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Nonlinear Differential Equations
and Applications NoDEA

A uniqueness criterion and a
counterexample to regularity in an
incompressible variational problem

M. Dengler and J. J. Bevan

Abstract. In this paper we consider the problem of minimizing function-
als of the form E(u) =

´
B

f(x, ∇u) dx in a suitably prepared class of

incompressible, planar maps u : B → R
2. Here, B is the unit disk and

f(x, ξ) is quadratic and convex in ξ. It is shown that if u is a station-
ary point of E in a sense that is made clear in the paper, then u is a
unique global minimizer of E(u) provided the gradient of the correspond-
ing pressure satisfies a suitable smallness condition. We apply this result
to construct a non-autonomous, uniformly convex functional f(x, ξ), de-
pending smoothly on ξ but discontinuously on x, whose unique global
minimizer is the so-called N−covering map, which is Lipschitz but not
C1.
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1. Introduction

Let B ⊂ R
2 be the unit ball. For any u ∈ W 1,2(B,R2), define the energy E(u)

by

E(u) =
ˆ

B

f(x,∇u) dx, (1.1)

where the integrand is quadratic in the gradient argument

f(x, ξ) = M(x)ξ · ξ for any x ∈ B and ξ ∈ R
2×2, (1.2)

and where M ∈ L∞(B,R16) is symmetric, i.e. Mijkl = Mklij for all i, j, k, l ∈
{1, 2}.
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Furthermore, we require that there is a constant ν > 0, s.t.

M(x)ξ · ξ ≥ ν |ξ|2 for a.e. x ∈ B and all ξ ∈ R
2×2, (1.3)

so that f(x, ξ) is uniformly convex in ξ. Here ν plays the role of the well-known
ellipticity constant.

Assume that g is the trace of a map u0 ∈ W 1,2(B,R2) that satisfies
det ∇u0 = 1 a.e. in B, so that the class

Ag := {u ∈ W 1,2(B,R2) : det ∇u = 1 a.e. in B u|∂B = g} (1.4)

is, in particular, nonempty. The constrained minimization problem that we
study in this paper is then to find

min
u∈Ag

E(u) (1.5)

in Ag. Concrete instances of g for which Ag is nonempty include:
(a) g(x) := Ax, x ∈ ∂B, where A is any constant matrix in SL+(2,R), and
(b) g(θ) := 1√

N
eR(Nθ), where N ∈ N \ {0} and 0 ≤ θ ≤ 2π.

Note that the latter is the trace of the so-called N−covering map

u
N

(R, θ) =
R√
N

eR(Nθ), (1.6)

expressed in plane polar coordinates, and where we employ the notation eR(θ) =
(cos θ, sin θ), eθ(θ) = (− sin θ, cos θ) for the basis vectors and R := |x| to denote
the modulus of x.

Definition 1.1. (Stationary point) We say that u ∈ Ag is a stationary point
of E(·) if there exists a function λ, which we shall henceforth refer to as a
pressure, belonging to L2(B) and such that

div (∇ξf(x,∇u) + 2λ(x) cof ∇u) = 0 in D′(B). (1.7)

Here we recall that for any 2 × 2−matrix A the cofactor is given by

cof A =
(

a22 −a21

−a12 a11

)
. (1.8)

The first part of the paper is concerned with finding a criteria for a
candidate to be a (unique) global minimizer. We will outline the idea first. Let
v, u ∈ Ag and suppose that u is a stationary point of E in the sense of (1.7).
To compare E(v) and E(u) we set η = v − u and expand E(v) = E(u + η) as

E(v) = E(u) + E(η) +
ˆ

B

2M(x)∇u(x) · ∇η(x) dx.

Our problem, as expressed in (1.5), is made more tractable by the observation
made in [3] that the stationarity condition (1.7) allows us, at the expense of
incorporating a pressure term, to rewrite the final, affine-in-∇η term in the
expansion above as a term that is quadratic in ∇η, namely

ˆ

B

M(x)∇u(x) · ∇η(x) dx =
ˆ

B

λ(x) det ∇η(x) dx.
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In particular,

E(v) = E(u) + E(η) +
ˆ

B

2λ det ∇η dx, (1.9)

which makes clear the role of the functional

F (η) := E(η) +
ˆ

B

2λ det ∇η dx η ∈ W 1,2
0 (B,R2)

in determining the sign of E(v) − E(u).
The precise condition that guarantees F (η) ≥ 0 for all η, and the first

main result we obtain, shows that if u is a stationary point of the energy E
whose corresponding pressure λ satisfies, in addition, the assumption that

||∇λ(x)|x|‖L∞(B,R2) ≤
√

3ν

2
√

2
, (1.10)

then u is a global minimizer of E.1

Theorem 1.2. (Uniqueness under small pressure) Let the energy functional
E(u) be given by (1.1), and let f(x, ξ) be given by (1.2), where M ∈ L∞(B,R16)
is symmetric and satisfies (1.3) for some ν > 0. Let u be a stationary point of
E in the sense of (1.7) and assume that the corresponding pressure λ satisfies

‖∇λ(x)|x|‖L∞(B,R2) ≤
√

3ν

2
√

2
, for a.e. x ∈ B. (1.11)

Then u is a global minimizer of E in Ag.
Moreover, if the inequality is strict, that is |∇λ(x)|x||∞ <

√
3ν

2
√
2

for every x ∈
U, where U ⊂ B is measurable and L2(U) > 0, then u is the unique global
minimizer of E in Ag.

In our second main result we provide an explicit integrand f(x, ξ) of the
form (1.2) whose corresponding energy functional E is minimized in AgN by
the N−covering map u

N
. Here, gN is the trace of u

N
as defined in (1.6). For

its construction we make use of Theorem 1.2. A novelty of our approach is
that, in order to apply Theorem 1.2, we develop a method to compute the
corresponding pressure explicitly.

Theorem 1.3. (Counterexample to regularity) Let N ∈ N \ {1} and let aN ∈(
N2 − N,N2 + N

)
be a constant. Let gN be the trace of the N−covering map

u
N
, and define for x ∈ B \ {0} and ξ ∈ R

2×2 the function

fN (x, ξ) = ν
[
aN (eT

RξeR)2 + (eT
Rξeθ)2 + aN (eT

θ ξeR)2 + (eT
θ ξeθ)2

]
,

where ν > 0.
Then the following statements are true:

1For a measurable vector-valued f = (f1, f2) : B → R
2 the norm used here is defined via

‖f‖L∞(B,R2) := max
{‖f1‖L∞(B), ‖f2‖L∞(B)

}
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(i) There exists MN ∈ L∞(B,R16) such that

fN (x, ξ) = νMN (x)ξ · ξ

for any x ∈ B \ {0}, ξ ∈ R
2×2 and where MN is of the explicit form

MN (x) =aN ((eR ⊗ eR)(eR ⊗ eR)) + ((eR ⊗ eθ)(eR ⊗ eθ))

+ aN ((eθ ⊗ eR)(eθ ⊗ eR)) + ((eθ ⊗ eθ)(eθ ⊗ eθ))

and satisfies MN (x) ≥ νId for any x ∈ B \ {0}.2

(ii) The maps x 
→ MN (x) and x 
→ fN (x, ξ), for any ξ ∈ R
2×2 \ {0}, are

discontinuous at 0.
(iii) The maps x 
→ MN (x) and x 
→ fN (x, ξ), for any ξ ∈ R

2×2 \ {0}, belong
to

W 1,q \ W 1,2 for any 1 ≤ q < 2

with the spaces (B,R16) and (B) respectively.
(iv) The map

u = u
N

∈ C0,1(B,R2) \ C1(B,R2) (1.12)

is a stationary point of EN , as defined in (1.7), and the corresponding
pressure λN exists and satisfies λN ∈ W 1,q(B) for any 1 ≤ q < 2.

(v) Moreover, the map u
N

is the unique global minimizer of EN in the class
AgN .

(vi) The minimum energy is given by

min
v∈AgN

EN (v) =
νπ

2
(1 + a)

(
1
N

+ N

)
.

The problem of studying a functional of the form E(u) is of interest
not least because the regularity and/or uniqueness of minimizers of such in-
compressible problems cannot necessarily be determined a priori. Concerning
uniqueness in the compressible setting, works including but not limited to
John [11], Knops and Stuart [14], Sivaloganathan [20], Zhang [26], and Sival-
oganathan and Spector [21] provide conditions under which the uniqueness of
a global minimizer can be expected. By contrast, a striking example given by
Spadaro [22] clearly demonstrates that global minimizers need not be unique,
even under full displacement boundary conditions. When the domain of inte-
gration, or reference configuration, is an annulus, a number of papers, including
those of John [11], Post and Sivaloganathan [16], Taheri [24], and Morris and
Taheri [15,25], address uniqueness. With the topology of the annulus at their
disposal, a multiplicity of solutions/equilibria can be generated by working
with certain homotopy classes. For example, Morris and Taheri [15,25] con-
sider functionals of the form W (x, s, ξ) = F (|x|2, |s|2)|ξ|2/2, with F ∈ C2, on

2For two vectors a ∈ R
n, b ∈ R

m we define the tensor product a ⊗ b ∈ R
n×m by (a ⊗ b)ij :=

(abT )ij = aibj for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Moreover, the multiplication of two tensor

products is understood through its action on ξ ∈ R
2×2 which is given by

((a ⊗ b)(c ⊗ d))ξ · ξ = (a ⊗ b)ijξij(c ⊗ d)klξkl for i, j, k, l ∈ {1, 2}.
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the annulus A and admissible maps A = W 1,2
id (A,R2), and show that there are

countably many solutions, with exactly one for each homotopy class.
In the homogeneous, incompressible elasticity setting, Knops and Stuart

[14, Section 6] (see also [19]) show that the equilibirum solutions they consider
are, when subject to affine displacement boundary conditions, global minimiz-
ers of the associated energy. Recent results [4] show that there are polyconvex
energies with inhomogeneous integrands that, under pure displacement bound-
ary conditions, possess countably many pairs of equal-energy stationary points.
It is an open question whether the lowest-energy pair of such stationary points
represent global minimizers.

The regularity of equilibrium solutions or mininimzers in incompress-
ible variational problems is, like its compressible counterpart, a delicate mat-
ter. Ball [1, §2.6] points out that any minimizer of the Dirichlet energy in
the class W 1,2(B;R2), subject to the pointwise (incompressibility) constraint
det ∇u = 1 a.e and boundary condition u(1, θ) = 1√

2
(cos(2θ), sin(2θ)), must

fail to be C1. There is evidence to suggest that the double-covering map u2

(see (1.6)) itself may be the global minimizer in that particular problem [3,5].
A partial regularity result for Lipschitz minimizers that are subject to a type
of monotonicity condition was established in [10], and Karakhanyan [12,13]
proves that, in the case of the Dirichlet energy, bounds on the so-called dual
pressure lead, by a sophisticated argument, to the conclusion that suitably
defined equilibrium solutions must belong to the Hölder class C

1
2
loc. It is per-

haps significant that Karakhanyan’s results, like ours, also depend on ‘pressure
bounds’, but more significant still that the maps he deals with are measure-
preserving. The double-covering map u2 mentioned above, and indeed the
N−covering maps which form the basis of the counterexample to regularity
in Section 3 of this paper, do not preserve L2−measure in the sense of [23,
Eq. (24)], for example, and so are less relevant to physically realistic models
of elasticity.

It seems that pressure regimes can be used to divide the sorts of incom-
pressible problems we consider into two classes. The double-covering problem
introduced by Ball appears to lie in the ‘high pressure’ regime3, whereas the
problem we focus on falls, by design, into the ‘low pressure’ regime, where we
can say a bit more.

Plan of the paper: The main purpose of Sect. 2 will be to prove the
uniqueness result, Theorem 1.2. We begin by giving two technical lemmas, the
first of which enables us to decompose certain expressions in terms of Fourier
modes. Section 2 concludes with the proof of Theorem 1.2, together with an
argument which shows that the prefactor 3

1
2 2− 3

2 � 0.6123 appearing in (1.11)
can be replaced by 1 when λ depends on just one of the variables R, θ. See
Corollary 2.3. The focus of Sect. 3 is Theorem 1.3. In order to obtain this result

3By which we mean that the pressure λ2 , say, appearing in the equilibrium equations asso-
ciated with u2 obeys ||R ∇λ2 ||∞ = 3ν, when adapted to the notation we use in this paper.

The prefactor of ν in the latter exceeds the prefactor 3
1
2 2− 3

2 appearing in the condition
(1.11) of Theorem 1.2, which is why we refer to this as the ‘high pressure’ regime.
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we first develop a method to compute the pressure explicitly: this is done for
a quite general situation in Lemma 3.1, and then more concretely in Lemmata
3.2-3.3.
Notation:. We define the matrix J via

J :=
(

0 −1
1 0

)

and we later make use of the fact that for any 2 × 2 matrix A, the cofactor
can be calculated by means of the identity cof A = JT AJ . When η is suitably
differentiable, we recall that in plane polar coordinates (R, θ), det ∇η = 1

RJη,R·
η,θ, where η,R and η,θ are, respectively, the radial and angular derivatives of
η. We let

ffl
U

f(x) dx denote the integral average of a function f in L1(U) over
a given (Lebesgue-)measurable, non-null set U ⊂ R

2; that is,
 

U

f(x) dx :=
1

L2(U)

ˆ

U

f(x) dx,

where L2 is 2−dimensional Lebesgue measure. All other notation is either
standard or is defined when it is used.

2. Uniqueness in the small pressure regime

To prove Theorem 1.2 we need two technical lemmas. The first contains basic
properties of functions in the class W 1,1(B) that satisfy ‖∇λ(x)|x|‖L∞(B,R2) <
∞, and it relies on a standard Fourier decomposition which, when applied to
η ∈ C∞(B,R2), is given by:

η(x) =
∑
j≥0

η(j)(x), where η(0)(x) =
1
2
A0(R), A0(R) =

1
2π

ˆ 2π

0

η(R, θ) dθ

and, for any j ≥ 1,

η(j)(x) = Aj(R) cos(jθ) + Bj(R) sin(jθ),

where

Aj(R) =
1
2π

ˆ 2π

0

η(R, θ) cos(jθ) dθ and Bj(R) =
1
2π

ˆ 2π

0

η(R, θ) sin(jθ) dθ.

For later use, we set η̃ := η − η(0).
With these notions at hand we can state the following technical result.

Notice that the lemma is a generalisation of the results [3, Lem 3.2. and Prop
3.2]. Proofs are included for the convenience of the reader.

Lemma 2.1. Let λ ∈ W 1,1(B) and assume that ‖∇λ(x)|x|‖L∞(B,R2) < ∞.
Then the following statements are true:

i) λ ∈ BMO(B).
ii) If ϕn → ϕ ∈ W 1,2(B,R2) then

´
B

λ(x) det ∇ϕn dx → ´
B

λ(x) det ∇ϕ dx.

iii) It holds
´

B
|∇ϕ|2 dx =

∑
j≥0

´
B

|∇ϕ(j)|2 dx for any ϕ ∈ W 1,2(B,R2).

iv) det ∇ϕ(0) = 0 for any ϕ ∈ W 1,2(B,R2).
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v)
´

B
λ(x) det ∇ϕ dx = − 1

2

´
B

((cof ∇ϕ)∇λ(x)) · ϕ dx for any ϕ ∈ W 1,2
0

(B,R2).
vi) Moreover, for any ϕ ∈ W 1,2

0 (B,R2) it holds
ˆ

B

λ(x) det ∇ϕ dx = − 1
2

ˆ

B

((cof ∇ϕ(0))∇λ(x)) · ϕ̃ dx

− 1
2

ˆ

B

((cof ∇ϕ)∇λ(x)) · ϕ̃ dx.

Proof. i) We begin by extending λ outside B, as follows. Firstly, the hy-
pothesis that |y||∇λ(y)| is essentially bounded in B implies in particular
that |∇λ(y)| is essentially bounded on B′ := B \ B(0, 1

2 ), and hence, via
Sobolev embedding, that λ ∈ W 1,∞(B′). By employing a suitable ex-
tension operator E, say, (see [8, Section 5.4, Theorem 1], for instance),
we extend λ to a function Eλ belonging to W 1,∞(R2 \ B(0, 1

2 )) with
spt Eλ ⊂ B(0, 2), say. Finally, to simplify notation in what follows, we
write λ(y) = Eλ(y) whenever 1 ≤ |y| ≤ 2, so that λ ∈ W 1,∞(R2\B(0, 1

2 )).
Our assertion is then that λ ∈ BMO, which amounts to showing that

sup
t>0,x∈R2

 

B(x,t)

|λ(y) − (λ)x,t| dy < ∞ (2.1)

where, for any x ∈ R
2 and t > 0, we employ the notation

(λ)x,t :=
 

B(x,t)

λ(y) dy.

Firstly, by Hölder’s inequality,

 

B(x,t)

|λ(y) − (λ)x,t| dy ≤ C1

( 

B(x,t)

|λ(y) − (λ)x,t|2 dy

)1/2

. (2.2)

Then, by [9, Section 4.5.2, Theorem 2], we obtain
( 

B(x,t)

|λ(y) − (λ)x,t|2 dy

) 1
2

≤ C2t

 

B(x,t)

|∇λ(y)| dy, (2.3)

where the constants C1 and C2 do not depend on x or t. Putting (2.2)
and (2.3) together gives

 

B(x,t)

|λ(y) − (λ)x,t| dy ≤ C1C2t

 

B(x,t)

|∇λ(y)| dy. (2.4)

We claim that there is a constant M , which does not depend on x
or t, such that the estimate

t

 

B(x,t)

|∇λ(y)| dy ≤ M

( |x|
t

+ 1
)

(2.5)
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holds. To see (2.5), begin by noting that B(x, t) ⊂ B(0, |x|+t), and hence
ˆ

B(x,t)

|∇λ(y)| dy ≤
ˆ

B(0,|x|+t)

|∇λ(y)| dy

=
ˆ

B(0,|x|+t)

|∇λ(y)||y||y|−1 dy

≤ 2πM ′(|x| + t),

where we have used the hypothesis that |y||∇λ(y)| is essentially bounded
by M ′, say. Hence (2.5) holds with M = 2M ′.

Finally, to see (2.1), we consider two cases. If t > |x|/2 then (2.5)
implies that

t

 

B(x,t)

|∇λ(y)| dy ≤ 3M. (2.6)

If t ≤ |x|/2, any y ∈ B(x, t) is such that |y| ≥ |x|/2, and hence, again by
using the essential boundedness of |y||∇λ(y)|, we obtain the estimate

|∇λ(y)| ≤ 2M ′

|x| .

Therefore

t

 

B(x,t)

|∇λ(y)| dy ≤ 2M ′t
|x| ≤ M ′. (2.7)

Putting (2.6) and (2.7) together, it follows that the right-hand side of
(2.4) is bounded above uniformly in x and t. Hence (2.1).

ii) We give a sketch of the proof here. For more detail, see [3, Proposition
3.2 (ii)]. By part (i) and the well-known Fefferman-Stein duality [6], it is
enough to show that if ϕn → ϕ ∈ W 1,2(B,R2) then det∇ϕn → det ∇ϕ ∈
H1(R2). Firstly, we extend the functions ϕn and ϕ by setting them to zero
outside B, and then apply the identity 2(det∇ϕn−det∇ϕ) = cof (∇ϕn+
∇ϕ)·(∇ϕn−∇ϕ), to whose right-hand side the div-curl lemma [7, Lemma
II.1] applies. The result is that

‖det ∇ϕn − det ∇ϕ‖H1 ≤ C‖∇ϕn + ∇ϕ‖L2‖∇ϕn − ∇ϕ‖L2

for some constant C > 0, and the convergence ϕn → ϕ in W 1,2(B,R2)
then yields the claim.

iii) This is straightforward and exploits the L2-orthogonality of the different
Fourier modes. We omit the details.

iv) Recall that ϕ(0)(x) = 1
2A0(R) is just a function of R. Therefore ∇ϕ(0)(x) =

1
2 (A0,R (R)) ⊗ eR(θ), which is clearly a matrix of rank one. Hence the
statement in part iv).

v) Assuming ϕ ∈ C∞
c (B,R2), a computation shows:

ˆ

B

λ(x) det ∇ϕ dx =
ˆ

B

λ(x)Jϕ,R ·ϕ,θ
dx

R

= −
ˆ

B

(λ(x)Jϕ,R ),θ ·ϕ dx

R
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= −
ˆ

B

λ(x),θ Jϕ,R ·ϕ dx

R
−
ˆ

B

λ(x)Jϕ,Rθ ·ϕ dx

R

= −
ˆ

B

λ(x),θ Jϕ,R ·ϕ dx

R
+
ˆ

B

λ(x),R Jϕ,θ ·ϕ dx

R

+
ˆ

B

(λ(x)Jϕ,θ ) · ϕ,R
dx

R

= −
ˆ

B

((cof ∇ϕ)∇λ(x)) · ϕ dx −
ˆ

B

(λ(x)Jϕ,R ) · ϕ,θ
dx

R

The result follows by bringing the rightmost term to the left-hand side
and dividing by two. Note, as a last step, that one needs to upgrade
the above equation to hold not just for ϕ ∈ C∞

c (B) but also for all
ϕ ∈ W 1,2

0 (B). This is slightly delicate because of the weak spaces involved:
for a proof, the argument in [3, Lem 3.2.(iv)] can be adapted.

vi) This is a version of (v) in which we emphasise the way that the above
expression depends on ϕ(0). Again, we assume ϕ ∈ C∞

c (B), and we start
by noting ϕ,θ = ϕ̃,θ, so that we have

ˆ

B

λ(x) det ∇ϕ dx =
ˆ

B

λ(x)Jϕ,R ·ϕ̃,θ
dx

R

= −
ˆ

B

((cof ∇ϕ)∇λ(x)) · ϕ̃ dx +
ˆ

B

(λ(x)Jϕ̃,θ ) · ϕ̃,R
dx

R
.

Then the rightmost term is just
ˆ

B

(λ(x)Jϕ̃,θ ) · ϕ̃,R
dx

R
= −

ˆ

B

(λ(x)Jϕ̃,R ) · ϕ̃,θ
dx

R

=
1
2

ˆ

B

((cof ∇ϕ̃)∇λ(x)) · ϕ̃ dx.

Together with the above we get
ˆ

B

λ(x) det ∇ϕ dx = − 1
2

ˆ

B

((cof ∇ϕ(0))∇λ(x)) · ϕ̃ dx

− 1
2

ˆ

B

((cof ∇ϕ)∇λ(x)) · ϕ̃ dx.

�

The uniqueness condition will be of the form ‖∇λ(x)|x|‖L∞(B,R2) ≤ C
for some constant C > 0 and where λ will be the corresponding pressure to
some stationary point. A priori, the condition only guarantees the existence
of ∇λ(x)|x| in a suitable space. In the next lemma we show that λ and ∇λ
themselves exist in a suitable space, which, in particular, allows one to make
use of the technical lemma above.

Lemma 2.2. Let μ ∈ L1
loc(B) be a weakly differentiable function satisfying

‖∇μ(x)|x|‖L∞(B,R2) < ∞.

Then μ ∈ W 1,p(B,R2) for any 1 ≤ p < 2.
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Proof. The proof is straightforward. Indeed, it holds that
ˆ

B

|∇μ|p dx ≤ ‖∇μ(x)|x|‖p
L∞(B,R2)

ˆ

B

R1−p dx

R
,

where the latter integrand is integrable for all 1 ≤ p < 2. �

We are now in a position to prove the main statement of this section.

Proof of Theorem 1.2. Let u ∈ Ag be a stationary point with pressure λ, let
v ∈ Ag be arbitrary and set η := v − u ∈ W 1,2

0 (B,R2).
We start our argument by expanding the energy via

E(v) =
ˆ

B

M(x)∇v · ∇v dx

=
ˆ

B

M(x)∇u · ∇u dx +
ˆ

B

M(x)∇η · ∇η dx + 2
ˆ

B

M(x)∇u · ∇η dx

= E(u) + E(η) + H(u, η),

where

H(u, η) := 2
ˆ

B

M(x)∇u · ∇η dx

denotes the mixed terms.
Expanding the Jacobian of η and exploiting the fact that both u and v satisfy
det ∇u = det ∇v = 1 a.e. yields

det ∇η = −cof ∇u · ∇η a.e.

By the latter identity and the fact that (u, λ) satisfies (1.7), H can be written
as

H(u, η) = 2
ˆ

B

λ(x) det ∇η dx. (2.8)

By Lemma 2.1.(vi) we have

H(u, η) = −
ˆ

B

(cof ∇η(0)∇λ(x)) · η̃ dx −
ˆ

B

(cof ∇η∇λ(x)) · η̃ dx

=: (I) + (II).

Now by noting that the 0−mode is only a function of R, we get

(cof ∇η(0)∇λ(x)) · η̃ =
λ,θ
R

(η(0)
1,Rη̃2 − η

(0)
2,Rη̃1).

Instead of just λ,θ on the right hand side of the latter equation we would like
to have the full gradient of λ. This can be achieved by using the basic relations
eθ · eθ = 1 and eR · eθ = 0 to obtain

(cof ∇η(0)∇λ(x)) · η̃ = (λ,R ReR + λ,θ eθ) · (η(0)
1,Rη̃2 − η

(0)
2,Rη̃1)

eθ

R
.

Arguing similarly for (II), and a short computation shows

H(u, η) = −
ˆ

B

(λ,R ReR + λ,θ eθ) ·
[
(η̃1η̃2,θ − η̃2η̃1,θ)

eR

R
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+ (η̃2(η
(0)
1,R + η1,R) − η̃1(η

(0)
2,R + η2,R))eθ

] dx

R
. (2.9)

By Hölder’s inequality we get4

H(u, η) ≥ − ‖∇λ(x)R‖L∞(B,R2)

ˆ

B

[
|η̃1η̃2,θ − η̃2η̃1,θ| 1

R

+
∣∣∣η̃2(η(0)

1,R + η1,R) − η̃1(η
(0)
2,R + η2,R)

∣∣∣] dx

R
.

By ‖∇λ(x)R‖L∞(B,R2) ≤
√
3ν

2
√
2

and a weighted Cauchy-Schwarz Inequality, we
see5

H(u, η) ≥ − ν
√

3
4
√

2

[
2a‖η̃1‖2L2(dx/R2) + 2a‖η̃2‖2L2(dx/R2)

+
1
a

ˆ

B

[
η̃2
2,θ

R2
+ (η(0)

2,R + η2,R)2 + (η(0)
1,R + η1,R)2 +

η̃2
1,θ

R2

]
dx

]
.

Next we recall an elementary Fourier estimate (see, for instance, [3, Proof of
Proposition 3.3]), which states that for any φ ∈ C∞(B) it holds

ˆ

B

R−2|φ̃,θ|2 dx ≥
ˆ

B

R−2|φ̃|2 dx. (2.10)

Applying the Cauchy-Schwarz inequality and (2.10), and then combining
some of the norms yields

H(u, η) ≥ − ν
√

3
4
√

2

[
(2a +

1
a
)‖η̃1,θ ‖2L2(dx/R2) + (2a +

1
a
)‖η̃2,θ ‖2L2(dx/R2)+

+
2
a
‖η1,

(0)
R ‖2L2(dx) +

2
a
‖η1,R ‖2L2(dx)

+
2
a
‖η2,

(0)
R ‖2L2(dx) +

2
a
‖η2,R ‖2L2(dx)

]

≥ − ν
√

3
4
√

2

[
(2a +

1
a
)‖η̃,θ ‖2L2(dx/R2) +

2
a
‖η,

(0)
R ‖2L2(dx)

+
2
a
‖η,R ‖2L2(dx)

]
.

4Since we are not only interested in a qualitative but rather a quantitative estimate, we
need to specify which norm we pick on R

2. For this the above Hölder estimate is given more
carefully by
ˆ

B
f · g

dx

R
=

ˆ

B
f1g1 + f2g2

dx

R
≤
ˆ

B
(|f1||g1| + |f2||g2|) dx

R

≤ max{‖f1‖L∞(B), ‖f2‖L∞(B)}
ˆ

B
(|g1| + |g2|) dx

R

This is the reason why we defined the norm of f via ‖f‖L∞(B,R2) :=

max{‖f1‖L∞(B), ‖f2‖L∞(B)}.
5For a measurable vector-valued f = (f1, f2) : B → R

2 we use the obvious notation

‖f‖2
L2(dx/Rk)

:= ‖f1‖2
L2(dx/Rk)

+ ‖f2‖L2(dx/Rk) and ‖fi‖2L2(dx/Rk)
:=

´
B |fi|2 dx

Rk , for

any k ∈ N.
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Making use of η̃,θ = η,θ , which is true since the zero-mode does not depend
on θ, and ‖η,

(0)
R ‖2L2(dx) ≤ ‖η,R ‖2L2(dx) we obtain

H(u, η) ≥ − ν
√

3
4
√

2

[
(2a +

1
a
)‖η,θ ‖2L2(dx/R2) +

4
a
‖η,R ‖2L2(dx)

]
.

Choosing a =
√
3√
2

and again combining norms gives

H(u, η) ≥ − ν
√

3
4
√

2

[
4
√

2√
3

(‖η,θ ‖2L2(dx/R2) + ‖η,R ‖2L2(dx))

]

= − νD(η),

where D(η) := ‖∇η‖2L2(dx) denotes the Dirichlet energy. This yields

E(η) + H(u, η) ≥ E(η) − νD(η) ≥ 0,

which, since Mξ · ξ ≥ ν|ξ|2 for all ξ ∈ R
2, completes the proof. �

The prefactor
√
3

2
√
2

in (1.11) is the best we have for general λ at the
moment. If, however, circumstances are such that λ depends on only one of R, θ
throughout B, then condition (1.11) can be replaced by the weaker assumption

‖∇λ(x)R‖L∞(B,R2) ≤ ν, (2.11)

which is the content of the next result.

Corollary 2.3. Let the conditions of Theorem 1.2 be in force, but with (2.11)
replacing (1.10), and assume that either λ(x) = λ(R) or λ(x) = λ(θ) for all
x ∈ B. Then the conclusions of Theorem 1.2 hold.

Proof. (i) (λ(x) = λ(R).) This case is significantly simpler and one can argue
more along the lines of the proof of [3, Prop.3.3]. The reason is that in this
case it still holds that

H(v, η) = 2
ˆ

B

λ(R) det ∇η dx = 2
ˆ

B

λ(R) det ∇η̃ dx,

where η̃ = η − η(0) eliminating the 0−mode.
Then applying of [3, Lemma 3.2.(iv)] yields

H(v, η) =
ˆ

B

λ′(R)Rη̃ · Jη̃,θ
dx

R2
.

Using Hölder’s inequality, ‖λ′(R)R‖L∞(0,1) ≤ ν, and Fourier estimate (2.10)
we get
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H(v, η) ≥ − ‖λ′(R)R‖L∞(0,1)

ˆ

B

|η̃||η̃,θ| dx

R2

≥ − ν

(ˆ
B

|η̃|2 dx

R2

)1/2 (ˆ
B

|η̃,θ|2 dx

R2

)1/2

≥ − ν

ˆ

B

|η̃,θ|2 dx

R2

≥ − ν

ˆ

B

|∇η|2 dx.

Note, as before, that the ∼ could be dropped because
´

B
|∇η̃|2 dx ≤ ´

B
|∇η|2 dx.

(ii) (λ(x) = λ(θ).) Here we start with (2.9) which simplifies to

H(u, η) = −
ˆ

B

λ,θ (θ)[(η2,
(0)
R +η2,R )η̃1 + (η1,

(0)
R +η1,R )η̃2]

dx

R

By Hölder’s inequality, Inequality (2.10) and ‖λ,θ ‖L∞(0,2π) ≤ ν we get

H(u, η) ≥ − ‖λ,θ ‖L∞(0,2π)

ˆ

B

|(η2,(0)R +η2,R )η̃1 + (η1,
(0)
R +η1,R )η̃2| dx

R

≥ − ν

2

[
2‖η̃1,θ ‖2L2(dx/R2) + 2‖η̃2,θ ‖2L2(dx/R2)

+ ‖η,
(0)
R ‖2L2(dx) + ‖η,R ‖2L2(dx)

]

Using η̃,θ = η,θ and ‖η,
(0)
R ‖2L2(dx) ≤ ‖η,R ‖2L2(dx) we get

H(u, η) ≥ − ν

2
[2‖η,θ ‖2L2(dx/R2) + 2‖η,R ‖2L2(dx)]

= − νD(η).

�

Remark 2.4. (Relaxation of the assumptions) The result of Theorem 1.2 con-
tinues to hold if we assume that f(x; ξ) = M(x)ξ · ξ ≥ ν(|x|)|ξ|2 for some
ν ∈ L∞(R+), ν(R) ≥ 0, and all ξ ∈ R

2×2. Here, ν(R) = 0 is allowed6 to be
0. The assumption ν = ν(R) is needed because we do not know if the Fourier
estimate (2.10) is still true if ν depends on both R and θ. In this case, the
small pressure condition can be relaxed to a pointwise estimate:

|∇λ(x)R| ≤
√

3ν(R)
2
√

2
for a.e. x ∈ B,

with uniqueness if the inequality is strict on some non-null set.

6Note that in these circumstances, we do not need to verify that a minimizer of the associated
functional E(u) exists in order to apply Theorem 1.2. Rather, it is enough to establish that
u is a stationary point in the sense of (1.7).
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3. A method for computing the pressure and a counterexample
to regularity

In this section we construct an explicit functional E(u) of the form (1.1), where
the integrand obeys (1.2) and (1.3), such that u = u

N
is the global minimizer

of E in Atr (u
N
). The strategy is as follows:

(i) select a candidate trace function g ∈ W k+1,p(S1,R2) for k ≥ 1 and 1 ≤
p ≤ ∞ which obeys7 1 = Jg(θ) · g′(θ) for a.e. θ in [0, 2π)8;

(ii) extend g to a one-homogeneous function u(R, θ) := Rg(θ), and compute,
in Lemma 3.1, a PDE which must be satisfied by both u and an associated
λ in order that u is a stationary point of E in the sense of (1.7);

(iii) fix g = tr (u
N

) and construct, in Lemma 3.2, a suitable f(x, ξ) such that
the PDE in step (ii) can be solved for λ, and

(iv) verify that the small pressure condition stipulated in Corollary 2.3 is
satisfied by λ, and hence that u

N
is the unique global minimizer of the

associated energy E.

In this section we will rely on the following notation:
Notation: Recall the notation for 2-dimensional polar coordinates

{eR, eθ} := {(cos θ, sin θ), (− sin θ, cos θ)}.

Additionally, we will use

{eNR, eNθ} := {(cos(Nθ), sin(Nθ)), (− sin(Nθ), cos(Nθ))}
for any N ∈ N. Moreover, we will use the notation Mijgk = (M(ei⊗ej))·(g⊗ek)
for any combination of i, j, k ∈ {R, θ} and any map g ∈ R

2. Especially, if
g = eNl for some l ∈ {R, θ} we will use Mij(Nl)k for short.

Lemma 3.1. (Representation of the pressure) Let 1 ≤ p ≤ ∞, k ∈ N \ {0}
and assume M ∈ (L∞ ∩ W k,p)(B,R16), g ∈ W k+1,p(S1,R2) where g obeys
Jg · g′ = 1 a.e. in [0, 2π), and let u = Rg(θ) ∈ Ag be a stationary point of the
energy E as defined in (1.7).

Then there exists a corresponding pressure λ ∈ W k,p(B,R) and it satisfies
the following system of equations a.e. in B :

λ(x),θ (Jg · eR) − λ(x),R R(Jg′ · eR) = − [MRθ(g+g′′)θ

+ ((M,θ )RθgR + (M,θ )Rθg′θ)

+ R((M,R )RRgR + (M,R )RRg′θ)]

=:h1(M, g)

7The condition Jg · g′ = 1 ensures that the one-homogeneous extension u obeys det ∇u = 1
a.e. in B
8Here, by a slight abuse of notation, we put g̃(θ) = g(cos θ, sin θ) and then promptly drop
the ˜
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λ(x),θ (Jg · eθ) − λ(x),R R(Jg′ · eθ) = − [Mθθ(g+g′′)θ

+ ((M,θ )θθgR + (M,θ )θθg′θ)

+ R((M,R )θRgR + (M,R )θRg′θ)]

=:h2(M, g) (3.1)

Proof. Let u = Rg(θ) ∈ Ag be a stationary point. If there exists a correspond-
ing pressure λ ∈ W 1,p then u is a solution of
ˆ

B

M(x)∇u · ∇η dx=−
ˆ

B

λ(x)cof ∇u · ∇η dx for any η ∈ C∞
c (B,R2). (3.2)

For now, let us assume that λ ∈ W 1,p(B,R). In order to derive the system
of equations above, we enter the explicit form of u and the representation
η = (η · eR)eR + (η · eθ)eθ into the stationarity condition. By some further
calculations, which are mainly integrations by parts, we obtain (3.1). In the
last step of the proof we discuss the existence of λ ∈ W 1,p.
Step 1: Computation of left-hand side of (3.2):
The derivative and the cofactor of the map u = Rg(θ) are given by

∇u = g ⊗ eR + g′ ⊗ eθ,

cof ∇u = Jg ⊗ eθ − Jg′ ⊗ eR.

Plugging the above into the left-hand side of (3.2) and integrating by
parts yields

(LHS) =
ˆ

B

M(x)(g ⊗ eR + g′ ⊗ eθ) ·
(

η,R ⊗eR +
1
R

η,θ ⊗eθ

)
dx

= −
ˆ

B

R(M(x),R )(g ⊗ eR + g′ ⊗ eθ) · (η ⊗ eR)
dx

R

−
ˆ

B

M(x)((g + g′′) ⊗ eθ) · (η ⊗ eθ)
dx

R

−
ˆ

B

M(x),θ (g ⊗ eR + g′ ⊗ eθ) · (η ⊗ eθ)
dx

R

Now by expanding η = αeR + βeθ with α = (η · eR) and β = (η · eθ) and the
shorthand introduced above we get

(LHS) = −
ˆ

B

R[(M,R )RRgR + (M,R )RRg′θ]α
dx

R

−
ˆ

B

R[(M,R )θRgR + (M,R )θRg′θ]β
dx

R

−
ˆ

B

MRθ(g+g′′)θα + [(M,θ )RθgR + (M,θ )Rθg′θ]α
dx

R

−
ˆ

B

Mθθ(g+g′′)θβ + [(M,θ )θθgR + (M,θ )θθg′θ]β
dx

R

=
ˆ

B

h1α + h2β
dx

R
.
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Step 2: Computation of right-hand side of (3.2):
Now by again using the explicit form of cof ∇u, and integration by parts we
get

(RHS) = −
ˆ

B

(λ(x)(Jg · η,θ ) − λ(x)R(Jg′ · η,R ))
dx

R

=
ˆ

B

λ,θ (x)(Jg · η) − λ,R (x)R(Jg′ · η)
dx

R
.

Further, we use the expression η = αeR + βeθ with the notation α = (η · eR)
and β = (η · eθ) to derive

(RHS) =
ˆ

B

(λ,θ (x)(Jg · eR) − λ,R (x)R(Jg′ · eR))α

+(λ,θ (x)(Jg · eθ) − λ,R (x)R(Jg′ · eθ))β
dx

R
.

Together with Step 1 and the realization that in the above α, β ∈ C∞
c (B) are

arbitrary, the claimed equations need to be true a.e. in B.
Step 3: Existence of the pressure λ ∈ W 1,p(B,R) :
The equations above can be rewritten as

ˆ

B

div (λ cof ∇u) · η dx =
ˆ

B

h(M, g) · η
dx

R
,

where h = (h1, h2). We know that div (λcof ∇u) ∈ Lp(dx) iff h(M, g) ∈
Lp(dx

R ), with obvious notation. Now consider h1(M, g) (the argument being
similar for h2) and define

h11 := − MRθ(g+g′′)θ

h12 :=[((M,θ )RθgR + (M,θ )Rθg′θ)

+ R((M,R )RRgR + (M,R )RRg′θ)].

Then for h11 ∈ Lp(dx
R ) we need M ∈ L∞(dx) and g, g′′ ∈ Lp, which is true by

assumption. Now, by Sobolev imbedding, we have W 2,p ↪→ W 1,∞([0, 2π),R2),
and hence, in order for h12 ∈ Lp(dx

R ), and bearing in mind that g, g′ ∈ L∞, it is
enough to require that ∇M ∈ Lp(dx). This is exactly how we chose the classes
for M and g. This guarantees the existence of div (λcof ∇u) = (cof ∇u)∇λ ∈
Lp(dx). By further noting that g, g′ ∈ L∞, it is immediate that ∇u ∈ L∞(dx),
and since det ∇u = 1 a.e. in B, we may write

∇λ = (cof ∇u)T h(M, g)
R

∈ Lp(dx).

In particular, when M and g are specified, ∇λ is specified and it belongs to
the class Lp(B), reverting to the traditional notation.
If we want λ to be in a better space, say, λ ∈ W k,p(dx), for some k ∈ N,
by the previous argument it is enough to show that h(M, g) ∈ W k,p(dx

R ). For
instance, we see by the product rule and the Sobolev imbedding above, that
h11 ∈ W k,p(dx

R ) iff M ∈ (L∞ ∩ W k,p)(dx) and g ∈ W k+2,p. Arguing similarly
for the other components finishes the proof. �
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We now specify g = tr (u
N

) and compute the pressure under the assump-
tions that M depends only on θ and is diagonal with respect to the basis of
polar coordinates.

Lemma 3.2. (Representation of the pressure, N-cover, M(θ)=diag) For N ∈
N \ {1} let g = 1√

N
eNR and assume M ∈ (L∞ ∩ W k,p)(B,R16) for some

1 ≤ p ≤ ∞ and k ∈ N, where M is of the specific form

M(x) = diag(MRRRR,MRθRθ,MθRθR,Mθθθθ) = diag(α(θ), β(θ), γ(θ), δ(θ))

with ν > 0 and α, β, γ, δ ≥ ν for any θ ∈ [0, 2π). Furthermore, suppose u =
Rg(θ) ∈ Ag is a stationary point of the energy E, as defined in (1.1).
Then there exists a corresponding pressure λ ∈ W k,p(B) and it satisfies the
following system of equations a.e. in B :

− λ(x),θ
1√
N

sin(θN−1) + λ(x),R R
√

N cos(θN−1) =
√

Nβ′ sin(θN−1)

+
[√

N(N − 1)β +
√

Nδ− α√
N

]
cos(θN−1)

=: h1 (3.3)

λ(x),θ
1√
N

cos(θN−1) + λ(x),R R
√

N sin(θN−1) = −
√

Nδ′ cos(θN−1)

+
[√

Nβ +
√

N(N − 1)δ− γ√
N

]
sin(θN−1)

=: h2 (3.4)

where we used the shorthand θk := kθ for any k ∈ R.

Proof. By Lemma 3.1, we know that the pressure λ exists and system (3.1) is
satisfied. Now we just have to verify that (3.1) agrees with the claimed system
given by (3.3) and (3.4). We start by verifying the first of the equations in the
system (3.1).
Step 1:
That the left-hand side of (3.3) follows from the left-hand side of the first
equation in system (3.1) is a straightforward calculation. Hence, we focus on
the corresponding right-hand side, which we named h1. First note that, because
M depends only on θ, we are left with

h1 = − [
MRθ(g+g′′)θ + (M,θ )RθgR + (M,θ )Rθg′θ

]
. (3.5)

We have g = 1√
N

eNR, g′ =
√

NeNθ, g
′′ = −N

√
NeNR, and hence

MRθ(g+g′′)θ =
(

1√
N

−
√

NN

)
MRθ(NR)θ

=
(

1√
N

−
√

NN

)
(MRθRθ(eNR · eR) + MRθθθ(eNR · eθ)).

Using that MRθθθ = 0 and MRθRθ = β yields

MRθ(g+g′′)θ =
(

1√
N

−
√

NN

)
β cos(θN−1).
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For the second term of (3.5), consider

MRθgR,θ = (M,θ )RθgR + MθθgR − MRRgR + MRθg′R + MRθgθ,

which, after a short calculation, gives

(M,θ )RθgR =MRθgR,θ − MθθgR + MRRgR − MRθg′R − MRθgθ

=
1√
N

[α − β] cos(θN−1).

Similarly, for the rightmost term of (3.5) we get

(M,θ )Rθg′θ =MRθg′θ,θ − Mθθg′θ + MRRg′θ − MRθg′′θ + MRθg′R

= −
√

Nβ′ sin(θN−1) +
√

N [β − δ] cos(θN−1).

Together,

h1 =
√

Nβ′ sin(θN−1) +
[√

Nδ − α√
N

+
√

N(N − 1)β
]

cos(θN−1).

Step 2:
By arguing similarly, we find that

h2 = − [
Mθθ(g+g′′)θ + (M,θ )θθgR + (M,θ )θθg′θ

]
.

Then

Mθθ(g+g′′)θ =
(

1√
N

−
√

NN

)
δ sin(θN−1)

(M,θ )θθgR =MθθgR,θ + MRθgR + MθRgR − Mθθg′R − Mθθgθ

=
1√
N

[γ − δ] sin(θN−1)

(M,θ )θθg′θ =Mθθg′θ,θ + MRθg′θ + MθRg′θ − Mθθg′′θ + Mθθg′R

=
√

Nδ′ cos(θN−1) +
√

N [δ − β] sin(θN−1)

and finally

h2 = −
√

Nδ′ cos(θN−1) +
[√

Nβ +
√

N(N − 1)δ − γ√
N

]
sin(θN−1),

completing the proof. �

Next, we compute the small pressure criteria in the same situation. More-
over, we will provide an explicit form of the pressure.

Lemma 3.3. (Small pressure condition, N-cover, M(θ)=diag) Let the assump-
tions be as above. For any N ∈ N \ {1}, let M = diag(a, 1, a, 1)ν, where we
pick a to be constant and in the range

1 ≤ N2 − N < a < N2 + N.

Then for this M the corresponding pressure λ is given by

λ(x) = c +
[
N − a

N

]
ln(R) for any x ∈ B

for any real constant c ∈ R, which is independent of R and θ. Moreover,
λ ∈ W 1,q(B) for any 1 ≤ q < 2 and λ satisfies condition (1.11) strictly.
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Proof. Define first

H1 =
[√

N(N − 1)β +
√

Nδ − α√
N

]
, H2 =

[√
Nβ +

√
N(N − 1)δ − γ√

N

]
.

By solving the system (3.3) and (3.4) we obtain

λ,R R =(β′ − δ′)
sin(2θN−1)

2
+

1√
N

(H1 cos2(θN−1) + H2 sin2(θN−1))

λ,θ =
√

N(H2 − H1)
sin(2θN−1)

2
− N(β′ sin2(θN−1) + δ′ cos2(θN−1)).

For the specific case of M = diag(a, 1, a, 1)ν they become

λ,R R =
[
N − a

N

]
and λ,θ = 0

showing, in particular, that λ depends only on R i.e. λ(x) = λ(R). Indeed, the
pressure is then given by

λ(x) = c +
[
N − a

N

]
ln(R) for any x ∈ B

and for any real constant c ∈ R, which is independent of R and θ. The small
pressure condition of Corollary 2.3 can now be applied, giving∣∣∣N − a

N

∣∣∣ < 1.

Solving this inequality by case distinction yields the claimed bounds on a. The
integrability is then easily deduced, completing the proof. �

To make it more accessible for the reader we collect what we have shown
so far in the following.

Proof of Theorem 1.3. (i), (ii), and (vi) trivial.
(iii) It is enough to show this point for M. Note, that M only depends on θ,

i.e. M(x) = M(θ). Hence, the gradient is given by

∇M =
1
R

∂θM(θ) ⊗ eθ for any x ∈ B \ {0}. (3.6)

First realise that the derivative with respect to θ only replaces eR with eθ

(up to sign) and vice versa, and therefore one can still bound the modulus
of ‖∂θM(θ)‖L∞(B,R16) ≤ C(a) via some real constant C(a) > 0. Then,
by integrating |∇M |q with respect to dx using (3.6) and by the latter
discussion, the claim follows.

(iv) As a consequence of g ∈ C∞ and point (iii), Lemma 3.2 guarantees that
u is a stationary point and the existence of λ in the right spaces.

(v) By Lemma 3.3 we know that λ satisfies the small pressure criteria strictly.
Together with Theorem 1.2, this implies that u = u

N
is indeed the unique

global minimizer of the energy E. �

Remark 3.4. (i) To summarize the foregoing analysis, we have shown that for
the full ball B ⊂ R

2 and smooth boundary conditions, albeit with a topological
change, there is a uniformly convex functional, which depends discontinuously
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on x, but smoothly on ∇u, such that the corresponding energy is uniquely
globally minimised by a map that is Lipschitz but not C1(B).
(ii) One might also be interested in this counterexample on the scale of Sobolev
spaces. With this in mind, note that for any N ∈ N \ {1} we have9

u =
R√
N

eNR ∈ W 2,q(B,R2) \ W 2,2(B,R2) for any 1 ≤ q < 2.

Moreover, one might like to compare our result with the high-order regu-
larity result, given in [2]. They showed that for the special case of the Dirichlet
functional and u ∈ W 2,q(B,R2) with q > 2 being a stationary point satisfying
det ∇u = 1 a.e., then u ∈ C∞(B,R2). It is possible that a similar result could
be established, for a fairly general non-autonomous p−growth functional with
the necessary changes in q. Assuming that such a result is indeed possible, this
seems to leave a ‘gap’ at q = 2.

(iii) The singular set Σ in our example is, of course, just the origin Σ = {0}.
It remains an open question whether there can be other incompressible vari-
ational problems, including in incompressible elasticity, where the stationary
points/minimizers possess a richer Σ.
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