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Unique ergodicity in stochastic
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Abstract. We consider a stochastic electroconvection model describing the
nonlinear evolution of a surface charge density in a two-dimensional fluid
with additive stochastic forcing. We prove the existence and uniqueness of
solutions, we define the corresponding Markov semigroup, and we study
its Feller properties. When the noise forces enough modes in phase space,
we obtain the uniqueness of the smooth invariant measure for the Markov
transition kernels associated with the model.
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1. Introduction

Electroconvection refers to the dynamics of electrically conducting fluids under
the influence of electrical charges. There are many instances of electroconvec-
tion in non-Newtonian and Newtonian fluids, including the flow of nematic
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and smectic suspensions subject to applied voltage. The phenomena are mod-
eled by partial differential equations for the charges and solvent [37] which
are nonlinear and nonlocal. The range of physical, chemical, engineering and
biological applications is extremely wide, ranging from neuroscience [28] to
batteries [39] and semiconductors [4]. Particularly interesting and relevant to
this paper are the works [8,40] which concern the dynamics of a thin smectic
film in an annular region, driven by an imposed voltage at the boundary. In [6]
the behavior of the system was investigated mathematically in the absence of
stochastic forcing. The model was described in terms of a surface charge den-
sity ¢, an electric field F and a fluid velocity u. The dynamics were confined to
a two dimensional domain (T? in the present paper). The electric field E was
derived from a time independent potential ® representing the voltage applied
at the boundary and a dynamic potential A~'q due to the charge density g,
via the relation

E=-V®-VAlg, (1.1)
where A™! denotes the inverse of the square root of the two-dimensional pe-

riodic Laplacian A = +/—A. The current density due to the fluid and the
electric field E is

J = E + qu, (1.2)
and the charge density obeys the continuity equation
g+ V-J=0. (1.3)

The fluid velocity u obeys the incompresible Navier—Stokes equation forced by
the electrical forces ¢FE and time independent body forces f,

ou+u-Vu—vAu+Vp=qF+ f, V-u=0 (1.4)

where p is the fluid pressure and v is the kinematic viscosity.

The well-posedness and global regularity of the deterministic model (1.1)—
(1.4) were obtained in [6] in bounded domains with homogeneous boundary
conditions, and the long-time dynamics were investigated in [1] in the two-
dimensional torus T?2.

In this paper we consider the stochastic electroconvection model corre-
sponding to the deterministic model (1.1)—(1.4),

dg+V-(qu— VA 'q—V®)dt = gdw, (1.5)

du + u - Vudt + Vpdt — vAudt = —q(VA™ q + V®)dt + fdt + gdW,
(1.6)

V-u=0 (1.7)

forced by time independent noise processes gdW and gdW on T2. For simplic-
ity, we assume that v = 1. We address the global well-posedness of (1.5)—(1.7),
the Feller properties of the Markov semigroup associated with (1.5)—(1.7),
and the existence, uniqueness and regularity of the invariant measures for the
Markov transition kernels associated with the model (1.5)—(1.7).

A vast literature treats the well-posedness of stochastic partial differn-
tial equations. Martingale type approaches [2,3,9,16,38] were established to
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prove the existence and uniqueness of solutions to the two-dimensional sto-
chastic Navier—Stokes equations (NSE). In [34], the authors use a different
approach, independent of the pathwise solutions, based on a generalization of
the classical Minty-Browder local monotonicity argument [35,36], to establish
the well-posedness to the stochastic NSE in bounded and unbounded domains.
Global existence and uniqueness of strong pathwise solutions were obtained as
well for the two-dimensional [13,21,22] and three-dimensional [10,23] stochas-
tic primitive equations.

The stochastic electroconvection model (1.5)—(1.7) is nonlocal, nonlinear,
with critical dissipation in one equation, and consequently the proof of its
global well-posedness is rather technical. Under low regularity assumptions
imposed on the noises (namely L* for § and H' for g), we prove that the
system (1.5)—(1.7) has unique global solutions when the deterministic initial
charge density is L* regular and the deterministic initial velocity is H' regular.
The existence of solutions is obtained by taking a viscous approximation of
(1.5)—(1.7), establishing uniform bounds for the viscous solutions, and using
weak convergence. The identification of the drift is highly challenging. The
reason is that the nonlinearity ¢VA~!q is not weakly continuous in the spaces
we have control in. The remedy is a coercive estimate (3.17) and use of ideas
from [34]. As a consequence of the existence result, we define the Markov
transition kernels on L* x H! and we show that they are Feller in the norm of
H~2 x L2. If the noises have higher regularity (namely V§ € L8 and Ag € L?),
then the Markov kernels become Feller in the stronger norm of H' x H'.

We also study the ergodicity of the electroconvection model (1.5)—(1.7),
which provides a natural framework to understand the long-term behavior of
such physical processes. The existence of an invariant measure for the sto-
chastic NSE system was obtained in [9,15,17], and the ergodic theory for the
stochastic NSE became the center of interest of many subsequent papers (cf.
[5,11,12,14,31,33,35,38] and references therein). Existence and regularity of
invariant measures were obtained in [18] for the three-dimenional stochastic
primitive equations. In [7], existence and uniqueness of an ergodic invariant
measure was established for the 2D fractionally dissipated periodic stochastic
Euler equation.

The dissipative term Ag in (1.5) is critical, and this is a source of technical
difficulty. When the potential ® vanishes, and with a low regular noise process,
we use the Krylov Bogoliubov averaging procedure to prove that the stochastic
model (1.5)(1.7) has an invariant measure supported on Hz x H2. If the noise
processes are smooth then the invariant measures are smooth. This follows
from bounds of the form

T
E/O (lgll? g + llulld2)dt < Ty(laolle + lluollzs + llgller + 11z + 11 f1122)

+ Ta(llgllar + 1gllar + 1£122)T
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and

T
E/ log(1+ [lll? . 5 + llullFess)dt <log (1+ ol Fpusr + lluolFps)
0

+ Te(f e + gl sz + 1911 zr+0)
(IVuollz2 + I Vaoll 13 + )

for & > 0, where T'y(+),I'2(-) and T'x(-) are some polynomials. These bounds
are obtained by taking advantage of the smoothing properties of the Stokes
operator and the nonlinear coupling, and employing the logarthmic strategy
introduced in [18].

The question of uniqueness of invariant measures requires a deeper struc-
tural understanding of the interplay of the dynamics and stochastic perturba-
tion. A number of approaches have been used in the recent literature ([5,26,
27,29,30,33,35] and references therein). In this paper we use the asymptotic
coupling approach introduced in [25,27]. The asymptotic coupling framework
was used in [20] to obtain uniqueness of the invariant measures of stochasti-
cally forced Navier—Stokes equations, fractionally dissipative Euler equations
and damped nonlinear wave equations. In order to show that a stochastic
differential equation

d
dy = F(y)dt + > o1dW, (1.8)
I=1
with initial data y(0) = yo has only one ergodic measure, the idea is to build
a copy
d
dj = F(§)dt + Gy, §)le<,dt + Y ordW, (1.9)
=1
where the feedback control G is such that y and g are forced to approach each
other, y(t)—¢(t) — 0 in an appropriate norm, on the event {7 = oo} where 7 is
a stopping time such that the coupled system (1.8)—(1.9) has global solutions
with initial data g(0) = go, and P(7 = 00) > 0. Moreover, it is required that

o0
/ lo ™ Gy (1), 5(t)|* 1< dt < C (1.10)
0

holds (for a.e. w € ) for some deterministic constant C' > 0. If such a construc-
tion can be done, then (1.8) has a unique ergodic invariant measure. Finding an
appropriate feedback G is typically based on splitting a Hilbert space X into
the direct sum of a finite-dimensional space Xj,,, and an infinite-dimensional
space Xhigh

X = Xiow ® Xhigh (111)

in such a way that the long time dynamics are controlled by the low frequency
part in Xj,,,. More precisely, the property used is that if the low frequency
parts of two solutions are asymptotically the same, then the high frequency
parts in Xp;gn are also asymptotically the same. Accordingly, two realizations
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of (1.8) are coupled in such a way that that their low frequency parts coincide
for large time ¢ > 7 provided that they meet at time t = 7.

The uniqueness of the invariant measure of the electroconvection model
(1.5)—(1.7) is obtained by constructing an appropriate feedback control and
stopping time. The construction requires L* bounds for ¢ and H? bounds
for u, exponential martingale estimates, and the Burkholder-Davis-Gundy in-
equality. The main difficulty is due to the weaker dissipation of the charge
densities, and here we use ideas from [19] to estimate the feedback control.

This paper is organized as follows. In Sect. 3, we show that the system
(1.5)—(1.7) has a unique global solution provided that the initial charge density
has a zero spatial average and is L* integrable, the initial velocity is divergence-
free and is weakly differentiable, and the noise is sufficiently regular. The proof
is based on uniform estimates in Lebesgue spaces which are established in Ap-
pendix A. In Sect. 4, we define the semigroup associated with (1.5)—(1.7) and
we prove that it is weak Feller. In the absence of potential (& = 0), we show in
Sect. 5 the existence of an invariant measure for the Markov transition kernels
associated with the electroconvection model (1.5)—(1.7) based on the Krylov-
Bogoliubov averaging procedure under low regularity assumptions imposed on
the noises. In Sect. 6, we prove that any invariant measure of (1.5)—(1.7) is
smooth provided that the model is forced by smooth noises. Using asymptotic
coupling techniques, we prove in Sect. 7 the uniqueness of the invariant mea-
sure. In Sect. 8, we address Feller properties in Sobolev norms when the noise
processes are sufficiently regular. This uses uniform bounds for the pathwise
solution, and these are presented in Appendix B.

2. Basic functional spaces and notations

For 1 < p < oo, we denote by LP(T?) the Lebesgue spaces of measurable
periodic functions f from T? to R (or R?) that are p-integrable on T?, that is

1= ([ 1) <oc (2.1)

if p € [1,00) and
| f]| oo = esssuppa| f| < oo (2.2)
if p = 0o. The L?(T?) inner product is denoted by (-,-)rz.

For s > 0, we denote by H*(T?) the Sobolev spaces of measurable periodic
functions f from T? to R (or R?) obeying

7 = > L+ 1K)l < oo (2.3)

keZ?
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For a Banach space (X, ||-||x) and p, g € [1, 0], we consider the Lebesgue
Banach spaces LP(Q; L (0,00; X)) of functions f from X to R (or R?) satis-

fying
T 4
E (/ ||f§(dt> < 00 (2.4)
0

for any T" > 0, with the usual convention when p = oo or ¢ = co. The spaces
L{ (0,00; X) and LP(£2; C°(0, 00; X)) are defined similarly. Here C°(0, 00; X)
is the space of functions f with the property that the map

t= | f(O)lx (2.5)

is continuous for any f € X.

For s € R, the fractional Laplacian A® applied to a mean zero scalar
function f is defined as a Fourier multiplier with symbol |k|*, that is, for f
given by

= D, fre (2.6)
kez2\{0}
we have that
Af= > [k fre™. (2.7)
kez2\{0}

Finally, the periodic Riesz transforms R = (Rj, R2) applied to scalar
functions f are defined as Fourier multipliers

(Rif)x =it fu, keZ?\{0}, j=1,2 (2.8)

Ikl
and they are bounded operators on LP(T?), 1 < p < oo. We write R = VA~1L.

Throughout the paper, C' denotes a positive universal constant, and
C(a,b,c,...) denotes a positive constant depending on a, b, c,...

3. Existence and uniqueness of solutions

Let (©, F,P) be a probability space, {Fs},~, be a filtration on (2, F,P), and
{Wi},>, be a collection of independent, identically distributed, real-valued,
standard Brownian motions relative to the filtered probability space.

We consider the stochastic electroconvection model

dg + u - Vgdt + Agdt = At + GAW

du + u - Vudt — Audt + Vpdt = —qRqdt — qV®dt + fdt + gdW  (3.1)

V-u=0
on T? with initial data q(x,0) = go and u(x,0) = ug. The unknowns q(z, ¢, w),
u(z, t,w) = (ur(x,t,w),us(x,t,w)), and p(x,t,w) depend on three different
variables: position x € T2, time t € [0,00), and outcome w € Q. The body

forces f and the potential ® depend only on the position variable x. The forces
f are smooth, divergence-free and have a zero space average. The potential ®
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is assumed to be smooth. We point out that ¢, p and ® are scalar, whereas u
and f are vector fields. The noise terms gdWW and gdW are given by

gaw =" gi(x)dW'(t) (3.2)
=1
and
gdW = Z gi(2)dW(t) (3.3)

We assume that the scalar functions g; are mean-zero and the vector fields g;
are divergence-free for all [ € N. For kK > 0 and p > 0, we denote

o

lgl1Zr = > loullZ (3.4)
=1

1311 = > gl (3.5)
=1

and

2

lall = | (Z |gl<x>|2> d, (36)
=1

and g € H*, g € H* or § € LP if the quantities (3.4), (3.5), or (3.6) are finite
respectively.

In this section, we prove the existence and uniqueness of solutions of the
stochastic model (3.1):

Theorem 1. Fiz a stochastic basis (Q, F,P, {Ft}tZO,W). Let qo € L* have

mean zero over T2, and let ug € H' be divergence-free. Suppose g € L2,
g€ H', f € L?, and A® € L*. Then there exists a unique pair (q,u) such
that q is mean-free, u is divergence-free,

u € L?(€;C°(0, 00; L?) N L{2.(0, 00; HY) N LE (0, 00; H?)), (3.7)
q € L*(Q;C°(0,00; H™2) N L2,(0,00; H2)) N L*(Q; L2, (0, 005 LYY).
(3.8)

Moreover, the elements (q,u) are F; adapted and obey
d(q,§) 2+ (u- Vg, &) r2dt+(Aq, §) p2dt = (AP, §) p2dt+(g, &) L2dW  (3.9)
for any £ € H' and a.e. w € Q, and

d(u,v)r2 + (u- Vu+ qRq,v)p2dt — (Au,v)pedt
= (=¢qV®,v)2dt + (f,v)2dt + (g,v) L2dW (3.10)

for any v € H' and a.e. w € Q.
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For each € € (0,1], we let J. be the standard mollifier operator and we
consider the viscous approximation

dg® + uf - Vgodt + Agedt — eAqedt = Addt + J.gdW

du® + u€ - Vucdt — Aucdt + Vp<dt = —q°Rq°dt — ¢V odt
+fdt + J.gdW

V.out=0

(3.11)

with smoothed out initial data ¢§ = Jeqo,u§ = Jeug. For each e € (0,1],
the viscous system (3.11) is forced by smooth noise processes and has local
smooth solutions, a fact that can be shown using a fixed point iteration tech-
nique. These local solutions extend to global smooth solutions as they remain
uniformly bounded in all Sobolev norms, a result that follows from energy-type
arguments (see for instance Appendix B). In Proposition 1 below, we establish
bounds, uniform in time and e, for the solutions of (3.11) in Lebesgue spaces.
These estimates are needed to apply the drift identification argument of [34]
and prove Theorem 1.

Proposition 1. Let gy € L* have mean zero over T?. Let ug € H' be divergence-
free. Suppose g € L* and g € H'. Then the solution (¢¢,u) of (3.11) satisfies

P2 4 —2 1 2
E( sup |q6||§2) +5E / lge 1% HAaqe ds
0<t<T 0 L

< 2p)laoll7> + C(p) (1A]7. + 3l7:) T+ C@)lIgI7. 1% (3.12)

for any p > 2,

T
E{ sup qell’b} +C(pE {/ ||q€||i4} < 2plgll7s + Cp)|A®|;.T
0<t<T 0

+CWGIE.T + Cp)||glo. T
(3.13)

for any p > 4,

T
E{ sup IIuEI’Zz} +E{ / 252 |wnizdt}
0<t<T 0
S C(pa HQOHL47 Hu0||L27f7q)ag7§)epT (314)

for any p > 2, and

T
E{ sup ||Vu5(t)||2L2} +E{/ ||Au5(s)|%2ds}
0<t<T o
< C(IVuoll 2, lgoll ) + C(®, f,9.9)T + C(§)T>. (3.15)

The proof of Proposition 1 is based on several applications of 1t6’s lemma
and is presented in Appendix A.
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Proposition 2. Suppose f € L? and A® € L*. Let
Fv)=w -VEFAE— AP, v-Vv—Av+EREHEVD — f). (3.16)

Let ¢ € L*, q2 € L%, uy € H? and uy € H'. Then there is a positive universal
constant Cy such that

(Fq1,w1) — Flgz,u2), (A (g1 — g2), ur — u2)) 2
+ ok (@,u1,a1) (1A H (a1 = @) 32 + Jun = wafl3z) 20 (3.07)

holds, where

K(®,u1,q1) = |V + [Vur||Zs + [ Vu |2
Hlalze + lallze + | Au]|Z.. (3.18)

Proof. We have
(Flqr,w1) — F(go,u2), (A g1 — q2),u1 — u2)) 2

= / (u1 - Va1 —uz - Va2 )A g1 — o) +/ Mg — )N g1 — q2)
T2 T2

+/W(
(

+ /Tz @1Rq1 — 2Rq2) - (u1 — u2) +/ (@1 — q2)V® - (ug —uz). (3.19)

Uuy - Vu1 —u - VUQ) . (u1 — UQ) —/ A(ul — Ug) . (ul — ’ILQ>
T2

T2
O
Integrating by parts, we have
/ Mg — q2)A g1 — ¢2) —/ A(uy —ug) - (u1 — uz)
T2 T2
= llar = qallze + IV (ur — ua)|| 72 (3.20)
By Holder and Young inequalities, we have
1
/Tz(ql — @)V (w1 = u2)| < OV L [lur — wallZe + 7lln — 2]l

(3.21)

We note that
/ (Ul . Vul —Uug - VUQ) . (u1 - 'LLQ)
’H‘Q
= /Ez((ul —ug) - Vuy) - (ug —ug) + /TQ(Uz -V (up —u2)) - (ug — ug)

= /p((ul —ug) - Vuy) - (ug — uz) (3.22)
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in view of the divergence-free condition satisfied by us, and hence

/2(u1 Vuy —ug - Vug) - (ur — u2)| < [|Vua|p2llur — ugl|7s
T
< O\ Vurllgzlluy — uall 2|V (ua — ua)ll 2 + C[|Vua || g2 lus — a3
1
< C(IVur|lis + [IVuall2) [lur — uall7> + 1\\V(U1 —ug)||3» (3.23)

where we used Ladyzhenskaya’s interpolation inequality applied to u; — us.
Now, we write

/ (u1- Va1 —uz - Vg )A g1 — q2) = / ((u1 —uz) - Va1) A~ (q1 — q2)
T2

T2

() T - A - )+ [ (0 Vo)A o -
(3.24)

and

/ (1 Rq1 — @2Rq2) - (u1 — ug) = / (1 — q2)Rqy - (uq — ug)
T2 T2

+ /Tz (@2 — q1)R(q1 — q2) - (u1 — ug) + /TZ G R(q1 — q2) - (u1 —uz). (3.25)

Adding (3.24) and (3.25), four terms cancel out, namely

[t =)Vl — ) a1 - a2

. /T (@2~ ) Blar — a2) - (1a — 2) (3.26)
and

/ ((u1 —ua) - Vg1)A g1 — g2)
'H‘Q

= —/ G R(q1 — ¢q2) - (w1 — u2), (3.27)
T2
due to the divergence-free condition satisfied by us — u;. We estimate

/ (1 — @2)Rqy - (u1 — u2)
’]1‘2

< |Ra1 |l pallar — @2l 2 ||ur — ual| a4

1 1
< Cllarlusllar = gellee (o = wallea + s — wall 21V (s — w2) 2 )
1 1
< C (larl3s + larl3a) us = w3 + fllas — @23 + 719 (e — wa)]22
(3.28)

using Hoélder’s inequality, the boundedness of the Riesz transforms in L*, La-
dyzhenskaya’s inequality, and Young’s inequality. In view of the commutator
estimate (see [1, Proposition 3])

IA=2(v-Vp) —v- VA" 2 p|| 12 < C||Av] 12]|p|l 2 (3.29)
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that holds for any divergence-free v € H? and mean-zero p € L?, we have

/ ur - V(g1 — 2)A g1 — ¢2)
T2

/’]I‘2 {A_%(Ul V(g —q2)) —u1 - VA3 (qy — fh)} A3 (g1 — q2)

_1
< ClAur|| 2 [[A72 (g1 — @2) [ 22 ]lqr — g2/ 22

_1 1
< CllAwllz: A% (o1 = @2)l1Z2 + Jllan = a2l (3.30)
Here we also used that uy is divergence-free. Collecting the bounds (3.20)—
(3.30) and applying them to (3.19), we obtain
(Flqr,u1) — Flgz,uz), (A g1 — g2),u1 — ug)) 2

+ ok (@, u1, 1) (Jlun = wllfz + 1A~ (@ — @2)113: )

1
= (IV(ur —u2)ll72 + llar — goll72) =0 (3.31)

where K (®,u1,q1) is given by (3.47). This finishes the proof of Proposition 2.
Now, we prove Theorem 1.

Proof of Theorem 1. Let
Fi(q%,uf) = u - Vq° (3.32)
and
Fo(q®,u) = us - Vus + ¢°Rq°. (3.33)
We note that
I1F2 -2 < ullZallaIZe < C (lulZe + llucllzz [ Va2 lglI7s
< Cllufllz> + Cllgcl|74
+ Clluc|| 22| Vuc||2 (3.34)
using Ladyzhenskaya’s interpolation inequality, and
12l F-2 < luslzs + lalIZallRa 122 < Cllut|ze + Cllu|Za [ Va| 1z

2
el (335)

using the boundedness of the Riesz transforms in L?. In view of the bounds
(3.12), (3.13) with p = 4, and (3.14), we deduce that F; and F» are uniformly
bounded in

+C HA%qE

L*(Q;L7,.(0,00; H™H(T?))). (3.36)

loc

Therefore, up to subsequences Fi(q¢, u¢) and Fo(q¢, u¢) converge weakly to
some functions F; and F3, respectively, in

L3(Q; L2, ,.(0,00; H~1(T?))). (3.37)

loc

Moreover, up to subsequences, u¢ converges weakly to some function u in
L2(Q; L52.(0,00; H(T?))) N L*(Q; L}, .(0, 00; H2(T?))), (3.38)

loc loc
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in view of the bound (3.15), and ¢¢ converges weakly to some function ¢ in
LA 152 (0, 00; LY(T?))) N L2, (2 L2(0, 00; HY/2(T?))), (3.39)

loc loc

in view of the bounds (3.12) with p = 2 and (3.13) with p = 4.

Now we write the equations satisfied by (¢¢,u¢) and (¢, u) as

d(q%,u) + F(¢, us)dt + (0, Vp)dt = (Jcg, Jeg)dW (3.40)
where F is as in (3.16), and
d(q,u) + Fodt = (g, g)dW (3.41)
in L?(; L} (0, 00; H1(T?))), where
Folgu) = (F1 +Aq — AD, Fr — Au+ gV — f). (3.42)
We show that for almost every w € Q and ¢ € [0, 00), we have
Flq,u) = Fo (3.43)

in the sense of distributions.
‘We note that

(g, u) € L*(9;C°(0, 00; H™2(T?))) x L*(Q;C°(0, 00; L2(T?)))  (3.44)
and (A~1g,u) obeys the energy equality
d (1A~ Fqll3e + lul32 ) +2(Fo, (A g, u)) 2t
= (IA=23113: + llgl132)dt + 2((G, 9), (A g, u)) g2dW (3.45)
(see Theorem 1 in [24] or (3.31) in [34]). For a pair
(@,@) € L Lioe(0, 00; LY(T?))) x L*(; L, (0, 00; H*(T?))),  (3.46)

such that ¢ has mean zero and @ is divergence-free, we define
t
68,0 = Co [ (19O~ + |Vl + [Valoa + .
0

+alLs + 1AG]Z:] ds (3.47)

where C is the constant in (3.17).
In order to show the drift identification claim (3.43), it is sufficient to
show that

E {/T 2e 7" (F(q,u) — Fo, (A1, Wg))Lgdt} >0 (3.48)
0

for all (U1, Wq) € L4(Q; L} (0,00; LA(T?))) x L2(Q; L2 (0, 00; H*(T?))) such

loc loc
that ¥y has mean zero and Uy is divergence-free. Indeed, (3.48) implies that

T
E {/ 27 "W || F(q, u) — ]—"0||file1dt} =0 (3.49)
0

from which we conclude that F(q,u) = Fo in H~! x H=1 a.e. on  x [0, 7.
Accordingly, we proceed to prove (3.48).
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Denoting dr(t) by 7(t), we have
a e (A3 qlEe + ullf) | + e O @F + (g, u), (A~ q,w) et
= e (IA73302 + lgl32) + 73 9). (A" q.w)2dW  (3.50)

in view of (3.45). Consequently, and using the analogous Itd stochastic equation
obeyed by e~"(*) (HA_%qEHQH + ||u6||2L2> and the weak lower semi-continuity,
we obtain

T
E {—/ e "W (2F + 7#(q,u), (A g, U))det}
0
=E{e@ (A~ 2¢(T) 3 + (D)) — (1A Faol13 + lluol32) |
T 1
+E {—/ e (IA~45032 + gll3: ) dt}
0
<liminf E {e™® (JA~3¢(T) |32 + lu(T)3:) |

+1im B { - (Aol + [ euol2:) }
T 1
B~ [ e (A bl + gl de
€— 0

T
= liminf E {—/ e "W (2F (¢f, uf) + (g5, u), (A1q€7u€))L2dt} ,
e— 0
(3.51)

which implies that

T
E {/ e_r(t)(Qfo +7(q,u), (A 'q, u))det}
0

e—0

T
> limsup E {/ e "W Q2F (¢f, uf) + (¢, uc), (A_lqe,ue))det} . (3.52)
0

In view of (3.17), we have
T
E { / e "W(2F (g, @) + #(q, @), (A1, @) — <A—1qiu6>>mdt}
0

T
>E {/ e_r(t)(Q}'(qe,uE) + (g%, u), (A_lc], ) — (A_lqe,ue))det
0
(3.53)

for any (¢,a) € L*(Q; L} (0, 00; L*)) x L%(; L?, (0, 00; H?)) such that ¢ has

loc loc
mean zero and 4 is divergence-free.
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Putting (3.52) and (3.53) together, we obtain

T
E {/ eiT(t) (2‘7(@7 ﬂ’) + T((ja ﬂ), (Ailq, ﬂ‘) - (Alqau))det}
0

e—0 0

T
= limE {/ e "WQF (G, a) + (g, a), (A" g, 1) — (Alqé,m))mdt}

T
> liminf E {/ e "W ©QF (¢, ut) + (g, uc), (A71g, a) — (A1q€7u€))L2dt}
e 0

0

T
=E {/ e_r(t)(Q}"o +7(q,u), (A™1q, ﬂ))det}

T
—limsup E {/ e_r(t)(Z]:(qe7 u®) + (¢, u), (A~1q, us))det}

e—0 0
T
>E {/ e "OQF + (g, u), (A1, a) — (A_lq,u))det} (3.54)
0

for any (¢,a) € L*(Q; L} (0, 00; L*)) x L?(%; L?, (0, 00; H?)) such that § has

loc loc
mean zero and u is divergence-free. Letting

(¢, u) = (q,u) + AV (3.55)
where A > 0 and U = (¥, Uy) € L*(Q; L} (0, 00; L)) x L2(Q; L2, (0, 00; H?)),

¥, having mean zero and Wy being divergence-free, we obtain

E {/T e "W (2F((g,u) + AT) +7((g,u) + A0, (A~ Wy, \Pg))det}
0

T
>E {/ e "W Q2Fy + (g, u), \(AT1T, \Ilg))det} . (3.56)
0

We divide by A, and then take the limit as A goes to zero. We obtain
(3.48) from which we conclude that Fy = F(q,u).

Uniqueness of solutions is obtained as for the deterministic system [1,
Theorem 2]. Indeed, if we suppose the existence of two different solutions, and
we write the equations obeyed by their difference, then we obtain deterministic
equations which are independent of the noise. We omit further details.

Remark 1. The existence of unique pathwise solutions can be obtained by
setting

t
Q° =q° — / =G (2)dW (3.57)
0
and

t
U =uf —/ e~ (=8 g (2)dW, (3.58)
0
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writing the determinitic system obeyed by (Q€, U€), establishing pointwise in
w bounds for (Q¢,U°) in

(L55.(0,00; L*) N L3, (0,00, H?)) x (L§S,(0, 00; HY) N L, (0, 005 H?)),
(3.59)

and passing to the limit using the Aubin-Lions lemma. However, this requires
higher regularity assumptions on the noise processes forcing the system (as
shown in Proposition 17 below). Consequently, the identification of drift tech-
nique minimizes the regularity conditions imposed on the noises g and g.

Remark 2. If the ranges of g and g are infinite countable and their components
are time-dependent, then the existence and uniqueness of solutions to the
corresponding stochastic electroconvection model are obtained on the time
interval [0, T] provided that the following regularity condition

[ TaOIE -+ o)) de < o (3.60)

holds.

4. Electroconvection semigroup and weak feller properties

We consider the space
- )
H=H 2 xL; (4.1)
consisting of vectors (€,v) where £ € H™2 is a mean-free scalar function and
v € L? is a divergence-free vector field, and we consider the space

V=1L*xH} (4.2)
consisting of vectors (£,v) where ¢ € L* is a mean-free scalar function and
v € H' is a divergence-free vector field. We define the norms || - |3 and || - ||y
by

2 S|P 2
&) I3 = [A~de]| , + wli=: (43)
and
1€, )15 = lIElI7a + vl 7 (4.4)

respectively. For a time ¢ > 0 and a Borel set A € B(V), we define the Markov
transition kernels associated with (3.1) by

Pi((q0,u0), A) = P((g, u)(t, (g0, o)) € A) (4.5)

where (g, u)(t, (qo, up)) denotes the solution of the stochastic model (3.1) with
initial data (go,uo) at time t.

Let M,(V) be the collection of bounded real-valued Borel measurable
functions on V. For each t > 0 and ¢ € M(V), we define the Markovian
semigroup (which will also be denoted by {P;},-,) by

Pip(-) = Ep((g, u)(t,)) ZK/@(f,v)Pt(-’d(ﬁ,v))- (4.6)
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Let Cy(V, || - |l%) be the space of continuous bounded real-valued functions on
the space (V, ||+ ||#), and Cy(V, || - ||#) be the space of real continuous functions
¢ on the space (V, || - ||#), with growth

L2
6o <€ (1+ [ael + ol (4.7
We point out that continuity of ¢ on the space (V,| - ||%) means that if
(&n,vpn) € V converges to (§,v) in the norm || - ||, then ¢(&,,vy,) converges

to ¢(&,v). The Markovian semigroup {P;},-, has the following weak Feller
properties: B

Theorem 2. The semigroup {Fi},~, is Markov-Feller on Cy(V,| - |[#) and
CqWs |l - ln), that is if ¢ € Co(V, | - |ln), then Prp € Co(Vs|| - [ln) and if
€ CgV, |l lIn), then Prp € Cq(V, || - [I0)-

In the proof of Theorem 2 presented below, we use Propositions 3 and 4.

Proposition 3. (Continuity) Let (¢}, u}) and (q3,u?) be in V. Suppose g € L*
and g € H'. Then the corresponding solutions (q1,u1) and (g2, us) obey

Jur6) — @3 + A (6) - AHaa(0)|

L2
<o (0} I~ 1+ 2t - ak) | as

with probability 1, where

t
r(t) = Co/o [IVelZ~ + IVurllZ + [IVurllze + larlZs

+Hlaal7s + | Au[|7] ds (4.9)

18 well-defined and finite almost surely.

Proof. We write the equations obeyed by the differences ¢; — g2 and u; — us,
and we take their L? inner product with A=!(q; — ¢2) and u; —us respectively.
We add the resulting energy equalities and we obtain

2
] (LSS RATEPATA
+ (Flgr,ur) — Fga,u2), (A g1 — g2), w1 — ua))2 =0 (4.10)
where F is given by (3.16). In view of (3.17), we have

2
3o |3 @)+ = wals

2
=t |[A o -, + o - wli <0 @y

where 7(t,q1,u1) is given by (3.47). Multiplying by the integrating factor
e~ Jo 7(9)ds and integrating in time from 0 to t give (4.8). O
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Proposition 4. Let (qo,up) € V. Suppose g € L* and g € H'. Then the unique
solution (q,u) of (3.1) obeys

2 2

L)}

E { sup (HA_;q
0<t<T

1 2
sE {HAQ‘JOHLZ + o2 + C(@, f,gaé)} LCOT  (4.12)

Proof. By It6’s lemma, we have

ol
L

‘ L 2llallfedt = —2(u- Vg, A7 g) 2dt + 2(A®, A7 g) 2dt
1 2 1 1
+ HAﬁg ‘LQ dt +2 (Afig,Afaq)Lz AW (4.13)

and

dljul|?s + 2||Vul|2.dt = —2(u - Vu,u) 2 — 2(qRq, u) p2dt — 2(qV®, u)p2dt
+2(f,u)p2dt + || g2 2dt 4 2(g, u)L2dW.  (4.14)

We add the equations (4.13) and (4.14). Integrating by parts, we have
(’LL : qu Ailq)L2 = _(u ! Rqa q)L2 = _(qRq, U)L27 (415)
and using the cancellation

(u-Vu,u)p2 =0, (4.16)

we obtain the differential equation
12 2 2 2
aq[a-tel| , + lulZ: b +20lal: + I VulE)ae

= 2(A(I), A_lq)L2dt — 2(qV<I>, ’U,)L2dt —|— 2(f, U,)Lth

2
\Lz dt + |lg||2.dt + 2 (A*%g,A*%q) AW +2(g,u) 2.
(4.17)

s

From (4.17), we arrive at the differential inequality

off

< C(IAR|Z2 + I £l172)dt + C(IVO|| 7 + 1)||ulF2dt
2 _1_ _1
b+ llglFadt 42 (A 53, A 2q) L AW+ 2(g,w)ad W,

(4.18)

2
. e } o+ el + 9l )ar

s

Letting

p= VO[3 +1. (4.19)
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we obtain

L2
d {e‘cf’t (HA‘W ‘LQ + |u||%z)}

2
< COIABYZ: + 1 f13)e e + || A2g| at -+ g aar

) (A—%g, A—%q) AW+ 2(g,u) 2 dW. (4.20)

Integrating in time from 0 to ¢, taking the supremum over [0, 7], applying the
expectation E in w, and using suitable martingale estimates, we obtain (4.12).
This completes the proof of Proposition 4. O

Now we prove Theorem 2:

Proof of Theorem 2. Fix ¢ € Cy(V, ||-||#). Suppose (&, v,) converges to (£, v)
in (W, - |l»), that is

rtic-of

In view of the continuity property given in Proposition 3, we have

2
, Hllon —vl[z2 — 0. (4.21)

la(t,&n) —a(t,E)l,,-3 — 0 (4.22)
and
lu(t, v) — u(t,v)||L2 — O. (4.23)
Since ¢ is continuous on (V, || - ||#), we conclude that
e((q,u)(t, (€n, vn))) — @((g,u)(t, (€, v))) (4.24)
and hence
Ee((g,u)(t, (6n, vn))) — Ep((g, u)(t, (&, v))) (4.25)

by the Lebesgue Dominated Convergence Theorem, which can be applied due
to the growth condition (4.7), the bound (4.12), and the convergence (4.21)
yielding the boundedness of the sequence of initial datum (&,,v,) in the H-
norm. This shows that {P;},- is Feller on Cy(V, || - [|¢). Similarly, {P;},~ is
Feller on Cy(V, || - ||#). This ends the proof of Theorem 2. O

5. Existence and regularity of invariant measures in the absence
of potential

In this section, we consider the electroconvection system
dg + u - Vqdt + Aqdt = gdW
du + u - Vudt — Audt + Vpdt = —qRqdt + fdt + gdW (5.1)
V-u=0
in T2 x [0, 00) x 2 where the potential ® = 0. We note that the system (5.1) is
in the mean-zero frame: if the initial charge density and velocity are assumed

to have a zero spatial average, then the solution (g, w) will have mean zero over
T? for all positive times ¢t > 0.
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Let L? and H* be the spaces of LP and H* functions with zero spatial
averages respectively. Let H and V be the spaces of L? and H' functions that
are divergence-free and mean zero respectively. Let

H=H*xH (5.2)

and
V=0V (5.3)

with
a3, = A~ 4|, + s (5.4)

and
(g, Wl = llalzs + [ VulZ (5.5)

respectively. We note that V is compactly embedded in H. We define the
operator A on D(A) = H? x (H?* N H) by

Alp,v) = (=Ap, —PAv) (5.6)

where P is the Leray-Hodge projector. There is an orthonormal basis of L2 x H
consisting of eigenfunctions {(ex,by)}r; of A, such that

(—Aek,—PAbk) = )\k(ek,bk) (5.7)

where the sequence of eigenvalues {\},-, of A counted with multiplicity is
nondecreasing and diverges to co. Asymptotically, A\ > ck for k > 1. Let Py
and Qy be the orthogonal projections of H onto the space spanned by the
first N eigenfunctions of A, (eg,by) corresponding to eigenvalues )y, and its
orthogonal complement respectively. We have the inequality

Jox (v 20)]l = s

1(p, V0) 12 (5-8)

which holds for all N > 1.
The Markov transition kernels {F;},, associated with the electrocon-
vection model (5.1),

Pi((q0, o), A) = P((g, u)(t, (90, u0)) € A), (5.9)

are defined on V and are H-Feller as shown in Theorem 2. Here we establish
the existence of invariant measures for the Markov transition kernels {P;},.

Theorem 3. Suppose thatg € V and g € L. There exists an invariant measure
w for the Markov transition kernels associated with (5.1). Moreover

. s dug) < € < o (5.10)

[l
%

for any invariant measure p of (5.1), where C' is positive constant depending
only on ||fllzz, llgller, and ||g||La-
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The proof of Theorem 3 uses the following auxiliary propositions and is
presented at the end of this section. All the estimates can be done rigorously
by taking a viscous system approximating (5.1), deriving the bounds for the
mollified solution, and then inheriting them to the solution of (5.1) using the
lower semi-continuity of the norms. We present formal proofs, omitting the
approximation.

Proposition 5. Let gy € H=% and uo € H. Suppose g € L? and § € -5
Then

/0 E [lg(s)[25 + [|Vu(s)|2.] ds

2

_1 P 1.
< |[Abaof|, + ol + U(A S|, +lglEe + 113 ¢ (510)

holds for all t > 0.
Proof. The sum of the H ~2 norm of ¢ and L2 norm of u obeys the energy

equality

_1 |2
d{HA *a \m + Ilul%z} +2(llgll72 + [[VulZ:)dt

= o(fusedt + A 4g| dt o+ lglde
+2 (A*%Q,A*%qu AW + 2(g,u) 2 dW (5.12)
(cf. (4.13)—(4.17) above) which gives the differential inequality
o{ I

2
< I 13adt + [A~2g]|  de+ligl3-de

2
[ el Ol + 19

+2 (A—%g,A—%q)L2 AW + 2(g, u) p2dW (5.13)

where we used the Poincaré inequality to bound L? norm of the mean-free
vector u by the L? norm of its first order derivative. We integrate in time from
0 to t and we apply E. We obtain the desired bound (5.11). O

Proposition 6. Let gy € L2. Suppose § € L2. Then
t . 2
[ Baka)], ds < ol + g (5.14)
0
holds for all t > 0.

Proof. The L? norm of ¢ evolves according to

2
1
dlgl3: +2||A%q|

|, = 13]32dt +2(G,q)2dW (5.15)

where we used the cancellation (u - Vg, q)r2 = 0. We integrate in time from 0
to t and we apply E. We obtain (5.14). O
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Proposition 7. Let p > 4. Let qo € L*. Suppose § € L*. Then

t
| Blaolds < 00 ol + a0 (5.16)
holds for all t > 0.
Proof. The p-th power of the L* norm of ¢ obeys the energy inequality
dlglly. + llally. < Clalgadt +plal (3, ¢*)edW.  (5.17)

Integrating in time from 0 to ¢ and applying E, we obtain the desired bound
(5.16). O

Proposition 8. Let up € V and qo € L. Suppose g €V and g € L*. Then

B + B{ [ 18us) 17
< C[llaollzs + IVuollzz + (1172 + IVallZe + 191174) ¢] (5.18)
holds for all t > 0.
Proof. The L? norm of Vu obeys
d|[VulZ: + 2] Auf2.
= 2(qRq, Au)2dt — 2(f, Au)2dt + ||Vg||2adt — 2(g, Au)2dW.  (5.19)
Here we used the identity
(u-Vu,Au)pz =0 (5.20)

that holds in the two-dimensional periodic setting on T2. In view of the bound-
edness of the Riesz transforms on L?, we have

(R, Au) 2| < |lgllze|| Rall || Aull e < Cllgl|7al|Aul| 2 (5.21)
Consequently, an application of Young’s inequality yields
d[|VulZs + || Aul|7-dt
< Cllglzadt + C||fll72dt + | Vgl Z2dt — 2(g, Au)r2dW. (5.22)

Integrating in time from 0 to ¢ and applying E, we obtain

t
E|[Vu(t)|7- +/O E||Au(s)|[Z2ds < [ Vuol7-

t
+C (IIf172 + IVgl72) t + CE {/0 ||Q(8)|i4d8} - (5.23)
In view of the bound (5.16) applied with p = 4, we obtain (5.18). O

Proposition 9. Suppose g €V, §j € L4, and f € L2. For A€ B(V), let

vp(A) = %/0 P((q(s),u(s)) € A)ds. (5.24)

Then {vr} is tight in H for ug = qo = 0.
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Proof. Suppose ug = go = 0. Let p > 0, and let B, be the ball of radius p in
L? x V (which is compact in H). By Chebyshev’s inequality,

sup vr (B -supgfjf (1@ )20y > Pt
T>0
<L /‘m<>u D)t — 0 (5.25)
bup q, — .
P2 rsoT Jo L2x

as p — oo in view of the bound (5.11) that is linear in T'. Therefore, the family
{vr} is tight in H, ending the proof of Proposition 9. O

Now we prove Theorem 3.

Proof of Theorem 3. We adapt the notation w = (g, u) and write solutions as
w(t,wp). From the weak Feller property obtained in Theorem 2, the tightness
of the time-averaged measures obtained in Proposition 9, and the Krylov-
Bogoliubov averaging procedure, we conclude that there exists a probability
measure p satisfying

[ etoauton = [ [ 1 [ monasrpridnn)  620)

for any T'> 0 and any ¢ € Cb(H). Now we study the regularity of u and we
prove (5.10). For n > 1, we let P, be the projection onto the space spanned
by the first n eigenfunctions of —A. For n > 1, M > 0,w = (q,u) € H, we let

Vo (W) = [[|Puglliz + [[VPoull32] A M (5.27)
and we note that ¥,, s € Cb(H). In view of (5.11), we estimate

1 /7
—/ /Pt(wo,dw)\lfn,M(w)dt =
T Jo Jw

1 T _1 _
< 7B [ llalie+ 19ul:] < (1A ale + o) 7

1 T
T/ E\I/n’M(w(t,wo))dt

0

T
1
+IA72gl72 + llgllZe + /1122 (5.28)
for any T > 0. Let By, (p) be the ball
By(p) = {w e H: |l < p*}. (5.29)

Then, using invariance, we have

/H Wy, 01 (wo)dps(wo) < /B » % /0 ' /  Py(wo,dw) ¥, nr(w)dt

/\ / /thmdw Wy 01 (w)dt

[ 4 H *% 22 + Hg”%z + |f||%2:| w(By,(p)) +MM(H\BH(p)).
(5.30)

dp(wo)

dp(wo)
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We choose p large enough so that

Mu(H\ By (p)) <1 (5.31)
and then we choose T large enough so that
T <1 (5.32)

and we get

1 2
/. U, s (wo)dp(wo) <2+ HA*fg
H

Lo lalze +1£117e (5.33)

By Fatou’s lemma, we have

[ ATl + ¥ 0l2] A 31} dn

2
Lo T lgllze + 1717 (5.34)

and by the Monotone Convergence Theorem, we obtain

/n [llgoll72+1IVuoll72] du(wo) <2+ A2 3lI72 + gl 72+ F 72 (5.35)

<2+H A2

Therefore, the invariant measure p is supported on X5 = L% x V. Next we
upgrade the regularity of the measure u. For w = (¢, u) € X2, we define

\I/iM |:HA Pnq

In view of the bounds (5.11) and (5.14), we have

2
‘ + ||V73nu||%2] A M. (5.36)

1t T (T 12 )
T/o EV; /(w(t,wo))dt| < TE/O [HA?q‘L2+||Vu|L2} dt
< (2llollZz + lluollZ2) T7" + 2013172 + llglZe + IF11Z: (5.37)
for any T' > 0. Letting By, (p) be the ball
Ba(p) = {w=(q,u) € X : allla + [VulZe < 0%}, (5.38)

we use (5.37) and invariance to obtain

/ U2y (wo)dp(wo) / / EW, 1 (w(t,wo))dtdp(wo)
Xz XZ

< 20°T " +2/gl7= + llgll7> + ||f||L2] (B, (p)) + M (X2 \ Bx, (p))-
(5.39)

We choose p large enough and 7' large enough so that
/X U3 ar(wo)dpu(wo) < 2+ 2[1gl72 + llgllze + 11|72 (5.40)
2

By Fatou’s lemma and the Monotone Convergence Theorem, we obtain

1 2 ~
/X [HAHJoHLﬁIAuOIIQLz} dpu(eo) 24211332 + gl 7o + 7113 (5.41)
2
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Therefore, the invariant measure p is supported on X5 = H2xV. Finally, for
w = (q,u) € X3, we define

\IJ = {HA Prq

\ + AP, u|L2] A M. (5.42)
In view of the bounds (5.14) and (5.18), we have

T
7E [ [l

1 T
7 Evatte)

IN

2
|+ ||Au||i2] dt

< (lgolZ= + Cllaolzs + C[[Vuo|72) T~
+11gl72 + ClIflIZ: + ClValZz + Cllglz
(5.43)
for any T > 0. We let By, (p) be the ball
1 2
Ba,(p) = {w = (q,u) € Xs : Hqu ]L2 + Va2 < p2} L (5.44)

Using the bound (5.37), invariance, and the continuous embedding of H 2 in
L*, we obtain

/ \Il a(wo)dp(wo) /X3 / E\Il w(t,wp))dtdp(wo)

Cl(* +p" )T+ 11gll72 + 1f1Z2 + [ ValZ:
+||9||L4] 1(Bx;(p)) + Mpu(Xs \ Bx,(p)).  (5.45)
We choose p large enough and T large enough so that
[ e[, + 1awls | duteo)
X5 L2
< C(L+1g1Z2 + I1F1Z2: + 1 VallZe + 1191l74) - (5.46)

Therefore, the invariant measure y is supported on H 3 X (H?NV). This ends
the proof of Theorem 3. g

6. Higher regularity of invariant measures

In this section, we prove that any invariant measure of (5.1) is more regular
than Hz x (H2NV).

Theorem 4. Suppose g and g are smooth. If v is an invariant measure of (5.1),
then p is smooth and satisfies

/ log [1+ [|ullFpe + lallFx ] du((g, w)) < C(k, £, 9,9) < oo. (6.1)
%
for any k > 0.

The proof of Theorem 4 is based on the following auxilliary propositions
and is presented at the end of this section.
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Proposition 10. Let ug € V and qo € L*. Suppose g € V and § € L*. Let
p > 4. Then

e{/ ' [Tu(s) s Bu(e) s

< C) [laoll% + I9uols + (17152 + IVglh. +1313%) ¢ (6:2)
holds for all t > 0.
Proof. The L? norm of Vu evolves according to the stochastic energy equality

d[[VulZ: + 2[|Aull7-dt
=2(qRq — f, Au)r2dt + ||Vg||32dt +2(Vg, Vu)2dW. (6.3)
Consequently, the p-th power of || Vu| ;2 obeys
d[[Vul[}, + p||Vull72? || Au|l] 2dt
= Pl Vull}:? (aRq — £, Au) adt + 5[ Vg3 | Vull}, dt

p
“l‘p 7_].
(2

p -2 p 2
< IVl AulFadt + | Vuladt + C(p) gl Fadt

) IVl (Yo, Vu)tadt + plVul 32 (Vg, Vu) 2 dW

+Cp) [IfI1s + [Vg|B.] dt + p| Vul222(Vg, Vu) 2dW. (6.4)

In view of the Poincaré inequality, we obtain
p —2
d|[Vullf: + S Vullzs | Aul|.dt
< Cp)lallFadt+Cp) [0+ 1Vgllh.] dt + pl|Vull}2*(Vg, Vi) L2d W,

(6.5)
We integrate in time from 0 to ¢ and we apply E. In view of the bound (5.16),
we obtain (6.2). O

Proposition 11. Let ug € V and qo € L*. Suppose g € V and § € L*. Then

t
E{/O |VU(S)HQLaHAU(S)HQLa||q(8)||‘i4d8}
< C(£.9.9) [0l + ol s + ol + V00 + laoll Vol +
(6.6)
holds for all t > 0.
Proof. The stochastic process | Vul/1.(|q||3. obeys
d [[|Vullz2llglz.]
= |Vulz2dllallzs + llglz+dl|Vul 7. + d[[Vulz. - dlgllz..  (6.7)
The 4-th power of the L? norm of Vu evolves according to
d[[Vulzz = —4|Vu|Z: | Au|Z2dt + 4| Vul72(qRg — f, Au) 2dt
+2[|Vul2: Vol Z2dt + 4|(g, Au) 2 [*dt — 4]Vl 72 (g, Au)2dW  (6.8)
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whereas the 4-th power of the L* norm of ¢ evolves according to
dllqll7s = —4(Aq, ¢*)r2dt + 6(3%, ¢*) pedt + 4(g. ¢°)p2dW.  (6.9)
Consequently, the product ||Vu||7:||g||7. satisfies the energy equality
d [llallzs1Vullz2] = —4lIVul72(Ag. ¢°) r2dt + 6|Vl 12(5°, ¢°) p2dt
+4)Vull72(3, ¢°) 2 dW — 4llq 7| Va2 | Aul|F 2 dt
+4llal sl VullZs (4R — £, Au) 2dt
+2)lgllz4 IVl 22 Vol Zadt + 4llal 74 (9, Au)Z-dt
—4llallzaIVulz: (g, Au) p2dW
—16]|Vu72(g: ¢°) £2 (9, Au) r2dt (6.10)
which yields the energy inequality
d [llgll7s[IVulz2] + 4¢| Vul 22 llqllsdt + 4llgl|zs [|Vull7a ]| AulZ2dt
< 6[|Vull72(9%, ¢*) r2dt + 4llal 74 [ VulZ2(gRq — f, Au)r2dt
+2)lgllza |Vl 22 Vgll72dt + 4llal 7« (Vg, Vu)Z-dt
— 16| Vu|72(3,¢%) 2 (9, Au) L2 dt
= dlall 3 Vull: (9, Aw) p2dW + 4| Vull2 (g, ¢*)p2dW. — (6.11)

Here, we used the nonlinear Poincaré inequality for the fractional Laplacian
in L* applied to the mean zero function ¢ (see [1,7])

[ o*ade > el (6.12)

By the Cauchy—Schwartz inequality, Young’s inequality and the Poincaré in-
equality applied to the mean zero function Vu, we estimate

16Vull2(g, ¢%) 2| < 6[Vullz2113)174]lgll7
< §||VU||iallq||i4 + Cllgla IVl | AullZ.. (6.13)
The boundedness of the Riesz transforms on L* yields
|4llall7alIVullZ2(gRq — f, Au) 2|
< Ollall%allVul 2 | Aull 2 + Cllallzal| Vel 22 | Aul| g2 [ f] 22
< Slallfa I vuldal Aul
+ §|IQIIi4||VU|Iiz +Cllallz + Cllallza I 11z (6.14)
We bound
2]lqll 24 IVullZ=llVglZ: < §||QII%4||VUII4L2 +C|Vyllzallallzs  (6.15)
and
4)q74(Vg, Vu)iz < 4llgll74l|Vul?2]Vel7:
< SlalfaVulis + CIVglialalie  (6.16)
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using Young’s inequality. Finally, we estimate
116]Vul22(g, ¢%) 2 (9, Au) 2| < 16]|Vull Gz llall74llgll e[Vl 22
< gHVUHizHQIIifL +Cl1gl1za (IVgllz2)* (6.17)
Putting (6.11)—(6.17) together, we obtain the differential inequality

d [IIQII‘ELHVU\W] +ellVull s llallzadt + lallzs I Vullge | Aul 7 dt
C(@IIVull2|AullZ2dt + C(f, 9)llallzsdt + C(g,§)dt + Cligl dt
*4IIQHL4||VUIIL2(9,AU)deW+4IIVUIIL2(97 %) 2dW. (6.18)

We integrate in time from 0 to ¢ and we apply E. The bound (5.16) applied
with p = 4 and p = 12 together with the bound (6.2) gives the desired estimate
(6.6). O

Proposition 12. Let ug € V and qp € Hz. Suppose g € V and g € Hz. Then

o{[ log(1 + Va1 )ds

1 2
<tog 1+ |t ) + IVl + Cllnlls + ol

2
+0 (W71 + 190l + lalls + |ata]], ) (6.19)
holds for all t > 0.
Proof. The H 2z norm of q obeys

2
a||atq] | +2laq)3eat

2
’ Lt +2(3,Aq)2dW. (6.20)

= —2(u-Vq,Aq)=dt + H A%

For each ¢t > 0, let

X(t) = HA%q(t)\ § (6.21)
and
X(t) = |Aq(t)]1Z-- (6.22)
By Ito’s lemma, we have
dlog(l+ X) + 1i_Xth . fX(u -Vq,Aq)2dt
+ H—X |a Al - ﬁ(g,[\q)ydt + f (G, Ag)=dW. (6.23)
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The nonlinear term is estimated using commutator estimates (see [1, Proposi-
tion 3])

-

/ U - Vqu’ ‘/ A2(u-Vq)—u- VA2 )A%q
T2

< Ol Agl 2 | A% . (6.24)
hence
2X C —
dlog(1+ X dt < A XV Xdt
og(1 + >+1+X < Ty llAulle VXV
Abg 2
After applying Young’s mequality, we obtain
_ -
dlog(1 + X) + ———dt < C| Auadt + HAag ‘LQ dt
i x @A) 2dW. (6.26)
Next, we integrate in time from 0 to ¢, apply E, and obtain
P
X
E
/O 1+x°
t 2
< log(1+ X(0)) + c/ E|Au(s)|2.ds + HA%g Lt (627)
0
Therefore,
t - ¢ 14X ¢
E/ log(1+ X)ds = E/ log | ——= ds+E/ log(1 + X)ds
0 0 I+ X 0
t 5 t
<E ds+E | Xds. 2
_/01+X5+/0 5 (6.28)
In view of the bounds (5.14) and (5.18), we obtain (6.19), completing the proof.
0

Proposition 13. Let ug € V and qo € H. Suppose g € V and §j € H*. Then

to, 5
E {/0 INVO1 ds} < |Vaol22 + C(£,9,9) [0l 2

+laollzs +llgollzs + 1 Vuollz2 + llaollzs | Vol 72 +;}
(6.29

holds for any t > 0.
Proof. By Itd’s lemma, we have
d|Val3: + 2| Akg
=2(u-Vq,Aq)r2dt + || V§|32dt — 2(§, Aq) 2 dW. (6.30)

2
’ dt
L2
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In order to estimate the nonlinear term, we integrate by parts, use the divergence-
free property V - u = 0, to obtain

(u-Vq,Aq)L2 = Z / u;0;qOkkqdx

k,je{1,2}
= - / Oku;0;q0kqdz. (6.31)
kje{1,2}
We bound
-V, Aq) 2| < [Vl eVal? 5 < CIVulelallfs [A%q]]}
1 1 1 s 3
< C||Vull 7 [|AullZ2 Mgl 24 [[AZ gl 72
1.5 12
<2 [ata], + CNvula v ol (6.32)

in view of Holder’s inequality with exponents 4,8/3,8/3, the interpolation
estimate [1, Proposition 2]

and Ladyzhenskaya’s interpolation inequality. We obtain

3 |12 _2 8
M| = Cllal1val (6.33)

2
dVali3: + [ Aq] | dr < CIVula|aulz gl

+[V3lZadt —2(, Ag)p2dW. (6.34)

Hence, an application of Young’s inequality yields

Vgl +||A%q

2
|, dt < CIVulial| Aul3a gl odt

+ C|VullZ: | AulZ2dt + [ V§l[72dt — 2(g, Aq)r2dW. (6.35)
We integrate in time from 0 to ¢ and we apply E. In view of (6.2) and (6.6),
we obtain (6.29). O

Proposition 14. Let k > 0. Let qp € H*Y and uwy € H*2 N H. Suppose
g€ H* and g € H**2 N H. If the estimate

t
kg1 kt2
/ log(1+ [[(—=A) T3 q(s)|[72 + [1(—24) 7 u(s)|[2)ds
k41
< Clog(1+ [[(—=A) 2 qollFz + [(—A) % uol72)
+C(f,9,3,k) [IVaoll 12 + [ Vuol 2 + 1 +] (6.36)
holds for all t > 0, then the following estimate
k+3

t
ks k+3
E/O log(1 +[|(=A)="1q(s)[|72 + (=) = u(s)|[72)ds
< Clog(1+ [(=A) % o3z + (=4) 5 uo|32)
+C(£,9,5, %) [IVaoll 1 + [Vuolz> +1+¢] (6.37)
holds for all t > 0.
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Proof. The Ito lemma yields
2
d|[(-a)%q| | +20(-a)5 gt
= —2(u-Vq, (~A)g)2dt

k+1

+H(— : gH dt +2(G, (=A)F1g) p2dW (6.38)
and
dH<—A>%H2 (SRR
—2(qRq +u- Vu — f,(=A)*2u) p2dt
+H(—A)79HL2 dt +2(g, (—A)*+2u) 2 dW. (6.39)
Let
X = H(—A)%q +H iu’i (6.40)
X = H(_A)%+%q i n H(—A)%u‘ i (6.41)
M =2(g, (=A)"*'q) 2 + 2(g, (=) u) 2, (6.42)
and
N = a4, + o #. (6.43)

Then the stochastic process X evolves according to
dX +2Xdt = —2(u- Vg, (—A)q)2dt
—2(qRq + u-Vu — f,(—A)*2u) podt + Ndt + MdW.  (6.44)

An application of 1t6’s lemma gives the stochastic energy equality

2X 2
log(1+ X = - : —A)Fg) e
dlog(1+X) + s —dt = =7 —(u- Vg, (-A)"g) 2t
2
_1—|—7X (qRq+U VU—f,( )k+2U)L2dt
N M? M

t— t d 4
HEES ST e e L (6.45)

from which we obtain the following differential inequality
2X 2
dlog(1+ X < : — AR
081+ X) + Tt < T |(u- Vg, (~A) g it

M
l(qRq +u - Vu — f,(=A)*20) 1o |dt + Ndt + H—de. (6.46)

. 2
1+ X
In view of the commutator estimate
|A°(FG) — FA°G||Le
< C||VF||r A7 G| zes + ClIAF|£os |G| Lrs (6.47)
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that holds for any s > 0, p € (1,00), p2,p3 € (1,00), % = p% + p% = p% + p%,
and all appropriately smooth functions F and G (see [1, Lemma A.1]), we
estimate

‘(u'vq’(_A)qu)“BH(_A)%q L2 (—A)F (u- Vo) —u-V(-A)F g L
<o) %, [Ivullee [ -2 q| , +19al | -a)5 2] ]
< CHAUHLz\/Y\/}+CHA%q ‘m X. (6.48)

Here, we used the continuous Sobolev embedding of H z in L. In view of the
fractional product estimate

A (FG)pe < ClIF o [A*Gllorz + |AFlloes [Gllze] - (6.49)

that holds for any s > 0, p € (1,00), p2,p3 € (1,00), % = p% + p% = p% + p%,
and all appropriately smooth functions F' and G (see [33, Lemma A.1]), we

estimate

[(qRq, (—A)**?u) 2| =

(~2)"% (gRq). (~8)F )

k+1

< C[IRal~ || (-2)#q

+ lallz~ ||(~2)F* Rq

k43 ‘

N8 gl ||(-2)F ||
]Lz VXVX (6.50)

o [T

L2 L2

<t

<l

after integrating by parts, using the continuous Sobolev embedding of H % in
L, and using the boundedness of the Riesz transform on H 2. As for the
nonlinear term in u, we integrate by parts, apply the commutator estimate
(6.47), use the continuous embedding of Hz in L*, and estimate

(- T, (=8)20) o] = | (=2)F (u- Vu), (-2)Fu)

— ’((—A)#(u V) —u-V(=A) 7w, (_A)¥U>L2

k42

< OVul[pal[(=A) = ul s

k+2 ‘

(=A) 2 u

L2

< C||Aul|2VXVX. (6.52)
Therefore, we obtain the inequality
2X M
dlog(l1+ X) + ——dt < Ndt + ——dW
og(l+X) + A < Ndt+ 7%

b2 [I8ulla VIV I-8) 5 VX + 4l vEVE] @
(6.53)
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which boils down to

X , . 2
dlog(1 + X) + ;pdt < Ol Aulfadt + C HA2q ‘m dt

C H(—A)%fH; dt + Ndt + HleW
(6.54)

after application of Young’s inequality. We integrate in time from 0 to ¢ and we
apply E. Using the bounds (5.18) and (6.29), and applying Young’s inequality,
we conclude that

: o
X
E| —=d
/0 1rx°
< log(1+ X(0)) + C(£. 9,9, k) (IVaoll 12 + [IVuo| 72 +1+1) (6.55)
for all ¢ > 0. Bounding similarly to (6.28), we have

t
E/ﬁ%u+mwSkgrmww+cw@@mmwm%
0

t
+ | Vao32 +1+1) + E/ log(1+ X)ds.  (6.56)
0

Since
- E_i_ _ E+1
X < [carti]  feait,
|2 |12 F e, (6.57)
we have
=13 ko1 |2
1+X < [1+X] [1—1—“(—A)2+4q ,
w2 (2 12
+H(_ : “’L] (6.58)
and so
1 _
log(14+ X) < §log(1+X)
1 Ey1 |2 k2 ||2
+5 log 1+H(—A)2 i L2+H(—A) 5 u‘ - 659)
Therefore,

t
1E/ log(1+ X)ds
2 0
<log(1+ X(0)) + C(f,9,3, k) (IVaolI 12 + [ Vuol3z + 1 + 1)
1/t - 2
+ 5E/ log (1 + H(—A)%ﬁq >ds. (6.60)
0

2 k42
|-y,
In view of (6.36), we obtain (6.37). O

(=A) 2 u

L2

We end this section by proving Theorem 4.
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Proof of Theorem /. Suppose p is an invariant measure of (5.1). By Theorem
3, pu is supported on H2 x (H2N H). In view of the bounds (6.19) and (6.29),
and repeating the same argument used to prove Theorem 3, we conclude that
1 is supported on H3 x (H?N H). Now we bootstrap using Proposition 14 and
we deduce that p is supported on H*+2 x H*¥*3 for any k > 0. This shows
that p is smooth and completes the proof of Theorem 4. O

7. Uniqueness of invariant measures

In this section, we prove that (5.1) has a unique ergodic invariant measure
provided that the ranges of g and g are large enough in phase space. Uniqueness
is obtained by employing asymptotic coupling arguments from [20].

Theorem 5. Suppose that g € V and g € L*. There exists N = N(f,g,3) such
that if PNH C range(g,g), then (5.1) has a unique ergodic invariant measure.

In order to prove Theorem 5, we need the following proposition:

Proposition 15. Let R > 0. Then there exist positive universal constants ¢ and
C' such that the estimates

1 t
P (s (19O + 5 [ 180 s — [Tl
t>0 0

- Cl T + Vol [ ||q<s>||i4ds)>R)Sexp( R )

RS
(7.1)
and
t
P (sup (a1 + [ la@lEads = laolte 2= Clallar) > )
=z 0
~|16 16
L C(1al + lanl) a2
R+1
hold.

Proof. We integrate in time from 0 to ¢ the differential inequality
d[|Vul[72 + [|Au|F2dt

< Cllgl|3adt + C||fN|22dt + C||Vygl||22dt — 2(g, Au) 2dW (7.3)
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(see (5.19)) and take the supremum over ¢ > 0 to obtain

2 1 2 2

sup ¢ [[Vu(t)[[zz: + 5 [ [|Au(s)l|z2ds = [[Vuol|7

>0 2 Jo

t
2 2 4
—C(Iflz= + HVQIILz)t*C/O ||q(5)||L4d5}

t 1 t
< sup {/0 2(g, —Au)p2dW(s) — 5/0 ||Au||2des}

t>0
1
8llgll7 -

Exponential martingale inequalities [20, (3.4)] imply

t 1 t
Pup{ [ 29~ BwpdW () - g [ gl Buleds | > B
t>0 0 8||9||L2 0

§exp( i ) (7.5)

891l

Therefore (7.1) is established. The derivation of (7.2) is based on ideas from
[19]. Indeed, the L* norm of ¢ evolves according to

d|lq|| 7+ + 4(Aq, ¢*) r2dt = 6(3%, ¢*) r2dt + 4(, ¢°) 2dW. (7.6)

t t
=sup{ [ 20 -du)aws / 4|g|%z|Au%2ds}. (7.4)

t>0

(see (5.17)). By the Poincaré inequality for the fractional Laplacian in L*, we
have

(Aq.q°)r2 = cllallzs (7.7)
Thus, we obtain the differential inequality
dlgllzs + cllallzsdt < Cllglzsdt + 4(g, ¢°) r2dW. (7.8)

We integrate from 0 to ¢, and take the supremum over ¢t > 0. We obtain
t
sup {01+ [ la@Eeds ~ ool —2 = Clllae}
> 0

t
< sup {/ 4(G,q) 2dW (s) — t — 2} (7.9)
>0 LJo
which implies
t
P (sup (laOEs+ ¢ [ la@)liads — lallhs ~2 - Cllllae) = )
<P (sup(M(t) —t—2)> R) (7.10)

t>0

for any R > 0, where M (t) is the martingale term

M(t) :4/0 (G,6%) p2dW (s). (7.11)



NoDEA Unique ergodicity in stochastic Page 35 of 57 65
We have

{sup(M(t) —t—2)> R} c U { [sup (M(t) —t—2) > R} (7.12)
n>0

t>0 teln,n+1)
and
sup (M(t)—t—2)>R,C{M*(n+1)>R+n+2} (7.13)
te[n,n+1)
where
M*(t) = sup |M(s)]. (7.14)
s€[0,t]

Using the Burkholder-Davis-Gundy inequality (see Theorem 5.2.4 in [9])
EM*(t)* < CE(IM](t)?) (7.15)

where [M](t) is the quadratic variation

M)(t) = 16 / (5.4 2ads, (7.16)

we obtain
2

EM* (1) < CE([M](t)?) < CE ( / <g,q3>izds)

t 2 t
< claltm ([ laltas) < clglieem ([ falias)

< Clgllzat (laoll3 + 1g115t) < € (IglE% + llaollZ%) 1+ 1)% (7.17)

Here we used the estimate (5.16) applied for p = 12. Therefore,

IP(sup(M(t)tQ) 2R) < ZP(M*(n+1) >R+n+2)

20 n>0

*(n+1)4 (n+2)2
Z < (13 + llaollz%) D 77—
n>0 R+n+2 n>0(R+n+2)

>3 C (911 % + llgoll %)
e R+n+2 R+2

< C (I9M175 + llollzS (7.18)

in view of the Chebyshev’s inequality. This gives (7.2) ending the proof of
Proposition 15. 0

Finally, we prove the uniqueness result:

Proof of Theorem 5. Fix (qo,uo) and (Qo,Up) in V. Our aim is to establish
the conditions for the asymptotic coupling framework presented in Section 2.4
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of [20]. To this end, we consider (g, u) solving (5.1) with (¢(0),«(0)) = (go, uo),
and (@, U) solving

d(Q,U)+(AQ, —AU)dt+(0, VP)dt=(—U - VQ, U - VU-QRQ+f)dt
+(3,9)dW +1 1, < APN(q — Q,u — U)dt (7.19)
V-U=0

with (Q(0), U(0)) = (Qo, Up), where

t
TK — inf
tZO{/o

and K, N and A are positive constants to be determined later.

By Girsanov’s theorem [20, Theorem 2.2], the law of (@, U) is absolutely
continuous with respect to the solution (g, u)(-, (Qo, Up)) of (5.1) corresponding
to (Qo, Up) for any choices of A > 0 and K > 0. Consequently, the uniqueness
of the invariant measure follows from an application of Corollary 2.1 in [20],
provided that we can find some positive constants A and K such that (g, u) —
(Q,u) — 0 in the norm of H on a set of positive measure.

Let

P (A—%(q_Q%(u—U))H; dszK}. (7.20)

v=u—-Umn=p—P{=q—Q. (7.21)
Then (£, v) obeys

at(§7 U) + (A§7 _AU) + 1TK>t>\PN(§7 U) =+ (07 71')
=(-u-Vq+U-VQ,—u-Vu+U- VU — qRq + QRQ) (7.22)

Let w = (&,v). Taking the L? inner product of (7.22) with (A~1¢,v), we obtain
the differential inequality

1d 1
5112 + €03z + IV 0lEz + Lresar ||y (A7 2e0)|

=(—u-Vqg+U-VQ,A )24 (—u-Vu+U - VU — qRq + QRQ, v) .»
=(—v-VQ —u-VEATE 2

+(~v-Vu—U-Vv,0)12 + (—ERq — QRE,v) 2
= —(u-VEANTE 2 — (ERq,v) 2 — (v- Vu,v) g2 (7.23)

2
L2

where we used the cancellations
(U-Vu,v)p2 =0 (7.24)
and

(v-VQ,A7'€)12 = —(v- RE, Q)12 = —(QRE, v) e (7.25)
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We estimate

(v - Vu,v) 2| < [[ol|7alVullzz < Cllo)l 2| Voll 2l Vull 2

1
< IVolie + ClIVullZ: o]z, (7.26)
[(€Rq,v) 2| < [l 2ol sl Rall s
1 1
< S lelze + 4 1vollze + Clallza vl (7.27)

and
(- VEAT ] = [(AH (w- VE) —u- VA~ Ee A~ e)

L2
_1 1 _1

< Cl|Aull g2 lIA7 2 €]l 2 €]l e < T + ClAulZalIAT2€lIZ. (7:28)

using Holder’s inequality, Ladyzhenskaya’s interpolation inequality, Young’s

inequality, the boundedness of the Riesz transform on L*, and the commutator

estimate (3.29). This yields the differential inequality

d 1 2
W2, + €5 + 190132 + Lresed [Py (A 0) |

< (C+ [1AuZz + llgllza)llwllF,- (7.29)

For a fixed integer N, we have

€12 + IV ell3 + LreseA | [P (A~260)|

2
L2

O o (36, e (37260

2 17K>t)‘J§V+1||W||3.'( (7.30)

L2)

1
for A > A3, in view of the inequality (5.8). Hence
d 1
Tl s AR @il < (C+ Cllallzs + CllAulZe)wlz.  (7:31)
Integrating in time, we obtain
i ¢
lw ()13, < llwoll3, exp {—/\12\/+1t+/0 (C+C||Q|i4+0||Au||i2)d8} (7.32)

for any t € [0, 7k]. For R > 0, we consider the sets

1 t
Er = {oup (I9u)13 + 3 [ 180 0
t>0 0

t
90l = OISR + Vel — € [ o)l ads) < =)
(7.33)
and
t
P ={sup (1ol + ¢ [ la(o)Iads = lanlle 2= Cllir) < 7).

(7.34)
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By Proposition 15, we have P(EFr N Fg) > 0 when R is sufficiently large.
Indeed,

P(ER N Fg) = P(Eg) + P(Fr) — P(Eg U Fg)

__R ) ~ C (a5 + llaoll7%)
8”9”2L2 R+1

when R is large. Consequently, on Er N Fr and for ¢ € [0, 7], we have
t. 1 1.1
o), < ool o { ~ 33k + (~ 33

+C(f,9.9)t+ C([Vuol 2, llqoll s, B)} - (7.36)
We choose an integer N = N(f, g, ) large enough so that

>1—exp ( >0 (7.35)

1.2 _
~ A T C(f,9.9) <0 (7.37)

yielding
t. 1
o1 < el exp {5k 1 + COIVuolzo oo B (738

on Er N FR and for t € [0, 7x|. Finally, we choose K large enough such that
Er N Fr C {7k = oo} and we conclude that on the nontrivial set Eg N Fr

(q(t) = Q(t),u(t) - U(t)) — 0 (7.39)
in H as t — oo. This completes the proof of Theorem 5. 0

8. Feller property in the H! norm

We consider the space

V=HYT*)xV (8.1)
with norm
&)y = IVElL2 + V] Z2. (8.2)

In this section, we show that the transition kernels associated with (5.1)
are Feller in the norm of V.

Theorem 6. Suppose that g € NH> N H and §j € H' such that Vg e L8. Then
the semigroup {Pt} is Markov-Feller on Cy(V).
>0
We need the following propositions.

Proposition 16. (Continuity in V) Let (¢}, ub) and (g2,u3) be in V. Suppose
g€ H' and g € V.. Then the corresponding solutions (q1,u1) and (g, us) obey

[Vus(t) = Va3 + [ Var (t) = Vaa(t) 2
<exp{CCW} [IVuh = Vadllie + IVas - Vails]  (83)
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with probability 1, where

- t 2
c = [ [[8ta]}, + 19wl + ol + lawli | as
0
1s well-defined and finite almost surely.
Proof. Let ¢ = ¢1 — q2 and u = uy — uy. The norm ||Vq|| 2 satisfies the energy
inequality
o [ aosd+ | [ (we: voa
R — u . u .
9 dt - q1)Rq - 2 q)q
< C|VullalIVall = IVa || s + Cl[Vuz 4| Val 4 [ Vall L2 (85)

where we integrated by parts and used the divergence-free condition of us and
u. Applying Young’s inequality and using the continuous embedding of H 7 in
L*, we obtain

2
3
IVal: + |[a%q]| , < +

d FIE
= IVal2 + %] |

1 3 2
< glaus + 0 [[sfal, 18wl 1VaE. s

On other hand, the norm ||Vul|2 obeys

1d
52 IVuls + [ Aul

< +

/Tg(u - Vup)Au

/1r2 (ug - Vu)Au

+ +

/ (1 Rq)Au / (qRg2)Au
T2 T2

< O\ Vull24[[Vur |l 2 + ClIVul| 7 | Vuel| 12
A%q

+Cllq || e A%q

Lo 18ullz2 + Cllaz] s

Lo |Au| L2, (8.7)
hence
d
Z1Vulie + [Auliz < C[[IVuallZ: + [Vuz|Z2] [Vulze
+O [lallzs + llazl124] IVallZ-- (8.8)
Adding (8.6) and (8.8), we get
d 3
7 UVdllzz + [Vulz] < © [||A2q1||%2 + [V |72
HlgallZs + [ AuallZa] [IValZ + 1VullZ:] (8.9)
which gives (8.3). O

Proposition 17. Suppose V§j € L8 and Ag € L?. Let (qo,up) € V and T >
0. Then the solution (q,u) to the system (5.1) is uniformly bounded (almost
surely) in

L2 (0, 00; L*(T?)) x L% (0, 00; H*(T?)) (8.10)

loc
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by some constant depending only on g, g, f,||Vuol|L2 and ||qo||r2. Consequently,
if (§n,vn) €V is a sequence of initial datum such that {(&,,vn)}oo | converges
to (&,v) in V, then

T
limsup/o [1a(t, (s v) 20 + 1Au(t, (Ensva))Be] df < 00 (8.11)

n—o0

almost surely.

The proof of Proposition 17 is presented in Appendix B.
Now we prove Theorem 6:

Proof of Theorem, 6. Fix ¢ € Cy(V). Suppose (&,,v,) converges to (£,v) in V,
that is

IV&n = VElIZ2 + IVon = Vol|Z2 — 0. (8.12)
In view of the continuity in V given by (8.3), we have
IVu(t, (€, vn)) = Vau(t, (€, 0)lI72 + I Va(t, (€, va)) = Va(t, (€,0))]122
< CER OO (|90, — Vo|[1: + V€, — VE7:] (8.13)

where

Kn(t):/o [at, €, va))lZs + 1Au(t, (En, va))lIZ2] ds (8.14)

and
t P
K(t) = / 1A% 4(t, (€ 0)3= + [ Vult, (€ 0)3:] ds. (8.15)
In view of (5.18) and (6.29), we have the finiteness of K (¢) for almost every
w € Q. In view of (8.11), we have
lim sup K, (s)ds < oo (8.16)

n—oo

for almost every w € €. This implies that

”vu(ta (gna Un)) - vu(t7 (Ev 'U))HQL?

+HIVa(t, (€n.va)) = Valt, (€ 0)]|72 — 0. (8.17)
Since ¢ is continuous on V, we conclude that
e((q,u)(t, (6n,vn))) — @((g,u)(t, (€, ))) (8.18)
and hence
Eo((g, u)(t, (6n,vn))) — Ep((q,u)(t, (£, v))) (8.19)
due to the boundedness of ¢. This completes the proof of Theorem 6. 0
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Appendix A. Uniform bounds in lebesgue spaces

In this Appendix, we prove Proposition 1. For simplicity, we ignore the vis-
cous term —eAg® in (3.1) because it does not have any major contribution in
estimating the solutions of the mollified system (3.11) and vanishes as we take
the limit € — 0. We also drop the € superscript.

The proof is divided into 7 main steps.

Step 1. We prove that the estimate (3.12) holds when p = 2.
Proof of Step 1.. By 1t0’s lemma, we have
d¢® = —2q(u - Vq)dt — 2qAqdt + 2gADdt + G2dt + 2qgdWV. (A1)

We integrate in the space variable over T2. In view of the divergence-free
condition obeyed by u, the nonlinear term vanishes, that is

(u-Vg,q)rz2 =0, (A.2)
which yields the energy equality

1 2 ~ ~
dlgl3: +2||Ata] | = 280, )2 + 133zt + 25, radW.  (A3)

We estimate

(st~ |(stoat), [ < usoll + Hels, a

L2
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using the Holder and Young inequalities. We obtain the differential inequality

1 2 2 5 B
dligl3: + |[Adg| | dr < |[Afa dt+(gIRdt + 25, )padW.  (A5)

Integrating in time from 0 to ¢, we get

t N 2
latw)ls + [ [Adatsw)]], ds
0 L

3 2 ~ t ~
<laole + (2ol + gz ) o+ [(Gaowar. (a0

We take the supremum over all ¢t € [0, T,

T 2
1
swp a(w)lfa+ [ [|atas. 0], ds
0<t<T 0 L2

2
< 2llqoll3> +2 (HA‘I’H - ||g||i2> T+4 sup
L2 0<t<T

/ t(g,qmdw\ (A7)

Now we apply the expectation E. In view of the martingale estimate (see
Theorem 5.2.4 in [9]),

1
t T 2
E{ sup /(é,q)deW’} < CE (/ (é,q)izdt> , (A.8)
0<t<T 0 0
we have
t , !
E{ sup / (g,qmdw‘} < CE / lall22 115112
0<t<T 0 0
1
T 2
<E ( sup ||q||L2) <c / ||§||%zdt>
0<t<T 0
1 N
< g8{ s lalE: b+ claliaT (A9)
0<t<T
This gives (3.12) when p = 2. O

Step 2. We prove that the estimate (3.12) holds for any p € [4, c0).

Proof of Step 2. Applying Itd’s lemma to the process F'(X;(w)) where X;(w) =
lq(t,w)||2. obeys (A.3) and F(&) = %, we derive the energy equality

2
2
d(llal2.) |t

— 1

= —pllallyz | Atq
p—2 p P—21~12

+ pllallfa (D@, padt + D lall 13 de

P 4, —2,.
+p (5 - 1) lall2> (g, q) r21dt + pllal222(F, @) 2dW,  (A.10)
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which yields the differential inequality

2
o < vl 1At

— 1
dllally. +pllalz* [ A%g

P —9. —2,.
+50- Dlal532 1172t + pllally=> (3, @) L2 dW- (A11)

In view of the bound

: (A.12)

1
lallze < [|A%q] |

we have
D p ol 1 |I?
dllglt: + Llalladt + 2 llalz? [A%q| , at
< C(p) (|1A®)%. + 113l1%2) dt + pllalls>>(3, @) 2 dW (A.13)

where we used Young’s inequality to estimate

- p
pllallf="A®] 2 < C(p)|AD|7. + glaliz- (A.14)

and
p

—ay- _ p
5= Dldlz2" 37 < C)lgl= + glallze- (A.15)

Integrating in time (A.13) from 0 to ¢ and taking the supremum over [0, 77,
we obtain
T 2
p - 1
sup llalf+ 5 [ lalz? |k, ds
0<t<T 2 Jo L2

< 2|lqoll7= + C(p) (1A®]7: + 191172) T

t
2 sup ' / p||Qi22(§,q)L2dW‘- (A.16)
0<t<T |.Jo

We estimate

t
/ 2p||q||’222(§,q)deW’}
0

E { sup
0<t<T

T
< C(E (/ ||qiz-4<g,q>%2dt>

1

T 2
< C(p)E (/ ||qi€‘2§%2dt>
| T
<E (sup ||q||§;)<c<p> / ||g||%zdt>
0<t<T 0

1 - P
< (1 - ) E{ sup IIqlliz} + Cp)llgll7-T> (A17)
p 0<t<T

and we obtain (3.12). O

1
2

1
2
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Step 3. We show that the velocity u obeys

T
E{ sup |[|uc||Zz +/ IIVUCII%zdt} < C(lluollL2 lgoll L2, £, ®, 3, g)e*" .
0<t<T 0
(A.18)

Proof of Step 3. We apply [t0’s lemma pointwise in z and we obtain the energy
equality

dl|ul|3: = —2(—Au,u) pedt — 2(u - Vu, u)p2dt
—2(qRq, w) 2dt — 2(qV 0, u)2dt + 2(f, u) 2dt + ||g||32dt
+ 2(g,u)p2dW, (A.19)
which implies
dljulz> +2[Vulzdt
= —2(qRq +qV® — f,u)p2dt + gl T2dt + 2(g, u)r2dW,  (A.20)
where we used the cancellation
(u-Vu,u)r2 =0 (A.21)

due to the divergence-free condition satisfied by u. By Ladyzhenskaya’s inter-
polation inequality

1 1
lullzs < Cllullrz + Cllull (| Vul| -, (A22)
and the boundedness of the Riesz transforms in L*, we estimate

1 1
[(qRq, u) 2| < lgllz2 [ Rallzslullzs < Cllg]lz2[lgll s (IIUIILz + IIUHZ2IIVUIIE2)

1 1

< CllqlZ=llgll7« + §IIUH2L2 + 5|IVUIIZL2- (A.23)

We also estimate

1 1
[(qV®,u)2| < 5”“”%2 + §HV‘1>||14IIQH%4 (A.24)
and
1 2 1 2

|(fyw)rz| < Sllullze + S l1FlIz2 (A.25)

using Holder’s inequality followed by Young’s inequality. We obtain the differ-
ential inequality

dflulZz + [[VulZ2dt < 3llulz2dt + || fl|72dt + CllglZ: |lall7adt
+C|IVO|[7allalZadt + ||glZ2dt + 2(g, u)r2dW, (A.26)
hence
d{e™|ull72} (s) = =3e*|ullF2ds + e **d[Ju(s)[|7
< —e |Vl Zads + 7% {||fll72ds + CllallZ2lall7ads + CI V@[ Zalqll7ads}
+ e\ gl|F2ds 4 273 (g, u) 2 dW (A.27)
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for all s € [0,¢]. Integrating in time from 0 to ¢, we obtain
t
e Mlu(®)]7 +/O e[| Vu(s)[|72ds < uolzz + (1172 + llgll2) t
t t
+C [ Il ads + € [ IV a(s) s

—|—2/0 e (g, u) p2dW (s). (A.28)

We take the supremum in time over [0,7] and apply E. Using the continuous
Sobolev embedding

H=(T?) c LY(T?) (A.29)
and (3.12) with p = 4, we have

T
E{ / ||q<s>||i2||q<s>||%4ds}

< Cllaollz> + C (IA®I7- + lIgl7) T+ Cligllz.T*  (A.30)
for all ¢ € [0,T]. From (3.12) with p = 2, we have

T
E{ / v<1>||i4|q<s>||%4ds}

3 2 ~
< vl (ol + [ade], T+ 1akT) (a3

for all ¢ € [0, T]. We estimate

¢
E{ sup /26_3S(g,u)deW‘}
0<¢<T |Jo

) T
<E{ swp (e Hu(t)]z2) (/ Ce-?’tg%zdt)
0<t<T 0

1 _
< 2E{ sup (e 3t||U(t)||%z)}+C|g|iz (A.32)
0<t<T

1
2

and we obtain (A.18). O
Step 4. We prove that (3.13) holds for p = 4.
Proof of Step 4. By It6’s lemma, we have
dlg|* = —4¢3u - Vqdt — 4¢° Aqdt + 4¢> Addt
+ 6¢°G*dt + 4¢>GdW. (A.33)
Integrating in the space over T2, we obtain the energy equality
dllgllzs = —4(u- Va,¢°)p2dt — 4(Aq, ¢°) p2dt + 4(AD, ¢°) p2dt
+6((9)% ¢*)2dt + 4(3, ¢°) L2dW. (A.34)
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We note that
(u-Vq,¢*)2 =0 (A.35)

due to the divergence-free condition for u. By the nonlinear Poincaré inequality
for the fractional Laplacian in L* applied to the mean zero function ¢, we have

/ ¢ Agde 2 gl (A.36)
T

Using Holder’s inequality with exponents 4,4/3 and Young’s inequality with
exponents 4,4/3, we get
(AR, ¢%) 2| < 4| AP Lalg? | pars
= 4|A®]|allgl7s < cllglizs + CIAR|I7.. (A7)
We also bound
61((9)* ¢*) 2 | < 6llall7allglZs < cllgllzs + CllglLs, (A.38)

using Holder and Young inequalities. Putting (A.34)—(A.38) together, we ob-
tain the differential inequality

dllgll7s + cllallzsdt < Cl|A®||7adt + CllglLadt + 4(3,¢°) L2dW. (A.39)

Consequently,
t
la@)lts +c [ lalids
0

t
SQMﬂ;+«wA®ﬁ¢+mwmd+4/K@fMMW’ (A.40)
0

for all t € [0,T]. We take the supremum over [0, 7] and then we apply E. We

estimate
t T
s [} <ol ([ )
0 0

E { sup
0<t<T
T
< sup fallte (€ [ gl
0<t<T 0

T
<CE (/O ||§|Ii4|q3||i4/3dt>

1

2

1
2

N

3 -
<3n{ sw lulh. + clattr? (A1)
0<t<T
and we obtain (3.13) for p = 4. O

Step 5. We prove (3.13) for any p > 8.
Proof of Step 5. The stochastic energy equality
dllalys = —pllal}" (A, ¢*) r2dt + pllall72* (A®, ¢°) 2dt

3 4, D 8/~
+ Spllallyt G a®nade+ 20 (8 = 1) lall} 3.0t

+pllaly 2" (G, %) 2dW (A.42)
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holds for any p > 8. By Holder’s inequality with exponents 4/3, 4 and Young’s
inequality with exponents p/(p — 2),p/2, we have

2 (= 1) a5, aM3e <20 (8 = 1) lallg e 13113
=2p (2= 1) a2 llal g3l < Zhallte +C (1913) % (A43)
We obtain
dllglly. + 5 llalldt
< CIAB|.dt+ C (I312:)F dt + pllalta (G, ) padW.  (A44)

Integrating (A.44) in time from 0 to ¢, taking the supremum over [0, 7], ap-
plying E, and estimating

{sup 2p\ / a7+ (3 ¢ dew‘}
<t<T

<(1-3) B sw s cwlart @)

0<t<

we obtain (3.13).
Step 6. We show that (3.14) holds.
Proof of Step 6. We derive the stochastic energy equality
d(|[ull72)% = —pllull}>?|Vull7=dt + pllul}2*(—qRg — ¢V® + f,u) L2dt
o+ Slul2lgl3adt +p (5 = 1) fullfa* (g, ) e Pat
+pllullf>*(g, 1) p2dW. (A.46)
By Young’s inequality with exponents p/(p — 2) and p/2,
il gl3 < £l + ol (A47)
and
p (5 = 1) Il g wyea? < p (5 = 1) Jullfa "l gl
< 2 lulls +C) gl (4.49)
Similarly, using Young’s inequality with exponents p/(p — 1) and p,
pIl332107 )2 <pllul? oL L < OIS+ Sl (A.49)
and
pllull7>21(gV®, u) 2| < pllull2?|lull 2 lg] o2 [ VP

1
< COIVlL=llallzz + £ lulz=- (A.50)



65 Page 48 of 57 E. Abdo et al. NoDEA

By Ladyzhenskaya’s interpolation inequality and the boundedness of the Riesz
transforms in L*(T?), we have
—2 -2
pllullzz"1(—qRq, u) 2| < C)l[ullf2"[lullLsllgl 2]lq]| s
9 1 1
< C)llullyz (Iullze + lull 21 Vull7) a2 lall

p -2
ullzs + 5 llulzs IVullZ: + Cp)llally- gl

IN

1 p _9 2 2
< gllullze + 5 lullzs [Vul|72 + Cp)lall% + Co)llall - (A.51)

This yields the differential inequality
p _
dlfull7. + §HUI|’£22HVUH%2dt < |lullz2dt + C(p)llgll7 - dt + C(p) 1 £ 1172t
+ CPIIVP|7 = llalF-dt
+C(p)llgll Fadt + C(p)lgllFadt + pllul72*(g, w) L2dW (A.52)
and thus
d{e |l } () + e *lfullf=? [ Vul 7 -ds
< e {0W)gl72ds + Cp)| fII72ds + C(p) VL] <lall}2ds
+C()llalFds + C(p)alFads }
+pe*|ull75? (g, u) L2 dW. (A.53)

We integrate in time from 0 to ¢, take the supremum over [0, 7], and apply E.
We obtain

T
E{ sup (€t|IU(t)§z)}+E{/O etIUII’izQWUI%zdt}

0<t<T

< C(p) (lglizz + I£172)

T T
+c<p>||v<1>||PwE{ / q||§zdt}+c<p>E{ / ||q||izdt}

T t
+C(p)E{/ IIqIIi’idt}Jr sup /2p65IIUI|’£22(g,U)L2dW‘- (A.54)
0 0<t<T |Jo
We estimate

E { sup }
0<t<T

< (1—;)E{ sup (e—tnu(t)n';)}+c<p>|g||’zzT‘2’- (A.55)

0<t<T

t
/ 2pe [ull52 (g1, w) L2 dW (s)
0

Putting (A.54) and (A.55) together, and using (3.12) and (3.13), we obtain
(3.14). O

Step 7. We prove that (3.15) holds.
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Proof of Step 7. We write the equation satisfied by Vu, apply It6’s lemma,
and integrate in the space variable. We obtain the energy equality
d||Vull2: + 2| Aul|2: = 2(u - Vu, Au) 2dt + 2(qRq, Au) p2dt

+2(qV®, Au)p2dt — 2(f, Au)2dt + || Vgl|[32dt — 2(g, Au)p2dW. (A.56)

The nonlinear term for the velocity vanishes, that is
(u-Vu,Au)rz =0, (A.57)

and using Holder’s inequality, we obtain

d|[Vulli: + 2[Aullfzdt < CllglZs || Aullz2dt + 2]V < |lq] 2 | Aul| p2dt
+ 2|l fll2l| Aul p2dt + [[Vgl|Z2dt — 2(g, Au)2dW. (A.58)

An application of Young’s inequality yields the differential inequality

|| Vull7z + [[Aul|72dt < Cllg|7adt + O V|3 |lgll72dt
+ O||f|32dt + || Vgl 2dt — 2(g, Au)2dW. (A.59)

We integrate (A.59) in time from 0 to ¢, take the supremum in time, and then
apply E. We obtain

T
E{ sup ||Vu||2Lz} —I-E{/ ||Au||2L2dt}
0<t<T 0

T
< 2|Vuolz> + C (IVglZ: + I fl72) T + CE {/0 ||q||i4dt}

/0 t 4(g, Au)deW‘ . (A.60)

0<t<T

T
+C||V<I>||%OQE{ / q||%2dt}+ sup
0

We estimate the martingale term

t T z
E{ sup 4/ (9, Au)p2dW } <E«{4 (/ (g,Au)%zdt>
o<t<T | Jo 0

T >
<® 4(/ ||v9||i2|w||22dt>
0

T
<E<4 sup ||Vul Lz (/ ||V9|%2dt>
0<t<T 0

<

1
2

1
3 sup E{||Vu||2L2} +C||Vgl3:T. (A.61)
0<t<T

Putting (A.60) and (A.61) together, and using (3.12) with p = 2 and (3.13)
with p = 4, we get (3.15). O
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Appendix B. Pathwise uniform bounds for the solutions

In this section, we prove Proposition 17. We let (¢,u) be the solution to (5.1)
corresponding to the initial data (go,uo). Let

N t
Pz, t,w) = / =G (z)dW (B.1)
0
and
t
oo tew) = [ D) (B.2)
0
We set
Q=q—¢ (B.3)
and
U=u—¢ (B.4)

and we note that (Q,U) obeys the deterministic system

0Q+(U+0) V(Q+9) +AQ=-Ap ~
WU+ (U+¢) V(U+¢)-AU+VP=—(Q + d)R(Q + ¢)+f+Ad (B.5)
V-U=0

where we used the divergence-free condition imposed on g.

Step 1. Bounds for the velocity in L? (0, c0; H!(T?)).
We take the L2 inner product of the ) equation with @), and we obtain

2 dt
- / (U +¢)- v<cz vopQis— [ AdQir  (B)
T2 T2
We estimate the nonlinear term
/TQ“U + ) V(Q + 9)Qdz| = ’/Tz((U +0) - V9))Qda
<NQUzs U411Vl 2 + 1Ql L |6l 4 IV | 2

||¢HL4HV<5HL2

<3 ‘ |VUHL2 +ClIVo 72 IUI1Z +C||¢||L4HV¢||L2 (B.7)

using Holder’s mequahty, Ladyzhenskaya’s interpolation inequality applied to
the mean zero function U, the continuous Sobolev embedding H 3 C L*, and
Young’s inequality.

This yields the differential inequality

1|2 1 -
S TIQIE + 2 k], < SIVUIR: + CIVaIL IV

ORIV + a2 (B3)
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Now we take the L? inner product of the @) equation with A~'Q and we get

1d
2dt

—/Tz((U+¢)-V(Q+<5))A_1Qd1‘ (B.9)

IA3QIE: + QU = - [ AdA~'Qus

Integrating by parts and using the divergence-free condition obeyed by U + ¢,
we can rewrite the nonlinear term as

- [ @+ v@+naQu
= [(@+DRQ+d) - U+~ [ @+ 3RS (U +0)io
- [ (@+dR@Q+d) vis
+ [ @+ [RQ+d)0-Rb- U+ )] da

- [ @+ dr@+3)-Vir+ [ (Q+d)[RQ-6-RG-U]ds (B10)

T2

and we estimate

‘/W(Qw) [7Q -6~ R -U] da

< QRQ - ¢pdx
T2
|| ¢RQ -ddx|+ || QRS Udz|+|[| GRS Udx
T2 T2 T2
< C||@] ]| QI 2 A%Q\ Lt Cl1ll |l L4 | QI 2

+ ClIQN eI ll4 1Tl 22 + Clil e Gl U] 22
Ty, 2 1

< ; [atQ|| , + 51QIZ: + CllolalQIz: + ol
+18lE0II7: +C + 9170 IU117 (B.11)

where we have used the boundedness of the Riesz transforms on LP(T?) for
€ (1, 00). We obtain

1d
2
- _ _ 1y 1 2
<Cldl+ [ @+ HRQ+d)-vds+ 1 [ate],

+CllolIZ1QNZ + CUlllLs + 117N lIZs + O+ 17U (B.12)

Aol + 3002
|atQ| , + Sl
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Finally, we take the L? inner product of the equation obeyed by U with U and
we obtain

S SNV + IV U3

:7/ (U+¢) V(U +9)-Udz

T2

—/ (Q+PRQ+¢) - Ude | A¢p-Udx+ | f-Uda (B.13)
T2 T2 T2

We integrate by parts the nonlinear term. Using the fact that U+¢ is divergence-
free, we have

/(U+¢).V(U+¢)-de
T2

= ‘/T2((U+¢)~V¢)-Uda:
< NN 10 IVl s + 101122 9]+ 1Vl

= (o] B IVUIE NVl o + 16l V0l ) U]

IO+ C (196050 +1) 1013 + ClolZTal3e.  (B.14)

- 16
This yields the differential inequality

. . 1
5V + 3IVUIE: < = [ @+ &RQ+ ) Uds+ 711

4 ~
+C(IVol 7 + DIUNZ: + ClidlZe + ClIfIIZ= + CIVSIZ: + ClllLs ||(V¢||2§4
B.15
We add (B.8), (B.12) and (B.15). Setting
| 2
X(t,w) = QU +||a~2Q|, + U3, (B.16)
we get
d
th +IVU||2. < CA(t)X(t) + CB(t) (B.17)

where A(t) and B(t) are some positive constants depending on é,¢ and f.
This implies

% [e*CﬁA@)dSX(t)} +e Ol AW g2, <CB(E).  (B.18)

Integrating in time from 0 to ¢, we obtain the bound
t
+/ IVU|Z: < {C/ B(s)ds + 2||qo]|22 + |Juo||2 | €€ Jo Al)ds
0
(B.19)
for allt > 0.
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Step 2. Bounds for the charge density in L3 (0, 00; L*(T?)). We take the

loc

L? inner product of the @ equation with (Q)3. Using the Poincaré inequality
for the fractional Laplacian, we get the deterministic differential inequality

1d
LEIQIL + el
< [ AQPa - [ Wr0)-VQ+a@  (B2)

In view of the continuous Sobolev embedding of H*(T?) in L8(T?), we bound
the nonlinear term

\ [ w+0)-v@Q+d@ial=|[ (W+0) vo@a
T2 T2

< NUzs QU IVl s + QU741 - V14
< CIVUlL2 QI IVl s + QN7 N6 - Vol s, (B.21)

hence

1d
17 1@l + el QI

< [18B]1zs + CIVUI I Volss + 116 Tale] Q% (B22)

which yields

d
21 1@l +ellQll s
- 1 N -
<A@l + §||VUH2L2 +O|IVolis + o Vo L. (B.23)

Integrating in time from 0 to ¢ and using the boundedness of VU in LlQOc(O, oQ;
L?(T?)) derived in Step 1, we obtain uniform in bounds for the L* norm of Q.

Step 3. Bounds for the velocity in L? (0,00; H?(T?)). Taking the L?

loc

inner product of the equation obeyed by U with —AU, we get

1d

L U + 18U

:/ (U+¢)-V(U+¢)-AUdm+/ (Q+ HRQ+ ) - AUdx
T2 TQ

—/ f-AUdz— | A¢-AUda. (B.24)
T2 T2
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Since the trace of M7 M? vanishes for any two-by-two traceless matrix M, we
have

/ (U +6)- V(U +¢) - AUdz
T2

/TZ(U+¢)~V(U+¢)-A¢da:

/ (U~VU)-A¢dm—|—/ (U-V¢)~Aq§dm+/ (6-VU) - Addx
T2 T2 T2
<NU Nz IVU | allA@l e + UlLa IVl LallAdl Lz + ([0l 2 (VU [ L1 | Al 2

< CIVUI AU 2180l L2 + |AU|| L2 [Vl 4 [ Al L2
+ 19l L2 [|AU |2 [ A 22

1
< 71AUIE: + (VUL + [Vol7s + llol7) 1A - (B.25)

We obtain
d
£IIVUH%2 +1AU|Z: < (IVU72 + IVoll74 + 19l172)11 A7 2
+CQ+ 1 + ClIfI72 + ClAGlF2.  (B.26)

We integrate in time from 0 to ¢ and we use the bounds derived in Step 1 and
Step 2 to obtain uniform bounds for ||VU]||;2 and fot |AU||3.ds.
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