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1. Introduction

This paper aims to be a contribution on the field of symmetry of non neg-
ative solutions of fully nonlinear elliptic equations. Following the approach
started by Serrin [14], employing the famous moving plane method, we show
the radiality of positive solutions on an external domain setting.

We consider the problem:

− M±
r,R(D2u) = f(u) in R

N \ G, N ≥ 2 (1)

u > 0 in R
N \ G. (2)

lim
|x|→∞

u(x)|x|γ = c0 > 0 (3)

where γ and c0 are positive constants, M±
r,R denotes either one of the extremal

Pucci’s operators whose definition will be recalled in Sect. 2. Throughout the
text the subscript r,R will be omitted whenever confusion will not arise.

Here we assume that f : R → R is a locally Lipschitz function satisfying

f(u) − f(v)
u − v

≤ c(|u| + |v|)α for |u|, |v| sufficiently small and α >
2
γ

, (4)

This is a natural assumption which paired with the growth assumption
(3) guarantees the validity of a maximum principle in unbounded domains.
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We also assume that Ñ = r
R (N − 1) + 1, is greater than 2.

In (1)–(2) G is a domain defined as:

G =
k⋃

i=1

Gi (5)

where k ∈ N
+ and Gi are bounded C2 domains such that Ḡi ∩ Ḡj = ∅ for

i �= j.
We furthermore impose the following boundary conditions. For every 1 ≤

i ≤ k:

∂u

∂ν
= αi ≤ 0 on ∂Gi. (6)

u = ai > 0 on ∂Gi. (7)

where, αi and ai are constants and ν is the external normal with respect to
the boundary of G.

In the particular case where the Pucci operator coincides with the Lapla-
cian, i.e, r = R = 1, the problem has been extensively covered in the literature.

In the early 70’s Serrin [14] proved that for Ω, a bounded set with C2

boundary and f a continuos differentiable function, every positive solution of

−Δu = f(u, |∇u|) in Ω
u > 0 in Ω
u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

is radial and furthermore Ω must be a ball.
Serrin’s result has then been extended in several directions, and would

be impossible to exhaustively list all the literature, however, we present a few
references for the different extensions: for the p-Laplace operator (see [4] and
[9]), in the nonlocal setting ([5] and [17]) and under partially overdetermined
boundary conditions see [8].

Concerning overdetermined problems for the Laplacian in external do-
mains, Reichel (see [12] and [13]), under strong assumptions, first considered
domains with one cavity and then on a follow-up article extended the result
to domains with multiple cavities. Under more general assumptions, Sirakov
([16]), also obtained the result.

Both approaches are based on a topological arguments and strongly rely
on the classical Serrin’s Corner Lemma (see [14]). This presents a great dif-
ficulty to study the analogous problem in the fully nonlinear setting, since
Serrin’s Corner Lemma is not true in general.

In the last few years, some advances have been made regarding extending
Serrin’s result for Pucci’s Extremal Operators in a bounded domain Ω.

Two different kinds of assumptions have been suggested to treat the prob-
lem. In [2], I. Birindelli and F. Demengel have proved symmetry when M±
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is a perturbation of the laplacian, by providing a variation of Serrin’s Corner
Lemma.

Instead of assuming a constraint on the elliptic constants, Silvestre and
Sirakov also obtained the same result in [15], but under geometric assumptions
on the domains.

Our approach follows [2] where a smallness regime of the ratio R
r is as-

sumed in order to circumvent the lack of Serrin’s Corner Lemma.
Here we study the external domain problem (1)–(7) and prove:

Theorem 1.1. Let u be a C2,β solution of (1)–(7), with β > 0. There exists a
positive t1 which depends only on r and β such that if 1 ≤ R

r < t1, then, G
has only one connected component. Moreover G is a ball and the solution u is
radial with respect to the center of this ball.

The paper is organized as follows. In Sect. 2, we state some preliminary
lemmas which are used to prove the main result and introduce the necessary
notation. We reserve Sect. 3 to provide the proof of Theorem 1.1 which will be
divided in 10 steps. The proof closely follows [16], although some arguments
are modified to deal with the fully nonlinear case. For the reader’s convenience
we include full details also for the steps which are the same as in the semilinear
case.

Remark 1.2. This work has been produced during the authors PhD studies at
Sapienza Universita di Roma.

2. Notation and Preliminary Results

Here we introduce some notation needed to apply the Moving Plane Method
(see [10]), in order to show that, for every direction γ ∈ SN−1, our solution
is symmetric in that direction. Since our operator is invariant with respect to
rotations we may, without loss of generality, set γ = e1, the first vector of a
canonical base in R

N , N ≥ 2.
Hence we define, for λ ∈ R

Tλ = {x ∈ R
N |x1 = λ}

Dλ = {x ∈ R
N |x1 > λ}

For every point x = (x1, x
′) ∈ R

N , with x′ ∈ R
N−1, we set xλ = (2λ −

x1, x
′), i.e, xλ is the reflection of x with respect to Tλ.
Then for every A ⊂ R

N , we define

Aλ = the reflection of A with respect to Tλ, i.e, Aλ = {x ∈ R
N |xλ ∈ A}

In particular we set Σλ = Dλ\(Ḡ ∪ Ḡλ).
We will also use the notation

Γt(A) = A − te1, for t ∈ R
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Γ(A) =
⋃

t∈R

Γt(A)

and for z ∈ R
N \ G we define,

Γt(z) = z − te1 for t ∈ R

For i = 1, . . . , k we define:
di = inf{λ ∈ R |Tμ ∩ Ḡi = ∅ for all μ > λ}

λi = inf{λ ∈ R | (Dμ ∩ Ḡi)μ ⊂ Gi and 〈ν(z), e1〉 > 0
for all μ > λ and all z ∈ Tμ ∩ ∂Gi }

d = max di λ∗ = max λi

where, as before, ν(z) denotes the exterior normal with respect to ∂Gi.
Let z ∈ ∂Gλ

i ∩ Dλ, for some i ∈ {1, . . . , k}, be such that Γt(z) ∈ Gλ
i for small

positive values of t. Then we define:
t = t(z) = min{t > 0 | z − te1 ∈ ∂Gi ∪ ∂Gλ

i }
Now we recall the definition of the Pucci’s Operators and associated quantities.

For a twice differentiable real function u defined on an open set Ω we
define for x ∈ Ω

M+
r,R(D2u)(x) = R

∑

μi>0

μi(x) + r
∑

μi<0

μi(x)

M−
r,R(D2u(x)) = r

∑

μi>0

μi(x) + R
∑

μi<0

μi(x)

where 0 < r ≤ R are called ellipticity constants and μi = μi(D2u(x)), i =
1, . . . , N represent the eigenvalues associated to the hessian matrix D2u(x).
Furthermore we introduce (as in [6,7]) the dimension like quantities Ñ+ and
Ñ− for M±

r,R, defined as

Ñ+ =
r

R
(N − 1) + 1 and Ñ− =

R

r
(N − 1) + 1 (8)

In the scope of this work, only Ñ+ plays a role, therefore throught the
article we will refer to Ñ+ as Ñ .

We will now recall some results obtained in previous papers which will
be needed later on.

We start with a version of the Hopf Lemma for non-proper operators

Lemma 2.1. [1] Let Ω ⊂ R
N be a smooth domain and let b, c ∈ L∞(Ω).

Suppose u ∈ C(Ω̄) is a viscosity solution of

M−(D2u) − b(x)|Du| + c(x)u ≤ 0 in Ω. (9)
u ≥ 0 in Ω. (10)

Then either u ≡ 0 or u > 0 in Ω. Furthermore, at any point x0 ∈ ∂Ω
where u(x0) = 0, we have

lim inf
t→0

u(x0 + tv) − u(x0)
t

< 0 (11)
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for every v ∈ R
N such that 〈v, ν(x0)〉 > 0, where ν(x0) is the external normal

at x0 with respect to the boundary of Ω.

Lemma 2.2. [16] Let i ∈ {1, . . . , k}, if λ ≥ λ∗, then any z ∈ Dλ ∩ ∂Gi
λ has

one and only one of the following properties,( see Fig. 1):
I) Γt(z) ∈ Σλ for small positive values of t or there exists a sequence

tm ↘ 0 such that Γtm
(z) ∈ Dλ ∩ ∂Gi

λ

II) t ≤ d(z, Tλ), the open segment (Γt(z), z) belongs to Gλ
i , and

Γt(z) ∈ ∂Gλ
i .

III) t < d(z, Tλ), the open segment (Γt(z), z) belongs to Gλ
i , and Γt(z) ∈ ∂Gi.

IV) λ = λ∗ and z ∈ ∂Gλ
i ∩ ∂Gi

Figure 1. The four different types of points of ∂Gλ
i

∩ Dλ: The arcs (A,B], [H, I), (J,K) are of type (I).
(B,C], [E,F ], [G,H) are of type (II), (C,D), (D,E), (F,G)
are of type (III) and D is of type (IV)
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Lemma 2.3. [2] Let f be a locally Lipschitz function, suppose that Ω is a
bounded C2,β domain and suppose that H0 is an hyperplane such that

• there is P ∈ H0 ∩ ∂Ω such that ν(P ) ∈ H0;
• Ω− is the intersection of Ω with one of the half spaces bounded by H0 and

Ω+, its reflection with respect to H0 is contained in Ω.
Let u ≥ 0 be a viscosity solution of

M±
r,R(D2u) + f(u) = 0 in Ω

Let u0 be the reflection of u|Ω− in Ω+. If u0 > u in a neighborhood of P in
Ω, u(P ) = u0(P ) and ∇u0(P ) = ∇u(P ) �= 0, then there exists a t1 > 1, such
that if R

r < t1 and for any direction v pointing inside Ω+

∂2
vu0(P ) > ∂2

vu(P ) (12)

Lemma 2.4. [2] Let u be a C1 solution of (1)–(7), if ∂G is the graph of a C2

function ψ, then for every x0 ∈ ∂G, D2u(x0) only depends on ψ(x0),∇ψ(x0)
and D2ψ(x0).

Lemma 2.5. [11] Let Ω ⊂ R
N be an unbounded smooth domain. Suppose u ∈

C2(Ω) satisfies for x ∈ Ω

M−
r,R(D2u)) + c(x)u ≤ 0

where, c(x) is a locally bounded real function such that

c(x) <
−q(R(q + 1) − r(N − 1))

|x|2
for some q ∈ (0, Ñ − 2). If, lim inf

|x|→∞
u(x)|x|q ≥ 0 and u ≥ 0 on ∂Ω then u ≥ 0

in Ω.

3. Proof of Theorem 1

Using all the notations introduced in Sect. 2, we consider, for x ∈ Σλ, the
function

wλ(x) = uλ(x) − u(x) = u(xλ) − u(x).

where u is a solution of (1)–(7) for either one of the operators M±
r,R.

The proof of Theorem 1 will be obtained through several steps.

Step 1: ∃λ̄ ∈ R such that ∀λ ≥ λ̄, wλ ≥ 0,

Proof. Since u → 0 as |x| → ∞, we can take λ̄ such that λ̄ > d, and, for
i ∈ {1, . . . , k}

u(x) ≤ 1
2

min
i

ai for |x| > λ̄.

Hence

wλ|∂Gλ
i = uλ|∂Gλ

i − u|∂Gλ
i >

ai

2
> 0. for λ > λ̄.

since z ∈ ∂Gλ
i implies |z| > |λ|.
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The above proves that wλ is positive on ∂Gλ
i . The proof on the rest of

the domain is as follows:
Note that regardless of the operator, M+

r,R or M−
r,R, wλ satisfies

M−
r,R(D2u) +

f(uλ) − f(u)
wλ

wλ ≤ 0 in Σλ. (13)

wλ ≥ 0 on ∂Σλ. (14)

Since by hypothesis u = O(|x|−γ) and (4) holds, we have that,
f(uλ)−f(u)

wλ
= O(|x|−2) and lim inf

|x|→∞
wλ|x|q = 0, for some positive q < min{γ, Ñ−

2}. Thus, Lemma 2.5 applies and we get wλ ≥ 0. �

Now we define

λ0 = inf{λ ∈ R |wμ ≥ 0 in Σλ, ∀μ > λ}.

The above set is nonempty due to the previous step and clearly λ0 is
finite. Also it follows from the continuity of u that wλ0 ≥ 0.

Step 2: ∂u
∂x1

< 0 in {x = (x1, x′) ∈ R
N | x1 > max{λ0, d}}

Proof. Let μ > max{d, λ0}. By Lemma 2.1 either wμ ≡ 0 or wμ > 0 in Σμ

with ∂wμ

∂ν < 0 on the points of ∂Σμ such that wμ = 0.
If wμ > 0 in Σμ, we get on Tμ

wμ = 0, 0 >
∂wμ

∂ν
=

∂wμ

∂(−x1)
= −∂wμ

∂x1
= 2

∂u

∂x1
(15)

and so the assertion holds. Let us prove that wμ ≡ 0 in Σμ cannot occur.
Indeed, if wμ ≡ 0 we have two cases:

1. wλ > 0 in Σλ for all λ > μ.
2. wμ̃ ≡ 0 in Σμ̃ for some μ̃ > μ.

Case 1: We just repeat the above argument for every λ > μ and obtain
∂u

∂x1
< 0 in Tλ so that,

∂u

∂x1
< 0 in Σμ =

⋃

λ>μ

Tλ. (16)

Then take x ∈ Σμ such that {x + te1 , t ∈ R} ∩ G = ∅ (such x always
exists since G is bounded) and notice that:

u(x) ≤ u(xλ0) = u((xλ0)μ) < u(x) (17)

where the last inequality follows from ∂u
∂x1

< 0 in Σμ. The contradiction in
(17) shows that Case 1 does not hold.

Case 2: We take y ∈ Σμ such that {y + te1 , t ∈ R} ∩ G = ∅ and notice
that

0 < u(y) = u(yμ̃) = u((yμ̃)μ) (18)

Since μ̃ − μ > 0, continuing to reflect with respect to Tμ̃ and Tμ alterna-
tively, we can construct a sequence of points yn such that u(yn) = u(y) and
|yn| → ∞. This is clearly a contradiction with the hypothesis that u(x) → 0
as |x| → ∞. So also Case 2 cannot hold. �
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Step 3: λ0 ≤ d

Proof. Assume not, then, λ0 > d. Since u is a continuous function, wλ0 ≥ 0
in Σλ0 . Moreover ∂u

∂x1
< 0 in {x1 > λ0} by Step 2. By the strong maximum

principle, either wλ0 > 0 or wλ0 ≡ 0. Assume wλ0 ≡ 0. Take y = (y1, y′), z =
(z1, z′) ∈ ∂Gλ0

1 such that λ0 < y1 < z1 and y′ = z′. Then u(z) < u(y). On the
other hand we also have

u(y) = u(yλ0) = a1 = u(zλ0) = u(z) (19)

Thus we get a contradiction which shows that wλ0 �≡ 0.
Now consider the case wλ0 > 0. By definition of λ0 there is a sequence

{λm} such that λm ↗ λ0 and for every m there exists a minimizer xm ∈ Σλm

such that wλm
(xm) < 0 and ∇wλm

(xm) = 0.
Since λ0 > d we fix m0 such that

dist( ¯Gλm , Tλ0) ≥ 1
2
dist(Ḡλ0 , Tλ0) > 0 (20)

for m ≥ m0. We will now break in two cases

1. xm ∈ Int(Σλm
) for every m ≥ m0.

2. xm ∈ ∂Σλm
for some m ≥ m0

Case 1: If xm → x0, then passing to the limit in the definition of xm we
obtain that wλ0(x0) = 0 and ∇u(x0) = 0. Therefore we must have, by the
strong maximum principle, x0 ∈ ∂Σλ0 , but that is a clear contradiction since
Hopf Lemma implies ∇u(x0) �= 0.

If xm diverges, then we consider the sequence of points {ym} that min-
imize wλm

|x|q in Σλm
, for q > 0 to be chosen. Clearly if xm diverges so does

ym. The function wλm
|x|q satisfies in Σλm

∩ {wλm
< 0} :

M−
r,R(D2wλm

|x|q) − b(x)|∇(wλm
|x|q)| + c(x)wλm

|x|q ≤ 0 (21)

where,

b(x) =
2
√

NR|∇(|x|−q|)
|x|−q

and,

cm(x) =
f(uλm

) − f(u)
wλ

+
q(R(q + 1)) − r(N − 1))

|x|2 < 0 (22)

To see the above take φ as a test function for wλm
|x|q. Thus, φ|x|−q is a test

function for wλm
. Since wλm

is a subsolution, we obtain by using φ|x|−q as a
test function:

0 ≥ f(uλm
) − f(u)
wλ

φ|x|−q + M−
r,R(φ|x|−q) (23)

Using

D2(φ|x|q) = |x|qD2φ + D2(|x|q)φ + 2∇(|x|q) ⊗ ∇φ



NoDEA A symmetry result for fully nonlinear problems Page 9 of 14 42

and that for every A ∈ MNxN , whose eigenvalues belong to (r,R),

Tr(A(p ⊗ q)) ≤
√

NR|p||q| (24)

we obtain (21).
If q belongs to (0, Ñ − 2) and |x| > L, for L sufficiently large, by (3)

and (4) we get cm < 0. Now we fix m such that |ym| > L + 2 and consider
the domain Σλm

\BL+1. By the weak maximum principle, which we can apply
since cm < 0, inequality (21) implies that wλm

|x|q cannot achieve its minimum
at ym in Σλm

\BL+1 unless it is constant. However, if q is chosen to be smaller
than γ, by 3, we obtain lim

|x|→∞
wλm

|x|q = 0. Hence a contradiction.

Case 2: Since wλm
|Tλm

= 0 we have that xm ∈ ∂Gλm .
Since dist(Gλm , Tλ0) > 0, we get that {xm+te1} ⊂ Dλ0 for small positive

values of t.
Now we will use Lemma 2.2 to obtain a contradiction. Clearly xm is not

a point of type (III) or (IV). Let us prove it cannot be of types (I) and (II).
Type (I): Γt(x) ∈ Σλm

. Then, by Step 2,

0 ≤ ∂wλm

∂(−x1)
(xm) =

∂u

∂(x1)
(xm) +

∂u

∂(x1)
(xλ

m) <
∂u

∂(x1)
(xλ

m) (25)

We will now show that ∂u
∂(x1)

(xλ
m) ≤ 0 to obtain a contradiction

Since Γt(xm) ∈ Σλm
, this implies that 〈ν(xλ

m, e1) ≥ 0. Since u ≡ ai on
∂Gi we obtain

∂u

∂ξ
= 0 ∀ξ in the tangent space to ∂Gi

Therefore
∂u

∂x1
(xλ

m) =
∂u

∂ν
(xλ

m)〈ν(xλ
m, e1)〉 ≤ 0 (26)

Let us now see that it is not possible to have a sequence tm ↘ 0 such
that Γtm

∈ ∂Gλm
i . If that was the case we would have, by taking y ∈ Γtm

(xm),
that

wλm
(xm) ≤ wλm

(y) = ai − u(y) < ai − u(xm) = wλm
(xm). (27)

which is not possible. Type (II): Clearly Γt ∈ ∂Gλm
i ∩ Dλ0 hence as before

wλm
(xm) ≤ wλm

(Γt) = ai − u(Γt) < ai − u(xm) = wλm
(xm). (28)

�

Step 4: For any z ∈ ∂G and any unit vector η for which〈η, ν(z)〉 > 0, we
can find a small enough ball Bδ(z) such that ∂u

∂η
< 0 in Bδ(z)\Ḡ

The proof of Step 4 is done by induction and will use some of the following
steps. For clarity’s sake we will delay the proof until all the remaining steps
have been proved.
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Step 5: wλ > 0 for any λ ∈ [λ0, ∞) ∩ (λ∗, ∞)
Proof. Based on Steps 2 and 3, we may assume λ ≤ d. By the strong maximum
principle we just have to see that wλ is not identically zero in a connected
component Z of Σλ. We will proceed arguing by contradiction, i.e, we assume
that such a connected component exists.

First we observe that for every Y connected component of Σλ we have

dist(∂Y ∩ Dλ, Tλ) = 0. (29)

In fact, Y is connected, hence Y λ is a connected component of (RN\Ḡ)\D̄λ.
From that it follows that either Y λ contains a left neighborhood of Tλ or

dist(∂Y λ \ D̄λ, Tλ) = 0. (30)

However, the former case is not possible since λ ≤ d means that G ∩Tλ is non
empty. Thus, (29) follows by reflecting (30). Therefore take {zm} a sequence
in ∂Z ∩ Dλ such that zm → z0 ∈ Tλ ∩ ∂Z ∩ Dλ.

Since λ > λ∗, 〈ν(zλ
m), e1〉 < 0, for m sufficiently large, and the open

segment (zm, zλ
m) is contained in the ball Bδ(z0)\Ḡ, where delta is the one

given by Step 4. Therefore by Step 4, u strictly decreases in (zλ
m, zm), which

means wλ(zm) > 0. This is a contradiction with the fact that w is identically
zero in Z. �

Step 6: ∂u
∂x1

< 0 in Dλ̃ \ Ḡ for λ̃ = max{λ0, λ∗}
Proof. The proof follows in the same way as in the proof of Step 2, using Step
5 and Hopf Lemma. �

Step 7:λ0 ≤ λ∗
Proof. We will argue by contradiction, suppose λ0 > λ∗. By Step 5, we know
that wλ0 is positive in Σλ0 , therefore we may obtain as in Step 3, a sequence
of λm ↗ λ0, such that wλm

(xm) < 0, for some xm ∈ Σλm
. We will break into

the following cases:
Case 1: There is a subsequence of {xm} such that xm ∈ IntΣλm

.
The cases where xm diverges or converges to a point on the regular part

of ∂Σλm
are analogous to what have been done in Step 3. Furthermore the

proof of Step 5 shows that wλm
> 0 for m sufficiently large.

Case 2: There is a subsequence of {xm} such that xm ∈ ∂Σλm
.

Clearly xm is not in Tλm
, therefore {xm} is a bounded sequence and

passing to a subsequence we may assume xm ∈ ∂Gλm
i , for a fixed i ∈ {1, . . . , k}.

We will now proceed by using Lemma 2.2 to reach a contradiction.
First let us show that xm is not contained in ∂Σλm

∩ {x1 ≤ λ0}. If
that was the case then xm → x0 ∈ Tλ0 ∩ ∂G, therefore the same argument
as in Step 5 would imply a contradiction. Henceforth we will assume that
xm ∈ ∂Giλ

m
∩ {x1 > λ0}. It is clear that xm is not of type (IV) since λm > λ∗.

Arguing as in Step 3 we also can exclude the case where xm is of type (I). We
will now consider two cases in order to finish the proof. Let ym = Γtm

(xm).
Case (a): ym ∈ Dλ0 for some m ∈ N.

If xm is of type (II), then ym ∈ ∂Gλm
i ∩ Dλ0 . Thus we may obtain a

contradiction as in Step 3. If xm is of type (III), then ym ∈ ∂Gi ∩ Dλ0 , by
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Steps 4 and 6 we obtain that u is strictly decreasing from ym to xm. However
this contradicts the fact wm(xm) < 0 since

wλm
(xm) = ai − u(xm) = u(ym) − u(xm) > 0 (31)

Case 2: ym ∈ D̄λm
\ Dλ0 for every m ∈ N.

Since ym ∈ ∂G ∪ ∂Gλm , {ym} is bounded. Thus we may obtain that up
to a subsequence ym converges to y0 ∈ ∂Gλ0

i ∩Tλ0 . Therefore for m sufficiently
large, ym and its projection on Tλ0 belong to Bδ(y0), where δ is given by Step
4. Again combining Steps 4 and 6 we obtain that u decreases on the whole
segment (ym, xm) and get a contradiction as in the previous case. �

Step 8: wλ∗ ≡ 0 in at least one connected component of Σλ∗

Proof. If there exists z0 ∈ ∂G ∩ Tλ∗ such that 〈ν(z0), e1〉 = 0, we will show
that wλ∗ is identically zero in the connected component that contains z0 on
its boundary. For that, assume u > uλ∗ in a certain ball around z0. We take t1
as in the assumption of Theorem 1.1, then, since we assume R

r < t1, Lemma
2.3 implies that for every direction v pointing inside Σλ∗ either ∂vuλ∗(z0) >
∂vu(z0) or ∂2

vuλ∗(z0) > ∂vu2u(z0).
The first inequality cannot happen, since on ∂Gi, ∂u

∂v
is constant. The

second inequality also cannot happen since D2uλ∗(z0) = D2u(z0) because by
Lemma 2.4 the hessian only depends on the shape of the boundary. Therefore
we obtain u ≡ uλ∗ in B(z0, R), by the strong maximum principle, and also
u ≡ uλ∗ in the whole connected component which contains z0.

If there is not such z0 then, by the definition of λ∗ we can find a point
z1 ∈ ∂G ∩ Dλ∗ such that zλ∗

1 ∈ ∂G is a point of internal tangency. Due to the
boundary conditions, wλ∗(z1) = 0 = ∂wλ∗

ν (z1). That contradicts Hopf Lemma.
�

Step 9: Let Z be a connected component of Σλ∗ such that wλ∗ = 0 in Z.
Then ∂Z \ Tλ∗ ⊂ ∂G

Proof. We shall use Lemma 2.2 in order to show that all points on ∂Z \Tλ∗ are
of symmetry type (IV). Suppose by contradiction that there is a point z that
is not of symmetry type (IV). The point z cannot be of type (I), otherwise we
could argue as in Step 3 and obtain a contradiction. Also it is not of type (II)
or type(III). To see that just set y = Γt(z) ∈ Σλ∗ , then, by Step 6, u is strictly
decreasing on the segment (y, z). If z was of type (II) we would have:

ai = u(yλ∗) ≥ u(y) > u(z) = u(zλ∗) = ai. (32)

which is a contradiction. Type(III) can be excluded in an analogousbreak fash-
ion. �

Step 10: End of the proof of Theorem 1.1

Let us denote by GC the complement of G in R
N . Then, the set X,

X = Z ∪ Zλ∗ ∪ (∂Z ∩ GC) ∪ (∂Zλ∗ ∩ GC) (33)
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is symmetric with respect to Tλ∗ . Note that by Step 9:

∂Z ∩ GC ⊂ Tλ∗ ∩ GC (34)

One may check that X is an open subset in GC , therefore GC\X = GC\X̄
which implies that X = GC since GC is connected. This implies that u and
G are symmetric in the x1 direction Therefore applying the result for every
direction we obtain that G is radially symmetric and the solution u is radial.

Proof of Step 4:

Now we give the proof of Step 4 that was previously omitted.

Proof. We will prove the result by induction on k. First assume that k = 1 in
(5). If α1 < 0, the result is trivial by continuity, therefore lets assume α1 = 0,
which implies ∇u ≡ 0 and |D2u| = |∂2

νu| on ∂G.
Choose z0 ∈ Td ∩ ∂G, then

∂u

∂x1
(z0) =

∂u

∂ν
(z0) = 0 (35)

Since λ0 ≤ d by Step 3, then Steps 2 implies

∂u

∂x1
(Γt(z0)) < 0

for negative t. This implies

0 ≥ ∂2u

∂x2
1

(z0) =
∂2u

∂ν2
(z0) (36)

On the other hand, the eigenvalues of D2u for x ∈ ∂G are

• ∂2u
∂ν2 (x) with multiplicity one, (associated to the normal direction at x).

• 0 with multiplicity N − 1, (associated to the tangent space to ∂G at x).
Therefore by (1) and (7), we obtain for x in ∂G

M+
r,R(D2u) = r

∂2u

∂ν2
|∂G = −f(a1) (37)

Analogously one would obtain for M−
r,R:

M−
r,R(D2u) = R

∂2u

∂ν2
|∂G = −f(a1) (38)

In either case, by (36) we get that f(a1) must be a non-negative value.
If f(a1) is strictly positive, we are done since u ∈ C2(RN \ G) we would have

∂2u

∂η2
=

∂2u

∂ν2
〈η, ν〉2 < 0 on ∂G. (39)

This together with (35) and (36) imply the assertion.
If f(a1) = 0 then all the first and second derivatives of u vanish on ∂G,

therefore extending u as a1 on G would provide a solution on the whole R
N .

However that is not possible for such a solution in R
N , either by known results

of symmetry and monotonicity (see [11]) or by Steps 1–3, the solution cannot
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be flat in an open set. Suppose now that the result is valid for k−1. Therefore,
by steps 5 to 10, Theorem 1.1 is proved for k − 1 domains Gi.

Set

I = {i |αi < 0 or
∂2u

∂ν2
< 0 on ∂Gi} (40)

and J being {1...k} \ I. We claim that J is empty. Define D as

D = max
j∈J

dj (41)

If D < λ∗, we could complete steps 5 to 10 and obtain a contradiction. If
D ≥ λ∗ the moving plane reaches at least one domain Gj with j ∈ J , therefore
arguing as in the case k = 1 we obtain a contradiction. �
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[9] Fragalà, I., Gazzola, F., Kawohl, B.: Overdetermined problems with possibly
degenerate ellipticity, a geometric approach. Math. Z. 254(1), 117–132 (2006)

[10] Gidas, B., Ni, W.M., Nirenberg, L (1979) Symmetry and related properties via
the maximum principle. Commun. Math. Phys

[11] Guozhen, L., Zhu, J.: The maximum principles and symmetry results for vis-
cosity solutions of fully nonlinear equations. J. Differ. Equ. 258(6), 2054–2079
(2015)

[12] Reichel, W.: Radial symmetry by moving planes for semilinear elliptic bvps
on annuli and other non-convex domains. Elliptic Parabolic Probl.: Pont-A-
Mousson 325, 164–182 (1995)

[13] Reichel, W.: Radial symmetry for elliptic boundary-value problems on exterior
domains. Arch. Ration. Mech. Anal. 137(4), 381–394 (1997)

[14] Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal.
43(4), 304–318 (1971)

[15] Silvestre, L., Sirakov, B.: Overdetermined problems for fully nonlinear elliptic
equations. Calc. Var. Partial Differ. Equ. 54(1), 989–1007 (2015)

[16] Sirakov, B.: Symmetry for exterior elliptic problems and two conjectures in po-
tential theory. Ann. de l’Institut Henri Poincaré C, Anal. Non linéaire 18(2),
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