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Abstract. In the present paper we prove that densely, with respect to
an Lp-like topology, the Lyapunov exponents associated to linear con-
tinuous-time cocycles Φ : R × M → GL(2,R) induced by second order
linear homogeneous differential equations ẍ+α(ϕt(ω))ẋ+β(ϕt(ω))x = 0
are almost everywhere distinct. The coefficients α, β evolve along the
ϕt-orbit for ω ∈ M and ϕt : M → M is an ergodic flow defined on
a probability space. We also obtain the corresponding version for the
frictionless equation ẍ + β(ϕt(ω))x = 0 and for a Schrödinger equation
ẍ + (E − Q(ϕt(ω)))x = 0, inducing a cocycle Φ : R × M → SL(2,R).
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1. Introduction

1.1. Non-autonomous linear differential equations

The behaviour of the Lyapunov exponents which are determined by the asymp-
totic growth of the expression log ‖Φt

A‖1/t where Φt
A is a matricial solution of

the autonomous differential equation U̇(t) = A ·U(t) and A is a square matrix
of the same order as U(t), is a simple exercise of linear algebra. Standard linear
algebraic computations allows us to determine the Lyapunov spectrum which
is defined by the Lyapunov exponents and its eigendirections. The dynamics
of a perturbed system like U̇(t) = B · U(t), where B is a perturbation of A,
is a problem that is well understood (see e.g. [26]). A much more complicated
and interesting situation was considered in the pioneering works of Lyapunov
and intended to consider the non-autonomous case U̇(t) = A(t) · U(t), where
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A is a matrix depending continuously on t. Not only the asymptotic demeanor
of log ‖Φt

A‖1/t as well as its stability proves to be a substantially more difficult
issue. A standard way of looking to non-autonomous linear differential equa-
tions is to consider the language of linear cocycles (see §2.1 for full details)
where being non-autonomous is captured by a labelling through an orbit of a
given flow ϕt on a certain phase space.

1.2. The quest for positive Lyapunov exponents

A positive (or negative) Lyapunov exponent gives us the average exponential
rate of divergence (or convergence) of two neighboring trajectories whereas
zero exponents give us the absence of any kind of exponential behavior. Pesin’s
theory guarantee a strong stable/unstable manifold theory in the presence of
non-zero Lyapunov exponents. These geometric tools underlie much of the cen-
tral results in today’s dynamical systems. Consequently, there is no doubt that
detecting non-zero Lyapunov exponents is an important question in dynamics
an issue dating back to the late sixtiees and the work of Millionshchikov [28]. It
the early eightees Cornelis and Wojtkowski [11], and Ledrappier [25] obtained
criteria for the positivity of the Lyapunov exponents and in the nineties Knill
[30] and Nerurkar [29] proved that non-zero Lyapunov exponents are a C0-
dense phenomena for certain cocycles. In the late nineties Arnold and Cong
[7] proved the Lp-denseness of positive Lyapunov exponents and their strat-
egy was widespread in [13] by two of the authors. Using Moser-type methods
based on the concept of rotation number allowed Fabbri and Johnson to ob-
tain abundance of positive Lyapunov exponents for linear differential systems
evolving on SL(2,R) and based on a translation on the torus (see [20–22]
and also the work with Zampogni [23]). Clearly, finding a positive Lyapunov
exponent in SL(2,R) immediately enable us to obtain a negative Lyapunov
exponent and thus the simplicity of the Lyapunov spectrum (i.e. all Lyapunov
exponents are different). Several results on the positivity of Lyapunov expo-
nents established in the last ten years or so bring up different new approaches
[13,14,17,19,34,35]. As a paradigmatic example we recall [10] where Avila ob-
tained abundance of simple spectrum, on a quite large scope of topologies and
on the two dimensional case.

1.3. Asymptotic behaviour of second order linear homogeneous differential
equations from Lyapunov’s viewpoint

It has been known for almost two centuries that there are serious constraints
when we try to apply analytic methods to integrate most functions. Indeed,
Liouville theory (see e.g [32]) explicitly describes what kind of problems can
arise when solving differential equations. The qualitative theory of differential
equations created by Poincaré and Lyapunov turn out to be a clever approach
to deal with this setback. Here we intend to analyze the asymptotic behavior
of the solutions of second order homogeneous linear differential equations of
the form

ẍ(t) + α(ϕt(ω))ẋ(t) + β(ϕt(ω))x(t) = 0, (1)
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with coefficients α and β displaying Lp regularity, varying in time along the
orbits of a flow ϕt and allowing an Lp-small perturbation on the parameters.
Namely, we will describe its Lyapunov spectrum taking into account the pos-
sibility of making a Lp-type perturbation on its coefficients. Instead of deal
with a single equation we will consider infinite equations simultaneously as ex-
plained now: we consider a time-continuous cocycle based on an ergodic flow
ϕt : M → M with respect to a probability measure in M and with a dynam-
ics on the fiber defined by a linear flow Φt

A which is solution of the linear
variational equation U̇(ω, t) = A(ϕt(ω)) · U(ω, t) with generator

A : M −→ R
2×2

ω �−→
(

0 1
−β(ω) −α(ω)

)
(2)

Differential equations like (1) appear in large scale in physics, engineering,
complex biological systems and numerous applications of mathematics. The
quintessential example is the simple damped pendulum free from external
forces where α and β are functions depending on ω ∈ M evolving along a
flow ϕt : M → M for t ∈ R. When α and β are first integrals (i.e. functions
that are constant along the orbits of the flow ϕt) related with ϕt, then (1)
can be solved by simple algorithms of an elementary course on differential
equations. When the parameters vary in time, explicit solutions could be hard
to get. This is the case when the frictional force α and the frequency of the
oscillator β change over time which, we must admit, is the most plausible to
happen in nature. Notice that generators like A in (2) generate a particular
class of solutions. Clearly, when α �= 0 the solutions evolve on a subclass of
the general linear group GL(2,R) and when α = 0 the solutions evolve on a
subclass of the special linear group SL(2,R). Therefore, a specific study should
be made taking into consideration that perturbations must belong to our class
and not to the wider class of generators of cocycles evolving in GL(2,R) or even
in SL(2,R). Questions related to this particular class were treated in several
works like e.g. [3,8,9,12,24,27].

Fixing position and momentum (x(0), ẋ(0)) we intend to study the as-
ymptotic behavior when t → ∞ of the pair (x(t), ẋ(t)) namely asymptotic
exponential growth rate given by the Lyapunov exponent. In the present work
and broadly speaking we intend to answer the following question:

Is it possible to perturb the coefficients α and β, in an Lp-topology,
in order to obtain two distinct Lyapunov exponents?
Of course that, when considering the autonomous case in (2), say α and

β not depending on ω previous question is easily answered. Indeed, consider
Aβ in (2) with α = 0, then A0 has a solution with trivial Lyapunov spectrum
(a single Lyapunov exponent equal to 0) but any Aβ with small β �= 0 will
produce a solution with simple Lyapunov spectrum (two Lyapunov exponents
equal to ±√

β). The difficulty increases significantly when we consider the
non-autonomous case.

The precise concepts that allow an adequate formalisation to express the
above question will be presented in Theorem 1 and Corollaries 1 and 2.
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2. Definitions and statement of the results

2.1. Linear cocycles

In this section we present some definitions that will be useful in the sequel.
Let (M,M, μ) be a probability space and let ϕ : R × M → M be a metric
dynamical system (or flow) in the sense that is a measurable map and

(1) ϕt : M → M given by ϕt(ω) = ϕ(t, ω) preserves the measure μ for all
t ∈ R;

(2) ϕ0 = IdM and ϕt+s = ϕt ◦ ϕs for all t, s ∈ R.

Unless stated otherwise we will consider along the text that the flow is er-
godic in the usual sense that there exist no invariant sets except zero measure
sets and their complements. Let B(X) be the Borel σ-algebra of a topolog-
ical space X. A (continuous-time) linear random dynamical system (RDS)
on (R2,B(R2)), or a (continuous-time) linear cocycle, over ϕ is a (B(R) ⊗
M/B(GL(2,R))-measurable map

Φ : R × M → GL(2,R)

such that the mappings Φ(t, ω) forms a cocycle over ϕ, i.e.,

(1) Φ(0, ω) = Id for all ω ∈ M ;
(2) Φ(t + s, ω) = Φ(t, ϕs(ω)) ◦ Φ(s, ω), for all s, t ∈ R and ω ∈ M ,

and t �→ Φ(t, ω) is continuous for all ω ∈ M . We recall that having ω �→ Φ(t, ω)
measurable for each t ∈ R and t �→ Φ(t, ω) continuous for all ω ∈ M implies
that Φ is measurable in the product measure space. These objects are also
called linear differential systems (LDS) in the literature.

2.2. Kinetic linear cocycles

We begin by considering as motivation the non-autonomous linear differential
equation which describes a motion of the damped harmonic oscillator as the
simple pendulum along the path (ϕt(ω))t∈R, with ω ∈ M described by the flow
ϕ. Let K ⊂ R

2×2 be the set of matrices 2 × 2 of type(
0 1
b a

)
(3)

with a, b ∈ R. Denote by G the set of measurable applications A : M → R
2×2

and by K ⊂ G the set of kinetic measurable applications A : M → K. As
usual we identify two applications on G that coincide on a μ full measure
subset of M . Consider measurable maps α : M → R and β : M → R. Take the
differential equation given in (1). Considering y(t) = ẋ(t) we may rewrite (1)
as the following vectorial first order linear system

Ẋ = A(ϕt(ω)) · X, (4)

where X = X(t) = (x(t), y(t))T = (x(t), ẋ(t))T and A ∈ K is given by (2). For
all 1 ≤ p < ∞ we define

Gp =
{

A ∈ G :
∫

M

‖A‖pdμ < ∞
}

,
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where ‖ · ‖ denotes de standard Euclidean matrix norm. It is clear that for
all 1 ≤ p < q < ∞ we have Gq ⊂ Gp. It follows from [5, Thm. 2.2.2] (see
also Lemma 2.2.5 and Example 2.2.8 in this reference) that if A ∈ G1 then it
generates a unique (up to indistinguishability) linear RDS ΦA satisfying

ΦA(t, ω) = Id +
∫ t

0

A(ϕs(ω)) · ΦA(s, ω) ds. (5)

The solution ΦA(t, ω) defined in (5) is called the Carathéodory solution or
weak solution. Given an initial condition X(0) = v ∈ R

2, we say that t �→
ΦA(t, ω)v solves or is a solution of (4), or that (4) generates ΦA(t, ω). Note
that ΦA(0, ω)v = v for all ω ∈ M and v ∈ R

2. If the solution (5) is differentiable
in time (i.e. with respect to t) and satisfies for all t

d

dt
ΦA(t, ω)v = A(ϕt(ω)) · ΦA(t, ω)v and ΦA(0, ω)v = v, (6)

then it is called a classical solution of (4). Of course that t �→ ΦA(t, ω)v
is continuous for all ω and v. Due to (6) we call A : M → K a (kinetic)
‘infinitesimal generator’ of ΦA. Sometimes, due to the relation between A and
ΦA, we refer to both A and ΦA as a kinetic linear cocyle/RDS/LDS. If (4) has
initial condition X(0) = v then ΦA(0, ω)v = v and X(t) = ΦA(t, ω)v.

Let K0 ⊂ K stand for the traceless kinetic cocycles derived from matrices
as in (3) but with a = 0. For 1 ≤ p < ∞ set Kp = K∩Gp and K

p
0 = K0 ∩Gp ⊂

Kp.

2.3. The Lp topology

We begin by defining an Lp-like topology generated by a metric that compares
the infinitesimal generators on G. Given 1 ≤ p < ∞ and A,B ∈ G we set

σ̂p(A,B) :=

⎧⎨
⎩

(∫
M

‖A(ω) − B(ω)‖p dμ(ω)
) 1

p

,

∞ if the above integral does not exists,

and define

σp(A,B) :=

{
σ̂p(A,B)

1+σ̂p(A,B) , if σ̂p(A,B) < ∞
1, if σ̂p(A,B) = ∞ .

Clearly, σp is a distance in G. It can be understood has a version of the Lp-
distance. Next topological content results were mainly proved in [3]. The re-
maining statements follow straightforwardly.

Proposition 2.1. Consider 1 ≤ p < ∞. Then:

(i) σp(A,B) ≤ σq(A,B) for all 1 ≤ p ≤ q < ∞ and all A,B ∈ G.
(ii) If A ∈ G1 then sup0≤t≤1 log+ ‖ΦA(t, ω)±1‖ ∈ L1(μ).
(iii) If A ∈ Gp then for any B ∈ G satisfying σp(A,B) < p we have B ∈ Gp.
(iv) The sets (Kp, σp) and (Kp

0, σp) are closed, for all 1 ≤ p < ∞.
(v) For all 1 ≤ p < ∞, (Kp, σp) and (Kp

0, σp) are complete metric spaces
and, therefore Baire spaces.
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Next results are elementary in measure theory nevertheless we will use
it often. They capture the whole idea of making huge perturbations on the
uniform norm but small perturbations in the σp-distance as long the support
is small in measure.

Lemma 2.2. Let 1 ≤ p < ∞. Given A ∈ Gp and ε > 0 there exists δ > 0 such
that if F ∈ M and μ(F) < δ, then

∫
F

‖A(ω)‖p dμ(ω) < ε.

Proof. The proof is made by contradiction. Suppose that exists ε > 0 and
Fn ∈ M, for each n ∈ N, such that μ(Fn) < 1

2n and∫
Fn

‖A(ω)‖p dμ(ω) ≥ ε. (7)

Letting F = lim supn Fn, by the Borel-Cantelli lemma μ(F) = 0, and so∫
F

‖A(ω)‖p dμ(ω) = 0. (8)

The following leads to a contradiction:

ε
(7)

≤ lim sup
∫
Fn

‖A(ω)‖p dμ(ω) = lim sup
∫

‖A(ω)‖pχFn
(ω) dμ(ω)

�≤
∫

lim sup ‖A(ω)‖pχFn
(ω) dμ(ω) =

∫
‖A(ω)‖pχF(ω) dμ(ω)

=
∫
F

‖A(ω)‖p dμ(ω)
(8)
= 0,

where in 
 we used the reverse Fatou lemma.

Corollary 2.3. Let 1 ≤ p < ∞, A ∈ Gp and ε > 0 be given. Consider B ∈ Gp

such that A(ω) �= B(ω) if and only if ω ∈ F for some F ∈ M (that is, B only
differs from A in F). Then there exists δ > 0 such that if μ(F) < δ we have
σp(A,B) < ε.

Proof. Is is enough to prove that σ̂p(A,B) < ε. For that, apply Lemma 2.2 for
(A − B) ∈ Gp and εp.

2.4. Statement of Theorem 1 and a tour on its proof

Let 1 ≤ p < ∞ and A ∈ Kp. Since Kp ⊂ K1 ⊂ G1, from Proposition 2.1 the
cocycle ΦA satisfies the following integrability condition

sup
0≤t≤1

log+ ‖ΦA(t, ω)±1‖ ∈ L1(μ). (9)

Hence, under condition (9) Oseledets theorem (see e.g. [5,31]) guarantees that
for μ almost every ω ∈ M , there exists a ΦA-invariant splitting, called Oseledets
splitting, of the fiber R

2
ω = E1

ω ⊕ E2
ω and real numbers λ1(A,ω) ≥ λ2(A,ω),

called Lyapunov exponents, such that:

λ(A,ω, vi) := lim
t→±∞

1
t

log ‖ΦA(t, ω)vi‖ = λi(A,ω),

for any vi ∈ Ei
ω\{�0} and i = 1, 2. If the flow ϕt is ergodic, then the Lyapunov

exponents (and the dimensions of the associated subbundles) are constant μ
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almost everywhere, and we refer to them as λ1(A) and λ2(A), with λ1(A) ≥
λ2(A). We say that A (or ΦA) has one-point Lyapunov spectrum or trivial
Lyapunov spectrum if for μ a.e. ω ∈ M , λ1(A,ω) = λ2(A,ω). Otherwise we
say A (or ΦA) has simple Lyapunov spectrum. For details on these results see
[5] (in particular, Example 3.4.15).

We are now in conditions to state our main result that establishes the
existence of a σp-dense subset of Kp displaying simple spectrum:

Theorem 1. Let ϕt : M → M be ergodic. For any 1 ≤ p < ∞, A ∈ Kp and
ε > 0, there exists B ∈ Kp exhibiting simple Lyapunov spectrum satisfying
σp(A,B) < ε.

This result shows in particular that the σp-generic subset of Kp in which
the trivial spectrum prevails, obtained in [3], can not contain σp-open sets.
The strategy to prove that for each kinetic cocycle satisfying the integrability
condition there is another kinetic cocycle, arbitrarily close with a simple spec-
trum, borrow some ideas of [7,13] where the authors obtained a similar result
for the discrete time case and for more general cocycles. However, the context
of continuous-time cocycles and the restriction to a very particular family of
cocycles, such as the one we are considering in this paper, bring several difficul-
ties that have no similarities in previous works. We have to face the situation
that kinetic cocycles are rigid1 and to obtain the desired perturbation we will
make a step-by-step perturbation algorithm that we now describe:
(1) We begin by coding ϕ by a special flow to avoid overlaps and then consider

a thin time-1 flowbox VR concatenated to an also thin time-1 flowbox VS ,
so that o VR ∪ VS will be a time-2 flowbox;

(2) We cut the original dynamics in VR (respectively VS) and paste a simple
constant traceless infinitesimal generator R2π, whose solution basically
rotates an angle 2πη in time-η. Outside VR∪VS we keep the same dynamic
of A. By simple we mean that we can easily obtain the identity by just
doing a time-1 iteration. Call A0 this new cocycle;

(3) Since VR ∪ VS is a thin flowbox, A0 will be arbitrarily σp-near A. If A0

has simple spectrum we are over, otherwise we prove Theorem 1 for A0

instead of A;
(4) Inside VR we cut the dynamics of A0 and paste a tailor-made rotation R

such that for each ω entering in VR we rotate in time-1 a vector vω into a
fixed special direction given by v = (1, 1). The vector vω will be used to
forcefully create an Oseledets direction so we can calculate the Lyapunov
exponents. Here we rotate any angle by a small σp-perturbation since by
(1) VR is thin. A key observation is that the trace keeps unchanged, and
that is the main motivation to the previous placement of R2π on VR. Call
B0 this new cocycle. If B0 has simple spectrum we are over, otherwise
we prove Theorem 1 for B0 instead of A0;

1 The pertubative arguments in [7,13] were easier to make because since dim SL(2,R) = 3
three degrees of freedom were available. In our kinetic scenario we have to perform the same
perturbations but with only a single degree of freedom.
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Table 1. Step-by-step description of the several perturba-
tions

Cocycle M \ (VR ∪ VS) VR VS

A A A A
A0 A R2π R2π

B0 A R R2π

B A R S

(5) Inside VS we cut the dynamics of B0 and paste a constant infinitesimal
generator S which stretch the vector v in time-1 by a known magnitude
e. No problem arises with the (eventually large) size of the uniform norm
of the perturbation because the σp-distance is small due to the thickness
of VS . Again the trace keeps unchanged. Call B this new cocycle;

(6) Now we use ergodicity and compute the Lyapunov exponents of points
who will inevitably have to return to VR ∪ VS infinitely many times;

(7) The stretch S is a perturbation that is concerned with providing an ex-
pansion along an invariant direction. As it is difficult to find different
kinetic cocycles which keep the same invariant directions here it becomes
clear why we have chosen back there the identity after time 1 (more
precisely a rotation by 2π) given by R2π;

(8) Finally, the concern to keep the trace constant in (4) and (5) will bear
fruit since if a perturbation increases a Lyapunov exponent and simulta-
neously the sum of the two Lyapunov exponents of the original cocycle
and the perturbed one remains the same, then only one thing could have
happened: the perturbed cocycle cannot have trivial spectrum but instead
must display a Lyapunov exponent smaller than the Lyapunov exponent
of the original cocycle.

The following table summarises the step-by-step construction from the
linear differential systems A to B:

We use an approach slightly different from the previous works [6,7,13,
18]. Moreover, to avoid overlapping in the perturbations, we will encode the
base flow through a special flow in a Kakutani Castle (as in [2,33]). On the
other hand, to estimate the proximity of the perturbed cocycle to the original
one, we also use a control over the measure of VR ∪ VS that support the two
perturbations taking into account Corollary 2.3.

It should be noted that, in addition to the difficulties inherent in the
context of continuous-time cocycles, performing these perturbations (rotation
and stretch) are not trivial, as we do not have the usual mechanisms like those
that exist in the context in cocycles that evolve in GL(2,R) or SL(2,R), or,
more generally, cocycles that satisfy the accessibility condition (also recognized
as twisting) and saddle-conservative (also known as pinching), which allow
the realization of these processes in a less demanding way, as, for example, in
[4,7,13,15,16].
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As our perturbations are all traceless we get from Theorem 1 that con-
servative kinetic cocycles have non-zero Lyapunov exponents σp-densely.

Corollary 1. Let ϕt : M → M be ergodic. For any 1 ≤ p < ∞, A ∈ K
p
0 and

ε > 0, there exists B ∈ K
p
0 exhibiting non-zero Lyapunov exponents satisfying

σp(A,B) < ε.

Finally, we present Corollary 1 with a somewhat different look, namely
by considering the one-dimensional Schrödinger operator on L2(R) and with
an Lp potential Q : M → R given by:

Hω : L2(R) −→ L2(R)
φ �−→

[
− d2

dt2 + Q(ϕt(ω))
]
φ

(10)

In particular we like to describe the Lyapunov spectrum of the time-
independent Schrödinger equation

Hωφ = Eφ, (11)

where E ∈ R is a given energy. Putting together (10) and (11) we deduce
a kinetic cocycle as in (2) but with α(ω) = 0 and β(ω) = E − Q(ω) for all
ω ∈ M . We fix the energy E and focus on the LDS

AE : M −→ R
2×2

ω �−→
(

0 1
−E + Q(ω) 0

)
(12)

called one-dimensional Schrödinger LDS with potential Q. As a direct conse-
quence of Corollary 1 we have:

Corollary 2. Let ϕt : M → M be ergodic. Given 1 ≤ p < ∞, ε > 0 and a
one-dimensional Schrödinger LDS with a fixed energy E as in (12) and with
potential Q, there exists Q̃ such that the one-dimensional Schrödinger LDS
with the same energy E and potential Q̃ exhibits non-zero Lyapunov exponents
and ‖Q̃ − Q‖Lp < ε.

3. On the perturbations

3.1. Special flows

Consider a measure space Σ, a map T : Σ → Σ, a T-invariant probability
measure μ̃ defined in Σ and a roof function h : Σ → R

+ satisfying h(ω) ≥ H >
0, for some H > 0 and all ω ∈ Σ, and

∫
Σ

h(ω)dμ̃(ω) < ∞. Define the space
Mh ⊆ Σ × R+ by

Mh =
{
(ω, t) ∈ Σ × R+ : 0 ≤ t ≤ h(ω)

}
with the identification between the pairs (ω, h(ω)) and (T(ω), 0). The semiflow
defined on Mh by Ss(ω, r) = (Tn(ω), r + s − ∑n−1

i=0 h(Ti(ω))), where n ∈ N is
uniquely defined by

n−1∑
i=0

h(Ti(ω)) ≤ r + s <

n∑
i=0

h(Ti(ω))
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is called a suspension semiflow. If T is invertible then (St)t is a flow. Fur-
thermore, if � denotes the one dimensional Lebesgue measure the measure
μ = (μ̃ × �)/

∫
h dμ̃ defined on Mh by

∫
g dμ =

1∫
h dμ̃

∫ (∫ h(ω)

0

g(ω, t)dt

)
dμ̃(ω), ∀g ∈ C0(Mh)

is a probability measure and it is invariant by the suspension semiflow (St)t.
Flows with such representation are called special flows (or flows built under a
function) and are denoted by (ϕt,Σ,T, h). It is well-known (see [1, Theorem
2]) that any ergodic flow is isomorphic to a special flow. Along this work we
assume that the base flow is a special flow (ϕt,Σ,T, h) and, without any loss of
generality, that H > 2. To avoid overloading the notation we write M instead
of Mh.

3.2. Perturbations supported in time-τ flowboxes

Take A ∈ G and a non-periodic orbit ω ∈ M . We will consider a perturbation
B = Bω,τ of A only along a segment of the orbit of ω with extremes ω and
ϕτ (ω) for τ > 0. Let P ∈ G be given and define B : M → R

2×2 such that
B(ω̂) = A(ω̂) for all ω̂ outside ϕ[0,τ ](ω) = {ϕs(ω) : s ∈ [0, τ ]} and B(ω̂) = P (ω̂)
otherwise. The map B is called a (local) perturbation of A by P supported on
ϕ[0,τ ](ω). Given Σ0 ⊂ Σ and 0 ≤ a < b we define the set

ϕ[a,b](Σ0) =
{
ϕt(ω) : ω ∈ Σ0, t ∈ [a, b]

}
.

Given A ∈ G1, P ∈ G, Σ0 ⊂ Σ and a > 0, we may extend the local perturba-
tions of A by P to be supported on the flowbox ϕ[a,b](Σ0), with 0 ≤ a < b < H,
in the following way: for ω ∈ ϕ[a,b](Σ0) we project ω in ω̃ ∈ ϕa(Σ0) i.e.
ω = ϕr(ω̃), for some 0 ≤ r ≤ b − a, and let Bω̃,b−a be (local) perturbation of
A by P = Pω̃ supported on ϕ[0,b−a](ω̃) and define

B(ω) :=
{

A(ω), if ω /∈ ϕ[a,b](Σ0)
Bω̃,b−a(ω), if ω ∈ ϕ[a,b](Σ0)

.

To distinguish the situations we refer for B(ω) as a global perturbation of A
by P supported in ϕ[a,b](Σ0), where we always suppose that P (ω) = Pω̃(ω) for
all ω ∈ ϕ[a,b](Σ0).

3.3. Rotating and Stretching

Next two results provide local and global arguments to rotate over prescribed
directions under a small σp-perturbation. This will be used to generate a suit-
able invariant direction. The first one allows us to perform a uniform bounded
kinetic perturbation in a local segment of orbit which rotates a given vector.
The second one thickens Lemma 3.1 by broaden the rotation in a single orbit
to rotations in a flowbox.

Lemma 3.1. Given ω ∈ M , u, v ∈ R
2 \ {0}, A ∈ Kp, there is γ �= 0, and a

perturbation Bω,1 ∈ Kp of A supported on ϕ[0,1](ω) such that:
(i) ‖Bω,1(ω̂)‖ ≤ 4π2 for all ω̂ on ϕ[0,1](ω), and
(ii) ΦBω,1(1, ω)u = γ v.
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Proof. Let θ = �(Ru,Rv) ∈ ]0, 2π] measured clockwise. Set a constant infini-
tesimal generator R : M → R

2×2 given by

R(ω) = Rθ(ω) =
(

0 1
−θ2 0

)
. (13)

We consider the perturbation B = Bω,1 ∈ Kp of A by R supported on ϕ[0,1](ω).
The infinitesimal generator in (13) generates a linear differential system with
fundamental classical solution (6) given, for all ω ∈ M and t ∈ R by the
‘clockwise elliptical rotation’ defined by:

ΦR(t, ω) =
(

cos(θt) θ−1 sin(θt)
−θ sin(θt) cos(θt)

)
, (14)

and such that ΦB(1, ω)u = ΦR(1, ω)u = γv, for some γ �= 0 fulfilling (ii).

From Corollary 2.3 it follows that we may extend the local perturbation
Bω,1 given by the rotation Rθ(ω) as in Lemma 3.1, to a global perturbation,
tuned for each orbit segment, to obtain a new generator that is σp-close to the
original, once we have a smaller measure of the flowbox were the perturbation
takes place. This is pointed in the next basic measure theoretic result which
is an immediate consequence of Corollary 2.3.

Lemma 3.2. (Global) For all 1 ≤ p < ∞, A ∈ Gp, a > 0 and ε > 0, there exists
a measurable set Σ0 ⊂ Σ with μ̃(Σ0) > 0 such that for any global perturbation
B ∈ Gp of A supported in the flowbox ϕ[a,a+1](Σ0), with ‖B(ϕt(ω))‖ ≤ 4π2 for
all ω ∈ Σ0 and t ∈ [a, a + 1], we have that σp(A,B) < ε.

Let us fix a suitable constant and traceless infinitesimal generator

S =
(

0 1
1 0

)
. (15)

As S has simple expression we integrate it obtaining:

ΦS(t, ω) = eSt =
(

cosh t sinh t
sinh t cosh t

)
(16)

We notice that (16) has eigenvalues σS
1 = et and σS

2 = e−t with associated
eigenvectors vS

1 = (1, 1) and vS
2 = (−1, 1), respectively. Observe that ES

1 =
R · vS

1 is a unstable direction and ES
2 = R · vS

2 is a stable direction.
Next trivial remark will be of utmost importance in the sequel because

it combines three main ingredients: invariance of certain 1-dimensional direc-
tions, some expansiveness along this direction and all this done in traceless
kinetic infinitesimal generators.

Remark 3.1. (Invariance and stretch) Considering θ = 2π in (14), say R2π, we
get

e · vS
1 = e · ΦR2π

(1, ω) vS
1 = ΦS(1, ω) vS

1 . (17)
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4. Proof of Theorem 1

Let A ∈ Kp, 1 ≤ p < ∞ and ε > 0 be given. We assume that ΦA has a single
Lyapunov exponent λ(A). The sequence of perturbations are summarized in
Table 1.

4.1. Defining A0 (picking out good coordinates)

Let Σ0 ⊂ Σ be as in Lemma 3.2. For r > 0 we assume that we have flowboxes
defined by VR := ϕ[0,1](Br) and VS := ϕ[1,2](Br), where Br ∈ Σ0 is such that
0 < μ̃(Br) ≤ r. Consider A0 ∈ K1 defined as:

A0(ω) :=
{

A(ω), if ω /∈ VR ∪ VS

R2π, if ω ∈ VR ∪ VS
.

By Corollary 2.3 if r is sufficiently small when compared with ε we get

σp(A,A0) <
ε

3
. (18)

If ΦA0 has simple spectrum we are over. Otherwise, we prove the theorem for
A0 instead of A.

4.2. Defining B0 (rotating on VR )

Set

k(ω) = inf
t≥0

{
t : ϕ−t(ω) ∈ ϕ1(Br)

}
.

We will define the a random vector field g(ω). We start with the normalized im-
age under the cocycle associated with ΦA0 of the vector v = vS

1
‖vS

1 ‖ =
(√

2
2 ,

√
2

2

)
:

g(ω) :=

{
v, if ω ∈ ϕ1(Br)
ΦA0 (k(ω),ϕ−k(ω)(ω))v

‖ΦA0 (k(ω),ϕ−k(ω)(ω))v‖ , if ω /∈ (VR \ Br)

and set from now on E(ω) = span {g(ω)}.
Let B0 be a perturbation of A0 supported in the flowbox VR as in

Lemma 3.2 such that for all ω ∈ Br we have ΦB0(1, ω)g(ω) = κv for some
κ ∈ R, that is:

B0(ω) :=
{

R(ω), if ω ∈ VR

A0(ω), otherwise .

Observe that the rotation must be tuned for each ω0 ∈ Br, in the sense that for
ω = ϕt(ω0) ∈ VR, with 0 ≤ t ≤ 1, we set R(ω) = Rθ(ω0) with θ = �(g(ω0), v).
In particular, for all ω0 ∈ Br we have Φ(1, ω0)g(ω) = κv, for some κ ∈ R.
Moreover, A0 and B0 have the same trace. Indeed, A0 = B0 outside VR and
in VR we have B0 = R and A0 = R2π, which are both traceless (see (13)).
Therefore, by Liouville’s formula for all ω and t ≥ 0

det ΦB0(t, ω) = det ΦA0(t, ω). (19)

For ω ∈ VR \ Br define

g(ω) =
ΦB0(k(ω), ϕ−k(ω)(ω))v

‖ΦB0(k(ω), ϕ−k(ω)(ω))v‖ . (20)
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Notice that for ω ∈ Br, since ΦB0(1, ω)Rg(ω) = Rv we get

ΦB0(1, ω)Rg(ω)(ω) = Rg(ϕ1(ω)). (21)

Let ω̃ ∈ ϕ1(Br) and τ > 0 be such that ϕt(ω̃) /∈ VR for all t ∈]0, τ [. Then, for
all t ∈ [0, τ ] we have the ΦB0 -invariance of g:

ΦB0(t, ω̃)Rg(ω̃) = ΦB0(t, ω̃)Rv = ΦA0(t, ω̃)Rv = Rg(ϕt(ω̃)). (22)

If ϕt(ω̃) ∈ VR for some t ∈]0, τ [ then considering s > 0 such that ϕs(ω) ∈ Br

we get:

ΦB0(t, ω̃)Rg(ω̃) = ΦB0(t − s, ϕs(ω̃))ΦA0(s, ω̃)Rv

= ΦB0(t − s, ϕs(ω̃))Rg(ϕs(ω̃))
(20)
= Rg(ϕt(ω̃)).

Finally, (21), (26) and last equality gives that the vector field g is ΦB0 -
invariant.

Again by Corollary 2.3 if r is sufficiently small we get

σp(A0, B0) <
ε

3
. (23)

If ΦB0 has simple spectrum we are over. Otherwise, we prove the theorem
for B0 instead of A0.

4.3. Defining B (stretching on VS )

We define

B(ω) :=
{

B0(ω), if ω /∈ VS

S, if ω ∈ VS
.

Observe that B and B0 have the same trace. Indeed, B = B0 outside VS and in
VS we have B0 = R2π which are both traceless (see (13) and (15)). Therefore,
by Liouville’s formula and (19) for all ω and t ≥ 0

det ΦB(t, ω) = det ΦB0(t, ω) = det ΦA0(t, ω). (24)

From Corollary 2.3, once more, if r is sufficiently small we get

σp(B0, B) <
ε

3
. (25)

Notice that the invariance of the direction E(ω) under ΦB fails when ϕt(ω)
enters VS . However, for ω̃ ∈ ϕ1(Br) we have by (17) and (26)

ΦB(1, ω̃)Rg(ω̃)=ΦS(1, ω̃)Rv=Rv=RΦR2π
(1, ω̃)v=ΦA0(1, ω̃)Rv = Rg(ϕ1(ω̃))

and so

ΦS(1, ω̃)E(ω̃) = E(ϕ1(ω̃)), (26)

which will be enough for our purposes; see Fig. 1.
Let λ1(B) ≥ λ2(B) be the Lyapunov exponents of ΦB . We assume that

ΦB0 has one-point spectrum, say λ1(B0) = λ2(B0) = λ(B0), because otherwise
the theorem is proved. Let λ(B0) be the single Lyapunov exponent of ΦB0 .
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Figure 1. The traceless perturbation scheme with the in-
variant directions and the stretch effect

Hence we have λ(B0) = λ(B0, ω, vS
1 ) for a.e. ω. By the Oseledets theorem we

have

2λ(B0) =
∫

log
∣∣det(ΦB0(1, ω))

∣∣dμ (27)

and

λ1(B) + λ2(B) =
∫

log
∣∣det(ΦB(1, ω))

∣∣dμ. (28)

The two previous equalities together with (24) allows us to conclude that

2λ(B0) = λ1(B) + λ2(B) (29)

and so, if we show that λ1(B) > λ(B0) then we get λ1(B) > λ2(B) and
Theorem 1 is proved. Recall that the random vector field g is invariant by ΦB0

but in what ΦB concerns, the invariance fails as the base dynamics enters VS .
However, by (26) the invariance is recovered in the moment the base dynamics
is leaving VS .

For ω ∈ M let us consider the real map b0(·, ω) for all t ∈ R in such a
way that

b0(t, ω)g(ϕt(ω)) = ΦB0(t, ω)g(ω). (30)

Claim 4.1. The map b0(t, ω) forms a cocycle over ϕt.

Indeed, since ΦB0(0, ω) = Id for all ω ∈ M we have b0(0, ω) = 1 and for
all s, t, evaluating b0(t + s, ω) at g(ϕt+s(ω)), we have

b0(t + s, ω)g(ϕt+s(ω))
(30)
= ΦB0(t + s, ω)g(ω)
= ΦB0(t, ϕ

s(ω)) · ΦB0(s, ω)g(ω)
(30)
= ΦB0(t, ϕ

s(ω)) · b0(s, ω)g(ϕs(ω))
= b0(s, ω)ΦB0(t, ϕ

s(ω))g(ϕs(ω))
= b0(t, ϕs(ω))b0(s, ω)g(ϕt+s(ω)),
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and so b0(t + s, ω) = b0(t, ϕs(ω))b0(s, ω).
Since the random vector field g is not completely invariant by ΦB we

consider two distinct situations. Set ϕ{1,2}(Br) = ϕ1(Br)∪ϕ2(Br). For ω ∈ M
and τ ≥ 0 such that ϕt(ω) /∈ VS\ϕ{1,2}(Br), for all 0 ≤ t ≤ τ , we consider the
real map b(·, ω) for all t ∈ [0, τ ] in such a way that

b(t, ω)g(ϕt(ω)) = ΦB(t, ω)g(ω) (31)

and, for all ω ∈ ϕ1(Br), we set b(1, ω) ∈ R in such a way that

ΦB(1, ω)g(ω) = b(1, ω)g(ϕ1(ω)). (32)

If ϕt(ω) /∈ VS\ϕ{1,2}(Br), for all 0 ≤ t ≤ τ , we have B(ϕt(ω)) = B0(ϕt(ω))
and

b(t, ω)g(ϕt(ω)) = ΦB(t, ω)g(ω) = ΦB0(t, ω)g(ω) = b0(t, ω)g(ϕt(ω)). (33)

In particular this holds between the output of VS to the next input in VS .

Claim 4.2. If ϕt(ω), ϕs(ω) /∈ VS\ϕ{1,2}(Br), b(t, ω) forms a cocycle over ϕt in
the sense that b(t + s, ω) = b(t, ϕs(ω))b(s, ω).

The proof follows similarly to Claim 4.1 taking also into account (32).
Pick ω in a full measure subset of points that visits infinitely often Br

and for which the conclusion of Birkhoff’s Ergodic theorem holds. Without
loss of generality we may assume that ω /∈ Vr ∪ VS . For t ≥ 0 set

Jt(ω) = #
{
j ∈ N : j ≤ t, ϕj(ω) ∈ ϕ2(Br)

}
.

Recall that

λ(B,ω, g(ω)) = lim
t→∞

1
t

log ‖ΦB(t, ω)g(ω)‖,

and we may split the previous orbit in the limit by considering the time for
ϕt(ω) to enter VS , the time-1 moment crossing the flowbox VS , where we use
(17), and, again, the time it takes to return to VS and so on. For simplicity,
let us define recursively

s0 = s0(ω) = min{t : ϕt(ω) ∈ ϕ1(Br)},
�0 = �0(ω) = s0 + 1,
sn = s0(ϕ
n−1(ω)) and �n = sn + 1, for n ≥ 1,
Δn = sn − �n−1, for n ≥ 1,
ω̃n = ϕsn(ω) ∈ ϕ1(Br) and ω̂n = ϕ
n(ω) ∈ ϕ2(Br), for n ≥ 1.

Now, in one hand, since B0 has one-point spectrum, for μ-a.e. ω,

λ(B0, ω) = λ(B0, ω, g(ω))

= lim
t→∞

1
t

log ‖ΦB0(t, ω)g(ω)‖
(30)
= lim

t→∞
1
t

log |b0(t, ω)|.
On the other hand, by Remark 3.1 and (32) we have for ω̃ ∈ ϕ1(Br) that

b(1, ω̃)g(ϕ1(ω̃)) = ΦB(1, ω̃)g(ω̃)
(17)
= e · ΦB0(1, ω̃)g(ω̃) = e · b0(1, ω̃)g(ϕ1(ω̃)).

(34)
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Without loss of generality, we can consider the following limits over the
unbounded set {t ≥ 0: ϕt(ω) ∈ ϕ1(Br)}. From Birkhoff’s Ergodic theorem we
have

λ(B, ω, g(ω)) = lim
t→∞

1

t
log ‖ΦB(t, ω)g(ω)‖

(31)+(32)
= lim

t→∞
1

t

⎛
⎝log |b(s0, ω)| +

Jt(ω)−1∑
j=0

log |b(Δj+1, ω̂sj )b(1, ω̃sj )|
⎞
⎠

(33)+(34)
= lim

t→∞
1

t

⎛
⎝log |b0(s0, ω)| +

Jt(ω)−1∑
j=0

log |b0(Δj+1, ω̂sj ) · e · b0(1, ω̃sj )|
⎞
⎠

Claim 4.1
= lim

t→∞
1

t
log |b0(t, ω)| + lim

t→∞
Jt(ω)

t

(30)
= lim

t→∞
1

t
log ‖ΦB0 (t, ω)g(ω)‖ + lim

t→∞
1

t

∫ t

0
1VS

(ϕt(ω)) dt

= λ(B0, ω, g(ω)) + μ(VS),

which implies λ1(B,ω) > λ(B0, ω), hence λ1(B) > λ(B0). From (29), we get
λ1(B) > λ(B0) > λ2(B) so that B has simple spectrum. Moreover, by (18),
(23) and (25) we have σp(A,B) < ε and Theorem 1 is now proved. �

Clearly when considering the set K1
0 on Corollary 1 the equalities (27)

and (28) become 2λ(B0) = λ1(B) + λ2(B) = 0. Hence the conclusion this
time will be that λ1(B) > 0 for B ∈ K1

0 arbitrarily σp-close to A and also
λ2(B) = −λ1(B) < 0.

Acknowledgements

MB was partially supported by CMUP, which is financed by national funds
through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the project
with reference UIDB/00144/2020. MB was also partially supported by the
project Means and Extremes in Dynamical Systems PTDC/MAT-PUR/4048/
2021. DA and HV were partially supported by FCT - ‘Fundação para a Ciência
e a Tecnologia’, through Centro de Matemática e Aplicações (CMA-UBI),
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