
Nonlinear Differ. Equ. Appl. (2024) 31:39
c© 2024 The Author(s)
1021-9722/24/030001-28
published online March 14, 2024
https://doi.org/10.1007/s00030-024-00926-7

Nonlinear Differential Equations
and Applications NoDEA

Singular solutions of semilinear elliptic
equations with supercritical growth on
Riemannian manifolds

Shoichi Hasegawa

Abstract. In this paper, we shall discuss singular solutions of semilinear el-
liptic equations with general supercritical growth on spherically symmet-
ric Riemannian manifolds. More precisely, we shall prove the existence,
uniqueness and asymptotic behavior of the singular radial solution, and
also show that regular radial solutions converges to the singular solution.
In particular, we shall provide these properties on spherically symmet-
ric Riemannian manifolds including the hyperbolic space as well as the
sphere.
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1. Introduction

We devote this paper to considering singular radial solutions to semilinear
elliptic equations on the N -dimensional Riemannian model (M, g),

−Δgu = f(u) in M \ {0}, (1.1)

where N ≥ 3 and f ∈ C2[0,∞). Here, M is a manifold admitting a pole o and
whose metric g is denoted, in spherical coordinates around o, by

ds2 = dr2 + ψ(r)2dΘ2, r ∈ (0, R), Θ ∈ S
N−1,

where dΘ2 denotes the canonical metric on the unit sphere S
N−1, r is the

geodesic distance between o and a point (r,Θ), and ψ is a smooth positive
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function on (0, R) with some R ∈ (0,+∞]. We shall state the precise as-
sumptions on ψ later. Remark that the typical example of M in this paper
is the N -dimensional hyperbolic space H

N (ψ(r) = sinh r, R = +∞), and
the N -dimensional sphere S

N (ψ(r) = sin r, R = π). Moreover, Δg denotes
the Laplace–Beltrami operator on (M, g), and for a scalar function f , Δg is
expressed by

Δgf(r, θ1, . . . , θN−1) =
1

(ψ(r))N−1

∂

∂r

{
(ψ(r))N−1 ∂f

∂r
(r, θ1, . . . , θN−1)

}

+
1

(ψ(r))2
ΔSN−1f(r, θ1, . . . , θN−1),

where ΔSN−1 is the Laplace–Beltrami operator on S
N−1.

There is an extensive literature on existence and properties of singular
radial solutions of the following semilinear elliptic equations in R

N :

−Δu = f(u) in R
N \ {0}, (1.2)

where N ≥ 3 and f ∈ C2[0,∞). Indeed, for the case of f(u) = up with
p > n/(N − 2), (1.2) has the exact singular solution u∗(r) = Ar−2/(p−1),
where

A =
{

2
p − 1

(
N − 2 − 2

p − 1

)} 1
p−1

.

If p > ps = (N + 2)/(N − 2), then the singular solution is unique (Propo-
sition 3.1 in [39]). When f(u) = eu, it was shown that (1.2) has the unique
singular solution u∗(r) = −2 log r + log 2(N − 2) [31]. Further cases of f(u)
have also been researched. For f(u) = up + g(u) with lower order term g, see
[16,17,21,25,30,33,36,37]. The case of f(u) = eu +g(u) was treated in [34,37].
Moreover, [36] proved the existence and uniqueness of the singular solution for
the both cases of f(u) = up + o(up) (p > pS) and f(u) = eu + o(eu) as
u → ∞. Thereafter, for more general settings of f(u) (see (f1) − (f2) below),
the existence and uniqueness of the singular solution have been obtained in
[37].

On the other hand, the structure of radial solutions to semilinear elliptic
equations on Riemannian models has attracted a great interest. In the study,
we consider solutions of the ordinary differential equation

u′′(r) + (N − 1)
ψ′(r)
ψ(r)

u′(r) + f(u) = 0 for r ∈ (0, R). (1.3)

Then, we denote by {u(r, α)}α>0 the family of radial regular solutions of (1.1),
i.e., u(r, α) is the solution of (1.3) satisfying u(0) = α and u′(0) = 0. We shall
state known results on the sphere and the hyperbolic space as typical models
of Riemannian models. Firstly, we consider the case where ψ(r) = sin r and
R ≤ π, i.e., M is the spherical cap or the sphere S

N . For f(u) = up with
the Dirichlet condition u(R) = 0, positive solutions to (1.3) were treated in
[5] when N = 3 and p = 5. Then, they proved that (1.3) has no positive
solutions for R ∈ (0, π/2], and admits a positive solution for R ∈ (π/2, π).
Thereafter, under the same condition of f(u), [27] researches the properties
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of positive solutions precisely for N ≥ 3 and p > 1. Moreover, in [1], for
f(u) = up + λu(λ ∈ R) with u(R) = 0, the existence and non-existence of
positive solutions to (1.3) were discussed when N = 3 and p = 5. Furthermore,
for the case of f(u) = −CN,pu + up with CN,p = 2

p−1

(
N − 2 − 2

p−1

)
, or

f(u) = 2(N −2)(eu −1), (1.3) arises in the research of the construction of non-
radial solutions to corresponding semilinear elliptic equations in R

N ( [18,35]).
Other results were obtained in [2,4,7,8,12,13,15,26,32].

Next we consider the case where ψ(r) = sinh r, R = +∞, i.e., M is the
hyperbolic space H

N . For f(u) = up, [29] showed that there exists a unique
ᾱ > 0 such that u(r, ᾱ) is a positive entire solution in H1(HN ) for p < ps(N).
In [14], they classified the positivity of radial solutions to (1.1) in H

N for
p > 1, and proved that the initial value ᾱ is a threshold for the positivity of
radial solutions for p < ps(N). Moreover, replacing H

N by M with appropriate
conditions of ψ, [10] proved the similar structure of radial solutions of (1.1)
in M as that of (1.1) in H

N . In [10], they also studied the structure of radial
solutions to (1.1) in M for the stability and separation phenomena. Concerning
these properties, the existence of a critical exponent was also obtained in [24].
Furthermore, under the general setting of M , for the case of f(u) = eu, the
stability and separation phenomena of radial solutions were researched in [9].
Further situations and properties were studied in [3,6,9,11,22,23,38,40].

Regarding singular solutions to (1.1), [27] obtained the existence and as-
ymptotic behavior of a singular radial solution for the case of f(u) = up with
p > ps on the spherical cap, and showed that regular radial solutions converges
to the singular solution. On the other hand, under the general setting of M
including the case of H

N , in [10], they listed an open problem on singular
solutions. Indeed, for f(u) = up, they referred to the existence and the asymp-
totic behavior of singular solutions. Thereafter, considering the problem, [24]
showed the existence and the asymptotic behavior of singular solutions on M
including H

N for N ≥ 11 and p ≥ pJL (Theorem 1.3 of [24]), where the ex-
ponent pJL is the Joseph-Lundgren exponent, i.e., pJL = (N−2)2−4N+8

√
N−1

(N−2)(N−10) .
We note that when N ≤ 10, the existence and the asymptotic behavior of
singular solutions were not obtained. Moreover, for any p > 1, the uniqueness
of singular solutions was not investigated even in the cases of SN and H

N .
In this paper, motivated by the above results and the open problem,

we shall research the existence, uniqueness and asymptotic behavior of radial
singular solutions to (1.1). In order to introduce our main results, we shall
firstly state precise assumptions of ψ(r) and f(u). In the following, we shall
suppose that for some R > 0, ψ satisfies
(H1) ψ ∈ C2([0, R)), ψ(0) = ψ′′(0) = 0, and ψ′(0) = 1.
In [9,10,24], (H1) with R = ∞ and additional assumptions were also supposed,
such as the positivity of ψ′(r) for r ∈ (0,∞) and the asymptotic behavior of
ψ′(r)/ψ(r) as r → ∞. In those papers, the hyperbolic space HN (ψ(r) = sinh r,
R = +∞) is the typical model of M , and the assumption (H1) was necessary
for the geometric settings. In this paper, since we assume only (H1), we can
treat not only H

N but also the spherical cap or the sphere S
N (ψ(r) = sin r,
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R ≤ π) as examples of M . This is the different situation as that of [9,10,24].
Moreover, f(u) satisfies the followings:

(f1) f ∈ C2[0,∞), f(u) > 0, and F (u) < ∞ for u ≥ u0 with some u0 ≥ 0,
where

F (u) =
∫ ∞

u

ds

f(s)
.

(f2) There exists a finite limit

q = lim
u→∞

f ′(u)2

f(u)f ′′(u)
(< ∞). (1.4)

Remark that under (f1) − (f2), the exponent q satisfies q ≥ 1 and can be
written by

q = lim
u→∞ F (u)f ′(u). (1.5)

More precisely, see Lemma 2.1 below (also see Lemma 2.1 in [37]). Assump-
tions (f1)−(f2) were posed in [37]. The exponent q in (1.4) was first considered
in [19] to classify stable solutions. Moreover, concerning semilinear parabolic
equations with (f1) and (1.5), the solvability was also studied in [20]. Represen-
tative examples satisfying (f1)− (f2) are f(u) = up with p > 1 (q = p/(p−1))
and f(u) = eu (q = 1). Further examples were given in [37]. Defining the
growth rate of f by p = limu→∞ uf ′(u)/f(u), we observe form L’Hospital’s
rule that

1
p

= lim
u→∞

f(u)/f ′(u)
u

= lim
u→∞

(
1 − f(u)f ′′(u)

f ′(u)2

)
= 1 − 1

q
.

Hence, 1/p + 1/q = 1. Then, we denote by qs the Hölder conjugate of the
critical Sobolev exponent ps = (N + 2)/(N − 2), i.e.,

qs =
N + 2

4
.

We note that the supercritical case p > ps corresponds to the case q < qs. In
this setting, we consider solutions of the ordinary differential equation to (1.3).
We denote by {u(r, α)}α>0 the family of radial regular solutions of (1.1), i.e.,
u(r, α) is the solution of (1.3) satisfying u(0) = α and u′(0) = 0.

Then, we shall obtain the following main theorem:

Theorem 1.1. Let ψ satisfy (H1), and N ≥ 3. Assume that (f1) − (f2) with
q ∈ [1, qs) hold. Then, there exists a unique singular solution u∗(r) of (1.3) for
0 < r ≤ r0 with some r0 ∈ (0, R], and the regular solution u(r, α) satisfies

u(r, α) → u∗(r) in C2
loc(0, r0] as α → ∞. (1.6)

Furthermore, the singular solution u∗ satisfies

u∗(r) = F−1

[
ψ(r)2

2N − 4q
(1 + o(1))

]
as r → 0. (1.7)
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In [10], they posed an open problem on the existence and the asymptotic
behavior of singular solutions to (1.1) with f(u) = up(p > 1). When p >
ps, Theorem 1.1 gives an affirmative answer to that problem. Moreover, [24]
showed the existence and the asymptotic behavior of singular solutions to (1.3)
with f(u) = up, p ≥ pJL and N ≥ 11. Since ps < pJL for N ≥ 11, Theorem 1.1
extends the existence result to the case of p > ps with N ≥ 3. Furthermore,
when ψ(r) = sin r and R < π, in [27], the existence and asymptotic behavior
of a singular solution to (1.3) for f(u) = up with p > ps were proved. By
Theorem 1.1, the uniqueness of the singular solution is also obtained.

In order to prove Theorem 1.1, we shall apply the methods in [36,37].
In [36,37], they changed the solution of (1.3) with ψ(r) = r into a function.
Furthermore, applying Pohozaev’s identity and comparison arguments, they
obtained some a priori estimates of solutions near r = 0 and showed the exis-
tence and properties of the singular solution. In this paper, we shall transform
the solution to (1.3) under (H1), construct modified Pohozaev type identity,
and derive corresponding estimates of solutions.

This paper is organized as follows. In Sect. 2, we prove some prelimi-
nary results. In Sect. 3, we study the asymptotic behavior of a function, which
was transformed from the solution to (1.3). We devote Sect. 4 to showing the
uniqueness of the singular solution. In Sect. 5, we shall obtain the estimate of
solutions. Then, finally, in Sect. 6, we give the proof of Theorem 1.1.

2. Preliminaries

First, we introduce the following lemmas.

Lemma 2.1. (Lemma 2.1 in [37]) Let (f1) − (f2) hold. Then, f ′(u) → ∞ as
u → ∞. Furthermore, the exponent q in (1.4) satisfies q ≥ 1 and q is also
given by (1.5).

Lemma 2.2. (Lemma 2.4 in [37]) For any δ > 0, there exists a constant C > 0
such that

f(u) ≥ Cu
q+δ

q+δ−1

for sufficiently large u.

In this paper, we assume that (f1) − (f2) with q ∈ [1, qs) hold. Thus, from
Lemma 2.1, we may assume that

f ′(u) > 0 for u ≥ u0, (2.1)

by replacing u0 in (f1).
From (H1), there exists R0 ∈ (0, R) such that

ψ′(r) > 0 for r ∈ [0, R0). (2.2)

Hence, ψ(r) is strictly increasing for r ∈ [0, R0). Then, for a solution u of (1.3),
we shall define a function x = x(t) in t ∈ (T0,∞) by

F (u(r))
ψ(r)2

=
e−x(t)

2N − 4q
, t = − log ψ(r), (2.3)
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where T0 = − log ψ(R0). Since N > 2, we shall remark that 2N − 4q > 0 for
q ∈ [1, qs). Concerning x, the following holds:

Lemma 2.3. Let u be a solution to (1.3), and define x(t) by (2.3) with q ∈
[1, qs). Then, for t ∈ (T0,∞), x(t) satisfies

x′′(t) − ax′(t) + b(Pex(t) − 1) + (q − 1)(x′(t))2 + (f ′(u)F (u) − q)(x′(t) + 2)2

− Q(x′(t) + 2) = 0, (2.4)

where

a = N + 2 − 4q > 0, b = 2N − 4q > 0, (2.5)

and

P = P (t) =
1

(ψ′(r))2
, Q = Q(t) =

ψ(r)ψ′′(r)
(ψ′(r))2

.

Furthermore, in the case q > 1, put z(t) = e(q−1)x(t). Then, for t ∈ (T0,∞),
z(t) satisfies

F (u(r))
ψ(r)2

=
z(t)−1/(q−1)

2N − 4q
,

and

z′′ − az′ + (q − 1)b(Pzp − z) + (q − 1)(f ′(u)F (u) − q)
(

z′

(q − 1)z
+ 2

)2

z

− (q − 1)Q
(

z′

(q − 1)z
+ 2

)
z = 0, (2.6)

where p = q/(q − 1).

Proof. By (2.3), we have

F (u(r)) =
e−x(t)−2t

2N − 4q
. (2.7)

Differentiating the above with respect to r, we derive

−u′(r)
f(u)

= ψ′(r)
x′(t) + 2
2N − 4q

e−x(t)−t. (2.8)

Differentiating again with respect to r, we have

− u′′(r)
f(u)

+
f ′(u)
f(u)2

u′(r)2

=
e−x(t)−t

2N − 4q

{
ψ′′(r)(x′(t) + 2) − ψ′(r)2

ψ(r)
(x′′(t) − 3x′(t) − 2 − x′(t)2)

}
.

(2.9)

From (2.7)–(2.8), it follows that

f ′(u)
f(u)2

u′(r)2 = f ′(u)
u′(r)2

f(u)2
= f ′(u)ψ′(r)2

e−x(t)

2N − 4q
F (u)(x′(t) + 2)2. (2.10)
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Then, by (2.9)–(2.10), we derive

u′′(r)
f(u)

=
e−x(t)

2N − 4q
{f ′(u)ψ′(r)2F (u)(x′(t) + 2)2 − ψ(r)ψ′′(r)(x′(t) + 2)

+ ψ′(r)2(x′′(t) − 3x′(t) − 2 − x′(t)2)}. (2.11)

Moreover, applying (2.8), we have

ψ′(r)
ψ(r)

u′(r)
f(u)

= −ψ′(r)2
x′(t) + 2
2N − 4q

e−x(t). (2.12)

Then, we observe from (2.11)–(2.12) that

0 =
(2N − 4q)ex(t)

ψ′(r)2f(u)

(
u′′(r) + (N − 1)

ψ′(r)
ψ(r)

u′(r) + f(u)
)

=
(2N − 4q)ex(t)

ψ′(r)2

(
u′′(r)
f(u)

+ (N − 1)
ψ′(r)
ψ(r)

u′(r)
f(u)

+ 1
)

= f ′(u)F (u)(x′(t) + 2)2 − Q(t)(x′(t) + 2) + (x′′(t) − 3x′(t) − 2 − x′(t)2)

− x′(t)(N − 1) − 2(N − 1) + (2N − 4q)P (t)ex(t).

Thus, we obtain (2.4). Furthermore, for q > 1, put z(t) = e(q−1)x(t). Then, by
(2.3),

F (u(r))
ψ(r)2

=
z− 1

q−1

2N − 4q
.

Since z(t) = e(q−1)x(t), it follows from (2.4) that

{(q − 1)e(q−1)x(t)}−1(z′′(t) − az′(t)) = (q − 1)x′(t)2 + x′′(t) − ax′(t)

= −b(P (t)ex(t) − 1) − (f ′(u)F (u) − q)(x′(t) + 2)2 + Q(t)(x′(t) + 2).

This implies that

z′′(t) − az′(t) = −b(q − 1)(Pz
q

q−1 − z) + (q − 1)Q
(

1
q − 1

z′(t)
z(t)

+ 2
)

z(t)

− (q − 1)(f ′(u)F (u) − q)
(

1
q − 1

z′(t)
z(t)

+ 2
)2

z(t).

Setting p = q/(q − 1), we obtain (2.6). �

Lemma 2.4. Let u be a positive solution to (1.3). Assume that there exists
r0 ∈ (0, R0] such that u(r) ≥ u0 for 0 < r ≤ r0. Then, the followings hold :

(i) u′(r) ≤ 0 for 0 < r ≤ r0.

(ii) F (u(r)) ≥ ψ(r)2

2NC2
0

for 0 < r ≤ r0, where C0 = max
r∈[0,r0]

ψ′(r) ≥ 1.

Proof. (i) Assume to the contrary that there exists r1 ∈ (0, r0] such that
u′(r1) > 0. Since

(ψ(r)N−1u′(r))′ = −ψ(r)N−1f(u) ≤ 0 for 0 < r ≤ r0,
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the function ψ(r)N−1u′(r) is nonincreasing for 0 < r ≤ r0. Then, it follows
that

ψ(r)N−1u′(r) ≥ ψ(r1)N−1u′(r1) > 0 for 0 < r ≤ r1.

This implies that

u′(r) ≥ Cψ(r)−(N−1) for 0 < r ≤ r1,

where C = ψ(r1)N−1u′(r1) > 0. Integrating the above on (r, r1], we obtain

u(r1) − u(r) ≥ C

∫ r1

r

ψ(s)−(N−1)ds. (2.13)

Applying (H1), we see that lim
r→+0

ψ(r)/r = ψ′(0) = 1. Thus, there exists C̃ ≥ 1

such that ψ(r) ≤ C̃r for r ∈ (0, r1]. It follows from (2.13) that

u(r1) − u(r) ≥ CC̃−(N−1)

∫ r1

r

s−(N−1)ds = −CC̃−(N−1)

N − 2
(r−(N−2)

1 − r−(N−2))

→ ∞ as r → 0.

Thus, letting r → 0, we obtain u(r) → −∞. This contradicts u ≥ u0, and we
see that u′(r) ≤ 0 for 0 < r ≤ r0.

(ii) For ρ ∈ (0, r), integrating −(ψ(r)N−1u′(r))′ = ψ(r)N−1f(u) on [ρ, r],
we observe from (i) that

−ψ(r)N−1u′(r) = −ψ(ρ)N−1u′(ρ) +
∫ r

ρ

ψ(s)N−1f(u(s))ds

≥
∫ r

ρ

ψ(s)N−1f(u(s))ds.

We recall from (2.1) that f(u) is strictly increasing for u ≥ u0. Thus, letting
ρ → 0 and applying (i), we have

−ψ(r)N−1u′(r) ≥
∫ r

0

ψ(s)N−1f(u(s))ds ≥ f(u(r))
∫ r

0

ψ(s)N−1ds.

Then, it follows that

d

dr
F (u(r)) = −u′(r)

f(u)
≥ 1

ψ(r)N−1

∫ r

0

ψ(s)N−1ds.

Integrating the above on [ρ, r] with 0 < ρ < r, we have

F (u(r)) ≥ F (u(ρ)) +
∫ r

ρ

1
ψ(z)N−1

∫ z

0

ψ(s)N−1dsdz

≥
∫ r

ρ

1
ψ(z)N−1

∫ z

0

ψ(s)N−1dsdz.
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Setting C0 = max
r∈[0,r0]

ψ′(r), we observe from (H1) that C0 ≥ 1. Then, we have

F (u(r)) ≥ 1
C0

∫ r

ρ

1
ψ(z)N−1

∫ z

0

ψ(s)N−1ψ′(s)dsdz =
1

NC0

∫ r

ρ

ψ(z)dz

≥ 1
NC2

0

∫ r

ρ

ψ(z)ψ′(z)dz =
1

2NC2
0

(ψ(r)2 − ψ(ρ)2).

Letting ρ → 0, we have F (u(r)) ≥ ψ(r)2/2NC2
0 . �

Lemma 2.5. Let u be a singular solution of (1.3) for 0 < r ≤ r0. Then,

−ψ(r)N−1u′(r) =
∫ r

0

ψ(s)N−1f(u(s))ds for 0 < r ≤ r0. (2.14)

Proof. Since q < qs = (N +2)/4 and N ≥ 3, we have −N +2q < −N +2qs < 0.
Then, there exists δ > 0 such that

−N + 2q + 2δ < 0. (2.15)

Firstly, we claim that

f(u(r)) = O(ψ(r)−2q−2δ) as r → 0. (2.16)

Indeed, from (1.5), we find u1 ≥ u0 such that F (u)f ′(u) ≤ q + δ for u ≥ u1.
Then, we have

d

du
(f(u)F (u)q+δ) = F (u)q+δ−1 {f ′(u)F (u) − (q + δ)} ≤ 0 for u ≥ u1.

Since f(u)F (u)q+δ is nonincreasing for u ≥ u1, we obtain

f(u)F (u)q+δ ≤ f(u1)F (u1)q+δ for u ≥ u1.

Thus, it follows from Lemma 2.4 (ii) that for sufficiently small r > 0,

f(u) ≤ f(u1)F (u1)q+δF (u)−(q+δ) ≤ Cf(u1)F (u1)q+δψ(r)−2q−2δ.

This implies that (2.16) holds. Moreover, it follows from Lemma 2.4 (i) that
−ψ(r)N−1u′(r) ≥ 0 for 0 < r ≤ r0. Then, we shall prove that

lim inf
r→0

(−ψ(r)N−1u′(r)) = 0. (2.17)

Assume to the contrary that lim inf
r→0

(−ψ(r)N−1u′(r)) > 0. Then, there exist

L > 0 and r1 ≤ r0 such that −ψ(r)N−1u′(r) ≥ L for 0 < r ≤ r1, and thus,

u′(r) ≤ −Lψ(r)−(N−1) for 0 < r ≤ r1.

Setting C0 = max
r∈[0,r0]

ψ′(r) and integrating the above over [r, r1], we have

u(r1) − u(r) ≤ −L

∫ r1

r

ds

ψ(s)N−1
≤ − L

C0

∫ r1

r

ψ′(s)
ψ(s)N−1

ds

=
L

C0(N − 2)

(
1

ψ(r1)N−2
− 1

ψ(r)N−2

)
.
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Hence, there exists C > 0 such that u(r) ≥ Cψ(r)−(N−2) for sufficiently small
r > 0. Therefore, we observe from Lemma 2.2 that

f(u) ≥ Cu(r)
q+δ

q+δ−1 ≥ Cψ(r)−(N−2) q+δ
q+δ−1

for sufficiently small r > 0. Applying (2.16), we see that

2q + 2δ − (N − 2)
q + δ

q + δ − 1
≥ 0.

Then, we derive 2q + 2δ − N ≥ 0, and this contradicts (2.15). Thus, we obtain
(2.17). Hence, there exists rn → 0 such that −ψ(rn)N−1u′(rn) → 0 as n → ∞.
From (1.3), we have

−(ψ(r)N−1u′(r))′ = ψ(r)N−1f(u(r)).

Integrating the above on [rn, r], we derive

−ψ(r)N−1u′(r) + ψ(rn)N−1u′(rn) =
∫ r

rn

ψ(s)N−1f(u(s))ds.

Letting n → ∞, we obtain (2.14). �

Lemma 2.6. Let u be a singular solution of (1.3). Then,

lim sup
r→0

ψ(r)2

F (u(r))
> 0.

Proof. Assume to the contrary that

lim
r→0

ψ(r)2

F (u(r))
= 0. (2.18)

Take q0 ∈ (q, qs), and define z0(t) by

F (u(r))
ψ(r)2

=
z0(t)

− 1
q0−1

2N − 4q0
. (2.19)

Replacing q and z(t) with q0 and z0(t) in Lemma 2.3, respectively, we obtain
the following equation:

z′′
0 − a0z

′
0 + (q0 − 1)b0(Pzp

0 − z0) − (q0 − 1)Q
(

z′
0

(q − 1)z0
+ 2

)
z0

+ (q0 − 1)(f ′(u)F (u) − q0)
(

z′
0

(q0 − 1)z0
+ 2

)2

z0 = 0, (2.20)

where a0 = N + 2 − 4q0 > 0, b0 = 2N − 4q0 > 0, and p0 = q0/(q0 − 1) > 1.
Using (2.18)–(2.19), we have

z0(t) =
{

1
b0

ψ(r)2

F (u(r))

}q0−1

→ 0 as t → ∞.

Moreover, since we observe from (H1) that P → 1 and Q → 0 as t → ∞, it
follows from (1.5) that

− Q2

4(f ′(u)F (u) − q0)
+ b0(Pzp−1

0 − 1) → −b0 < 0 as t → ∞.
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Therefore, by q0 > q and (H1), there exists t1 ∈ (T0,∞) such that

0 < z0 < 1, − Q2

4(f ′(u)F (u) − q0)
+ b0(Pzp−1

0 − 1) < 0 for t ≥ t1, (2.21)

and

f ′(u)F (u) ≤ q0, u(r) ≥ u0, ψ′(r) ≥ 1
2

for 0 < r ≤ r1, (2.22)

where r1 = e−t1 . Applying (2.20)–(2.22), we see that

z′′
0 − a0z

′
0

= −(q0 − 1)z0

{
(f ′(u)F (u) − q0)

(
z′
0

(q0 − 1)z0
+ 2 − Q

2(f ′(u)F (u) − q0)

)2

− Q2

4(f ′(u)F (u) − q0)
+ b0(Pzp−1

0 − 1)
}

> 0 for t ≥ t1.

Hence, we derive (e−a0tz′
0)

′ > 0 for t ≥ t1, i.e., e−a0tz′
0 is increasing for t ≥ t1.

Then, we shall prove that

z′
0(t) ≤ 0 for t ≥ t1. (2.23)

Assume to the contrary that for some t2 ≥ t1, z′
0(t2) > 0 holds. Since we have

e−a0tz′
0(t) ≥ e−a0t2z′

0(t2) for t ≥ t2, we derive

z′
0(t) ≥ ea0(t−t2)z′

0(t2) for t ≥ t2.

It follows from z′
0(t2) > 0 that z′

0(t) → ∞ as t → ∞. Then, we see that
z0(t) = ∞ as t → ∞, and this contradicts (2.21). Therefore, (2.23) holds.
Thus, making use of (2.19), (2.21), and (2.23), we have for 0 < r ≤ r1,

d

dr

(
ψ(r)2

F (u)

)
= −2N − 4q0

q0 − 1
ψ′(r)etz0(t)

− q0−2
q0−1 z′

0(t) ≥ 0. (2.24)

Moreover, it follows from (2.22) and Lemma 2.4 (i) that for 0 < r ≤ r1,

d

dr
(F (u)q0f(u(r))) = −q0F (u)q0−1u′(r) + F (u)q0f ′(u(r))u′(r) (2.25)

= F (u)q0−1{(−q0) + F (u)f ′(u(r))}u′(r) ≥ 0.

On the other hand, take ε > 0 satisfying 4εq0 < 1. From (2.18), we find r2 ≤ r1
such that

ψ(r)2f(u)
F (u)f(u)

=
ψ(r)2

F (u)
≤ (N − 2q0)ε for 0 < r ≤ r2.

Hence, we obtain

ψ(r)2f(u) ≤ (N − 2q0)εF (u)f(u) for 0 < r ≤ r2. (2.26)
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Using Lemma 2.5, (2.22), (2.24)–(2.26), we have

− ψ(r)N−1u′(r) =
∫ r

0

ψ(s)N−1f(u)ds ≤ (N − 2q0)ε
∫ r

0

F (u)f(u)ψ(s)N−3ds

= 2(N − 2q0)ε
∫ r

0

(
ψ(s)2

F (u(s))

)q0−1

F (u(s))q0f(u(s))ψ(s)N−2q0−1 1
2
ds

≤ 2(N − 2q0)ε
(

ψ(r)2

F (u(r))

)q0−1

F (u(r))q0f(u(r))
∫ r

0

ψ(s)N−2q0−1ψ′(s)ds

= 2εψ(r)N−2F (u(r))f(u(r)) for 0 < r ≤ r2.

Hence, we derive ψ(r)u′(r) + 2εF (u(r))f(u(r)) ≥ 0 for 0 < r ≤ r2. Then, it
follows from (2.22) that for 0 < r ≤ r2,

d

dr

(
ψ(r)4ε

F (u(r))

)
=

ψ(r)4ε−1

F (u(r))2f(u(r))
(4εψ′(r)F (u(r))f(u(r)) + ψ(r)u′(r))

≥ ψ(r)4ε−1

F (u(r))2f(u(r))
(2εF (u(r))f(u(r)) + ψ(r)u′(r)) ≥ 0.

Thus, ψ(r)4ε/F (u(r)) is non-decreasing and bounded for 0 < r ≤ r2. Moreover,
using (2.25), we see that F (u)q0f(u) is also bounded for 0 < r ≤ r2. Thus, we
observe from Lemma 2.5 and (2.22) that for 0 < r ≤ r2,

−ψ(r)N−1u′(r) =
∫ r

0

F (u(s))q0f(u(s))
(

ψ4ε(s)
F (u(s))

)q0

ψ(s)N−1−4εq02
1
2
ds

≤ 2C

∫ r

0

ψ(s)N−1−4εq0ψ′(s)ds =
2Cψ(r)N−4εq0

N − 4εq0
.

By Lemma 2.4 (i), this implies that u′(r) = O(ψ(r)1−4εq0) as r → 0. Since
4εq0 < 1, we have lim

r→0
u′(r) = 0. Hence, we obtain lim

r→0
u(r) < ∞. This contra-

dicts the assumption that u is a singular solution of (1.3). �

3. Asymptotic behavior

In this section, we assume that u is a singular solution of (1.3) and u(r) ≥ u0

for 0 < r ≤ r0. Furthermore, we define x(t) by (2.3). Then, we shall prove the
following proposition:

Proposition 3.1. lim
t→∞ x(t) = 0, and lim

t→∞ x′(t) = 0.

To the aim of the proof of Proposition 3.1, we prepare the next lemma.

Lemma 3.2. Let u be a positive solution to (1.3). Assume that there exists
r0 ∈ (0, R0) such that u(r) ≥ u0 for 0 < r ≤ r0. Then, the followings hold :

(i) x(t) ≤ log
NC2

0

N − 2q
for t ≥ t0, where C0 = max

r∈[0,r0]
ψ′(r) ≥ 1, and t0 =

− log r0.
(ii) x′(t) ≥ −2 for t ≥ t0.
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Proof. (i) It follows from (2.3) and Lemma 2.4 (ii) that

ψ(r)2e−x(t)

2N − 4q
= F (u(r)) ≥ ψ(r)2

2NC2
0

for 0 < r ≤ r0.

Thus, we have

ex(t) ≤ NC2
0

N − 2q
for t ≥ t0.

This implies that x(t) ≤ log(NC2
0/N − 2q) for t ≥ t0.

(ii) We observe from (2.7) that x(t) = −2t − log(2N − 4q) − log F (u(r)).
Then, we obtain

x′(t) = −2 +
ψ(r)
ψ′(r)

1
F (u(r))

(
− u′(r)

f(u(r))

)
.

Applying (2.2) and Lemma 2.4 (i), we obtain x′(t) ≥ −2 for t ≥ t0. �

In order to prove Proposition 3.1, we consider the following two cases:

(i) x′(t) is nonoscillatory at t = ∞, that is, x′(t) ≥ 0 or x′(t) ≤ 0 for
sufficiently large t.

(ii) x′(t) is oscillatory at t = ∞, that is, the sign of x′(t) changes infinitely
many times as t → ∞.

To begin with, we treat the case (i).

Lemma 3.3. Assume that x′(t) is nonoscillatory at t = ∞. Then, x(t) → 0 as
t → ∞.

Proof. Since u is a singular solution of (1.3), it follows from Lemma 2.6 and
(2.3) that

lim sup
t→∞

ex(t) = lim sup
r→0

ψ(r)2

(2N − 4q)F (u(r))
> 0.

Hence, we obtain lim sup
t→∞

x(t) > −∞. When x′(t) is nonoscillatory at t = ∞,

x(t) is monotone increasing or decreasing for sufficiently large t. Thus, we have
lim

t→∞ x(t) > −∞. Moreover, it follows from Lemma 3.2 (i) that x(t) is bounded
for t ≥ t0, and there exists c ∈ R such that

x(t) → c as t → ∞. (3.1)

We shall prove that c = 0. Assume to the contrary that c �= 0. Then, we claim
that

lim
t→∞ x′(t) = 0. (3.2)

Indeed, first we consider the case where x′(t) ≥ 0 for all t large enough. Since
x(t) is bounded for t ≥ t0, we derive

lim inf
t→∞ x′(t) = 0. (3.3)
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Assume to the contrary that lim sup
t→∞

x′(t) > 0. Then, let tn → ∞ be a sequence

of local minimum points of x′(t). It follows from (3.3) that

x′′(tn) = 0, and x′(tn) → 0 as n → ∞.

Applying (2.4), (H1), and lim
t→∞ f ′(u)F (u) = q, we see that

b(P (tn)ex(tn) − 1) (3.4)

= ax′(tn)−(q − 1)x′(tn)2−(f ′(u)F (u)−q)(x′(tn) + 2)2+Q(tn)(x′(tn) + 2)
→ 0 as n → ∞.

On the other hand, we observe from (3.1) and (H1) that

b(P (tn)ex(tn) − 1) → b(ec − 1) as n → ∞.

From the assumption that c �= 0, it follows that b(ec −1) �= 0. This contradicts
(3.4), and we obtain (3.2) when x′(t) ≥ 0 for all t large enough. Furthermore,
for the case where x′(t) ≤ 0 for all sufficiently large t, we lead a contradiction
by the similar argument as in the above. Then, we derive (3.2).

By (2.4), we have

x′′(t) = ax′(t) − b(P (t)ex(t) − 1) − (q − 1)x′(t)2 − (f ′(u)F (u) − q)(x′(t) + 2)2

+ Q(t)(x′(t) + 2).

Letting t → ∞ and using (3.1)–(3.2), (H1), and lim
t→∞ f ′(u)F (u) = q, we obtain

x′′(t) → −b(ec − 1) �= 0 as t → ∞.

Thus, we see that |x′(t)| → ∞ as t → ∞. This contradicts (3.2). Then, we
have c = 0, i.e., x(t) → 0 as t → ∞. �

Next, we consider the case (ii).

Lemma 3.4. Assume that the sign of x′(t) changes infinitely many times as
t → ∞. Then, x′(t) is bounded for t ≥ t0.

Proof. Assume to the contrary that lim sup
t→∞

|x′(t)| = ∞. It follows from Lemma

3.2 (ii) and the oscillation of x′(t) that

−2 ≤ lim inf
t→∞ x′(t) ≤ 0 < lim sup

t→∞
x′(t) = ∞. (3.5)

First we consider the case where q > 1. By (3.5), we find a sequence {tn} such
that

tn → ∞, x′(tn) → ∞ as n → ∞, and x′′(tn) = 0. (3.6)

We observe from Lemma 3.2 (i) that ex(t) is bounded for t ≥ t0. Thus, using
(2.4), (3.6), (H1) and (1.5), we have

0 = −ax′(tn) + b(P (tn)ex(tn) − 1) + (q − 1)x′(tn)2 − Q(tn)(x′(tn) + 2)

+ (f ′(u)F (u) − q)(x′(tn) + 2)2 → ∞ as n → ∞.

This is a contradiction.
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Next, we consider the case where q = 1. By (3.5), x′(t) oscillates between
0 and an arbitrary fixed constant. Thus, for any M > 0, there exists a sequence
{tn} such that

tn → ∞ as n → ∞, x′(tn) = M, and x′′(tn) ≤ 0. (3.7)

Then, making use of (3.7) and (2.4) with q = 1, we have

0 ≤ −x′′(tn)

= −aM + b(P (tn)ex(tn) − 1) + (f ′(u)F (u) − 1)(M + 2)2 − Q(tn)(M + 2).

This implies that

ex(tn) ≥ 1
bP (tn)

{aM − (f ′(u)F (u) − 1)(M + 2)2 + Q(tn)(M + 2)} +
1

P (tn)
.

It follows from (H1) and (1.5) that

lim inf
n→∞ ex(tn) ≥ aM

b
+ 1.

Since M > 0 is arbitrary, we can take sufficiently large M > 0. This contradicts
Lemma 3.2 (i).

Therefore, we obtain lim sup
t→∞

|x′(t)| < ∞, and this implies that x′(t) is

bounded for t ≥ t0 when q ≥ 1. �

For the case of (ii), in order to show lim
t→∞ x(t) = 0, we shall introduce

another lemma. To this aim, we consider the ordinary differential equation

w′′(t) − c(t)w′(t) + γ(w(t)p − w(t)) + G(t) = 0 for t ≥ t0, (3.8)

where γ > 0 and p > 1 are constants, c ∈ C[t0,∞) and G ∈ C[t0,∞). In
addition, we assume that

c(t) ≥ c∗ > 0 for t ≥ t0,

with some constant c∗ > 0, and

G(t) → 0 as t → ∞.

Then, the following lemma has been proved in [37].

Lemma 3.5. (Lemma 3.4 in [37]) Let w ∈ C2[t0,∞) be a bounded positive
solution of (3.8). Assume that the sign of w′(t) changes infinitely many times
as t → ∞. Then, w(t) → 1 as t → ∞.

Applying Lemma 3.5, we shall obtain lim
t→∞ x(t) = 0.

Lemma 3.6. Assume that the sign of x′(t) changes infinitely many times as
t → ∞. Then, x(t) → 0 as t → ∞.

Proof. Firstly, we treat the case where q = 1. It follows from Lemma 3.4 that
x′(t) is bounded for t ≥ t0. Since Q(t) → 0 as t → ∞ by (H1), there exist
q0 > 1 and t1 ≥ t0 such that

a − (q0 − 1)|x′(t)| + Q(t) > 0 for t ≥ t1, (3.9)
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where a is the constant in (2.5) with q = 1, i.e., a = N − 2 > 0. Define
z(t) = e(q0−1)x(t). We observe from (2.4) with q = 1 that z(t) satisfies

z′′(t) − α(t)z′(t) + b(q0 − 1)(z(t)p0 − z(t)) + (q0 − 1)H(t) = 0,

where α(t) = a + (q0 − 1)x′(t) + Q(t), p0 = q0/(q0 − 1), and

H(t) = −b(1 − P (t))z(t)p0 + z(t)(f ′(u)F (u) − 1)(x′(t) + 2)2 − 2Q(t)z(t)

= e(q0−1)x{−b(1 − P )e(p0−1)(q0−1)x + (f ′(u)F (u) − 1)(x′ + 2)2 − 2Q}.

Then, it follows from (3.9) that

α∗ = inf
t≥t1

α(t) > 0. (3.10)

Moreover, we claim that

H(t) → 0 as t → ∞. (3.11)

Indeed, Lemma 3.2 (i) implies that x(t) is bounded above for t ≥ t0, and
Lemma 3.4 implies that x′(t) is bounded for t ≥ t0. Furthermore, we have
f ′(u)F (u) → 1 as t → ∞ and it follows from (H1) that P (t) → 1 and Q(t) → 0
as t → ∞. Hence, (3.11) holds. Then, applying Lemma 3.5 with (3.10)–(3.11),
we obtain z(t) → 1 as t → ∞. This implies that x(t) → 0 as t → ∞ in the
case of q = 1.

Next, we consider the case where q > 1. Since Q(t) → 0 as t → ∞ by
(H1), there exists t1 ≥ t0 such that

a + Q(t) > 0 for t ≥ t1, (3.12)

where a is the constant in (2.5), i.e., a = N+2−4q > 0. Define z(t) = e(q−1)x(t).
It follows from (2.6) that z(t) satisfies

z′′(t) − az′(t) − Q(t)z′(t) + b(q − 1)(z(t)p − z(t)) − b(q − 1)(1 − P (t))z(t)p

+ (q − 1)(f ′(u)F (u) − q)
(

z′(t)
(q − 1)z(t)

+ 2
)2

z(t) − 2(q − 1)Q(t)z(t) = 0.

Setting α̃(t) = a + Q(t), and

H̃(t) = −b(1 − P )zp + (f ′(u)F (u) − q)
(

z′

(q − 1)z
+ 2

)2

z − 2Qz,

we derive

z′′(t) − α̃(t)z′(t) + b(q − 1)(z(t)p − z(t)) + (q − 1)H(t) = 0.

By (3.12), we have

α̃∗ = inf
t≥t1

α̃(t) > 0. (3.13)

Furthermore, applying f ′(u)F (u) → q as t → ∞ and the same way as in the
case of q = 1, we obtain

H̃ = e(q−1)x{−b(1 − P )e(p−1)(q−1)x + (f ′(u)F (u) − q)(x′ + 2)2 − 2Q}
→ 0 as t → ∞. (3.14)
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Therefore, it follows from Lemma 3.5 with (3.13)–(3.14) that z(t) → 1 as
t → ∞. Hence, x(t) → 0 as t → ∞ for q > 1. �

Now we are in a position to prove Proposition 3.1.

Proof. (Proof of Proposition 3.1) Combining Lemma 3.3 and Lemma 3.6, we
derive lim

t→∞ x(t) = 0.

We shall prove that lim
t→∞ x′(t) = 0. Define α and β by

α = lim sup
t→∞

x′(t), β = lim inf
t→∞ x′(t).

To begin with, we show that

α = β. (3.15)

Assume to the contrary that α �= β. Then, either α �= 0 or β �= 0 holds. We
may assume here that α �= 0. First we consider the case where q = 1. By
α �= β, there exists a sequence {tn} with lim

n→∞ tn = ∞ such that

x′′(tn) = 0, and x′(tn) → α �= 0 as n → ∞.

We observe from (2.4) with q = 1 that

ax′(tn) = b(P (tn)ex(tn) − 1) + (f ′(u)F (u) − 1)(x′(tn) + 2)2

− Q(tn)(x′(tn) + 2).

Letting n → ∞ and applying (H1), (1.5) with q = 1, and lim
t→∞ x(t) = 0, we

derive aα = 0. This contradicts α �= 0.
For q > 1, let z(t) = e(q−1)x(t). Using lim

t→∞ x(t) = 0, we have

lim
t→∞ z(t) = 1, lim sup

t→∞
z′(t) = (q − 1)α, lim inf

t→∞ z′(t) = (q − 1)β.

By α �= β, there exists a sequence {tn} with lim
n→∞ tn = ∞ such that

z′′(tn) = 0, and z′(tn) → (q − 1)α �= 0 as n → ∞.

Then, we have

x′(tn) =
z′(tn)
q − 1

e−(q−1)x(tn) → α as n → ∞,

and thus,

z′(tn)
z(tn)

= (q − 1)x′(tn) → (q − 1)α as n → ∞.

From (2.6), it follows that

az′(tn)=(q−1)b(P (tn)z(tn)p−z(tn))−(q−1)Q(tn)
(

z′(tn)
(q−1)z(tn)

+2
)

z(tn)

+ (q − 1)(f ′(u)F (u) − q)
(

z′(tn)
(q − 1)z(tn)

+ 2
)2

z(tn).
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Letting n → ∞ and applying (H1), (1.5), we obtain

a(q − 1)α = 0,

which contradicts α �= 0.
If we assume that β �= 0, then by the similar methods as in the above,

we can lead a contradiction. Therefore, (3.15) holds in both cases where q = 1
and q > 1, and then, x′(t) → α as t → ∞. Moreover, since x(t) → 0 as t → ∞,
we have α = 0. Hence, we obtain x′(t) → 0 as t → ∞. �

4. Uniqueness of the singular solution

We shall prove the following theorem:

Theorem 4.1. There exists at most one singular solution of (1.3).

In order to prove Theorem 4.1, we shall apply the next lemma:

Lemma 4.2. (Lemma 4.2 in [28]) Let y(t) be a solution of

y′′(t) − A(t)y′(t) + B(t)y(t) = 0, (4.1)

where A(t) and B(t) are continuous functions satisfying

lim
t→∞ A(t) = α > 0, lim

t→∞ B(t) = β > 0. (4.2)

If y(t) is bounded as t → ∞, then y(t) ≡ 0.

Proof. (Proof of Theorem 4.1) Let uj(r)(j = 1, 2) be singular solutions of (1.3)
for 0 < r < r0. For j = 1, 2, define xj(t) by

F (uj(r))
ψ(r)2

=
e−xj(t)

2N − 4q
, t = − log ψ(r).

It follows from Proposition 3.1 that xj(t) → 0 as t → ∞ for j = 1, 2. Define
y(t) = x1(t) − x2(t), and then y(t) is bounded as t → ∞. Using Lemma 4.2,
we shall show that y(t) ≡ 0.

By (2.4), xj(t) (j = 1, 2) satisfies

x′′
j (t) − ax′

j(t) + b(P (t)exj(t) − 1) + (q − 1)x′
j(t)

2 − Q(t)(x′
j(t) + 2)

+ (f ′(uj)F (uj) − q)(x′
j(t) + 2)2 = 0.

Setting

E(x1, x2) =

⎧⎨
⎩

P (t)
ex1 − ex2

x1 − x2
if x1 �= x2,

P (t)ex1 if x1 = x2,

we see that y(t) satisfies (4.1), where

A(t) = a − (q − 1)(x′
1 + x′

2) − (f ′(u1)F (u1) − q)(x′
1 + x′

2 + 4) + Q,

B(t) = bE(x1, x2) + (x′
2(t) + 2)2(f ′(u1)F (u1) − f ′(u2)F (u2)).

Let wj = F (uj) for j = 1, 2. Then, we have

f ′(u1)F (u1) − f ′(u2)F (u2) = w1f
′(F−1(w1)) − w2f

′(F−1(w2)).
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By the mean value theorem, we derive

d

dw
(wf ′(F−1(w))) = f ′(F−1(w)) − wf ′′(F−1(w))f(F−1(w)).

Hence, we find w̄ between w1 and w2 such that

w1f
′(F−1(w1)) − w2f

′(F−1(w2))

= {f ′(F−1(w̄)) − w̄f ′′(F−1(w̄))f(F−1(w̄))}(w1 − w2).

Recalling that F ′(u) = −1/f(u), we see that F is monotone. Thus, there exists
ū between u1 and u2 such that F (ū) = w̄. Then, we derive

f ′(u1)F (u1) − f ′(u2)F (u2)

= {f ′(F−1(w̄)) − w̄f ′′(F−1(w̄))f(F−1(w̄))}(w1 − w2)

=
{

1 − f ′(ū)F (ū)
f ′′(ū)f(ū)

f ′(ū)2

}
f ′(ū)(F (u1) − F (u2)). (4.3)

Defining x̄ by

F (ū(t)) =
ψ(r)2e−x̄(t)

2N − 4q
, (4.4)

we have

F (u1) − F (u2) =
ψ(r)2

2N − 4q
(e−x1 − e−x2) = −F (ū)ex̄ E(−x1,−x2)

P
y. (4.5)

We observe from (4.3) and (4.5) that

B(t) = bE(x1, x2)

− (x′
2 + 2)2

{
1 − f ′(ū)F (ū)

f ′′(ū)f(ū)
f ′(ū)2

}
f ′(ū)F (ū)ex̄ E(−x1,−x2)

P
.

Then, we claim that A(t) and B(t) satisfies (4.2). Indeed, applying Proposition
3.1, (1.5), and (H1), we derive

A(t) → a > 0 as t → ∞.

Since ū lies between u1 and u2, it follows from (4.4) that x̄ lies between x1

and x2. Thus, by Proposition 3.1, we have x̄ → 0 as t → ∞. Moreover, since
E(x1, x2) are continuous at x1 = x2 = 0, it follows from the mean-value
theorem that

lim
t→∞ E(x1, x2) = 1.

Then, making use of (1.4)–(1.5), (H1), and Proposition 3.1, we obtain

B(t) → b > 0 as t → ∞.

Hence, A(t) and B(t) satisfies (4.2), and we observe from Lemma 4.2 that
y(t) ≡ 0, i.e., x1(t) = x2(t). Thus, (1.3) has at most one singular solution. �
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5. Estimate of solutions

We devote this section to obtaining an estimate for regular solutions to (1.3).
To the aim, setting

G(u) =
∫ u

0

f(s)ds, (5.1)

we construct a Pohozaev type identity.

Lemma 5.1. Let u(r) be a solution of (1.3) in (r1, r2) ⊂ (0,∞), and let μ be
an arbitrary constant. Then, for each r ∈ (r1, r2), we have

d

dr

{
ψ(r)N

(
1
2
u′(r)2 + G(u) +

μ

ψ
u(r)u′(r)

)}

=ψ(r)N−1

{(
μ +

(
1 − N

2

)
ψ′(r)

)
u′(r)2 + Nψ′(r)G(u) − μu(r)f(u(r))

}
.

(5.2)

Proof. We observe from (1.3) that

−(ψN−1u′)′ = ψN−1f(u),( |u′|2
2

)′
= u′u′′ = −ψ′

ψ
(N − 1)(u′)2 − f(u)u′.

Then, we have

d

dr

{
ψN

( |u′|2
2

+ G(u) +
μ

ψ
uu′

)}

=
N

2
ψN−1ψ′|u′|2 + ψN

( |u′|2
2

)′
+ NψN−1ψ′G(u) + ψNfu′

+ μ(ψN−1u′)′u + μψN−1(u′)2

= ψN−1

{(
μ +

(
N

2
− (N − 1)

)
ψ′

)
(u′)2 + Nψ′G(u) − μuf(u)

}
.

Thus, we obtain (5.2). �

We define regular solutions to (1.3). For α > 0, we denote by u(r, α) a
solution of (1.3) satisfying u(0) = α and u′(0) = 0. Then, we show the following
lemma:

Lemma 5.2. Assume that there exists p0 > 2N/(N − 2) and û0 > 0 such that

0 < p0G(u) < uf(u) for u > û0. (5.3)

(i) Let α > û0. Assume that there exists r̂0 ∈ (0, R0) such that

u(r, α) > û0,
2N

p0(N − 2)
< ψ′(r) ≤ min

u>û0

uf(u)
p0G(u)

for r ∈ (0, r̂0]. (5.4)

Then,

0 < −ψ(r)u′(r, α) <
2N

p0
u(r, α) for r ∈ (0, r̂0].
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(ii) Put

δ =
1
2

+
N

p0(N − 2)
, η =

1
2

{
1 − 2N

δ(N − 2)p0

}
. (5.5)

Assume that there exists r1 ∈ (0, R0) such that

δ ≤ ψ′(r) ≤ min
u>û0

uf(u)
p0G(u)

for r ∈ (0, r1]. (5.6)

Take any β > û0, and define rβ by

rβ = min

[
r1,

{
2β

fM (β/η)

} 1
2
]

, (5.7)

where fM (r) = max
0≤s≤r

f(s). If α > β/η, then u(r, α) > β for r ∈ [0, rβ ].

Proof. (i) Setting μ = N/p0 in (5.2), we have

d

dr

{
ψN

(
1
2
(u′)2 + G(u) +

N

p0

uu′

ψ

)}
(5.8)

= ψN−1

{(
N

p0
+

(
1 − N

2

)
ψ′

)
(u′)2 + Nψ′G(u) − N

p0
uf(u)

}
.

We observe from (5.4) that

N

p0
+

(
1 − N

2

)
ψ′ <

N

p0
− N − 2

2
2N

p0(N − 2)
= 0 for r ∈ (0, r̂0]. (5.9)

Moreover, applying (5.4) again, we have

Nψ′G(u) − N

p0
uf(u) = NG(u)

(
ψ′ − uf(u)

p0G(u)

)
≤ 0 for r ∈ (0, r̂0]. (5.10)

Combining (5.9)–(5.10) with (5.8), we derive

d

dr

{
ψN

(
1
2
(u′)2 + G(u) +

N

p0

uu′

ψ

)}
< 0 for r ∈ (0, r̂0].

Integrating the above on (0, r] with 0 < r ≤ r̂0 and applying (H1), we obtain

ψN

(
1
2
(u′)2 + G(u) +

N

p0

uu′

ψ

)
< 0 for r ∈ (0, r̂0].

Thus, we have

1
2
(u′)2 + G(u) +

N

p0

uu′

ψ
< 0 for r ∈ (0, r̂0]. (5.11)

It follows from (5.3)–(5.4) that u(r, α) > û0 > 0 and G(u) > 0 for r ∈ (0, r̂0].
Applying (5.11), we have

u′(r, α) < 0 for r ∈ (0, r̂0]. (5.12)

Furthermore, by (5.11), we derive for r ∈ (0, r̂0],

0 >
1
2
(u′)2 + G(u) +

N

p0

uu′

ψ
>

1
2
(u′)2 +

N

p0

uu′

ψ
= u′

{
u′

2
+

N

p0

u

ψ

}
.
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Using (5.12), we obtain

0 <
u′

2
+

N

p0

u

ψ
for r ∈ (0, r̂0].

Therefore, we see that

−ψu′ <
2N

p0
u for r ∈ (0, r̂0].

Combining (5.12) with the above, we obtain

0 < −ψ(r)u′(r, α) <
2N

p0
u(r, α) for r ∈ (0, r̂0].

(ii) By α > β/η and η < 1/2, we have

α >
β

η
> 2β > β > û0.

Assume to the contrary that there exists r∗ ∈ (0, rβ ] such that

u(r, α) > β for r ∈ [0, r∗), and u(r∗, α) = β. (5.13)

Since α > β > û0, δ > N
p0(N−2) and r∗ ≤ rβ ≤ r1, we observe from Lemma 5.2 (i)

with r̂0 = rβ that

u′(r, α) < 0 for r ∈ (0, r∗]. (5.14)

Put B = β/η. Since α > B > β, there exists RB ∈ (0, r∗) such that

u(RB, α) = B and u(r, α) ≤ B for r ∈ [RB , r∗]. (5.15)

Let v be a solution of the initial value problem{
−(ψN−1v′)′ = ψN−1fM (B) for r ∈ (RB , r∗),
v(RB) = u(RB, α), v′(RB) = u′(RB , α).

(5.16)

First, we will show that

v(r) ≤ u(r, α) for r ∈ [RB , r∗]. (5.17)

Put w(r) = v(r) − u(r, α). Then, w satisfies

− (ψN−1w′)′ = ψN−1(fM (B) − f(u(r, α)) for r ∈ (RB , r∗), (5.18)

w(RB) = v(RB) − u(RB, α) = 0, w′(RB) = v′(RB) − u′(RB , α) = 0.

It follows from (5.15) that

fM (B) ≥ f(u(r, α)) for r ∈ [RB , r∗].

Then, integrating (5.18) on [RB , r] with r ≤ r∗, we obtain for r ∈ [RB , r∗],

−ψ(r)N−1w′(r) = −ψ(RB)N−1w′(RB) +
∫ r

RB

ψ(s)N−1(fM (B) − f(u(s, α))ds

=
∫ r

RB

ψ(s)N−1(fM (B) − f(u(s, α)))ds ≥ 0.
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Thus, we have w′(r) ≤ 0 for r ∈ [RB , r∗]. Since w(RB) = 0 and w is non-
increasing for r ∈ [RB , r∗], we derive w(r) ≤ 0 for r ∈ [RB , r∗]. Therefore,
(5.17) holds.

Secondly, integrating the equation in (5.16) on [RB , r] with r ≤ r∗, we
have

−ψ(r)N−1v′(r) = −ψ(RB)N−1v′(RB) + fM (B)
∫ r

RB

ψ(s)N−1ds

≤ −ψ(RB)N−1v′(RB) + fM (B)
∫ r

0

ψ(s)N−1ds.

From r1 < R0 and (2.2), it follows that ψ is strictly increasing on [0, r1]. Hence,
we derive

−v′(r) ≤ −ψ(RB)N−1v′(RB)
ψ(r)N−1

+ fM (B)r.

Integrating the above on [RB , r∗], we obtain

−v(r∗) + v(RB) ≤ −ψ(RB)N−1v′(RB)
∫ r∗

RB

ds

ψ(s)N−1
+ fM (B)

r2∗
2

= −ψ(RB)N−1v′(RB)
δ

∫ r∗

RB

δ

ψ(s)N−1
ds + fM (B)

r2∗
2

.

Since v′(RB) = u′(RB, α) < 0 by (5.14), r∗ ≤ rβ , and δ ≤ ψ′(r) for r ∈ (0, rβ ]
by (5.6)–(5.7), we have

−v(r∗) + v(RB) ≤ −ψ(RB)N−1v′(RB)
δ

∫ r∗

RB

ψ′(s)
ψ(s)N−1

ds + fM (B)
r2β
2

=
ψ(RB)N−1v′(RB)

δ(N − 2)

(
1

ψ(r∗)N−2
− 1

ψ(RB)N−2

)
+ fM (B)

r2β
2

≤ ψ(RB)N−1v′(RB)
δ(N − 2)

(
− 1

ψ(RB)N−2

)
+ β

= −ψ(RB)v′(RB)
δ(N − 2)

+ β.

Thus, by v(RB) = u(RB, α), v′(RB) = u′(RB , α) and Lemma 5.2 (i) with
r̂0 = rβ , we obtain

v(r∗) ≥ v(RB) +
ψ(RB)v′(RB)

δ(N − 2)
− β = u(RB, α) +

ψ(RB)u′(RB , α)
δ(N − 2)

− β

> u(RB , α) +
1

δ(N − 2)

(
−2N

p0
u(RB , α)

)
− β

= u(RB , α)
{

1 − 2N

δ(N − 2)p0

}
− β.

Using (5.5) and (5.15), we see that

v(r∗) > 2u(RB , α)η − β = 2Bη − β = 2
β

η
η − β = β.
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Then, it follows from (5.13) and (5.17) that

β < v(r∗) ≤ u(r∗, α) = β.

This leads a contradiction. Thus, u(r, α) > β for r ∈ [0, rβ ]. �

6. Proof of Theorem 1.1

Proof. (Proof of Theorem 1.1) Applying (1.4) and L’Hospital’s rule, we have

lim
u→∞

f(u)
uf ′(u)

= lim
u→∞

f(u)/f ′(u)
u

= lim
u→∞

(
1 − f(u)f ′′(u)

f ′(u)2

)
=

q − 1
q

.

Then, since f ′(u) > 0 for sufficiently large u by Lemma 2.1, we see that
lim

t→∞ uf ′(u)/f(u) = ∞ for q = 1. Defining G(u) by (5.1) and making use of
L’Hospital’s rule again, we have

lim
u→∞

uf(u)
G(u)

= lim
u→∞

(
1 +

uf ′(u)
f(u)

)
=

⎧⎨
⎩

2q − 1
q − 1

if q > 1,

∞ if q = 1.
(6.1)

Moreover, for q ∈ (1, qs), we derive
2q − 1
q − 1

>
2N

N − 2
.

Then, we take

p0 ∈

⎧⎪⎪⎨
⎪⎪⎩

(
2N

N − 2
,
2q − 1
q − 1

)
if q > 1,(

2N

N − 2
,∞

)
if q = 1.

From (6.1), we find û0 ≥ u0 such that (5.3) holds. Furthermore, by (H1), there
exists r1 ∈ (0, R0) such that (5.6) holds. Take β > û0, and define η and rβ by
(5.5) and (5.7), respectively. Let α > β/η. It follows from Lemma 5.2 (ii) that

u(r, α) > β > û0 ≥ u0 for r ∈ [0, rβ ].

Hence, using Lemma 2.4 (ii), we have

F (u(r, α)) ≥ ψ(r)2

2NC2
0

for r ∈ (0, rβ ],

where C0 = max
r∈[0,rβ ]

ψ′(r) ≥ 1. Since F ′(u) = −1/f(u) < 0 for u ≥ u0, F is

monotone decreasing for u ≥ u0, and

u(r, α) ≤ F−1

[
ψ(r)2

2NC2
0

]
for r ∈ (0, rβ ]. (6.2)

By Lemma 5.2 (i) and (6.2), we derive for r ∈ (0, rβ ],

0 < −ψ(r)u′(r, α) <
2N

p0
u(r, α) ≤ 2N

p0
F−1

[
ψ(r)2

2NC2
0

]
. (6.3)

Let {αk} be a sequence satisfying αk → ∞ as k → ∞. We observe from
(6.2)–(6.3) that u(r, αk) and ur(r, αk) are uniformly bounded in k ∈ N on any
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compact subset of (0, rβ ]. Since f ∈ C2[0,∞) in (1.3), urr(r, αk) and urrr(r, αk)
are also uniformly bounded on the subset. Then, by the Ascoli-Arzelá theorem
with the diagonal argument, there exist u∗ ∈ C2(0, rβ ] and a subsequence,
which is denoted by {u(r, αk)}, such that

u(r, αk) → u∗(r) in C2
loc(0, rβ ] as k → ∞. (6.4)

Then, u∗ satisfies (1.3) for (0, rβ ]. Take any β̃ > β. From Lemma 5.2 (ii), it
follows that

u(rβ̃ , αk) > β̃ if αk >
β̃

η
.

Thus, letting k → ∞, we obtain u∗(rβ̃) ≥ β̃. We observe from that Lemma 2.1
and (5.7) that f ′(u), f(u) → ∞ as u → ∞ and rβ → 0 as β → ∞. Then, since
β̃ > β is arbitrary and u∗(r) is non-increasing for (0, rβ ] by Lemma 2.4 (i), we
derive

u∗(r) → ∞ as r → 0.

This implies that u∗ is a singular solution. Therefore, we can define u∗(r) on
(0, r0] as a positive singular solution of (1.3) for some r0 ∈ (0, R0).

Moreover, Theorem 4.1 implies that the singular solution u∗ of (1.3) is
unique. Thus, for any sequence αk → ∞, there exists a subsequence such that
(6.4) holds. Therefore,

u(r, α) → u∗(r) in C2
loc(0, r0] as α → ∞,

and, (1.6) holds. Applying Proposition 3.1 and (2.3), we obtain

F (u∗(r)) =
ψ(r)2

2N − 4q
e−x(t) =

ψ(r)2

2N − 4q
(o(1) + 1) as r → 0.

Hence, we derive (1.7), and the proof is complete. �
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[40] Stapelkamp, S., Brézis-Nirenberg, The, problem on H
n. Existence and unique-

ness of solutions, Elliptic and parabolic problems (Rolduc, Gaeta,: 283–290, p.
2002. World Scientific Publishing Co., Inc, River Edge (2001)

Shoichi Hasegawa
Department of Mathematics, School of Fundamental Science and Engineering
Waseda University
3-4-1 Okubo
Shinjuku-ku Tokyo169-8555
Japan
e-mail: s.hasegawa10@kurenai.waseda.jp

Received: 2 November 2023.

Accepted: 1 February 2024.


	Singular solutions of semilinear elliptic equations with supercritical growth on Riemannian manifolds
	Abstract
	1. Introduction
	2. Preliminaries
	3. Asymptotic behavior
	4. Uniqueness of the singular solution
	5. Estimate of solutions
	6. Proof of Theorem 1.1
	Acknowledgements
	References




