gradations of $E(1,6)$, the gradations

$$
(1 \mid 0,1,1,1,0,0) \text { and }(2 \mid 2,1,1,0,1,1)
$$

were inadvertently omitted (see [S]);
p. 271: remove lines $15 \downarrow$ and $16 \downarrow$.

References

[CK] S.-J. Cheng, V. Kac, Structure of some \mathbb{Z}-graded Lie superalgebras of vector fields, Transform. Groups 4 (1999), 219-272.
[S] I. Shchepochkina, The five exceptional simple Lie superalgebras of vector fields and their fourteen regradings, Represent. Theory 3 (1999), 373-415.

