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Abstract. We prove a local higher integrability result for the gradient
of a weak solution to parabolic double-phase systems of p-Laplace type
when % < p < 2. The result is based on a reverse Holder inequality in
intrinsic cylinders combining p-intrinsic and (p, ¢)-intrinsic geometries. A
singular scaling deficits affects the range of q.
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1. Introduction

This paper discusses the local higher integrability of the spatial gradient of
weak solutions u = u(z) = u(x,t) to parabolic double-phase systems with the
prototype

uy — div(|VulP2Vu + a(2)|Vu|??Vu) = — div(|F|P2F + a(2)|F|?2F)

in Qr = Qx(0,T), where Q is a bounded domain in R™, n > 2, and 7' > 0. The
coefficient function a € C**/2(Qr) is non-negative and Hélder continuous.
The higher integrability result in Theorem 2.2 was obtained when p > 2 in
[11] and here we extend this result to singular the parameter range. More
precisely, in this paper we assume that

2n ap p(n+2)—2n
<p<L2 <q< o =— 1.1
np2 SPSH PSasPEITS B 2 (L11)
When p = nQ—fQ we have y = 0, while at p = 2 the range of ¢ is the same as in

[11]. Note that % is the usual scaling deficit appearing in singular p-parabolic
problems, cf. [7, Section VIII]. An upper bound for ¢ in terms of p,« and n
appears naturally in regularity properties of double-phase problems. Otherwise
the solution may not be regular already in the elliptic case, see [8].
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The method for showing the higher integrability result in this paper orig-
inates from [13] where the result was shown for parabolic p-Laplace systems.
There a reverse Holder inequality was shown in p-intrinsic cylinders as in (2.1).
See also [2] for the gradient higher integrability of p(x,t)-Laplace systems.
On the other hand, in [10] the same result was shown for the Orlicz setting
including parabolic (p, q)-Laplace problems (corresponding to a(z) = ag for
some constant ag > 0) in (p, ¢)-intrinsic cylinders. For the double-phase model
inf a(z) may be zero and a priori neither the p-term nor the g-term dominates.
Instead, the behaviour of the system varies locally between two distinct phases
based on which of the terms is dominating. To incorporate this into the argu-
ment, we divide into cases at every point zg by comparing a(zp) to the level of
the gradient. If a(zp) is sufficiently small, we show a reverse Holder inequality
in a p-intrinsic cylinder. In the complementary case, it follows that a(z) is
comparable to a(zp) in a sufficiently large neighborhood of zy and the reverse
Holder inequality can be shown in a (p, ¢)-intrinsic cylinder.

To construct the intrinsic cylinders, we use a stopping time argument to
find a p-intrinsic cylinder at every point in a suitable upper level set. Moreover,
we obtain a decay estimate for the radius of a p-intrinsic cylinder in terms of
the level. This estimate, stated in Lemma 3.1, gives the comparability of a(z)
around (p, ¢)-intrinsic cylinders, see the property (p,q-2). Lemma 3.1 is also
used in the p-intrinsic case to transform terms involving ¢ into terms of a p-
Laplace system, for example in the proof of Lemma 3.7. This argument gives
the range of ¢ in (1.1), see Remark 3.2. Note that (1.1) allows for the situation
that ¢ > 2 while p < 2. However, this case does not have to be considered
separately and the division to p- and (p, ¢)-intrinsic cylinders is sufficient.

Stationary double-phase problems have been studied extensively in [1,
3-6]. Note that the double-phase model in these papers is not included in
the (p, q)-problems studied for instance in [14]. For parabolic double-phase
problems existence has been studied in [15] and [12] while many regularity
questions remain open.

2. Notation and main result

2.1. Notation

We denote a point in R"*1 as z = (z,t), where x € R™ and ¢ € R. A ball with
center oy € R™ and radius p > 0 is denoted as

B,(z0) = {z € R" : |z — zo| < p}.

Parabolic cylinders with center zo = (¢, tg) and quadratic scaling in time are
denoted as

Qp(20) = Bp(wo) x 1,(to),

where

I,(to) = (to — p*,to + p*).
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We use the following notation for the double-phase functional. With the
non-negative coefficient function a(-) being fixed, we define a function H(z,s) :
Qr x Rt — RT as

H(z,s) = s+ a(z)s?.
We use two types of intrinsic cylinders. For A > 1 and p > 0, a p-intrinsic
cylinder centered at zg = (xg,t0) is

Q) (20) = B)(x0) x I,(to), B (o) = BA%%(JCO)’ (2.1)

and a (p, g)-intrinsic cylinders centered at zo = (g, tg) is
G;\(Zo) = B[}(iﬂo) X J,ﬁ\(to),
AP AP (2.2)
JMto) = [t — ————p2.t — = 7).
p (10 ( " H N o N
Note that H()z‘;/\)pQ = H(i‘j)\) (A"2" p)2 and thus G(z0) is the standard intrin-
sic cylinder for (p, ¢)-Laplace system. For ¢ > 0, we write
cQ?(zO) = ?p(zo) and cG?(zO) = Gép(zo).
We also consider parabolic cylinders with arbitrary scaling in time and denote
QRr,e(20) = Br(xo) X (to — L, to +£), R,£>0.

The (n + 1)-dimensional Lebesgue measure of a set £ C R"*! is denoted
as |E|. For f € L'(Q7,RY) and a measurable set E C Q7 with 0 < |E| < oo,
we denote the integral average of f over E as

1
e =151 /), g
2.2. Main result

We consider weak solutions to the parabolic double-phase system

uy — div A(z, Vu) = — div(|F|P72F 4 a(2)|F|97%F) (2.3)
in Qp = Q x (0,T), where Q is a bounded domain in R”, n > 2, and T' > 0.
Here A(z,Vu) : Qr x RV — RN" with N > 1 is a Carathéodory vector

field satisfying the following structure assumptions: there exist constants 0 <
v < L < oo such that

A(z,) - € 2 v(€]” +a(2)[g]) and  A(2,§)] < L(EP™ + a(2)|g]*™)

for almost every z € Q and every ¢ € RN". The source term F : Qp —s RN™

satisfies
/ H(z,|F|) dz:// (IF|P 4+ a(2)|F|?) dz < oc.
QT QT

We assume that ¢ > 0 and a € Caﬁ%(QT) for some o € (0,1]. Here a €
C*%(Qr) means that a € L*(Qr) and there exists a constant [a]q
= [a]a,a/Q;QT < 00, such that

la(z,t) — a(y, )| < [a]ale —y[* and
la(@,t) — a(z, )| < [alalt - s|%,

(2.4)
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for every (z,y) € Q and (¢,s) € (0,7).
Definition 2.1. A map v : Q7 — R satisfying
u e C0,T; L*(Q,RY))n L0, T; Wh1(Q, RY))

and
/ H(z |Vaul)dz = // (IVul? + a()|Va|?) dz < oo,
QT QT

is a weak solution to (2.3), if

//QT(U or + Az, V) - Vi) dz
_ //QT(|F|p2F Ve + a(2)|FIP2F - V) dz

for every ¢ € C5°(Qr, RY).

The main result of this paper is the following higher integrability estimate
for the gradient of a weak solution to (2.3). The constants depend on
data =(n, N, p, q,a,v, L, [a] o, diam(Q),
[ull Lo 0,752 (), 1 (2, [Vul) [ 1 ), [ H (2 [FD |2 (01)-

Theorem 2.2. Let u be a weak solution to (2.3). There exist constants 0 < g =
€o(data) and c = c(data, ||al|p~(a,)) > 1, such that

W std =
]6[ H(z,|Vu|)'™edz < ¢ ]6[ H(z,|Vul)dz
Qr(20) Q2r(20)
2q
p(n+2)—2n
+c ][][ (H(z,|F|) + 1)< dz
Q2r(20)

for every Qar(20) C Qr and € € (0,¢).

2.3. Auxiliary lemmas

We start with two estimates derived from the weak formulation of (2.3). A
priori Definition 2.1 does not guarantee that u can be used as a test function
in the weak formulation and thus we do not immediately obtain the following
Caccioppoli inequality. A Lipschitz truncation method could be used as in the
degenerate case [12], but we omit the proof since it is beyond the scope of this

paper.
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Lemma 2.3. Let u be a weak solution to (2.3). There exists a constant ¢ =
C(nvp7 q,v, L), such that

U —u N
sup ][ —| Qrir o)l dx —I—]%[ H(z,|Vul|)dz
te(tO_T»tO"rT) Br(-’io) T QT,T(ZO)
U — UQpi(z0) " U — UQp i (20)|*
S Cﬁ\ ( R,\~0 + CL(Z) R\ %0 dZ
QRr,e(z0) (R B T)p (R B T)q

U—Uu N
—l—c]%[ —| Qrye ol dz—l—cﬁ H(z,|F|)dz
QRr,e(20) t—1 QRr,e(20)

for every Qr.e(z0) C Qr, with R, >0, r € [R/2,R) and T € [(/22,1).

The following parabolic Poincaré inequality can be shown in the same
way as in [11].

Lemma 2.4. Let u be a weak solution to (2.3). There exists a constant ¢ =
e(n,N,m, L), such that

U—u . Om
]6[ | Ql;’ni( ol dz < 0]6[ |Vu|™ dz
QRr,e(20) R QRr,e(20)

om
Y4 _ _ e _
+C<R2]% ( )(|Vu|” Y a(2)| V| + |[FIPY 4 a(z)|F|? 1)dz>
R,2\Z0

for every Qre(z0 C Qp with R,£ >0, m € (1,q] and 6 € (1/m, 1].

Finally, we have two technical lemmas. The first lemma is a Gagliardo—

Nirenberg inequality and the second one is a standard iteration lemma, see [9,
Lemma 8.3].

Lemma 2.5. Let B,(z9) C R", 0,s,7 € [1,00) and ¥ € (0,1) such that

n n n

— < — — ] — — —.
<4 (1 s) (1-9)

o r
Then there exists a constant ¢ = ¢(n, o), such that

(1-9)o

Yo
][ |UL dr <c ][ <|UL +|Vvs> dx ][ |vl dx
B,(z0) P B,(z0) \ P B,(z0) P

for every v € WH5(B,(x0)).

Lemma 2.6. Let 0 < r < R < 0o and h : [r, R] — R be a non-negative and

bounded function. Suppose there exist 9 € (0,1), A,B > 0 and v > 0 such
that

A
h(ry) <Oh(ry) + ————+ B forall 0<r<r3<ry<R.
(rg —m1)7

Then there exists a constant ¢ = c¢(¥,7), such that

h(r)gc((R_Ar)ﬁB).
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3. Reverse Holder inequality

In this section we provide a reverse Holder inequality for u, a weak solution
0 (2.3). The reverse Holder inequality is used to show the higher integrability
result in the next section. We consider the p-intrinsic and (p, ¢)-intrinsic cases
in separate subsections. In both cases we show parabolic Sobolev—Poincaré
inequalities and a series of estimates leading to the reverse Holder inequality.

Throughout this section, let zg = (xg,tg) € Qp, with 2o € Q and ¢y €
(0,T), be a Lebesgue point of [Vu(2)|P 4+ a(z)|Vu(z)|? satistying

[Vu(z)|P + a(z0)|[Vu(zo)]? > A

for some A > 1+ ||al|z~(q,). Note that H(zp,s) is strictly increasing and
continuous with

lim H(zp,s) =0 and lim H(zp,s) = oco.

s—0t s—00

Therefore, by the intermediate value theorem for continuous functions, there
exists A = A(zg) > 1, such that

A =X +a(zp)\9.

We also use the constants

2|Bl|//QT 2 |Vul) + H(z, |F)) dz (3.1)

1

and
My = |lullp= 1020, K =2+40[alaM""?, r=10K.

In the p-intrinsic case we consider a cylinder Q;\(zo) defined as in (2.1)
and assume the following;:
(p-1) p-intrinsic case: KAP > a(zg)A9.
(p—2) Stopping time argument for a p-intrinsic cylinder:

(1) gy (H(z2 V) + H(z. F)) dz = A7,

(p-ii) HQ%(ZO ( z,|Vu|) + H(z,|F|)) dz < AP for every s € (p,2kp).
In the (p, g)-intrinsic case we consider a cylinder G;\(zo) defined as in (2.2)
and assume the following:
(p,a-1) (p, @)-intrinsic case: KAP < a(zp)AL.
(p,a-2) @ < a(z) < 2a(z) for every z € G3,(z0).
(p, q 3) Stopping time argument for a (p, ¢)-intrinsic cylinder:

pql HG’\ z,|Vu|) + H(z,|F])) dz = A,

p,q-ii) JLJEG% ZD) ( |Vul) + H(z,|F])) dz < A for every s € (p, 2kp].

The fact that these two cases are complementary will be shown in Sect. 4.1.

The following decay estimate will be used in this and the next section.
Note that the estimate holds without assumption (p-1).

Lemma 3.1. Assumption (p-i) implies

K ap
*< ATtz and pPN <
P = 100, andprAT=

o (3.2)
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where p > 0 is defined in (1.1).

Proof. Tt follows from (p-i) and (3.1) that

(2=p)n (2=p)n
A 2 A 2
/\”27// (H(z,|Vu|) + H(z, |F|)) dz < >—— M.
2p7+2| By | Q3 (20) [vul) (= [FD) prt2

ap

Therefore, we have by (1.1) that p* < M7\ n+z < ﬁ/\_%. Also

pEAd < ﬁ)\p follows from (1.1). O

Remark 3.2. The range of ¢ is determined to satisfy the second inequality of
(3.2) and this is where the intrinsic deficit appears in the range of ¢. Although
it is not mentioned in [11], the same argument holds for the degenerate case.

3.1. The p-intrinsic case

In this subsection we show a reverse Holder inequality in the p-intrinsic cylinder
Q) (z0) satisfying (p-1), (p-2) and Q3,,(20) C Q. The scaling deficit 1 defined
in (1.1) plays a role throughout the argument. In particular, note that 0 <
p—1-— f—fQ < 1. We begin by estimating the last term in Lemma 2.4.

Lemma 3.3. For s € [2p,4p] and 0 € ((¢ — 1)/p, 1], there exists a constant
c= c(n,p, q, Q, L7 [a/]a7 Ml), such that

ﬁ[ (V™ + a(z)| V™ + [FP~ + a(z)[Fl7Y) dz
Q2 (z0)

<cf[  (vul+ippas
Q3 (20)

+c)\_1+%]6[ a(z)q%l(\vm + |F))T 1t dz
Q2 (20)

-1

1(p ap
o 9 (T_ (n+2)p)
boenits ]6[ (V| + [F|)? dz .
Q2 (z0)

Proof. By (2.4) there exists a constant ¢ = ¢([a]), such that
]6[ (IVulP™" + a(z)|Vu|" ' + |[F[P~! + a(2)|F|7 1) dz
Q3 (20)

< ]6[ (VP! + |FP~) dz
Q> (z0)

+ 6]6[ inf a(w)(|Vu| + |F|)9 ' dz
Q2 (20) wEQ3 (20)

+cs°‘]§[ (|Vul?t + |F|7 1) dz.
Q2(20)
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We apply (p-1) to estimate the second term on the right-hand side of (3.3)
and obtain

]6[ inf  a(w)(|Vu| +|F)T " dz
Q

2(z0) wEQZ (20)

weQ? (20)

]6[ a(2) T (V| + | F])* dz.
Q2 (20)

In order to estimate the last term on the right-hand side of (3.3), note that by
(3.2) we have

= Kéx%][][ inf a(w)'T (V| + |F|)*" dz
Q2 (z0)

ya
q

< Kaa

s < 4p < e(My, n) A7z, (3.4)

Asg—1<pby a<1and (1.1), it follows from Hélder’s inequality, (3.4) and
(p-ii) that

q—1

oL

1
0 p
s"ﬁ |Vu|9™ dz < 5@ <]9[ |Vl P dz)
Q2 (20) Q2 (20)
ap 1977 5s
p(n+2) 0 P
< A (ﬁ[ |vu|sz> (ﬁ VP dz)
Q2 (20) Q2 (20)

q—1—

:

n+2

1
7
<c ]6[ |Vu|?? dz) ,
Q2 (20)

where ¢ = ¢(n,p,a, M) and 6 € ((¢ — 1)/p,1]. It follows from (p-ii), A > 1
and (1.1) that

I

ap p—1— QK
n+2 1 n+2

[ i
][][ (V| dz <ceATTP ][][ |Vl dz
Q2 (20) Q2 (20)

1 ap
)

1
0 P
< eAwis ]6[ |Vu|? dz ,
Q(20)

where ¢ = ¢(n, p, ¢, «). We conclude that

197

p—1

%( P _1)(42%2))
sa]%[ |Vu|?~dz < eAnts ]6[ |Vl dz
Q2 (20) Q2 (z0)

where ¢ = ¢(n, p, ¢, «, M7). Similarly, replacing |Vu| by |F| in the above argu-
ment, we have

—1

TC RS
so‘]%[ |F|9 Y dz < cAniz ]6[ |F|oP dz) .
Q2 (20) Q2 (20)

This completes the proof. O
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Next, we provide a p-intrinsic parabolic Poincaré inequality.

Lemma 3.4. For s € [2p,4p] and 0 € ((¢ — 1)/p, 1], there exists a constant
c¢c=c(n,N,p,q,a, L,[a]a, M1), such that

[ lewael”
p—=2 z
Qo) (A7 s)fP

< c][][ H(z,|Vu|)? dz
Q2 (20)

p—1—25
+eA(2r it )op ]6[ (1Vul + |F|)? d= .
Q2 (20)

Proof. By Lemmas 2.4 and 3.3, there exists a constant ¢ = ¢(n, N,p, q, o, L,
[a], M7), such that

U — Uor (|7
]6[ | hax ol”
@) (AT s)
Op
< c]%[ |Vul?? dz + ¢ )\2*”]6[ (|Vu| + |F|)P~t dz
Q2 (20) Q2 (20)
Op
+e Al—l’+%]§[ a(2) T (|Vu| + |F|)7~' dz
Q2 (20)

p—1—77
I L ][][ (1Vul + |F|)% dz .
Q3 (20)

To estimate the second term on the right-hand side of (3.5), we use Hélder’s
inequality and (p-ii) to obtain

Op
erfl (e Epts
Q2 (20)
p—1
< A@=p)op ]6[ (|Vu| + |F))? dz
Q2 (20)
ap
n+2
_ @D ]%[ (1Vul + |F|)? d=
Q2 (20)
p—1—25
(ff . avaleiEpr
Q2 (20)

p
< eA(@rHifs)op (H (IVul + |F|)P dz) ,
Q2 (20)

(3.5)
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where ¢ = ¢(n, p). Similarly, the third term on the right-hand side of (3.5) is
estimated by

Op
(Al_m%[ a(2) "% (|Vu] + )" dz)
Q2 (20)
g—1
< eAlt-pririe=e=)op (ﬁ[ (IVul + [F)? dz)
Q2 (z0)

p—1—25
< Ao ]6[ (IVul + |F))% dz ,
Q2 (20)

where ¢ = ¢(n, N, p, q, a, L, [a]o, M1). This finishes the proof. O

Lemma 3.5. For s € [2p,4p] and 6 € ((q¢ — 1)/p,1], there exists a constant
c= C(TL, vaa q, &, L; [G]O” Ml), such that

_ Oq
U — UQr (4
]6[ in oyt tepenl?
Q2 (20) weQ (20) ( 5 5>0q

< 0]6[ H(z,|Vul|)? dz
Q2 (20)

p—1—5
+ ea(Frras)or ]/7[ (IVu| + |F|)?P dz .
Q2 (z0)

Proof. By Lemmas 2.4 and 3.3, there exists a constant ¢ = ¢(n, N,p,q, «, L,
[a]o, M1), such that

U — UQA (5)| 7
]6[ inf a(w )ewdz
Q2 (20) WER2 (20) (A2 5)%

§c]%[ inf  a(w)?|Vu|?? dz
Q> (20) weQ (z0)

0q
+c inf a(w /\2” |Vu|+|F|)P—1dz>

weQ3 (20) ( Q2 (20)

E
‘1

AL

+c¢ inf a(w

weQR (20)

Oq
a(2) T (|Vu| + |F|)?! dz>
QA(ZO)

+c¢ inf a(w 9)\(
weRR(20)

e =)
x ][][ (IVu| + |F))P dz .
Q2 (20)

(3.6)
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By (p-1) and (p-ii), we obtain for the second term on the right-hand side of
(3.6) that

inf a(w)!\@-P0 ]6[ (IVul + [F|)’ d=
weQ (20) Q2 (20)

= inf a(w)e/\(zfp)eq
weR (20)

(p=1)g
p

(p—=1)(qg—p) |, ap ap
M+;ﬁ+p—l—#

P nt2
X 76[ (IVul + |F[)’ dz
Q2 (20)

< KO\P=0)0 \2=p)0a+(p—1)(9—p)0+:750p

p—1—25
y (ﬁ[ (V| + |F))PP dz)
Q2 (20)

p—1-fs
< eA(zr+e2ta)op ]6[ (IVu] + [FI) d ,
Q2 (20)

where ¢ = ¢(n, p, @, [a]a, M7). Similarly, the third and the fourth terms on the
right-hand side of (3.6) can be estimated by

qg—1
inf a(w)?\Pra-rof ]6[ (a(2)(|Vu|? + |F|9))? dz
weQ3 (20) Q2 (20)

< inf a(w)a/\(p+q*pq)0)\(q—p+%f2)p9

weR (20)

p—1—5
x (ﬁ (a()(IVul? + Fq>>9dz>
Q2 (z0)

p—1
< A2t )on ]6[ ([Vu] + |F)) dz
Q2 (20)

_ap
n+2

and

N q( P _(nj—Q)p)
inf a(w)e/\(2—p+ﬁ)9q ]6[ (|Vul + |F|)P dz
weQR (20) Q2 (20)

p—1—25
< eA(2pits)or ]6[ (V| + |F|)% dz .
Q2 (20)

The conclusion follows from Hoélder’s inequality. O
In the following lemma we estimate the quadratic term

[t = uQA ooy I

(o)

S(u,Q?(ZO)) = sup][ dx.
B (z0)

Ip(tO)
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Lemma 3.6. There exists a constant ¢ = c¢(data), such that

|u - UQ%‘IJ(ZO |

)
(o)

Proof. Let 2p < p1 < p2 < 4p. By Lemma 2.3, there exists a constant ¢ =
c(n,p,q,v, L), such that

NP=28(u, Q;‘l (20))

_ P _ q

-t | — @y, (20 +a(z)|“ uQy, (z0)| o
(p2 = p1)2) o =2\ Rk
e\ (A7) (V702

2 |U —UQX (z |2
Pt s A LS Y O P
(p2 = 1)) J @3, (20) P2 @3, (20)

(3.7)

We estimate the first term on the right-hand side of (3.7). From
Lemma 3.4 and (p-ii), we obtain

lu —upr (o) |P
]6[ i1 dz < AP, (3.8)
Qp,(20)

(770

where ¢ = ¢(n, N, p, q, a, L, [a]o, M1). On the other hand, we observe that
| — upr (5[4
H o ae= e
@3, (20) (A%m)
|u —UQA (% |q
< ]6[ inf  a(w)—— 220 (3.9)
Q3 (z0) wEQ}, (20) (A5 2

[u —ugxr (2|7
+ [a}ap(;]%[ % dz.
0 (AT ps)
By Lemma 3.5 and (p-ii), we have
|u — upa |2
][][ inf a(w)% dz < AP,
Q3 (z0) WER, (20) (V202

where ¢ = ¢(n, N,p,q,a, L,[a]o, M1). For the other term in (3.9), we obtain
from Lemma 2.5 with o =¢, s=p, r =2 and 9 = 17;, that

|u — upa |
sff, S
Q}, (20) ()\sz)

a |U B uQ//Ez (ZO)|p p A e
< cps 0 (o — 2+ |Vu| dz (S(u, sz(zo))) ,
o (70

()

2
dr < )2
I2p(t0)

S(u, @) (20)) = sup ][
B3, (x0)
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where ¢ = ¢(n, q). We have by (3.8) and (p-ii) and (3.2) that
[u —ugr (z0)lP )
pg]e[ # + |Vu|p dz < CAP7Tf2 < C)\gp_q7
Q;}z (ZO)

where the last inequality follows from (1.1) and ¢ = ¢(n, N, p, ¢, o, L, [a] o, M7).
We conclude that

|u — ugr |9 7
pg]%[ Q—(O)d < A9 (S(u, Q),(20))) =
@), (z0)

)

where ¢ = ¢(n, N, p, q, a, L, [a]o, M71).
Next, we estimate the second term on the right-hand side of (3.7). Using
Lemma 2.5 with 0 = 2,8 = p,r = 2,9 = 1/2, and then (3.8) and (p-ii), we

have
]6[ [u - vop, AH]%[ [u— vy col®
Qo0 P Qo (372 )2
lu —upr )P g
< )\p_Q][ ][ %—&— |Vul? dz
1a(t0) \JB3, o) (W' pp)

lu —ugr (4 |2
][ A
a0 (3 )

< NPT (S(u, Q) (20))) *

where ¢ = ¢(n, N,p, q,a, L, [a]o, M1). Observe that by p > = it was possible
to use these parameters in Lemma 2.5 as

For the last term on the right-hand side of (3.7) we obtain by (p-ii) that

]6[ H(z, |F|) dz < .
Q}, (z0)

Combining the estimates, we conclude from (3.7) that

q 4q a=p
S @ ) < 7 Zo A e S (Sl Qo)
r3 A 3
+C(p2 —,01)2)\ S(u, @5, (20))2,
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where ¢ = ¢(n,N,p,q,a, L, [a]o, M7). Finally, we apply Young’s inequality

twice, with conjugate pairs (2,2) and (qﬁ—w 277(21+p)7 to obtain
1
S(u, @7, (20)) < 55(U,Q22(Zo))
q =t 1
2—q+p
Te P2 T P2 + P2 A2,

(p2 — p1)° (p2 — pl)zfﬁ (p2 = p1)*
The proof is concluded by an application of Lemma 2.6. 0

Next, we prove an estimate for the first term on the right-hand side of
the energy estimate in Lemma 2.3 by using Lemma 2.5.

Lemma 3.7. There exist constants ¢ = c(data) and 0y = 6y(n,p,q) € (0,1),
such that for any 6 € (6o, 1) we have

lu —upr (o |P | —upa (5|2
][][ gz;< ol al2) £22p< 0) &
Q3,(z0) \ (2A72 p)P (2A72 p)e

"LL—U A (s |9p a-6p
<off ( ML (g ) ds (S QY (20))
Q3,(20)

(20" p)Pr
[u — uox (0]
+c]§[ inf  a(w)’ g—Z;WHVMeq o
Q2,(20) WEQ3,(20) (2\"z p)ta
(1-06)q

« \P=a)(1-6) (S(U,Qép(zo))) 2
Proof. By (2.4) we obtain

|u_U>\z i |U—UAz |2
]6[ L 71 L) i TICO Ly RS
Al \ - (2AF ) (272 p)a
U — U 2 p
Sﬁ “#Oﬂdz
Q,(20)  (2A"2 p)P

|u —UOX (4 |q

+ﬁ ot a(w)#(o) dz
Q3 (20) WEQZ (20) (22727 p)e

[ —uox (]2
+ [a]a@p)aﬁ Eoenla g,
Q,(z0)  (2A727 p)e

We begin with the first term on the right-hand side of (3.10). The con-
dition in Lemma 2.5 with ¢ = p, s = 0p, r = 2 and ¢ = 0 is satisfied for
6 € (n/(n+2),1), and we obtain

_ p
]6[ |u Uﬁipuo)\ "
Q3,(z0)  (2A72 p)P

|u_u \ |0p a-0p
SC]%[ (QZ’P(’Z”)+|VU|91’ dz (S(u,Q),(20)))
Q3,(20)

(272" )0

(3.10)
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where ¢ = ¢(n, p).

For the second term on the right-hand side of (3.10), we apply Lemma 2.5
with 0 = ¢, s = 0q, ¥ = 0 and r = 2. Again the condition of the lemma holds
for 0 € (n/(n+2),1). We obtain

[ —uga (]2
]6[ inf a(w)#(o) dz
@3, (20) WEQS,(20) (207 p)a

U —Ugr (,]%?
Scﬁ inf a(w)e‘ﬁ—?(o)lJr inf  a(w)?|Vu|?? | dz
Q3,(20) \WEQ3,(20) (2172 p)fa weQ3, (20)
(1—-6)g

x inf a(w)' T (S(u,Q3,(20))) T,

weR3,(20)

where ¢ = ¢(n, q). By using (p-1), we have

[ —ugy (]2
]6[ inf a(w)#(o) dz
Q3,(z0) wEQS,(20) (2A"27 p)e
U — s (0|7
SC]%[ inf a(w)oﬁ—i"(o)Jr inf  a(w)?|Vu|?? | dz
Q3,(20) \WEQ3,(20) (2172 p)fa weQ3, (20)
— — (1-6)q
x \p—a)(1 0)5(%@%/)(20))

Then we consider the last term on the right-hand side of (3.10). The
assumptions in Lemma 2.5 with o = ¢, s = 0p, r = 2 and ¥ = 0p/q are
satisfied for 6 € (ng/((n +2)p), 1), and we obtain

A L
@, (z0)  (2A"7 p)e

= gy (| p(1-6)
scﬁ[ (fip(")+WI9” dz (S(u,Q3,(20)))
Q3,00 \ (2A"T p)Pp

[u —upx (o |? R
x (2p)* | sup ][ #(ZO) dx ,
Inp(t0)) B, (xo)  (2A 72 p)?
where ¢ = ¢(n, ¢). Note that
U — upy (]2 =
(2p) | sup ][ B g,
I (t0)) B, (x0)  (2A 2 p)?

<(2p)* (4 sup][ de N
; Lo (t0) ) B3, (20) (2A"Z" p)? ’

2p
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and that from (3.2) we obtain p < ¢(My, n)A\7+2. Therefore

9—p

|’LL—7.L 2 (% ‘2 =
(2p)* | sup ][ #(O)dx
Iop(to) ) B, (zo)  (2A7Z p)?

_(a=p)(n+2) = (2—p)(g—p)(n+2)
< c(2p)e R B swp [ s
I, (to) ¥ Bz, (o)

< e n‘_& (a— (Q*P)2(n+2) )+ (zfp)(qu)(nJrZ)

9—p
2

where ¢ = ¢(n,p, ¢, a, diam(Q2), M7, Ms). Observe that the last inequality fol-
lows from (1.1), as

(- (q—p)(nJrQ))Jr 2-p)lg—p)(n+2)

n+ 2 2 4
<= s B
The claim follows by combining the estimates above. O

Now we are ready to prove the reverse Holder inequality in the p-intrinsic
case.

Lemma 3.8. There exist constants ¢ = c(data) and 0y = 6y(n,p,q) € (0,1),
such that for any 6 € (0p,1) we have

]6[ H(z,|Vul|)dz
Q) (20)

<c ][][ H(z,|Vu|)? dz
Q3 (20)

2

+c][:7[ H(z,|F|)d=.
Q3,(20)

Proof. Lemma 2.3 implies that

]6[ H(z,|Vu|)dz
Q) (20)
lu —ugy (y|P [u —ugy (]2
30]6[ D0 a(z) L) gz (3.11)
Q,(20) \ (2A72 p)P (2272 p)e

lu — 2

p—2 u uQép(zo)

+ e — 2t H(z,|F|)dz,
Q3,(z0)  (2A77 p)? @3, (20)
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where ¢ = ¢(n,p,q,v,L). To estimate the first term on the right-hand side
of (3.11), we apply Lemmas 3.6 and 3.7 to conclude that there exist 0y =
Oo(n,p,q) € (0,1) and ¢ = ¢(data), such that for any 6 € (6p,1) we have

lu —ugs (z)|” [u —ugx (20)|*
]6[ < XL LGOI I
JQ3,(z0) \ (2A72 p)P (2A72 p)e

|u_u 3 (= ‘Qp |u_u* z |9q
< c)\“_e)p]%[ —?,2;( o) + inf a(w)e—g%j( o) dz
Q3,(20) (2272 p)op wER3, (20) (20" p)fa

+ c)\(lfe)p]%[ H(z,|Vul])? dz.
Q3,(z0)
By Lemmas 3.4 and 3.5 we obtain

lu —upr (o |P | — upr (]2
]6[ ( col” ol ranel™)
Q3,(z0) \ (2A7Z p)? (2A"= p)e

< C/\(le)p]%[Q% - H(z, |Vu|)9 dz (3.12)

p—1—
+ eAITPFRIE)0pHe ][][ (IVu| + |F|)? dz
@3,(20)

Note that p — 1 — -2£ > 0 by (1.1). Letting

n—+2
. ap 1
= —1— —_

ap

n+2

we obtain from (3.12) by (p-ii) that

lu —upr (o |P lu —upxr (5]
ﬁ Q2p( 0) + a(Z) QQp( 0) dz
Q3 (20) (2p)P (2p)1
B
< X80 (ﬁ H(z,|Vul)’ dz)
Q3,(20)
80
4 eA1-00)p (ﬁ H, |F|)dz> .
Q3,(20)

To estimate the second term on the right-hand side of (3.11), we apply
Lemma 2.5 with o = 2, s = fp, 9 = § and r = 2, where 6 € (2n/((n +2)p), 1).
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This and Lemma 3.6 gives

o 2
]6[ |u @;Qip(mﬂ ds
Q,(20)  (2A77 p)?

6 &
<C][ ][ ey, col™ oo a) a
=~ p—2
Io(to) \/B3,(z0) \ (2A77 p)oP
1
x (S(u, Q3,(20))) >

1

(% op

N ]9[ L YOI TA A
- Q00 \ (202" p)or ’

where ¢ = c¢(data). Applying Lemma 3.4 and (p-ii) to the right-hand side
implies

B
u—u R 2 op
AH]%[ w dz < eAPP ]6[ H(z,|Vu|)® dz
Q3,(z0)  (2A72 p)? Q3,(z0)

B
4 (ﬁ H(z | F|) dz> .
Q3,(z0)

Combining the estimates for the terms in (3.11) and applying (p-ii) gives

]6[ H(z|Vul) dz < X7 (ﬁ H(z|Vu])? dz)
Q) (20) Q2,(20)

B

+ NP <]6[ H(z,|F|)dz ] .
Q3,(z0)

By applying Young’s inequality, we obtain

]6[ H(z,|Vul)dz
Q2 (z0)

1
1 6
<=M +ec (ﬁ H(z,|Vul)? dz> + 0]6[ H(z,|F|) dz.
2 Q3 (20) Q3 (x0)
and using (p-i) to absorb %)\p into the left hand side we conclude that
]6[ H(z,|Vu|)dz < ¢ ]6[ H(z,|Vu|)? dz
Qp(20) Q2,(20)

+c]6[ H(z, |F|) d=.
Q3,(20)

This completes the proof. O

B
op

6
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We finish this subsection with a corollary of the previous lemma which is
used in the proof of higher integrability. The distribution sets are denoted as

U(A) ={z€Qr: H(z,|Vu(z)]) > A} (3.13)
and

B(A) = {z € Qp : H(,|F|) > A} (3.14)

Lemma 3.9. There exist constants ¢ = c(data) and 0y = 6y(n,p,q) € (0,1),
such that for any 0 € (0, 1) we have

// z, |Vu|) dz < eAY? // H(z,|Vul)? dz
anp(zr)) 2, (20)NW(c™1A)
// H(z,|F|)dz.
Q3,(20)N®(c™1A)

Proof. The condition (p-ii) implies that

(ﬁ H(z,|w|>9dz> sv“-”ﬁ H(z, |Vul)? dz
Q3,(20) Q2,(20)

By representing Q%‘p(zo) as a union of Q%‘p(zo) N ((4¢)~/?\) and Q%‘p(zo) \
T((4c)~Y9NP) | we have

6

1
6

1
<]6[ H(z,|Vul)’ dz) < NP
@3, (20) de

)\p (1-0)
/ N H e |Vl d
|Q2p Q3,(z0)N¥((4c)=1/0AP)

for any ¢ > 0. A similar argument gives

]6[ H(z, |P|) dz < fv // H(z, |F|) dz
@3, (20) |Q2p )@y, zo)na((4c)=1a9)

It follows from Lemma 3.8 that

7%[ (H (2, [Vul) + H(z |F])) d=
Qp(20)
1 exp(1=6)

< WP+ // H(z,|Vul)? dz
2 |Q2p @3, (20)1T((4c)~1/9 xP)

+7// H(z |F)) d=.
Q2,1 JJ @3, (z0)n@((40)-1a0)
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By recalling (p-2), we obtain

][]{2 y )(H(z, Vul) + H(= | ) d

/\p(l 0) ,
// H(z,|Vul|)’ dz
|Q2p Q (20)NT((4c)—1/8\P)

I H(z, |FI) dz
\szl Q3, (20)NP((40) =1 A7)
Thus, we have

/ / . [Vul) dz
Q2 p (2
<2cx’<1 0 / / H( [Vu)’dz (3.15)
Q3 (20)N((4c) 1/ 27)

+ 26// H(z, |F|)dz
Q3,(z0)N®((4c) =1 AP)

2p
We note that
AP AP AP AP+ a(zg) A\ A
R Z Z - = 9
de ~ (4e)H0 = (4c)t/fo 2K (4¢)t/ 0 2K (4c)1/00
where we applied (p-1). The estimate above implies that
((4e)~YONP) € W((2K (4¢)/%)7TA)  and
D((4c)7INP) € B((2K (4¢)Y/%)1A).

Therefore, by replacing 2K (4¢)'/% with ¢, (3.15) can be written as

// z, |Vu|) dz < eAY? // H(z,|Vul|)? dz
anp(ZO) zo )NT(c—1A)
// H(z, |F|) d=.
Q2 (z0)N®(c—1A)

This completes the proof. O

3.2. The (p, q)-intrinsic case

In this subsection we show a reverse Holder inequality in the (p, ¢)-intrinsic
cylinder G;‘(zo) satisfying (p,q-1), (p,q-2), (p,q-3) and G’ﬁ‘ﬁp(zo) C Qr. Note
that (p,q-2) and (p,q-ii) imply

]6[ (H (20, |Vu|) + H(20, |F])) dz < 4a(z9)\9.
G4p(20)
It follows that

]6[ ([Vult + |F|7) dz < 477, (3.16)
G2, (z0)

We start with a (p, ¢)-intrinsic parabolic Poincaré inequality.



NoDEA Higher integrability for double-phase systems Page 21 of 38 40

Lemma 3.10. For s € [2p,4p] and 0 € ((¢ — 1)/p, 1], there exists a constant
c¢c=c(n,N,p,q,L), such that

0
]6[ H(zo |u_uG?(Z°)|> dz
G (20) P
(p—1)
< cAZP) ]6[ H(z0,|Vul)? dz
G2 (20)

0(p—1)
+ A7)0 ]6[ H(z, |F)) dz .
G2 (z0)
Proof. Note that

0
76[ H (zo |u_uGé(Z°)|> dz
) p—2
G2 (20) A

U — Ug(5)|7P U — UG (20)] 0
- 2]6[ Pz uerenl™ | et il ™
GMzo) \ (AT s)P (A= s)%

Therefore, by Lemma 2.4 and (p,g-2), there exists a constant ¢ = ¢(n, N, p,
q,L), such that

0
U — UG (4
]6[ H (z0,|pr(0)|) dz
G2 (20) A7 s
< 0]6[ H(z, |Vu|)? dz
G2 (z0)

0

/\2

+cH ZO;X ‘VU|_1H(ZO7|V’LL|)+|F|_1H(ZO,|F|)dZ .
G2 (20)

(3.17)
To estimate the second term on the right-hand side of (3.17), we note that
)\2
— |Vu| " H (20, |Vu|) dz
AJ ez

A

Ty a(zo)Aq‘l]%x( )(Wu'pi1 el i
s (20

A ]6[ A
< |Vu|P~t dz + ]6[ |Vu|9 ! dz.
AL J e z0) AL S zo)

By (3.16) and Hélder’s inequality, and the same argument for the term with
H(zp,|F|), we have

)\2
AJ e (z)

|Vul|""H (20, |Vu|) + |[F|""H (0, |F|) dz

p—1

< exr ]6[ (Vu + |F)Ldz |,
G2 (20)
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where ¢ = ¢(p, ¢). We conclude that

0
)\2
H | 20, 5 [Vu| ™" H (20, |Vul|) + |F| 7 H (0, |F|) dz
A G (z20)
pp—1)y O
g—1
<c|aerr ]6[ (IVul + | F)7" d (3.18)
G2 (20)
a(p—1)

q—1

+ e[ a(zo)r@e ]6[ (IV] + |F))7" dz ,
G (z0)

where ¢ = ¢(p, ¢). In order to estimate the first term on the right-hand side of
(3.18), we apply Holder’s inequality and (3.16) to get

p(p—1)

qg—1
A2-p)p (ﬁ (|Vu| + |F|)~! dz>
G2 (20)
s (p—1)
< \@-pp ﬁ (|Vul? + |FP)? dz
@2 (20)
3(p—1)
< AP ]9[ H(z0, |Vul)’ dz
G2 (20)
p—1
AL
G2 (z0)

for any 6 € ((¢ — 1)/p,1] with ¢ = ¢(n,p). Similarly, we have for any 6 €
((¢ = 1)/g, 1] that

a0 (ff (9l F) e
G (20)
+(p—1)
< a(z)AE P ﬁ (IVul + |FI)? d
G2 (20)
$(p—1)
= a(z0)?PAGPM ]6[ a(20)?(|Vu| + |F|)?1 dz
G (20)
$(p—1)
< AP ][][ H(zo,|Vul|)? dz
G (0)
p—1
+ cA?TP ]6[ H(zo, |F|)dz ,
G (20)

a(p—1)
q—1
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where ¢ = ¢(n, p). Combining the above inequalities, we conclude that

0
A? _ _
H(Aﬁ [Vl H(z0, V) + |F] 1H<zO,|F|>dz)
G2 (20)

(p—1)
< eNZP)? ]6[ H (20, |Vul)? dz
G} (z0)
0(p—1)
PNEEL ]6[ Hizo, |F|) d2 ,
G2 (20)

which completes the proof. O

Note that by replacing H(zo, s)? with s in the proof of Lemma 3.10, we
also get the following result. All necessary calculations are already contained
in the proof of the previous lemma.

Lemma 3.11. For s € [2p,4p] and 0 € ((¢ — 1)/p, 1], there exists a constant
c¢=c¢(n,N,p,q,L), such that

0

P
U — UG (4
]6[ (| uG o>> o
G2 (20) Az s
p—1 0(p—1)
< eX@P)op ]6[ |Vl dz + e\@-P)op ]6[ |F|Pdz .
G2 (20) G2 (20)

As in the previous subsection, we estimate the term

[u — ue (0)|?
S(u,G;‘(zo)) = sup ][ %(z;)dx.
I3 () B2 (o) (A2 p)

Lemma 3.12. There exists a constant ¢ = ¢(n, N, p,q,v, L), such that

A v —ugy, (o)
S(u, G2P(ZO)) = SOP ][ —— ——dr < cA?.
J3, (to)/ B3, (o) (2)\Tp)2
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Proof. Let 2p < p1 < p2 < 4p. By Lemma 2.3, there exists a constant ¢ =
¢(n,p,q,v, L), such that

A |’u’_uGA z |2
<5 Sup ][ Wf’”u)dx
A2 (t0) B, (w) (AT p1)?
A|u7uG* 2 |2

sup ][ —’;(O)dx

73, (to) ) B, (w0) APpy
X |u_uG>‘ z |p |u_uG>‘ z |q

P2 ]9[ Hpg 0) +al2) H,)Q< 2 L

(p2 = p) Sy, z) \ (N2 po)p (A2 pa)a
2 A |U’_uG>‘ z |2

L P i 7]6[ 52( o) ds

(P2 = p1)? W) Ja (z0) P3

—|—C]6[ H(z,|F]|)dz.
G, (20)

P2

IA

(3.19)

For the first term on the right-hand side of (3.19), we apply Lemma 3.10,
together with (p,q-2) and (p,g-ii), to obtain

|u7uG* z |p |U7UG,\ z |q
]6[ pizpz( 0) +a(z) p72p2( 0) dz
@0\ (A2 pa)P (A2 p2)e

P2

|’U,—UG>\ z |
S 2# H 20, 1977202(0) dz
G2, (20) (A= p2)
< c]%[ H(zp, |Vu|+ |F|)dz < cA,
G, (z0)
where ¢ = ¢(n, N, p,q, L).

For the second term on the right-hand side of (3.19) we obtain by
Lemma 2.5, as in the proof of Lemma 3.6, that

A | — gy (20| A u— gy (2|
¥ e —di= LR
APS )G, (z0) 1% @) (AT po)?

A
Scﬁ

u—ugy, (z0) | v N
][][ ————— +|Vul | dz (S(U,sz(?;o)))
@, z0) \ (A2 p2)P

where ¢ = ¢(n, N, p). Using Lemma 3.11 and (3.16), we obtain

[N

A [u—ugr (z0)]? A
2 T CnGl g < RS, G (w0))
APS )G, (z0) 1% A -

where ¢ = ¢(n, N, p,q, L). Combining the estimates and applying (p,qg-ii) for
the last term on the right-hand side of (3.19), we get

q 2
S ’G)\ < p2 AQ + P2 A S , A %
(u p1 (ZO)) = C(p2 — pl)q C(p2 — P1)2 (’LL Qp2 (ZO))



NoDEA Higher integrability for double-phase systems Page 25 of 38 40

The claim follows by applying Young’s inequality and Lemma 2.6 as in the
proof of Lemma 3.6. g

Lemma 3.13. There exists a constant ¢ = c(n,p,q), such that for any 0 €
(n/(n+2),1) we have

[u—ugr (o |P | —ugr (]2
]6[ iz;( 0) i a(z) izp( 0) dx
G(20) \ (2A7Z p)P (2A7= p)e

6
[ —uey ooyl
gcﬁ H (20, ——20 ) 4 H(z, |Vul)’ | d2
G3,(20) 2 72

N\ 1-6
x H (20,01, G, (20))F) .

Proof. We obtain from (p,q-2) that

— P — q
]6[ el )t teel)
G3,(20) \ (2A7Z p)P (2= p)e

| —uey o |P lu —uey (]9
Gi,(z0) \ (2N p)P (277 p)e

As in the proof of Lemma 3.7, by Lemma 2.5 there exists a constant ¢ =
¢(n, p,q), such that for any 6 € (n/(n + 2),1) we have

]6[ |u—ucgp(z0)|p "
p—2
G3,(z0) (2A72 p)P

u— gy (o) 1\ (1-0)p
gc# O (vl ) dx (S(u, G, (20)) )
G3,(z0) \ (2A72 p)fp

|u —ugr (]2
]6[ a(zo)#(o) dz
G3,(20) (222 p)e

0|U7UG% (Zo)‘eq 0 0
< 0]6[ a(zo) L—;e +a(z0) |Vu| 91 dz
G3,(0) (2A72" p)fa

< ale)' (S, o))

We conclude that

lu—ugr (o |P | — ugr (]2
T‘G_22p( 0) + a,(Z) T)Ciz;( 0) dZ
JP]G%AM (2A7="p)p (2A"= p)a
|U—ch} (z0)| ’ 0
coff (Mmoo
G3,(20) 2A72p

% ((80n,G3,(0)*)" + al=0) (5<u703p(20>>%)q)170'

and
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This completes the proof. O

Now we are ready to show the reverse Holder inequality in (p, ¢)-intrinsic
cylinders.

Lemma 3.14. There exist constants ¢ = ¢(n, N,p,q,v, L) and 0y = 0y(n,p,q) €
(0,1), such that for any 0 € (0p,1) we have

]6[ H(zp,|Vu|)dz < ¢ (ﬁ[ H(z0,|Vu|)9dz>
G (20) G, (20)

4 0]6[ H(z0, | F|) dz.
G3,(20)

Moreover, we have

// H(z,|Vu|)dz < cA*~? // H(z,|Vul)? dz
G3p(20) G2, (20)N¥(c=TA)
+c

// H(z, |F|)dz,
Gép(zg)ﬁq)(c_lA)
where U(A) and ®(A) are defined in (3.13) and (3.14).

1

6

Proof. Lemma 2.3 gives

]6[ H(z,|Vul)dz
G (z0)

lu —ugr o |P lu —uga (5|9
<of[ (Tt ate) ) a:
G3,(20) (ZATp)p (2/\ p) p)q

A |u_u 2 (z |2
+c—][][ #’J;O)derc][][ H(z,|F)) d=.
APJJG3, (z0) (2p) G2, (20)
(3.20)

Using Lemmas 3.13, 3.10 and 3.12 for the first term on the right-hand side of
(3.20), we obtain

lu —ugr (o |P lu —uga (5|9
]6[ —pc?;( o) + a(z)—izj( o) dz
G(z0) \ (2A7Z p)P (2A7=" p)a

0
< cAlf(’]%[ H(zo,|Vul)? dz + cA*~? ]6[ H(z,|F|)dz | .
G3,(20) G3,(z0)

As in the proof of Lemma 3.8, we obtain from Lemmas 3.6 and 3.12 that

]6[ |u—uG§p(Zo)|2 d
T p—=2 o z
G,(z0)  (2A77 p)?

1

[ — uga (s0y|0P op

< el ]6[ #(0) + |Vu|9p dz .
G3,(20) (2A7= p)p
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We conclude from Lemma 3.11 that

2
]9[ v el
Gio)  (2A"F p)?

2p
p—1

p—1
“Op P
< AP ]6[ \Vu|% dz +eX37P ]6[ |F|Pdz
G3,(20) G3,(20)

Therefore, we have for the second term on the right-hand side of (3.20) that

A]e[ \u—uG;p(zo)P &
APJ ) a3, (z0) (2p)?
Aﬁ lu — UGS, (z0) 2
=12 ——s . dz
a0 (2A7 p)?
p—1

p=1 p—1
A op A P
A G, (20) A G, (20)

(3.21)
Note that by Holder’s inequality

—1

A o
Ap—1 <]6[ vl dz)
G3,(20)
p—1 p=1
: op g—p+1 o
<A ]6[ |Vu|?? dz + (a(z0)A?) "« ]6[ a(z0)?|Vu|?9 dz .
N Gép(zo) G%,,(ZU)

Using a similar argument for |F|, we conclude from (3.21) that

A |u_uG§\p(Zo)|2
AP S Gy, (20) (2p)?

p—1

% Cpt1 0q
<A ]6[ |Vul?P dz + (a(zo)Aq)q T ]6[ a(z0)’|Vu|*® dz
G3,(20) G3,(20)

p—1 p—1

“(]9[ |Fl”dz> + (a(z0)An) 5 (]6[ “(ZO)'F'qu> '
G3,(20) G3,(20)

Collecting the estimates for the terms in (3.20) and applying Young’s
inequality and (p,q-2), we obtain

]6[ H(z,|Vu|)dz
G} (z0)

A+c ][][ H(z,|Vul|)? dz +c]6[ H(z,|F|)dz.
G3,(20) G3,(20)

We use (p,g-i) to absorb %A into the left hand side. This completes the proof
of the first statement.

g
<

DN | =
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To show the second statement, observe that as in the proof of Lemma 3.9,
we obtain from the first statement that

76[ (H(z,|Vul) + H(z,|F|)) d=
G)(zo0)
1 A(l 0)
<iag € / /. H(z, | V)’ dz
2 G2, (20)NW((4c) =1/ )

H(z,|F|)dz
\Ggp\ //GA (20)NDB((4c)~1A)

Tt follows from (p,q-3) that
H @eva) s R s
G2y p(20)
A(l 0)
// H(z,|Vul|)? dz
|Gzp| G2, (20)NW((4c)~1/9 )

Jri// H(z, |F|)dz
1G5l JJ Gy, (zo)n@((ac)-1a)
and we have

z,|Vu|)dz < ¢ z, |Vu 1
Vul)dz < A9 H(z,|Vu|)?d
Ggp(zo)ﬁ\ll((zkc)—l/eA)

2np
—|—c// H(z,|F|)dz
G%‘p(zg)l’wb((élc)—lA)

This completes the proof.

4. Proof of the main result

In this section we complete the proof of Theorem 2.2. In the first subsection,
we use a stopping time argument to construct intrinsic cylinders which are
either p-intrinsic, as in (p-1)-(p-2), or (p, ¢)-intrinsic, as in (p,q-1)-(p,q-3). In
the second subsection, we construct a Vitali type covering for this collection
of intrinsic cylinders. Also here the decay estimate of Lemma 3.1 is needed to
show the covering property of the intrinsic cylinders. In the last subsection,
we complete the proof of the gradient estimate by applying Fubini’s theorem
together with Lemma 2.6.

4.1. Stopping time argument
Let

p(n+2)—2n

A, ° :]6[ (H(z,|Vul) + H(z, |F|)) dz + 1,
Q2r(20)

Ao =X+ sup  a(z)\.
2€Q2r(20)

(4.1)
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Moreover, recalling the definition of M; in (3.1), let
K =2+ 40[a]a M7 P and & = 10K. (4.2)
Recalling the notation in (3.13) and (3.14), for p € [r, 2r] we denote
V(A p) = (M) N Qy(20) = {z € Qp(20) : H(z, [Vu(z)]) > A}
and
(A, p) = 2(A)NQp(20) = {2 € Qp(20) - H(z,[F(2)]) > A}.
Next, we apply a stopping time argument. Let r < r; < 7o < 2r and

2q(n+2)

4 Pt D20
A> ( ks ) ' Ao, (4.3)
To —T1
where « is as in (4.2). For every w € ¥(A,r1), let A, > 0 be such that
A =M+ a(w)AL,. (4.4)
We claim that
4 e
p(n —2n
A > ( al ) Mo- (4.5)
T2 —T1

For a contradiction, assume that the inequality above does not hold. Then
A =N+ a(w)A

2q(n+2)

4 ( +( 2)7)2 4 (n+2)—2
KT p(n n KT p(n n
< ( 2 ) ()\0 a(w)AO) < ( 2 ) A07
r r — r 1

which is a contradiction with (4.3). Therefore, (4.5) is true and we have for
every s € [(re —r1)/(2K), 72 — 1) that

H @I+ H ) s
Qs (w)

n+2
n(2—p) [ Qpr
< (Z) L e vay + H R a
Q2r(20)

S

+2

4kr " n(2=p) p(n+2)—2n

< Aw 2 Ay ?
To —T1

4ARr 2 ey 4ARr T2 paen—2n
< Aw 2 Ao 7 =P
To —T1 To —T1

By (4.4) we have w € U(A\2,ry). Therefore, by the Lebesgue differentiation
theorem there exists p,, € (0, (r2 — r1)/(2k)), such that

H @G Iva v HG IR d =,
Qi (w)

and

]6[ (H(z, |Vu|) + H(z|F|)) dz < A7 (4.6)
Q2™ (w)
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for every s € (pu, 2 —r1). This shows that at each point w € W(A, 1) we have
a p-intrinsic cylinder satisfying (p-2).
Next, we assume that

KN < a(w)Ad (4.7)

w

and show that in this case there exists a (p, ¢)-intrinsic cylinder satisfying (p,q-
2) and (p,q-3). For every s € [py,72 — 1), we have by (2.1), (2.2), (4.4) and
(4.6) that

Ho v + B R d:
Gov (w)

A

< —pﬁ (H(z,|Vu|) + H(z,|F|))dz < A.
Aw) JQw (w)

Recall that w € U(A, 7). Again by the Lebesgue differentiation theorem, we
find ¢, € (0, py] such that

]6[* H(z,|Vu|) + H(z,|F|)dz = H(w, Ay)
Goy (w)
and

HA (H (2 |Vul) + H(z | F|)) dz < H(w, Ay)
GV (w)

for every s € (Gu, 2 — 71).
To show (p,q-2), we claim that

a(w) > 2[a]o(10p,)". (4.8)

Assume for contradiction that the opposite holds. By (4.7) and the negation
of (4.8), we have

KN < 20[a]api AL .
As (4.6) holds true also in this case, Lemma 3.1 gives
K K
KX < 20[a]q——=—AP, < —AD.
w — [a](l40[a]a w — 2 w
This is a contradiction and therefore (4.8) is true. It follows from (4.8), that

2[ala(10pw)* < a(w) < Q inf( )a(z) + [a]a(10p,)*

10pq (W

and

sup  a(z) < inf  a(2) + [a]a(10py)* <2 inf a(z).

Q10p (W) Q10p., (W) Q10p, (W)
Therefore, when (4.7) is true

a(w)
2
As ¢, < py, we have shown the properties (p,q-1)-(p,q-3).

< a(z) < 2a(w) for every z € Q1op,, (w).
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4.2. Vitali type covering argument
For each w € U(A,r), we consider

Qg‘“’ (w)  in p-intrinsic case,
U(w) == Xow . . . .
Gye (w)  in (p, q)-intrinsic case.

We prove a Vitali type covering lemma for this collection of intrinsic cylinders.

We denote
2 w : _intrinsi 7
F={U(w):we¥A,r)} and [, = { P I p-intrinsic case

26, in (p, ¢)-intrinsic case.

Recall that I,, € (0, R) for every w € ¥(A,r1), where R = (ro —r1)/k and & is
as in (4.2). Let

R R ,

We construct subcollections G; C Fj, j € N, recursively as follows. Let G; be a
maximal disjoint collection of cylinders in F;. Observe that for each U(w) € F;

we have
R n+2 B
(2) AL < Uw),

which implies that the collection is finite. Suppose that we have selected
G1,...,Gk_1 with & > 2, and let

k-1
Gr = U(w) € Fr, : Ulw)NU(v) =0 for every U(v) € U g,
j=1

be a maximal collection of pairwise disjoint cylinders. It follows that
g=19. (4.9)
j=1

is a countable subcollection of pairwise disjoint cylinders in F. We claim that
for each U(w) € F, there exists U(v) € G such that

Uw)NUw)#0 and U(w) C &U(v). (4.10)

For every U(w) € F, there exists j € N such that U(w) € F;. By the construc-
tion of G;, there exists a cylinder U(v) € UJ_,G; for which the first condition
in (4.10) holds true. Moreover, since l,, < % and [, > %, we have

Ly < 2L, (4.11)

In the remaining of this subsection, we prove the second claim in (4.10).
First, we show the comparability of A,, and A, using the following observations.
For i € {v,w}, there exist 2p; > I; > 0 and \; > 0 such that

A =M+ a(z)\] (4.12)
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and
f%A (H(z, [Vul) + H(z, |F]) dz = X, (4.13)
Qp,ii (21)

It follows from (4.13) and (3.2) that

AN\ <
Piti = 10la]a

Moreover, the first condition in (4.10) and (4.11) imply that Q;,, (w)N@Qy, (v) #
() and

AP (4.14)

Qu, (w) C Qs1,(v) C Quop, (v)-
Therefore, we have by (2.4) that
la(w) = a(v)| < [a]a(10p,)". (4.15)
Now we show the comparability of A\, and A,. First, we claim that if
Aw < Ay, then
1
Ay S K7 Ay, (4.16)

For a contradiction, assume that (4.16) does not hold. By (4.12) and (4.15),
we have

A= X2, + a(w)X, < AL, + (o), + [ala(10p,)° L
From the negation of (4.16) and (4.14), we obtain
1 1 K

1
10[aa po NS 10[a)apoNe < —710[a]q e AL < ZA.

q aq
p p

Negation of (4.16) and the above estimates lead to the contradiction
1 1
A< 3 (AP + a(v)AD) + 5)\{)’ <A,

and thus (4.16) holds.
On the other hand, if A\, < A, we claim that
Ao < K5\,

Again, assume for contradiction that the opposite holds. It follows from (4.14)
that

A= X+ a(0)A < AL+ a(w)AS + [a]a(10p,)" N

K
<X+ a(w)N + X

1 1 1
< ?)\ﬁ) + e a(w)A\L, + Z)\ﬁ, <A,

P

which is a contradiction. We conclude that

K™ 5w < Ay < K7 \y. (4.17)
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We show that the second claim in (4.10) holds in all four possible cases
that may occur:

(i) U(v) = Ql)‘v" (v) and U(w) = Ql)‘ (w),
(i) U(v) = G} (v) and U(w) = G} (w),
(i) U(w) = GlAv” (v) and U(w) = Ql)‘uj” (w) or
(iv) U(v) = Q)" (v) and U(w) = G} (w).

Proof for the spatial inclusion is the same in all the cases. We denote v =
(Ty,ty) and w = (T4, ty), where 2,2, € R™ and t,,t, € R, and recall the
notation in (2.1) and (2.2). For any ¢ € Bl)“ (w) we have by (4.11) and (4.17),
that

|§—xv|<|§—zw|—|—|xw xv|<21 /\ —|—l/\
<4K2Pl)\ +l)\2 <6Klv)\vT,

and therefore Bli:”’ (w) C 6KBl)‘v'“ (v).
We show the inclusion in time direction in the four possible cases sepa-
rately. In case (i), we have by (4.11) for any 7 € I (t,,) that

|7 —to| <|T = tw| + |tw — to] <22 +12 <912,

and therefore Ij, (t,,) C 911, (t,,).

w

In case (ii), we have by (4.11) and (4.17) for any 7 € Jl):u () that

AP AP Y
—to] ST = to| + [tw — to] < 2521 + 2212 < 9K
fr =l < 17 tul + [t — 1 < oRIEE,
and therefore J;" (t,,) C 9K.J} (t).
In case (iii) we have KA\ > a(w)AY, which along with (4.17) and (4.12)
gives

205 2K D 2K NP - 2K2\P
200 — 20\, T AL+ K ta(w)A, T A

Therefore, we have for any 7 € I, (t,,) that
AP A o 17TK2\P 2,

|7 —ty| |7 — tw| + |tw — to] <202 + A 2 < I

Together with the spatial inclusion this implies Q?u;w (w) C 6K GZ\: (v).

Finally, in case (iv) we have by (4.11) and (4.12) for any 7 € Jl’iw (tw)
that

AP
IT = to] < |7 = tw| + [tw — to \<2A“fl?+12<9z2

and therefore J, >‘( w) C 9K (t,). We have covered every case and conclude
that (4.10) holds.
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4.3. Final proof of the gradient estimate
We write the countable pairwise disjoint collection G defined in (4.9) as G =

U2 Uj, where U; = U(w;) with w; € W(A,r1). By Lemma 3.9 and
Lemma 3.14, there exist ¢ = ¢(data) and 6y = 0y(n,p,q) € (0, 1), such that

// H(z,|Vul)dz < eA*™ 9// (z,|Vul)? d
U, ﬂ\I/(c_lA)
+c// H(z,|F|)dz
U;n®(c—1A)

for every j € N with § = (6p +1)/2. By summing over j and applying the fact
that the cylinders in G are pairwise disjoint, we obtain

J[ - aGva e
AT’l
SZ// H(z,|Vu|)dz
j=1"77xUj
<At // H(z,|Vu|)? dz + ¢ // F|)
Z U;jN¥(c1A) | Z el dC lA) “EDa

< AT 9// z, |Vul) dz—l—c// 2z, |F]) dz
(c— 1Ar2) (c™ lATz)

(4.18)
Moreover, since
// H(z, [Vu]) dz < A~ 0// 2 [Vu))? d
(e A,r)\ T (A1) W(c—1A,rz)
we conclude from (4.18) that
// H(z,|Vu|)dz
W(c—1A,r1)
<A 9// z,|Vul) dz—!—c// 2z, |F]) dz
C 1A 7"2) <I>(C 1A ’r‘g)
(4.19)

For k € N, let
H(z, [Vul)s = min{H(z, |Vu]), k}
and
Ui(A, p) = {2 € Qp(20) : H(2,|Vu(z)|)r > A}.

It is easy to see that if A > k, then Uy (A, p) =0, and if A < k, then ¥, (A, p) =
U(A, p). Therefore, we deduce from (4.19) that
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/ / (H(z, [Vul)i) ™ H(z, |Vul)? dz
\Pk(c_lA,rl)

< A // H(z,|Vul)’ dz+c// H(z, |F|)dz
Wy (c1A,r2) P(c=1A,r2)

Recalling (4.3), we denote
+2)

4 PO
- wr \ POnF2)-2n
A1 =C ! < ) Ao.

g —T1

Then for any A > Ay, we obtain

/ / (H(z, [Val)o) ™ H(z |Vu])’ dz
\I/k Arl
<A 9// z,|Vul) dz+c// 2z, |F]) dz
Uy ATQ) (I>(A T2)

Let € € (0,1) to be chosen later. We multiply the inequality above by

and integrate each term over (A1, c0), which implies

Ae—l
I*/ AT 1// (z,|Vul)r) " H(z,|Vu])? dz dA
A1 Wy ATl
<c/ A 9// 2, |Vul|)? dz dA
A1 \I’k(A 7"2
+c/ A 1// 2, |F|) dz dA
A1 AT2
= 11+ III.
We apply Fubini’s theorem to estimate I and obtain
1 —O+e
=2 [ G H G V) s
W (A1,r1)
= 2, [Vul)) ™ H(z, V)’ dz
Wi (AL, Tl)
Since
/] (H (2, [Val)) = H(z, V)’ dz
Qry (20)\ Vi (A1,71)
< A§ // 2, | Vu| ) ) (z,|Vu|)0 dz
2T(ZO)
we have

1 _
= // (H (2, |Vul)e) =" H(z, |Vul)’ dz
Q'rl (ZO)

€

2 _
-2 / / (H (=, [Vul)i)' ™" H(z, |Vu])? dz
Q2r(20)
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Similarly, by Fubini’s theorem, we have

1 1—0+e 0
< -
Il < 1—0+¢ //Qw(zo) (H (2, |Vul)y) H(z,|Vu|)’ d=z

I < - // (z,|F|)* e dz.
QZT(ZO)

By combining the estimates above, we obtain

// (H (2, |Vul)r) 0" H(z, |Vu|)? dz
Qrq (20)
< L// (H(z, [Va))e) ™0 H(z, [Va)) dz
1—60-+¢€
Qry (20)
+eAc // 2 [Vul)e)' =0 Hz, V)’ dz
Q2T(ZO)
+c// (z,|F|)' e dz.
2r(ZO)

We choose €y = eg(data) € (0,1) so that for any € € (0, &),

and

—_

ce
< Z,
1—0+¢ ™ 2
Then, by applying Lemma 2.6 we get

// (H (=, [Va))) =4 H =, |Vu))’ d
QT(ZO)
< cA§ // 2, [Vu)p) "0 H(z, |Vu])? dz
2r(20)

+c// (z,|F|)'Tedz.
27(20)

The claim follows by letting k — oo and recalling (4.1).
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