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Abstract. We prove that on a compact Riemannian manifold of dimen-
sion 3 or higher, with positive Ricci curvature, the Allen—Cahn min—-max
scheme in Bellettini and Wickramasekera (The Inhomogeneous Allen—
Cahn Equation and the Existence of Prescribed-Mean-Curvature Hyper-
surfaces, 2020), with prescribing function taken to be a non-zero constant
A, produces an embedded hypersurface of constant mean curvature A (A-
CMC). More precisely, we prove that the interface arising from said min—
max contains no even-multiplicity minimal hypersurface and no quasi-
embedded points (both of these occurrences are in principle possible in
the conclusions of Bellettini and Wickramasekera, 2020). The immedi-
ate geometric corollary is the existence (in ambient manifolds as above)
of embedded, closed A-CMC hypersurfaces (with Morse index 1) for any
prescribed non-zero constant A, with the expected singular set when the
ambient dimension is 8 or higher.
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Theorem 1. For any A € R\ {0}, and compact Riemannian manifold (N, g),
with positive Ricci curvature and dim N = n+1 > 3, there exists a smooth, em-
bedded, two-sided hypersurface M, with constant mean curvature X (A\-CMC),
and

1. M is closed when 2 <n <6,

2. M\ M consists of finitely many points when n =7,

3. dimy (M \ M) <n—17, when n> 8.

In Theorem 1 the emphasis is on the fact that M is embedded: this ap-
pears to be a new result. The statement of Theorem 1 with embedded replaced
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by (the weaker notion of) quasi-embedded was on the other hand known, as
detailed below (with two methods available). We recall that quasi-embedded
means that the hypersurface is a smooth immersion, with any self-intersections
being tangential, and with local structure around any point of tangential in-
tersection being that of two embedded disks lying on opposite sides of each
other (see [6, Definition 8§]).

As it will be important for our arguments, we begin by recalling that the
existence result in Theorem 1, with embedded replaced by quasi-embedded,
follows from the work by the first author and Wickramasekera in [6]. In fact,
[6, Theorem 1.1] proves the following more general result. Given a compact
Riemannian manifold, (N,g), dim N > 3 (without any curvature assump-
tions) and a non-negative Lipschitz function h : N — R, there exists a quasi-
embedded, two-sided C? hypersurface M), such that, for each x € M), the
scalar mean curvature of M}, at z is given by h(z); the singular set Mj, \ M,
satisfies the dimensional estimates listed in Theorem 1. The construction of
Mjp, is carried out in the Allen—Cahn min—max framework, and serves as a
starting point for the present work. We briefly recall it here in the case h = A
constant, with further details in Sect. 1.1.

Consider a sequence of functions {u;} in W12(N), where each u; is the so-
lution of the appropriate £;-scaled inhomogeneous Allen—Cahn equation, with
€; — 0. Assuming uniform energy bound, the works of Hutchinson-Tonegawa
[12] and Roger—Tonegawa [15] give, in the £; — 0 limit, an integral varifold V'
(a “limit interface”), with generalised mean curvature Hy € L (supp||V]]),
along with a Caccioppoli set E, with 9*E C supp ||V]|, such that,

Hy(z) = A, Oy (z) =1, H" —a.e.x € O*E,
Hy(z) =0, 0y(z) € 2Z>1, H" —a.e.x € supp ||V|\ O*E.

In the presence of such a sequence {u;}, the two major roadblocks to an exis-
tence result for a A-CMC are (i) 9*FE may be empty, in which case the limit
interface is actually minimal (ii) even if 9*E # (), it may not have sufficient
regularity ([6, Figure 1] illustrates how lack of regularity could prevent 0*F
from being an admissible candidate). In [6] a (first) sequence u; is produced
by means of a classical mountain pass lemma; the Morse index of u; is at most
1 (as a consequence of the fact that the min—max has one parameter). It is
moreover shown (see [6, Remark 6.7]) that in the case of ambient manifold
with positive Ricci curvature (and with h = A constant), occurrence (i) can-
not arise, that is, 0*E' is non-trivial when w; is the sequence obtained from
the min—max. For arbitrary ambient manifolds, in the event that w; leads to
occurrence (i), [6] implements a gradient flow that yields a (second) sequence
{v;}, for which 9*F # () and with Morse index 0. The matter is thus reduced
to a regularity question for the limit interface arising from a sequence u; with
uniformly bounded Morse index. This index control is used in a key way to
obtain regularity ([6, Theorem 1.2]), whose proof relies on extensions of Y.
Tonegawa’s work [18] and Tonegawa—Wickramasekera’s work [19], and cru-
cially on the (non-variational) varifold regularity result [5, Theorem 9.1] (see
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also [6, Theorem 3.2]). In conclusion, [6] obtains that V = V) + V4, where
supp ||VA|| = OE = My and supp ||Vy|| = My; here My is a two-sided, quasi-
embedded A-CMC hypersurface, and M, an embedded minimal hypersurface,
both satisfying the dimensional estimates listed in Theorem 1. Furthermore,
any intersections between M) and My, and self-intersections of M), are always
tangential intersections of C? graphs lying on one side of each other.

With this as a starting point, our first step in establishing Theorem 1 is
to show that when Ric, > 0, the one-parameter Allen-Cahn min-max just
recalled does not produce any minimal components in the limit interface,
i.e. Vo = 0. (As mentioned earlier, in this case [6] establishes already that
Vi # 0 for the u; produced by min—-max.)

Theorem 2. Let (N,g) be a compact Riemannian manifold of dimension > 3,
with positive Ricci curvature, and X > 0. The one-parameter Allen—Cahn min—
maz in [6], with prescribing function set to A, produces a two-sided \-CMC
hypersurface and no minimal hypersurface.

Theorem 2 is achieved by exhibiting a suitable continuous path, admis-
sible in the min—max construction (which employs paths that are continuous
in W12(N)). This path will move through functions that are each modelled
on a level set of the signed distance to M. The idea is to try to place a 1-
dimensional Allen—Cahn profile along the normal direction to a given level set
and thus produce a function (a point in the path). This might appear prob-
lematic due to the presence of points where the level sets are not smoothly
embedded in N (which, for example, may be caused by the presence of the
singular set M, \ My, or by the fact that M has quasi-embedded points). We
handle this after observing that all “problematic points” are contained in a
closed n-rectifiable set. The open complement (in N) of this n-rectifiable set
is described (via a diffeomorphism) as an open subset of M x R, where M is a
(abstract) n-manifold whose immersion into N gives M. We will refer to this
open subset as the Abstract Cylinder (which is endowed with a metric pulled
back from N). Each level set of the distance function becomes a subset of
M x {s}, where s is the chosen distance value. The sought path is then defined
by “sliding” the 1-dimensional Allen—Cahn profiles in the R-direction in the
whole cylinder M x R, then restricting these functions to the Abstract Cylin-
der, and passing them to IN. We check that this indeed produces a continuous
path in W12(N). Furthermore, performing the energy calculations on the Ab-
stract Cylinder, we see that the potentially “problematic points” do not cause
any issues. The sliding argument yields a path with the (key) property that
the relevant Allen—Cahn energy attains a maximum (along the path) at the
function obtained in correspondence of M) (signed distance equal to 0); this
relies on the positivity of the Ricci curvature. This property of the path easily
implies that V5 = 0 (no minimal component), for otherwise the min-max char-
acterisation of V would be contradicted. Theorem 1 is then proven by showing
that the A-CMC hypersurface arising in Theorem 2 is, in fact, embedded. This
is again done by exhibiting a suitable path (admissible in the min—max). This
path is constructed by editing the previous one about its maximum, under
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the contradiction assumption that a non-embedded point exists in M. The
modification requires the identification of suitable hypersurfaces obtained by
deforming M) about the non-embedded point. This construction ensures that
the modified path attains a maximum that is strictly smaller than the maxi-
mum obtained for the path used in the proof of Theorem 2. This contradicts
the min-max characterisation. We stress that these path constructions cap-
italise on the a priori knowledge (from [6]) that My and My are sufficiently
regular.

We remark that Theorem 2 is somewhat interesting in its own sake: it
is an open question whether (and under what assumptions) a sequence of so-
lutions to the inhomogeneous Allen—Cahn equation with nowhere vanishing
inhomogeneous term, and with a uniform bound on the Morse index, can pro-
duce minimal components. (The regularity result in [6] recalled earlier allows
us to refer to the minimal and prescribed-mean-curvature components as hy-
persurfaces that are separately smooth, except for a possible small singular
set when the ambient dimension is 8 or higher.) Theorem 2 rules out minimal
components in the special instance in which the solutions come from a one-
parameter min—max (in N compact with Ricy > 0) and the inhomogeneous
term is constant.

The absence of minimal components and of non-embedded points estab-
lished by Theorem 1 has, among its consequences, a Morse index estimate:

Corollary 1. The \-CMC hypersurface in Theorem 2 has Morse index equal to
1.

This follows directly from Mantoulidis [14]. Alternatively, the arguments
of Hiesmayr [11] apply verbatim. (We refer to Sect. 9 for the definition of Morse
index.)

As we recalled, [6] employs an Allen—Cahn approximation scheme to con-
struct the A-CMC quasi-embedded hypersurface. The statement of Theorem 1
with embedded replaced by quasi-embedded can also be obtained (without any
curvature assumption on N) using the so-called Almgren—Pitts method for the
min-max, see the combined works of Zhou-Zhu [22] (2 < n < 6) and Dey in
[7] (for n > 7, relying on the compactness theory in [4,5]).

Regardless of the method used for the min-max construction, and without
the need of curvature assumptions, if 2 < n < 6 the \-CMC hypersurface
obtained is closed and immersed (completely smooth). In White’s work [20,
Theorem 35] it is proven that for each A € R, there exists a generic set (in
the sense of Baire category) of smooth metrics on the ambient manifold such
that any closed, codimension-1 (completely smooth) immersion with constant
mean curvature A, is self-transverse. Therefore, combining the existence of
quasi-embedded \-CMC ([6] or [22]) with [20, Theorem 35], one obtains: when
2 <n <6, for any A, there exists a generic set of metrics on N, such that each
admits an embedded A-CMC hypersurface.!

1A more general version of this statement is available for h-PMC hypersurfaces, 2 < n < 6,
by again combining [20, Theorem 35] with either [6] or [23]. Note that the class of prescribing
functions, h, is different in these two results.
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This argument relies however on the complete smoothness of the A-CMC
hypersurface, which is not available for n > 7 in the existence results. The
flavour of Theorem 1 differs from the statement just given in that it allows
a singular set and can handle all dimensions; moreover the class of metrics
(Ricci positive metrics) is the same for all A € R. We also stress that the proof
of embeddedness in Theorem 1 exploits the min—-max characterisation of the
A-CMC, while one can apply [20, Theorem 35] to any smooth CMC immersion,
not necessarily one coming from a min—max. Theorems 1 and 2 may also hold
with other assumptions on the metric on IV, or other choices on the set of
prescribing functions. (In these different scenarios an alternative approach to
the sliding argument mentioned above could be a gradient flow, for example,
along the lines of [3, Section 5.4] and [6, Section 6.9].)
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1. Preliminaries

1.1. Allen—Cahn and construction of CMC immersion

We recall the min—max construction in [6], of critical points to the inhomoge-
neous Allen—-Cahn energy,

Forlu) = /]V§|VU|2+ WE(“) —J/N)\u, ce(0,1), ue WH2(N). (1)

Where W is- a smooth function on R, with W (+£1) = 0 being non-degenerate
minima, and W (t) > 0, for t € R\ {£1}. Furthermore, we impose that W
has only three critical points, ¢ = 0, +1, and quadratic growth outside some
compact interval. For example W (t) = (1 — ¢%)?/4, for t € [~2,2] and has
linear growth outside [—3, 3]. The constant o is given by,

o= [ VW

Moreover, we take A\ > 0.
Consider the first and second variations of (1) with respect to ¢ €

C=(N),

0Fen(u)(p) = /NEVu -V + (VV;(U) - aA) ®, (2)
Prawee) = [ dve+ ®)

We say that w is a critical point of (1), if §F; x(u)(¢) = 0, for all ¢ € C>°(N),
and then by standard elliptic theory we have that u € C*°(N), and strongly
solves,

eAu = — oA (4)

W' (u)
€

If 82F. 5\ (u)(p,p) > 0, for all ¢ € C(N), then we say that u is a stable
solution to (4). By Fig. 1, we see that there exists two stable constant solutions,
a. > —1, and b. > 1. Furthermore, as ¢ — 0, we have that a. — —1, and
b. — 1. As Ricy > 0, [2, Proposition 7.1] shows that these are the only stable
critical points of (1).

The existence of these isolated, stable solutions permits us to find non-
trivial critical points of (2) via a min—max argument.

Proposition 1. (Existence of Min—-Max Solution, 6, Proposition 5.1]) For e >
0, let T' denote the collection of all continuous paths ~y: [—1,1] — W12(N),
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W(t)

Qe Ce b

eoA

FIGURE 1. Intersection points, a, b., and c., are the solutions
to W'(t) = eoA

such that v(—1) = ae, and y(1) = b.. Then there exists an 9 > 0, such that
for all e < g,
inf  sup  Fea =0 > Fealae) > Fea(be), (5)
7Eluey((-1.1))
is a critical value, i.e. there exists u. € WH2(N), critical point of Fex, with
Fer(ue) = Be; moreover, u. has Morse index < 1.

In our Ricci positive setting, as a. and b. are the only stable critical
points we actually have that u. has Morse index equal to 1.

Now taking a sequence {e;}ien C (0,20), with &; — 0, and associated
critical points from Proposition 1, {u; = u., }, we associate the following Radon
measures,

e W (ui)
i) (G190 + D) g, ©)
Where p4 is the volume measure of (IV, g). Moreover there exists constants I,
L > 0, such that for all i,

sup |u;| + pi(N) < K, (7)
N

and
1i(N) > L. (8)

By the bounds of (7) and (8), there exists a subsequence {u;} C {u;},
along with a ug € BV(N), with ug(y) € {+1,—1} for all y € N, and a non-
zero Radon measure y, such that u; — wug in LY(N), and py — p as Radon
measures. By [12, Theorem 1] and [15, Theorem 3.2], we have that p is the
weight measure of an integral n-varifold V', with the following properties:

1. V,is an integral n-varifold with bounded generalised mean curvature Hy/,
and first variation 6V = —Hy py .

2. The set F:={ug = +1} is a Caccioppoli set, with reduced boundary
O*ECspt VCN\E#0.

3. For H"-a.e. x € O*FE, ©(uy,x) = 1, and Hy (z)-v(z) = A; where v is the
inward pointing unit normal to 0*E, i.e. v = Vug/|Vug|.

4. For H™ a.e. x € spt V\O*E, O(puy, x) is an even integer > 2, and Hy () =
0.

Optimal regularity of V' was then proven in [6].
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1. V=V+V,

2. Vy is a (possibly zero) stationary integral n-varifold with singular set of
Hausdorff dimension at most n — 7.

3. V) = |0*E| # 0, and 9*F is a quasi-embedded hypersurface with constant
mean curvature A, with respect to unit normal pointing into E. The
singular set of 0*E has Hausdorff dimension at most n — 7.

4. V has a (A, 0)-CMC structure.

By (A,0)-CMC structure we mean that for each point on the support of
V', potentially away from a closed set of Hausdorff dimension at most n — 7,
the local picture is one of the following,

1. There is a single embedded A\-CMC disk.

2. There are two embedded \-CMC disks that lie on either side of each other
and only touch tangentially.

3. There is a single embedded minimal disk

4. There is a single embedded A-CMC disk and a single embedded minimal
disk that only touch tangentially.

5. There are two embedded A\-CMC disks that lie on either side of each
other, along with an embedded minimal disk, such that all three disks
only touch tangentially.

For a detailed definition of a (A, 0)-CMC structure, see [6, Definition 8]. We
define the set gen-regV, to be the set of points on supp ||V]|, which satisfy
one of the local pictures of 1 to 5. For a detailed definition of gen-reg V' see [6,
Definition 5].

Therefore, we have the following

Theorem 3. (Theorem 1.1 [6]) Let N be a closed Riemannian manifold of di-
mension n+ 1 > 3, with positive Ricci curvature, and let X € (0,00) be a fixed
constant. There exists a smooth, quasi-embedded hypersurface M C N, with;

L M\M=90,if2<n<6;

2. M\MJs finite if n="17;

3. dimpy(M\ M) <n-—7,ifn>8.
Moreover M is the image of a two sided immersion with mean curvature Hpy =
v, for a choice v of continuous unit normal to the immersion.

We restate Theorems 1 and 2 with our new notation.

Theorem 4. Consider a closed Riemannian manifold (N, g), with positive Ricci
curvature and dimN = n + 1 > 3. Take A\ € (0,00). The limiting varifold
V =Vy+Vy from Sect. 1.1 has the following properties

1. M:=gen-regVy is embedded, connected and has index 1.
2. Vo =0.

This says that only case 1 can occur.
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1.2. One dimensional Allen—Cahn solution

We refer to [2, Section 2.2] as a reference for this section.

We define the function H on R to denote the monotonically increasing
solution to the ODE u” — W'(u) = 0, with the conditions H(0) = 0 and
lim;_, 4+ H(t) = £1. We then define H,(-) = H(e ! -), which solves the ODE
eu” — e W' (u) = 0.

We define an approximation for H.. Start by considering the following
bump function

x € C°(R),

x(t) =1, te(=1,1),
x(t) =0, te R\ (-2,2),
x(t)=x(-t), teR,

X'(t) <0, t>0.

For € € (0,1), we define the truncation of H. by

= X((eA)T'H(t) + 1 — x((eA) 1), >0,
He(t):: 1 B —1
X((eA)T'H(t) — 14 x((eA) 1), t <0,

where A = 3|loge|. There exists a constant 8 = S(W) < 400, such that for
all £ € (0,1/4),

20ﬂ52</R;(HE)’(t)|2+VV(H;(t))dt<2a+652.

2. Idea of proof

We first prove Theorem 1 for the case A > 0. To then prove for A < 0, we
take A = —\ > 0, and reverse the direction of the unit normal on the resulting
A-CMC hypersurface. From here on we take A > 0.

For Caccioppoli sets 2 C N, we define the following functional,

FAQ=H"(0Q) — Ay ().

Recall our converging sequence of critical points {u., }, along with our limiting
varifold V' = V) +Vj, and Caccioppoli set £ from Sect. 1.1. We have, as¢; — 0,

Feialue;) = 20F\(E) + 20M(Vy) + oAy (N)

Therefore, constructing minimising paths between () and N for Fy, may provide
insight to minimising paths from a. to b. for F .

As N is compact, one obvious path that includes E, is {E;} for t €
[—2diam(N), 2 diam(N)], where,

Ep:={y: d(y) > t}.

Here d is the signed distance function to M:=9*F, taking positive values in
E, and negative values in N \ E. We also denote,

Ty:={y: d(y) =t} = OF;.
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Assuming sufficient regularity on the sets Iy and E;, and the functions ¢ —
H™(T'y) and t — pg(Ey), we have for t > 0,

td td
E,) — E) = " ds — X | —pg(Fs)ds,
FA(E) = Fa(B) = | Hr(Ls)ds /Odsxm )ds

:/O /F X — Hr(z) dH" () ds,

where Hp, is the scalar mean curvature of I'y with respect to unit normal
Vd. Recalling that Hr, = A, a straightforward calculation yields the following
inequalities.

(9)

Hp, > A+mt, t>0,

Hp, < A+mt, t<0,
where m = min|x|—; Ricy(X,X) > 0. Therefore, by (9) for ¢ >0,

Fr(Ey) < Fa(E).
The same inequality holds for ¢ < 0. Here we see the importance of the as-
sumption on the Ricci curvature. Therefore,
v:t € [-2diam(N),2diam(N)] — E_; € {Caccioppoli sets of N},

is a path from () to N, that has maximum height F)(E).

We look to replicate this path in W12(N). Consider the Lipschitz func-
tion on N,

vt = He(d(z) 1),

which can be thought of as placing the truncated one dimensional Allen—-Cahn
solution from Sect. 1.2 along the normal profile of I';. By the Co-Area formula,
we have,

/st—mn )s—aA/H (s — tyH"(T) ds

were,

The functions
t— / Q:(s—t)yH™(Ty)ds, and t— J)\/ H. (s — t)H™(T's) ds,
R R

act as smooth approximations to t — 20H"(I't), and t +— 20A\ug(E;) —
oAy (N), respectively.
We say that v0 is an Allen—Cahn approximation of M as,

Fer(0?) = 20H" (M) — oMty (E) + oAty (N \ E)=:As,
as € — 0, Sect. 3.6. Carrying out a calculation which replicates the previous
one, we deduce that for all 7 > 0, there exists an e, > 0, such that for all
e € (0,e,),

)< Ay+7=A4-20M
te[=2 diam(N) 2 diam (V)] Fealve) <Az +7= A1 = 20M(Vo) +7
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where Ay:=20H"(M)+20M(Vy) — 014 (E)+0,(N\ E). Connecting vz ™)

= —1to a., and v{2diam(N) = +1 to b., by constant functions, we see that we
have an appropriate min-max path in W12(N).

This path proves that we cannot have a minimal piece V. We also get
criterion for M. Indeed, as there exists a "Wall’, [6, Lemma 5.1}, that all min—

max paths must climb over, we have that
20 \H" (M) — oAig(E) + oApg(N \ E) > oAug(N).
Rearranging yields,
H" (M) > Apg(E).

We note that the above path can be constructed for any suitable A-CMC
hypersurface which encloses a volume. Therefore, for any such pair (M, E), the
above inequality holds, and our min—max must choose the pair that minimises
the positive quantity H" (M) — Aug(E). From this, we can deduce that E must
be connected.

We turn our attention to proving that M is embedded. We prove by
contradiction, exploiting the min—max characterisation of M. We now know
that, given our sequence of critical points {u.,}, and potentially after taking
a subsequence,

Fejalue;) = 200" (M) — oApg(E) + oAug(N \ E) = Ay,

as €5 — 0. Assume that M has a non-embedded point zy. Then for every
€; > 0, we construct a continuous path,

Ve, [—1,1] — Wl’Q(N),

where, 7., (—1) = ac,, and 7, (1) = b.,. This path satisfies the following, there
exists a J in N, and ¢ > 0, independent of j, such that for all j > J,

e Feyn(1e; (1) < 20H"(M) — oAy (E) + oApg(N \ E) -,
This is a contradiction of the min—max characterisation of (S

We sketch the main ideas of the path in the e-limit, Fig. 2.

The picture at zq is Fig. 3a. The limiting energy for this structure is A,.
The starting point for building this path is to construct a competitor with
lower limiting energy. Then we wish to connect this competitor to +1 and —1,
with energy always remaining a fixed amount below As,.

Step 1: Construction of Competitor, (1) — (2) in Fig. 2, Sect.5

The structure at zp is two smooth, embedded CMC disks, that touch
tangentially at zg and lie either side of each other. To construct the competitor,
we push these disks together, and delete portions of the disks that are pushed
past each other. This reduces the area of our structure while also increasing
the size of E, leading to a drop in energy.

Idea 1: Push the whole of M by some fixed distance p.

This equates to pushing M to the level I'_,. As seen previously, this will
lead to a drop in energy. Furthermore, there is an obvious path to +1, namely
we keep pushing along level sets, I'_,. for r in [p,2diam(N)]. However, there
is no obvious path to —1. Pushing I'_, in the direction of £, will increase the
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energy and bring us back to M, undoing the energy drop that the competitor
created.

Idea 2: Push the disks together locally.

Consider open balls By CC By about zg. We smoothly bump the disks
at zg such that inside B; we move the disks of distance p > 0, and outside By
we remain fixed. The balls B; and, By along with p, are chosen so that the
area inside Bj gets deleted, Fig. 3b. Letting,

¢ = %H"(Bl n M),

we see that our competitor has energy lying below, As — <.

Step 2: Path to +1, Sect. 7

To connect to the competitor, +1 we look to copy the successful path to
+1 of the competitor in Idea 1. To construct the competitor, we only edited
M locally about zy. Therefore, pushing the competitor to the level set I'_, will
correspond to a similar drop in energy from pushing M to I'_,. This is (2) —
(6) in Fig.2. See Fig.3b and f for local pictures about zo. From I'_, we can
easily connect to +1 by pushing along level sets I'_,., as previously discussed.

Step 3: Path to —1, Sect.6

We look to follow a similar method as in Step 2 by connecting our
competitor to a level set I, for ro > 0, then push this along level sets I';. for
r in [ro, 2 diam (V)] to connect it to —1. By pushing our competitor straight
to I'y, we run the risk of pushing through M and increasing our energy back
up to As. Therefore, we carry out our path in stages, again making use of the
fact that our edit about zy was local.

The first stage is (2) — (3) in Fig. 2. We fix our competitor in Bs, and
outside we push forward, so that outside some larger ball Bs, we line up with
I'),. See Fig.3b and c for local pictures about zp. Again, as our edit is local
about zp, this corresponds to a similar drop in energy of pushing M to L'y,
and the drop will be of order 72. For a large enough 7 this will give us a large
enough energy drop to be able to undo the edit inside Bs, and still have our
energy remain below As —¢. This is the second stage from (3) — (4), in Fig. 2.
See Fig. 3d, for local picture about non-embedded point. From here we push
up inside Bs to line up with I';, (4) — (5) in Figs. 2, 3e. Finally, we connect
to —1 by sliding along level sets as previously stated.

Path at ¢ Level

We carry out this 'pushing’, on what we refer to as our abstract cylinder,
M x R. See Sect. 3.3. Here M is an n-dimensional manifold and ¢: M — M is
a smooth immersion. We define the following map,

F: M xR — N,
(I,t) = GXpL(z)(tV(I))),

with v being a smooth choice of unit normal to immersion, pointing into E.
Therefore, we view points (x,t) on our cylinder M x R as having base point
t(x) and moving length ¢ along the geodesic with initial direction v(x). See
Fig. 4.
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A

. - “
o, Ay
‘e, v

+1

F1GURE 2. The Paths. To prove Vj = 0, we follow the path
from —1 to (5), then the dotted line to (1), dotted line to (6),
then complete the path to +1. The dashed line from (1) to
(2) is the construction of the competitor. Then, to prove that
M is embedded, we follow the path from —1 to +1 given by
the solid lines. Refer to Fig. 3 for the local picture about the
non-embedded point zy at each numbered stage on the paths

Recall our function v? = H, o d, then by the Co-Area formula,

Fal?) = [ (EWHJKwF-%WK%%“»-—UAHA®> MO (T d

// (' (E())—JAHE(@ O, () dH" (x) dt

where 6,: M — R, is defined by the Area Formula to be such that for a.e
t € R, and any H"™-measurable function on N,

/ gd’}'[n:/~ (goFt)thHn,
Iy M

with F;(-) = F(-,t). Then we carry out the relevant "pushings’ by considering
a continuous family of functions {g, },cp0,] C C(M),

‘//<| Vit — gr(a)? + Wt = 9:(2)))

£

—oNH, (t — gr(x))> O (x) dH" (x,t) dt.

See Fig. 5.
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(a) (1): Non-embedded point zg : Competitor

(c) (3): Move competitor to I';, outside
ball B3 centred at zg.

(e) (5): Push up in Bj to come into line (f) (6): Push Competitor to come in line
with I'y,. with T'_,.

FIGURE 3. Stages of the Path at the non-embedded point 2.
In each image, the dashed lines represent the original A-CMC
disks, as a reference to what we are changing at each step.
Furthermore, in each image, it is the solid lines that are the
boundaries between the +1” and ’—1’ regions
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(a) On the left we have a local picture about a non-embedded point 2y of
M. On the right the two local pictures about a:(l) and zg in M x R, where
zh) = 20 = L(zf)) We have, F(Dl) = D;, and sz},(at) =y, fori=1
and 2. The dotted line on the left picture respresents points in N which
are of equal distance to Dy and Ds. The dotted lines on the right-hand
picture are the preimages of the dotted line on the left, under the map
F, and these can be seen as acting as the boundary to the open set T in
M x R.

D
+1 I3 Tat

]

-1

(b) On the left, a local picture about an embedded point of M. On the
right is its preimage in 7" under the map F.

FIGURE 4. Local pictures about points in M

FIGURE 5. How the competitor is constructed as the graph
of bump functions about points z§ and 2% over M. Whatever
is bumped out beyond the dotted line, on the right-hand side,
is not considered in N. In other words, it is deleted

2.1. Structure of the paper

The paper is organised as follows. We start with setup:

27

e Section 3 is devoted to set up of objects used in the main computation.
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e In Sect.4 we carry out the main computation. The constructions that
follow are carried out by plugging explicitly defined functions into this
computation.

To prove Theorem 2:

e In Sect. 8.2 we build the dotted path (5) — (1) — (6) in Fig. 2. Theorem 2

then follows upon combining this with computations in Sects. 6.4 and 7.2;

in these sections we build the paths (5) — —1, and (6) — +1, in Fig. 2.

To prove Theorem 1 we argue by contradiction, assuming that M has a non-
embedded point zg:

e In Sect.5 we construct our competitor about zy. This is the dashed path
(1) — (2) in Fig. 2.

e In Sect. 6 we construct a path from the competitor to the stable constant
ae. This is the solid path (2) — (6) — +1, in Fig. 2.

e In Sect. 7 we construct a path from the competitor to the stable constant
b.. This is the solid path (2) — (3) — (4) — (5) — —1 in Fig. 2.

e In Sect.8.3 we piece together this continuous path from a. to b., in
WL2(N). The energy F. », is less than Ay — ¢ for every point along this
path, Fig. 2. This contradicts the min—max construction, proving that M
is embedded.

Finally, in Sect.9 we prove Corollary 1 (the Morse index of M is equal to 1,
which also implies that M must be connected).

2.2. A note on choice of constants

The biggest subtlety in the Construction of the path in Sects. 5, 6 and 7 is the
choice of constants, and the order that we choose them in. We explicitly list
the order of choices here, and reference where they have been chosen.

1. We first choose a non-embedded point zg

We choose 6 = 6(z9, N, M, g, \, W) > 0, in Remarks 5, 6, 7, 8, 16.

We choose L = L(z9, N, M, g,6,\, W) > 0, in Remarks 12, 21.

We choose k = k(z20, N, M, g,6, L, \, W), in Remark 22.

We choose ro = 1¢(20, N, M, g,d, Lk, \, W) > 0, in Remarks 12, 21, 24.

We choose p = p(z0, N, M, g,0, L, k, 79, \, W) > 0, in Remarks 9, 10, 11, 14,

18, 23.

We define I = I(p) in (10).

We choose 7 > 0 in Sects. 8.2 and 8.3.

9. We finally choose e, = e,(20,N, M, g,0, L, k,r0,p,7,\,W) > 0, in Re-
marks 15, 19, 20 and Sects. 8.2 and 8.3.

AN e

® N

3. Construction of objects

3.1. Signed distance function

Let dg7: N — R be the distance function to the closed set M C N. As M
is closed, and N is complete, Hopf-Rinow tells us that, for each z in N, the
value, dgr(z), is obtained by a geodesic from z to a point on M. Furthermore,
d37 is Lipschitz, with Lipschitz constant 1.
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We may choose our representative of ug in L!'(N) such that the set £ =
{up = 1} is an open set in N, and M = OE. This allows us to define the
signed distance function, d: N — R, to M, which takes positive values in E,
and negative values in N \ E,

= ) dgr(2), r €F,
dy) = {—dM(z)7 x ¢ E.

This is a 1-Lipschitz function on N.

3.2. Abstract surface
M is a quasi-embedded A\-CMC hypersurface, [6, Definition 8§].

Remark 1. For a point z € M, there exists an n-dimensional linear subspace
T =T, C T.N, and a unit vector v, € T+, along with r = 7(2) > 0, s =
s(z) > 0, and S = S(z) > 0, such that S < inj (N). We define the cylinder

Corrsi=€xp, ({X +tv,: X € BrTzN(O) NT, te (—s,s)}) C Bg(z),

and, one of the following holds:

1. (See Fig.4b) There exists a smooth function,
f:B.r=BEN0)NT — (—s,s),

which satisfies,

f(0) =0,
VTf(0) =0,
Arf(0) = A,

and,
MNC.rys = exp,(Graph (f)) = exp,({X + f(X)v.: X € Bo 1, })
Furthermore, we have that,
ENC.rys=exp,({X+tv,: X € B, 7., f(X) <t<s}),

and we can define a smooth choice of unit normal to exp,(Graph (f)),

v: exp,(Graph (f)) — T(exp,(Graph (f)))",

such that v(z) = v,.
2. (See Fig.4a) There exists two smooth functions,

f17 f2: BZ,T,T - (_573)7
which satisfy,
fl(O) =0= f2(0),
fi > fo,
VT f1(0) =0 = VT f,5(0),
Arfi(0) =X = —Arf2(0),
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and,
MnCorrs= | exp.(Graph (f;)) = | J exp,({X + fi(X)vz: X € B.rs}).

i=1,2 i=1,2

Furthermore, we have that,

ENCyrrs =exp,({X +tv,: X € By, f1i(X) <t <s})
Uexp,{X +tr,: X € B,r,, —s <t < fo(X)}),

and we can define smooth choices of unit normals,
vi: exp,(Graph (f;)) — T(exp,(Graph (f)))*,

such that v1(2) = v,, and 15(2) = —v..

If Case 1 holds, then we say that z is an embedded point of M. Alternatively,
if Case 2 holds, we say that z is a non-embedded point of M. In either case,
the tangent space of M at z is given by, T, M:=T,.

Claim 1. ([4, Remark 2.6]) The set of non-embedded points of M has H"-
measure 0.

We define our abstract surface M by

M ={(z,v): z€ M, v € T.M=*, with|v| = 1, and points into £}.
Locally M is a smooth, embedded CMC disk in N, therefore, M is a smooth

n-dimensional manifold.

3.3. Abstract cylinder

Consider x in M, then z = (2, X), for some z in M and X in T, M. We define
two, smooth projections, first from M to TM*,

v:(z,X)— X,
and secondly, from M to M,
v (2, X) 2.
From these we define the following map,
F: M xR — N,
(z,t) — exp, () (tr(z)),

which, as N is complete, is well-defined. For a fixed z in M, F is a unit
parametrisation of a geodesic which, at time 0, passes through «(z), with ve-
locity v(z). The set {t: dgr(F(x,t)) = |t|}, is the set of times ¢, at which this
geodesic achieves the shortest distance from F(z,t) to M. Consider the subset
{t: d(F(z,t)) =t} C {t: dy;(F(z,t)) = |t|}, and its endpoints,

ot (x) = sup{t: d(F(z,t)) =t} >0,
o~ (z) = inf{t: d(F(z,t)) =t} <0.

These are uniformly bounded functions on M, and in fact as the next
claim shows, {t: d(F(z,t)) =t} is a closed and connected interval on R.
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Claim 2. We have that
(07 (x), 0t (x)] = {t: d(F(x,t)) = t}.

Proof. Consider the geodesic, v : t — F(x,t), and define the following func-
tion,

f it d(F(z,t)).
This is a 1-Lipschitz function with f(0) = 0. Indeed,
[f(t1) = f(t2)] < |d(F (2, 1), F(2,t2))| < Length(yt, 1,) = |t1 — ta.
For ty > 0, such that f(tg) # to, we must have f(tg) < to. By Lipschitz
constant 1, for any t > %,
f(t) =) = f(to) + f(to),
<t—to+ f(to),
< t.
Similarly, if we have ¢ty < 0, such that f(to) # to, then f(t) # ¢, for all t < tg.
By continuity, we have that d(F(z, o*(z))) = 0" (z), and therefore by

above, for all ¢ € [0, (z)], we must have that d(F(z, t)) = t. By definition of
ot (x), for all t > o (z), d(F(z,t)) < t. Therefore,

[0,0F(z)] = {t > 0: d(F(x,t)) = t}.
Similarly, [0~ (z),0] = {t < 0: d(F(z,t)) = t}. O
We define the abstract cylinder,
T={(z,t):zc M, tec (o (x),07(x)} c MxR.

Defining the projection map from M x R onto R, p: (z,t) — t, then on T we
have that do F = p.

We wish to work on 7' instead of N. The following Lemma is crucial in
that respect.

Lemma 1. (Geodesic Touching Lemma) For all y in N \ M, there erists a
geodesic from y to M that achieves the length of dxz(y). The end point of this
geodesic on M must in fact be a quasi-embedded point of M, and the geodesic
will hit M orthogonally.

Proof. Identical argument to [2, Lemma 3.1], except we replace the Sheeting
Theorem of [21] with the Sheeting Theorem of [4]. O

From this Lemma, the following result is immediate,

Proposition 2. For all y in N \ (M \ M), there exists an x in M, such that

F(z,d(y) = y.

Claim 3. The functions, o, o~ : M — R, are continuous.
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Proof. We prove by contradiction. Suppose there exists an & € M such that,
liminf, .z ot (2) = @ < 07 (&). Choose 0 < § < o+ (%) — «, then there exists
x, — & in M such that o (z,) < a + §. Now consider the points,

zn = F(zp,a+0) — z2:=F(&,a +0).

By Claim 2, (Z(zn) < a+ ¢. By Proposition 2 there exists a sequence Z,,, such
that,

F(Zp,d(zn)) = 2zn.

After potentially taking a subsequence and renumerating we have that there
exists a y € M, such that (Z,) — v, then note d(y,z) = d(z) = o + 4.
Therefore, by Lemma 1, y € M, and as t — F(&,t) is the unique length
minimising geodesic from M to z, &, — @ in M. Now we have that,

F(zn,a+08) = 2, = F(Z,,d(2,)).
However, (&, a + 68) # (Zn,d(z,)), and

lim (zn,a+0) = (&, +9) = lim (Z,,d(2n)).

n—oo

This implies that F' is not a diffeomorphism about the point (Z,« + ¢), and
therefore by classical theory of geodesics, [16, Lemma 2.11], ¢ — F(Z,t) is
no longer length minimising to M beyond time ¢ = « + §. This contradicts
a+d <ot ().

Now suppose that o7 (2) < limsup,_,; 0" (z) = 3 < +o0. Choose 0 <
§ < 8 —o"(%), and sequence z, — &, such that,

ot (zn) > 0T (2) + 4.
Define,
Zy = Fx,, 07 (2) +9),
then d(z,) = 0T (&) 4+ 6. By continuity of F,
2p — 22=F(&,07 (%) +6).

However, by definition of ot (&), d(z) < o (&) + d = d(z,). This contradicts
continuity of d.
Similar arguments show that ¢~ is also continuous. O

We define the Cut Locus of M to be the following points in N,
Cut (M) = {F(z,0"(z)): z € M}U{F(2z,0 (z)): € M} C N,
and by Proposition 2, we have that,
N\ (M \ M) = F(T)U Cut (M).
Proposition 3. Cut(M) is an n-rectifiable set.

To prove Proposition 3, we first classify points in Cut(M),

Proposition 4. A point y in N\ (M \ M), lies in Cut(M) if and only if at least
one of the following conditions holds:
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1. y lies in N\ M, and there exists an x in M such that F(z,d(y)) = v,
and dF(w,J(y)) : T,M x R — TyN, is non-invertible.

2. y lies in N \ M, and there exists at least two unique geodesics from y to
M which achieve the length dzr(y).

3. y is a non-embedded point of M.

Proof. Consider a point y = F(x,0) € M. If y is an embedded point of M, then
case 1 of Remark 1 holds, and there exists an S > 0, such that M N Bg(y) is
a smooth, embedded CMC disk. Therefore, ([13, Proposition 4.2]) there exists
an 7 in (0,5/2), such that for all ¢ in (—r,7), d(F(x,t)) = t. Therefore, if
y € M N Cut(M), then y must be a non-embedded point.

Alternatively, if y is a non-embedded point then case 2 of Remark 1 holds,
and (y,v) and (y, —v) both lie in M. Moreover, for t € (—s,0), t < f(0),
implying that F((y,v),t) = exp,(tv) lies in E. Therefore, d(F((y,v),t)) >0,
implying that o~ (y,v) = 0, and thus y is a point in Cut(M).

For y € N\ M, the conclusion follows from standard theory of geodesics,
see [16]. We can use this classical theory in our setting by Lemma 1. This
observation is seen [2, Proposition 3.1]. O

Remark 2. By point 2 of Proposition 4, F(T') and Cut (M) must be disjoint.
Therefore, by point 1 of Proposition 4, F' must be a local diffeomorphism on
T. Moreover, by point 2, F': T — F(T) is a bijection.

Proof. (of Proposition 3) As Cut(M) N M consists of non-embedded points
of M, by Claim 1 we have H"(Cut(M) N M) = 0. Therefore, to prove that
Cut(M) is rectifiable, we just need to concern ourselves with Cut(M)\ M. This
follows from the observation made in the proof of [2, Proposition 3.1], that as
Lemma 1 holds, then the arguments in [13, Theorem 4.10] hold verbatim. O

Remark 3. As M is smooth, we have that d is smooth in F(T), [13, Proposition
4.2).

Denoting h = F*g, we have that F: (T,h) — (F(T),g), is a bijective,
local isometry.
Consider the projection map,

p: M xR — R,
(z,t) — t.

In T, we have that p = do F, and
Vp(e,t)|n = [VA(F (2, )], = 1.
We denote the sets,

and,
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Note,

F(F,) = I,NF(T) =T\ Cut(M), t+#0,
| {embedded points of M}, t=0.

Denote Hf, (,t) as the scalar mean curvature of Iy, at (z,t), with respect to
unit normal Vp(z,t), and define the following function,

H,: M — R,
b {fox,t), (x,1) €

For (z,t) in T, we have,
Hi(z) = _trT(m,wfth(v' Vp(x,t), -) = —Ag, p(z,1).
However, as Vp is a geodesic vector field
VvpVp =0,
and as |Vp| =1,
WV xVp, Vp) = 5 X(19pl) =0,

Therefore, Ag p(z,t) = Azp(x,t), and thus for (z,t) in T
Hi(z) = —Ap(x,t).
Proposition 5. ([10, Corollary 3.6]) For (x,t) in T,
O H(x) = =Vp(Ap)(z,t) > m,
where m = inf| x|—1 Ricg(X, X) > 0.
Remark 4. Consider fixed z in M. For o~ (z) < 0, we have Ho(z) = \. If
o~ (x) = 0, we still have,

lim H, =\
lim ()=

Thus, by Proposition 5, we have for (z,t) € T,
Hi(z) > A\ +mt, t>0,
Ho(z) = A,
Hi(z) < X+mt, t<O0.

3.4. Area element

We define the function on M,

0 (l‘) _ JHt(:E)7 (:E,t) € T?
R (x,t) ¢ T,

where, Ji, is the Jacobian of the map IT;: & € M — (z,t) € M x R. By the
Area Formula,

/_ Gt dHn = Hn(ft)
M
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Proposition 6. ([10, Theorem 3.11]) For (zo,to) in T,
O 1og(01)(x0)|t=t, = —Hzy(70).
Consider a ﬁxed~ point (zg,tg) in T. First, consider tg > 0. For all ¢ in
(0,%0], (xo,t) lies in T, which implies that the function t +— 6¢(z¢) is smooth

on the interval (0,¢o]. Furthermore, lim;_ g+ 6;(xg) = 1, and applying the
Fundamental Theorem of Calculus,

1
log(eto ($0)) < —1p ()\ + 2mt0) .
Therefore,
Do (10) < e~ ar+ 1),

Identical inequality holds for ¢ty < 0.
The term —t(X + $mt) achieves a global maximum at ¢ = —%. Noting
that for (zg,tp) not in T, 01, (zo) = 0, we have that,
2
0 <0 (x0) < eﬁ,

for all (zo,t0) in M x R.

3.5. Construction about non-embedded point

Let zp in M be a non-embedded point.

Remark 5. We are in case 2 of Remark 1. We can choose § = (20, M, N, g)
such that,

Bas(20) C Coy 15
We have three disjoint sets,
Ey=exp,({X +tv: X € B,y 1., 1(X) <t < s}) N B3(20),
Fi=exp,({X +tv: X € By, f2(X) <t < f1(X)}) N BY(20),
Ey=exp,({X +tv: X € By 1, —5 <t < fo(X)}) N B (20).

As OE; N BY(20) = exp,({Graph (f;)}) N B (z0)=:D;, the following signed
distance functions are well-defined for i = 1, 2,

di: Bé\g(zo) — R,
dDi (y)a ye E;,
= N
—dp,(y), Y € By(z0) \ Ei.
For y in BY (20) CC B2(20),
d(y) = max{d (y), da(y)}-

Furthermore, by [13, Proposition 4.2], we may choose ¢ > 0, such that dy and
do will be smooth on B (z0).
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For ¢« =1, 2, we define
Diy={(z,vi(2)): z € D;} C M,
and points =} = (20, v;(20)).
Remark 6. We make a choice of § = (5(]\[, M, 9 z0) > 0 small enough such
that, for each ¢ = 1, 2, we have open sets V; C M x R, and maps,
F:V;, — B3(20),

such that D; = V; N {t = 0}, and F; = Fy,, is a diffeomorphism. We also
insist that 6 = §(IV, M, g, z9) > 0, is chosen small enough such that Cut(D;)
and Cut(Dz) are empty in Bas(zg). We know we can pick such a § > 0 by [13,
Proposition 4.2]

By choice of § > 0 in Remark 6, and Proposition 4,
Cut(M) N By (20) = {y € By’ (20): di(y) = d2(y)} C By’ (20) \ E.
Remark 7. Denote the set,
A= {y € B3j(20): di(y) = da(y)}.
For i = 1, 2, we consider the functions,
(7 ‘71 — R,
(z,t) > di(Fi(z,t)) — do(Fy(x, t)).
Therefore, A = F;({y; = 0}). Moreover,
Dhi(xh, 0) = dF; 1 (Vdy(20)) — dF;H(Vda(20)) = 20; # 0.

Thus, by Implicit Function Theorem we may choose 6 = §(z9, N, M, g) > 0,
such that set A = Cut (M) N BY(20) is a smooth n-submanifold in B (20),
and o~ is smooth on Dy U Ds.

We now look to define the push out function to construct our competitor,
Fig. 5.

We wish to determine the amount we want to push out by, and the set
we wish to push out on. Fix p > 0, and we set [ = [(p), to be,

l(p) = sup{t: foralla:inB,f\;I(xé), lo™ (z)| < p}. (10)

Here, BM(z) is the geodesic ball in M, about point z, of radius . As o~ is
smooth about x}, and o~ (x}) = 0, this implies that I(p) > 0 for all p > 0.
Furthermore, I(p) is increasing in p, implying that the limit of I(p), as p — 0,
exists. Therefore, as o~ (x) = 0 if and only if «(x) is a non-embedded point,
and such points have H™-measure 0 in M, we have that this limit must be 0.

Remark 8. As o~ is smooth on D1, o~ < 0, and o~ (z}) = 0, then there exists
aCy=C1(N,M,g,29) < 400, and a § = §(IN, M, g, z9), such that for all x in
Dl?

o (x) > —C’ldf\z(m, z3).
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As l(p) — 0, as p — 0, this implies that we can choose p > 0, Remark 9,
such that

By (x5) €C Dy
There exists an 2’ in Dy, such that d ; (+/, #§) = [, and 0~ (2') = —p. Therefore,
by Remark 8,
P S Cllz.

Remark 9. Note that we have made our first choice of p = p(z0, N, M, g,9).

We push out on disks D; and Dy equally, so that they meet on the Cut
Locus in Bév (z0), which is our previously denoted set A, as seen in Fig.5. We
consider the open sets W; C D;, defined by,

W; = {z: Fy(z,0 (z)) € Bs(20)}.

Clearly z{ lies in W;, therefore these sets are non-empty. We can then define
a diffeomorphism between W7y, and Ws.

(U Wl — Wz,
z i+ (mo FytoFyol(ido))(x),
where we define, 7 by,
T MxR— M,
(z,t) =z,
and (id,o7), by
(id,07): M — M x R,
x v (z,07 (x)).
The function ¥ is smooth and has smooth inverse given by
gL Wg — Wl,
x— (mo Ffl o Fyo(id,o7))(x).
We note that, d¥,, = Id.
Remark 10. We choose p = p(z9, N, M, g,6) > 0, such that,
Bé\?(x(l)) cc W.
Consider a push out function, which lies in C2° (Dl), and has the following
properties,
-1, x € BlM(aj(l)),
filz) = { [=1,0], =€ By (ab) \ BM(}),
0, x € Dy \ B3 (z}).

We further impose the condition,

2
IV fi] < T
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Define fy in C°(Dy), by

(e (@), zeWy,
fQ(fE) B {0, x € ﬁg \ WQ.

The support of f; will lie in \I/(Bé‘;”(xé)) CC U(W,) = Wa. We then define the
function f in C°(M), by f = f1 + fo.
Define the sets,
By = BQZ (z}) U (B
B, = BM(z}) U W(B]
Ay = By \ By

[ (20)),
"(0)),

R

We will similarly define the sets,
By = BM (a3) Uw (B (z)),
for ¢t > 0, such that BM (z}) C Wy.
Remark 11. We choose p = p(z20, M, N, g,d, W, ) > 0, such that
Fy (Ba x (=2p,2p)) CC Bf'(20)

We now look to define the function that will push out away from non-
embedded point’. This function will define the path from (2) to (3) in Fig. 2.

Remark 12. (Choice of L and ro) We choose L = L(z9, N, M, g,6) > 0 and
ro = 10(20, N, M, g, 8) > 0, such that,

BM(z}) cc W,
and,

F(BL X (—27"0,27’0)) CC Bév(Z())

_ For a sets Q and Q, were Q is open and Q CC Q, we define the 2-Capacity
of Q in Q as the value,

Capy(€2, Q) — inf {/ Vol dH": o € C2(Q), ¢ > xo} |
Q

For n > 3, by [8, Theorem 4.15 (ix), Section 4.7.1 and Theorem 4.16, Section
4.7.2),

Jim Capy(BY (x3), B (28)) = Capa({rd}, BY (25)) = 0.

Identical proofs show that this also holds for n = 2. Therefore, for all v > 0,
there exists a function ¢- x, such that,

o € C2(BY (ah),
Oy M —[0,1], ~
<p%k(x) =1l,ze B?(Jié),
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and, defining @~ 1 = @4k + @46 © U1, we have
) |V¢%k|2d7-l”(x) <.

We consider the function f =1— @y in C®(M ) and HVfHLa(M -

Remark 13. We will later make fixed choices for L = L(z9, M, N, g,6, W, \),
ro = ro(z0, M,N,g,0, W\, L), v = v(z0,N,M,g,0,70,L), and k = k(zo9, N
M’g7 57 L”V)'

Remark 14. We make a further choice of p = p(z9, N, M, g,6, L, ro, k), such
that,

By, CC B%,
We will make a further choice of p later on, so that p = p(zo, N, M, g,0, L, k, o).

3.6. Approximating function for CMC

We use the tools we have constructed to give a simple proof that function,

ve(y) = He(d(y)),
is suitable approximation of M, i.e.

lirr(l)f(g,)\(vs) =20H" (M) — o Apg(E) — o pug(N \ E).
£—
By the Co-Area formula on the function d,
Forlve) :/ £ Vo, p 4 W) —a)\/ v
N2 2 N
= / Q:(t) dH™ dt — oA / H, (t) dH™ dt,
RJT, R JT

where,

W(EL()
3

w\m

Q-(t) = 5 ((H)'()* +

Using the fact that N\ F(T) is a set of 0 pg,-measure, and that F: (T, h) —
(F(T),g), is a bijective local isometry, we have,

Fer(ve) :/Qg(t) H”(ft)dt—o)\/ﬁg(t) H™(T,) dt
R R
From analysis of H., we have that, supp Q. C [~2eA,2eA], and

20 — [e? S/Qs(t)dt§20+ﬂ€2.
R

Furthermore,

_ 1 t>—2A
H)<{ o o
—1, t<—2¢A,
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and,
— 1, t > 2el,
H.(t) >
—1, t<2eA.
Therefore,
_ “+oo _ 2e A _
Fer(ve) < (20 + Be%) esssup H™(L:) — oA H™(Ty) dt + oA H™(Ty) dt.
te[—2eA,2eA] 2eA —o0
Similarly,
~ +oo ~ 2eA ~
Fer(ve) > (20 — Be®)  essinf  H™(T:) — oA H™(T¢) dt + 0/\/ H™ () dt.
te[—2eA,2eA] —2eA —o0
We have,

HO(F,) = / ' 0,(x) A" (x),
N
and by applying Dominated Convergence Theorem to 6;, we have that,
lim 70 () = lim / ' 0y(a) dH" (@) = HM (VT 1 T) = H*(3T).
— — M
This implies that,

lim esssup H™(Ty) = H"(M) = H"(M),
“Yte[—2eA,2eA]

and,
i inf n f = n M = n M).
B e SRy T () = AN =200
The function ¢ — H”(ft) is measurable, implying that,
+o0 - o0 N _
lim H(Ty) dt = HM(Ty)dt = H" ™ ({y € N: d(y) > 0}) = p,(E),
€0/ 19eA 0
and,
+2eA _ 0 ~ N
lim M) di = / HO (T dt = H'™ ({y € Nt d(y) < 0)) = pg (N \ ).

Therefore, we have,

lin(l)fa,\(vg) =20H" (M) — o Apg(E) + o ug(N \ E).

4. Base computation
Consider a smooth function,
n:Rx M —R.
and define the following
vl M xR — R,
(z,t) = He(t = n(r,z)).
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Take (z,t) in M x R, such that dF(; 4 is invertible. Then the metric h = g,
is well defined about (z,t), and by [10, Lemma 2.11], it will have the form

h(x,t) = hyry iy (@) + dt?,
where we define,
th{t}(l’)::(F*g)(xat)|T1,M~
Thus,
Vol (@, t)|* = ((He)'(t = n(r,2)))* (1 + [Van(r,2)* (2, 1),
where, (Vn(r,z))(x,t), is the gradient at (z,t), of the function (x,t) — n(r, x),

with respect to the metric h. By the co-area formula on p,

X W (vDn )
fs /\( r'r]) ‘/jﬂglv’l};’np‘f'(gs)—UA’U;’nd,uh,

://f g((ﬁg)/(t—n(r,:1:)))2|Vx77(r,$)|2(337t)d’H”(agt)dt

—U)\]HI —n(r,x)) dH (x, t) dt
+(I)
/ / @)V i, )P (2, 1) () dt dH™ ()
s | WH.(t - n(r,2)))
" . ( (=t + L

—o AHL (t — n(r, x))) 0,(z) dt dH™ (),

In the last equality we use Fubini’s Theorem to switch the integrals.
We have,

Fea(vl) = Fea ()
)

ot (z .
/ / (LY (t — nlr, )2V, ) |20, ) 6u(x) d 4" ()

o (ac)
-/ / LY (2 Van(0,2) e, ) 0 (0) ),

+(I)
/ / (. 2)) — Qe(t — (0, 2)))0s(x) dt dH" (z)

+(96) .
/ / — n(r,x)) — HL(t — (0, 2))) 6, () di. dH" (x),

We have the followmg two terms,

LAY/ — U+(z)£ N (+ 2 2 n
= [ SR G ) T ) ) lo) de )
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-/ / o (€010, ) ) e ),

and, by Fundamental Theorem of Calculus and Fubini’s Theorem,

+(:r
II:" = // (Q:(t z)) — Q:(t —n(0,x)))0;(x) dt dH" ()

+(m o o
- / / AL (t — n(r, 2)) — FL(t — n(0, 2))) 64 (z) dt dH" (x),

= //857781' / ::) QL(t —n(s,x))0y(x) dt dH" () ds

+ /O /M dsn(s, x) /U o JA(HE)’(t—n(s,x))at(w) dt dH"™(z) ds,
= —/ / dsn(s,2)Qc (0" (x) — (s, x)) 0" (x) dH" (x) ds
0 M
+/ / 8577 $,T Qa U_ l‘ _77(8,1')) 9_<.'I,‘) dHn(a';) ds

+

/ / Osn(s, / " Qe (t —n(s,x)) 0,0, (x) dt dH" () ds
+/O /1\71 Isn(s, ) /{:m oMLY (t — (s, 2)) 0 (x) dt dH™ () ds,
= _/OT /M dsn(s,2)Q= (0 (x) — n(s,x)) 07 (x) dH" () ds
" // Isn(s, ©)Q= (0~ (x) = n(s, ) 0~ (v) dH" (x) ds

(2)
/ Dun(s,a / ) Qelt =l 2) O = (@) ) et ()

M
+>\/ /~@ o(5,7) dH" () ds

Where,
(37) t/clrrf(z) t(fﬂ),
( ) t\o~ (z) t( )

(z) .
ol (s.2)=0c / Dun(s, ) (ALY (t — (s, 2))fu(x) dt,
o~ (x)

o™ (x)
02, (s.0) = | ) D5, DIQ s, 2w
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For the last equality of IT_" we are using O0.0;(x) = —H(x)0(z), for ¢ in

(07 (z), 0% (2)).

5. Competitor

5.1. Calculation on M X R

Here we construct the path in Fig.2 from (1) to (2).
Set m1(r,z) = rf(z), take r in [0, p|, where p € (0,1) will be chosen later
and f: M — R as defined in Sect. 3.5.

Remark 15. (Choice in £1) We choose €1 = €1(p) € (0,1/4), such that,
2e1A = 6e1|log &1] << p.
From here we consider ¢ in (0,&1).

We have,
S T ot (z) —sf(x) 0" (x ™(x)ds
== [ ] @0t @) - sf(@) 0 ) 17 (@)

-/ ' | 1@Qu0 @) = 51 @) 07 (@) dr"(2) ds
o Ja e (11)

+ /0 /M f(x) [7(3:) Qa(t - Sf(l')) ()\ - Ht(l‘)) et(I> dt d'Hn($> ds

+ )\/0 /M 6;,771 (57 l’) — 651771 (s’ 1») dHn((E) ds,

Concentrate on the second term of the right hand side of (11). As the
integrand is non-positive, f = —1 on B; and supp Q. C [—2eA, 2eA], we have

| [ 1@0-07 @ - 550~ @) ar @) s
< —(20 - p<?) / 0 (z) dH" (z)

BinN{—r+2eA<oc— (z)<—2eA}

We look for lower bounds on 6.

Remark 16. Choose § = §(zg, N, M, g) > 0, such that,

min  {Ad(y), Ada(y)} >
y€BY (20)

b
and,

max {Adi(y), Ada(y)} < 5

yeBY (20)

Therefore, for (x,t) in T, such that, F(z,t) lies in BY(zp), we have that,
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Thus by similar calculations carried out in Sect. 3.4, for all (z,t) in T, such
that F(x,t) lies in BY (29), we have,

e 2

Or(x) > { _At

e 2
For = in Bj, we have 0~ (xz) > —p, and by choice of p in Remark 11, we

have that F({z} x (07 (2),0)) C BY (z0). Thus
Ao~ (x)
0 (x)= lim 6Oix)>e 2 >1,
(@)=, lim (o) >

for all z in B;. Therefore,

[ [ s00ue @) = ss@) 0@ ar o) ds
< 20H"({x: x € By, —r +2eA <07 (z) < —2eA}) 4 Coe?,

for Cy = Co(N, M, g, \,W) < +0o0. This is a lower bound for the area deleted
in pushing the disks together.

Concentrate on First term on the right hand side of (11). By choice of
0 > 0 in Remark 6 and p > 0 in Remark 11 we have that for z in supp (f) C
Boy, ot (z) > 2p >> 2eA. Thus,

[ [ 10ue @)~ ss@) o @) areyas =o.
0 M

Concentrate on the third term on the right hand side of (11). Consider
s > 0, and z in M, such that sf(x) < —2eA. Using the fact that supp Q. C
[—2eA, 2eA], and the inequalities on H; in Remark 4,

ot (z) 2eA
/7( : Q:=(t = sf(x)) (A = He(x)) 0 () dt = s Qe()(A = Hesj(2))Og+s5 () Es

> 0.
For sf(x) > —2eA, we have,

ot (z) 2eA
/7( : Qe(t — sf(z)) (A — He(z)) Ou(x) dt = s Qe(§)(A — Hepsp(2))0etsf(2)dEs

>Ca_ min, (A~ Hi()bi(z),
potentially rechoosing Cy = Co(M, N, g, A\, W). Therefore we have that for all
r in [0, p],
II7™ < —20H"({z: xz € By, —7 +2eA < 0™ (z) < —2eA})
+Cs (r/ gz (z) dH" (x) + / /~ el (s,z) — 62, dH"(z)ds+ 52) .
Bai 0o JM

where,

1
= — >
¢ (z) e A](Ht(w) A)i(z) = 0,
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and we have potentially rechosen Cy = Co(M, N, g, \, W). Therefore, for r <
4el,

Imm = Cy (r / L(z) dH" (x / / 0!, (s,z) - 02, dH"(z) ds—|—52>,
By

and for r > 4el,
Im < —20H"({x: x € By, —r +2eA < o~ (z) <0})

+Cs (H"({x: x € B;,—2eA < o7 (x) <0})

n 2 n 2
—|—/B x) dH™( //@en139” e:,, dH (:C)ds—i—s).
21

Again we are potentially rechoosing Cy = Co(M, N, g, \, W).
‘We now turn our attention to the term,

= / o % (¢~ rf (2)?IrV £ 2w, 1) Bu(x) di dH" (),

2e A
/ / L) ()21 £ 22, € + 1 (2)) By () dE dH™ (2).

2eA 2

Remark 17. Recall choice of 6 = 6(z9, M, N, g) in Remark 6. Consider [t| < J,
and x, such that () lies in B (29). Take {E1,..., E,} to be an orthonormal
basis for T M, with respect to the metric Ay {0} Then, as previously shown,

we have the following metric about z on M,
(Mg gey)ia (2) = hopy 1y (€) (B, Ej).
For a function ¢ on M,
Vel (,8) = (g )7 (2) (B (E).
We make a further choice 6 = §(z9, N, M,g) > 0, such that there exists a
C3 = C3(20,6, M, N, g),

1 <sup {(hl\;lx{t})ij(x)Xin: uz) € By (20), |t <6/2, Y X7 = 1} < 05 < oo,

and,
0<Cy' <inf {(hMX{t})ij(x)Xin: u(z) € By (20), [t| <6/2, > X7 = 1} <1.

By choices of p in Remark 11, and ¢ in Remark 15, for all z in A;, r in
[0, p], and £ in [—2eA, 2eA],
2
r
PV [P (2, & +rfx)) < Car®|Vf[*(2,0) < 20375

Note that for  in M \ A;, [V f|(x,t) = 0, for all . We have,

[ V)

rm < CSH"(AZ)L7

2

o~
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where we have potentially rechosen C5 = Cs3(zo, N, M, g,0, \, W) < oo.
For r in [0,4eA), we have,

T r (‘C:A)2 1 n
Is,m + IIE’m < C4 7 + Cal eA q. (:E) dH (I)
Bay

+/O /]\7[ @;,m (s,2) — @zml dH" () ds + 52),

Again, we are potentially rechoosing C3 = C3(z9, N, M, g,0, A\, W) < 0.
For r in [4eA, p] we define the following non-decreasing function,
_H'"({x:x € B, —r +2eA <o (x) <0})

P.(r):= ) ,

and we have,
2
D™ + 110" < H™ (A (Cg% - 20P5(r))

+Cs (H“({JC: x € B;,—2eA <o (z) <0})+ /B ¢e (z) dH™ ()

21
+/ /~ @iml (s,z) — @?m dH" (z) ds + 52).
0 M
We now define the following function on [0, 1],
0, s € [0, (124)/p),
Ke(s) = 2,
C3fzs® —20P.(sp), s € [(4eA)/p,1].
Note that,
e—0 Hn(Bl) p—0 ].
H™ (Al) on —1’

and furthermore, recalling the bound p < €112, Oy = Cy(z9, N, M, g,d) < +00,
we have,

P-(p)

2
0<%§Clp”:—%o.

Remark 18. Choose p = p(z9, N, M, g,d,\, W) > 0, such that
2

o9
Ol < 2027 — 1)
and,
"(B 7
H*(B)

Hr (A~ 82" — 1)

Remark 19. There exists an €2 = e9(z9, M, N, g,0, W, \,p) > 0, such that,
g9 < &1, and for all € in (0,&2),

From here we always choose ¢ in (0, e2).



NoDEA Embeddedness of min-max CMC hypersurfaces Page 35 of 57 27

We have that,

2
Jnax, Ke(s) < C:»,'%2 < m
and,
ke(1) < —Qn(i T
We have, for r in [0,4¢A),
Fer(l™) < Fen(ve) + IITL,
where,

IIrL” :C4<5A/B / / e!, (s,z) -6z, ”(m)ds—l—(aA)Q),
21

and Cy = Cy(z0, M, N,q,6, W, \, p) < +o00.
For r in [4eA, p],

For(08m) < For(ve) + H" (A ke (;) I,
where,

I = G,y <'H"({x: x € B;,—2eA < o7 (x) <0}) —|—/ qt(z) dH" ()
By

2 n 2
//(96771 -06Z,, dH (ac)ds—i—a).

O'Hn(Al)
2n —1

Furthermore,

ff,/\(vg’m)gfe,k(vs)_ +IIIZP

5.2. Appropriate function on manifold

We wish to show that for every r in [0, p], there exists an 007, in W1 (N) C
WL2(N), such that, for every (z,t) in T,

LM (F(x,t)) = vl ™ (x,t).
This implies that F. (00" )(N) = Fea(v 71 (T). Indeed, this follows from

the fact that u,(N \ F(T)) = pg(Cut(M)U (M \ M)) =0, and F: T — F(T)
is a bijection between open sets, Remark 2,

Fea(@XM)(N) = Fop(02™)(N\ (Cut(M) U (M \ M))),
= Fea(@™)(F(T)),
= Fer(vi™)(T).
We have the following,
BN (20) =T1UAUTY,,
where,

Y1 ={y € By (20): di(y) > da(y)},
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and,

Ty = {y € BY(20): da(y) > di(y)}-
Recall Remark 7,
A={ye B (20): dily) = d2(y)},

is a smooth n-submanifold in BY (29). Recall the diffeomorphisms, for i = 1, 2,
defined in Remark 6,

F;: ‘72 C M X R — BQJ\g(Zo)
We then define, 07,

ﬁe(dN(y))a Yy g Bév(z())v
oEM (y) = ol (Fy N (y), € Tin By (%),
vl (Fy N(y), v € Tan By (20).

For (z,t) in T, we have o7 (F(z,t)) = v"" (z,t). Indeed, first we con-
sider the case that F(x,t) lies in T1 U To. In Yy, F = F;, and we have,

T (F (@, 1)) = vl (FH(F (1)) = 0™ (2,1).
As A C Cut(M), we know that F'(x,?) cannot lie on A. Last case to consider is
F(z,t) lies in N\ BY (z0). By Remark 11 (z, ) must lie in 7'\ (B x (—2p,2p)).
If x lies in M \ By, then f(x) =0, and,

0™ (x,t) = He(t) = He(d(F(x,1))) = 00" (F(x,1)).
If x lies in By, then [t| > 2p > r|f(2)| + 2¢A, and therefore,

{1, t>2p > rf(z)+ 2A,

vl (z,t) = Ho(t — rf(x)) =1, t<=2p<rf(r)—2eA.

Also, d(F(z,t)) = t, implies that,

1, t>2p > 2,
-1, t<—-2p< —2eA.

o™ (F(x, 1) = He(t) = {

Therefore, for all (z,t) in T, we have that v (x,t) = 07" (F(x,1)).

We now just look to show that o7 lies in W1°°(N). First consider y
in N\ F(By % (—2p,2p)). There exists an z in M, such that, F(z,d(y)) = v,
and (z,d(y)) lies in (M x R)\ (By x (—2p,2p)). By previous argument we see
that,

o (y) = He(d(y))-
and therefore, 07" is Lipschitz on the set N \ F(Ba % (—2p,2p)).
As

F(Ba x (~2p,2p)) CC BY (z0),

showing that @7 is Lipschitz on BY (z), implies that it is Lipschitz on N.
Consider y on A, then d;(y) = da(y), and by construction of f and ¥,

Fr(FC ) = fr(F ()
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Therefore,
ve ™ (FY () = o™ (Fy (y)),
and v is well defined and continuous across the smooth n-submanifold A.
Thus we have that 977 lies in W1>°(BY (20)).
5.3. Continuity of the path
We show that the path,
7:[0,p] = WHA(N),
r— f];ﬂh’

is continuous in W1H2(N).
Take r and s in [0, p]. Recalling that py,(N \ F(T)) = pg(Cut(M)U (M \
M)) =0,

Hﬁgm _ ~§m1”%2(N) — / - w?m _ 1~}~69,771|27
F(T)

/R /M (B (¢t — rf(2)) — HL(t — 57 (2))*0(z) dH" (<) dt,
07

by Dominated Convergence Theorem.
Noting that, 00" = 97 on N\BY (2), for all r in [0, p], and p4(BY (20)\
(T1UT2)) = pg(A) =0,
Vo™ = Vo e = [

As F 1 (T4, 9) — (F;7 1), k) is an isometry, we have,

|V@;7ﬁ1 _ V@S,m ‘ dﬂg'
2

1U

||V1~)£’m — Vs HiZ(N) — / ‘va,m (ac,t) v (m,t)|2,
FrH(Y1)UF; H(T2)

= (Lt~ r(2)) ~ HL(1 — s/ (x)))?

T H(r)UF; (1)
H Vo f(@)(rHL(t — rf(x)) — sHL(t — sf(x)))?,

‘__>07

by Dominated Convergence Theorem.

6. Path to a.

6.1. Fixed energy gain away from non-embedded point
We construct the path from (2) to (3) in Fig. 2.
Recall f from Sect. 3.5 and set,
na(r,x) = pf(x) +rf(z),

for r in [0, ro], where rg € (0, min{1, diam(N)/2}), will be chosen later. Denote,
A¥ =B\ By
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Remark 20. We choose 0 < e3 < e, such that 2e3A = 6e3|log e3] << 0.
From here on we consider ¢ on (0,¢e3).

We slightly edit the Base Computation in Sect. 4. Consider r > 2ecA,
fs )\( 'r772) _ .7.‘6,)\(,1);’;772) — I;“,nz + (IIQWZ _ II?SAJ’]Z) + II?EA,T]Z.
We have,

11 — e = /;A /M\B F(@)Qe(o™ () — sf(x)) 07 (x) dH" (x) ds

i /ZsA /M\Bi f(@)Qc(0™ (@) = sf(2)) 0™ (x) dH" () ds

r ot (x)
f(x —sf(x (12)
[ /M\Bﬁ foy [ et sie)
(A — Hy(x)) 04 (x) dt dH™ () ds
+>\/2A/ e! i - e? s (8,2) dH" (x) ds.

Considering the first term on the right hand side of (12),
f/ / f(@)Q:(0"(x) — sf(x)) 0T (x) dH™(z) ds < 0.
2eA JIN\B

Considering the second term on the right hand side of (12), and by ap-
plying similar arguments for when we considered the corresponding term on

the right-hand side of (11) in Sect. 5.1,

/T / f(@2)Q-(0~ () — sf(x)) 0~ (x) dH" () ds
2eA M\B%
< CoH*({w:w € M\ By, 0™ () > 2eA(f(w) — 1)}),

where we are potentially rechoosing Co = Co(M, N, g, W, \) < +o0.

Considering the third term on the right hand side of (12). Applying sim-
ilar arguments in A¥ from when we considered the corresponding term on the
right hand side of (11) in Sect. 5.1,

T(z) 5
/ / / Q.(t — sf(x)) (A — Hy()) 0u(x) dt dH™ () ds
2eA M\BL (x)

25A
/ / / YA — Heqs(2))0ess(x) dE dH™ () ds (13)
2eA JM\BL 2eA
+C2/k @2 (z) dH" (),

AL
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where, ¢2(2):= max;e[—2.a 4:4] (A—Hy (2))0; (2), and we are potentially rechoos-
ing
Cy = CQ(M, N,g,)\,W) < 0.

Define the following measurable set,

Q. ={zeM: o (x)>2r}
Remark 21. We choose L = L(zy, N, M, g,9) > 0, such that,
HY (M \ By) > %H"(M).
Then we can find an ro = r¢(29, M, N, g, 6, L) > 0, such that, for all r in [0, r],
H"({(x,2r): x € Q. \ BL}) > %H”(M)

For all z in Q,, s in (2¢A, r), and & in [—2eA, 2eA], s+& lies in (0,07 (2)).
Therefore, recalling bounds on H; and 6; from Remark 4 and Proposition 6,
we have,

(A= Hey5(2))0c15(x) < —m(s +&§)0cys < —m(s — 2eA)0a.(7),

Then for r in (2eA, 9], we compute an energy decrease from the first term on
the right hand side of (13),

2e A\
/ / Qu(6)(\ — Heya(2))0c () d dH™ (z) ds
2eA J M\BpL

—2eA

—77{”( )7’ + CQEA,

potentially rechoosing Cy = Cy(N, M, g, \, W) < +0o0.
For r in [0,2eA], by repeating arguments similar to those in Sect. 3.6,

I < Cz</~ ml(x) dH™(z) + 5A>,
M\B

where we are potentially rechoosing Co = Co(N, M, g, W, \), and ml(z) =
maXe[—2:A,4eA] 01(2) — minge[_ocp acn) 0:(2).
For r in [0, 7], consider the term,

2eA
e = /Ak /251\ 5 V[rV 2 (z,r f(z) + )0 - F(a) e (@) d§ dH™ ().

By choice of L and r¢ in Remark 12, and constant C5 = Cs3(zo, M, N, g,0, A, W)
from Remark 17, we have, for all z in A% 7 in [0,7¢], and £ in [—2eA, 2eA],

IV F? (@, rf(2) +€) < Cs|Vf*(2,0).
Thus we have,

Ir LS CS“Vf”Lz IW)

Again we are potentially rechoosing C5 = C5(zg, M, N, g,0, W, \).
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Remark 22. Choose k = k(zo, M, N, g,d, W, \, L) such that
MO -
||vf||L2(1\/j) < CS 1TH (M)
Therefore, after potentially rechoosing C3 = Cs(z0, M, N, g,5, W, \),
_[7" T2 < H’ﬂ( )

For r in (0,2eA],
Fer(0l™) = Fex(wm) < 11137,

where,

I3 = Oy /~ me(x) dH™ (x) +eA |,
M\By

where we are potentially rechoosing Cy = Co(N, M, g, W, \) < +oo. For r in
(28/\7 T‘o],

mao

Fea(ve™) — Fea(v 0772) < - 1

HY(M)r? + 11T
where,

Irer = C'Q(Hn({x: x € M\BL, o~ (x) > 2eA(f(z) —1)})

+/ x)dH" (z / / el . (8,) - 0?2 e AH™ () ds
Ak 2eA

+ / me () dH"(x)—i—sA),
M\By

again, we are potentially rechoosing Cy = Co(M, N, g, W, \).
As 12(0,z) = m(p, x), we have, for r in (0, 2eA],
oH"™(4))

«7:8/\( Tnz) S«Fa,)\(ua)_ on _ 1

+III2P + T2,

and for r in (2eA, 1],

oH"(A;)

faA( Tm) g}—a,)\('va)_ on _ 1

- %H”(M)ﬂ 4 TIT>P + TTT.
We may define the appropriate function on N, for r in [0, o],
H(d() ). v BY ()
o (y) = U™ (F(y), y € Tun By (20),
vl (Fy (), y € T2N By (20).
Following similar arguments to Sects. 5.2, and 5.3, we may show that 92 lies

in W20 (N), Foa(@02)(N) = Fex(v2)(T) and that the path 9072 — §lo-7
is continuous in W 2(N).
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6.2. Reversing construction of competitor

We construct the path from (3) to (4) in Fig. 2.
For r in [0, p], we set,

ns(r,x) = rof(x) + (p = ) f(2).
For z in By,
ns(r,x) = (p—r)f(z) =mlp—r ),
and for x in M \ Bay,
n3(r ) = o f(x) = n3(0, ).

Therefore,

Fealo™) = Fan(u0™) = Fop (o) = Fop(of ).
As mi(p,z) = n2(0,2), and 73(0, x) = n2(ro, ), we have,

Fea(vr™) = Fea(@277™) + Fea(vi0™) = Fea(v2™).
Remark 23. We choose p > 0, such that,

oH"(Ar) i Y2
2n —1 4 '

Therefore, we have that

Fer(0D™) < Fen(uf™mm) — 7‘7;{71(?) FIIT5™.
Furthermore, for r in [0, p — 4eA], we have,
Fea(vl) < Fex(ve) + m + II12P7" — a;n(All) + 111470,
= Fealve) — ;(Znn(_Ag + II1%P7" 4 IIT4™.
For r in (p — 4eA, p], we similarly have,
Fer(vf™) < Feoalve) — 2(7;:(1)) + IIIPT 4 IITE™.

We define the appropriate function on N. For r in [0, p],

HL (d(y) —r0), y%ﬂév(zo),
6;)773 (y) = 7”713 (Fl (y))7 Y€ TN Bév(zo)?
o™ (Fy N (y),  y € Tan By (20)-
Following similar arguments to Sects. 5.2, and 5.3, we may show that 9" lies

in Whoo(N), Fen(@0)(N) = Fox(vl)(T) and that the path 507 — 5278
is continuous in W 2(N).
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6.3. Lining up with level Set I',.,

We construct path from (4) to (5) in Fig.2
For r in [0,7¢], consider,

m(r,x) = rof (@) + (1 = f(@)) = (ro =) f(2) + 7 2 7.

By applying similar arguments to those in Sect. 5.1, we have

IIm < Cs (H"({z € Br:o (x) > —2eA}) +eA

/ [ el -2, (st a) ds),

where we are potentially rechoosing C3 = C3(z9, M, N, g,6, W, \) < +o0.
We turn our attention to the term,

o (w) _
Imm = /k/ ((He)'(t — (ro — 1)
A

() 1) )2(7’0—7’) VPR . 1) 01 @) dt a1 ()
/ / (LY (¢~ o) PRIV t) ) de o)
Ak (z)

For r in [0, 7],

T@) . - -
/( ) g((Hs)'(t*(To =) f(x) = )’V fP(,1) () dt

< (‘7 + 652) te[j;lax |Vf| (73 t+ 7]4(7“ m))9t+n4 (r,z) (x)

o £12
= o’|Vf| ("EJM(T} x))gm(r,m)(x) + 58 te[_rgga/J\},(QEA] ‘v

f~|2(.’L’, t+ 774(T7 z))et-‘rnzk(nw) (l‘)

£12
e (te[gle%\),(zm] VI (2, t 4 ma(r, @)

9t+?74(r,z)(x) - |Vf|2(£, 774(T7 $))9n4(r,:r) (x)>
Denote the functions,

qg(xvr) = max |Vf|2($7t+7)4(7"7 x))9t+n4(r,x)(m) - \VﬂQ(l’JM(T, x))0n4(7",w)(x)7

te[—2eA,2eA]

and,

p) = [ e an).

Af
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We have,

ot (z) . -
[ S @Y€ o= n)f(@) =)o = VR b0l dt e (a)
Af (@)

<o [ (0= D IVF@) @04l )80, ) (0) A (2)
Ay

+C5(e? + pa(r)).
where C5 = C5(20, N, M, g,0, L, 70, k, W, \) < +00. Similarly we have,

ot (z) ~
[ S BT @n) AP ) et )
Al (x)

= J/Ak oV PP (2,04(0,2))8,, (0.2) (z) dH™ (z) — C5(e* + p2(0)),

L

where,
PO = [ a0 an @),
Af
and
¢(w,r) = min [VfP(z,t +nu(r,z))

te[—2eA,2eA]
9t+774(?”7r)(x) - ‘Vf‘Q(xﬂM(r?x))em(r,r) (-'L') <0

Therefore we have, for r in [0, 7],
<o [ o=V @R o)
AL
O () (@) = 75|V () [* (2, 74(0, 2))0n, (0.0 () dH" ()
+05(* + pe(r) — p2(0)).

Claim 4. There exists an rg > 0, such that for all r in [0, r],
[ 0= P19 @) P () )
L

=15 |V F (@) (2,14(0,2))0p, 0.2 (x) dH" () <0
Proof. For (z,t) € M x R, denote,

C(a, 0):=|V [ (@, )8, ().

We note that ¢ € C(T), and ((x,t) = 0, for (x,t) & T.
For r in [0, 7], denote,

_ / ¢, mar, ) M (z) = / (@) dHO ().
Ak Ak A {F£0}

For r € [0,7¢], and Vf(:c) # 0, we have that,
na(r, -75) € (U_ (.Z‘),0+($)),
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i.e. (x,n4(r,x)) € T. Therefore, G lies in C°°([0,70]), and
G- @O@mr) - fw)d
Apn{f#0}

We may obtain a bound |G'(r)| < Cs = Ces(z0, M, N, g,8, W, \, L, k) < +00,
for r < Ry < +00, Ry = Ro(20, M, N,g,6, W, \, L, k) fixed. We also have, by
Remark 17, that,
G(0) = G52Vl iy > 0.
and we may choose 79 > 0, small enough such that,
1
ré?oi,rﬁu] G(r) > iG(O) > 0.
Denoting,
F(r):=(ro — r)?G(r).
Differentiating we obtain,
F'(r) = (r—r0)2G(r) + (r — r0)G'(r)).

Thus setting, 7o < G(0)/Cs, we have that F'(r) < 0, for all = in [0,7¢]. This

completes the proof. O
Remark 24. Claim 4 is a further choice of ro = ro(zo, M, N, g,0, W, X\, L, k) >
0.
Therefore, there exists an 7g, such that for all  in [0, 7],
Foalvl™) = Foa(ul) = 12 + 127,
<1157,
where

III?’T < Cs (p;(r) —p?(O) +H"({x € Bap,: 07 (x) > —2eA}) +eA

+>\/O /M @;,774 (87 -T) - 95’774 (57 .’1?) dHn(m) d8>7

where we are potentially rechoosing C5 = C5(z0, M, N, g, k, L, 5,70, W, \).
As n4(0,z) = n3(p, x), we have, for r in [0, ro],

oH"(x)

22 — 1)

Consider the following function on N, for r in [0, ro],
H.(d(y) —r0), v €E§V(Zo),

orM(y) = ol (Fy N (y), y € Tin By (z0),

vem (Fy (), y € T2 By (20)-

We can show, as in Sects. 5.2 and 5.3, that 707 lies in WHo(N), F. \(00")(N)
= Fea(vl™)(T), and that, 7 — 977 is a continuous path in W12(N).

Fer (™) < Fea(ve) — + ITIN° + IIT5™ 4 T1127.
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6.4. Completing path to a.
We construct the path from (5) to ‘—1’ in Fig. 2.
Consider, for r in [rg, 2 diam(N)],
ns(r,z) = 7.
By repeating similar arguments to those in Sect. 5.1, we have
Fen (D) — Fe\(vlo) < ITIST,

where

&,15 &,15

118 = [ 6L (5.0) — 02, (s.0) dH" () s
p

Recalling that, n5(ro, ) = n4(ro, ), we have, for all r in [rg, 2 diam(N)],

Fer(wl) < Fo\(00) + T1127,
O'Hn(Al)
2(2n — 1)

Define the function, 97 (y) = ﬁe(g(y) — ), in N. This function lies in
Wheo(N), Fo A (00715)(N) = Fo x(v0™)(T), and 7 +— 9775 is a continuous path
in WH2(N).

As |d(y)| < diam(N), we have that,

d(y) — 2diam(N) < — diam(N) < —2eA.

< Fer(ve) — A+ IITEO 4 IIT57 4 IT1570 + 117187,

Therefore,
2 diam(N)ms (1)) — T, (d(z) — 2diam(N)) = —1.
Recall that our end point is a. > —1. We connect —1 to a., by constant
functions,
ug(y) =r
for r in [—1, a.]. Then,

Fer(ul) = / @ —oArdpg < }'E,A(u;l).
N

As ul = 28I e have that, for all r in [—1, az),

O'Hn(Al)

m + III;O + III?’TU + [II:Z”TO + IIIS,Qdiam(N).

Fer(up) < Fealve) —

7. Path to b,

7.1. Lining up with level set I _,

We construct the path from (2) to (6) in Fig.2
We consider, for r in [0, p], and z in M,

n6(r,x) = pf(x) —r(1+ f(x)).
First consider r in (2eA, p],
FoA(0L™) = Fop (01 = [20 4 (T2 — [20m) 4 7228
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Similar to Sect. 6.1 we have,
[ — 1A < ) /'@mm r) — 02, (s,2) dH"(x) ds.
2eA

For r in [0,2¢A], again by similar arguments to those in Sect. 6.1

Irn6<02</ / ’nﬁ(s x) — 67]6( ) dH"(z) ds
{pf<—2eA}

S}
+/ m2(x) dH™ (z —l—eA)
{pf>—2eA}

where,

2 .
= 0 - 0
me(@) te [frt?s%\).izsA] () te [}6211{1,25A] (),

and we are potentially rechoosing Cs(M, N, g, W, \) < co.
For r in [0, p], we consider,

+(ﬂv)
I /A / (= ma(r,2)))2(p — )2V (2, 1)04 () dt A" (x)

-/ / (LY (= ma(0,2)) 2PV S 2, )00 () db dH" (0)
Ay (z)
Following similar arguments to Sect. 5.1, and after potentially rechoosing

Cs = Cs(z0, M,N,g,5, W, \) < oo, we have that,

2
Imme < O™ (A) %

2
Therefore, recalling our choice of p > 0 in Remark 18, we have
grane < O (A
¢~ 2(2” -1)
Thus, for r in [0, 2eA],
T, 0, UH”(AZ) 7,
fE)\( n6)7f€(vsn6)< 2(2n_1)+IIIs 5

where,

Irrer 202(/ / @;,ns(s,x) e? e (8, @) dH" () ds
0 J{pf<—2eA}

+/ m2(z) dH™(z) + EA).
{pf>—2eA}
For r in (2eA, pl,

oH" (A1)

—— L L TIT3T,
227 — U+

Fer(vlme) — Fe(vdme) <

€



NoDEA Embeddedness of min-max CMC hypersurfaces Page 47 of 57 27

where

2eA
III?’T - 02 </ / 6;,7]6 (57 l‘) - 6577]6 (S, ’JZ) dHn([L') ds
0 {pf<—2eA}
+/ @; ﬁ6(87x) _@gng(sax) dHn(x)
2eA J M ’ ’

+/ m?(x) dH™(z) + 5A).
{pf>—2eA}

As n6(0,2) = m(p, x), we have, for r in [0, 2eA],

UHn(Al)

Fer(vi™) < Fealve) — m

+III2P + ITIT,

and for r in (2eA, p|, we have,
oH™(A;r)
2027 — 1)

For r in [0, p], we define the following function on N,

Fea(vlm) < Fox(ve) — + I3 + 11757,

He(d(y) +7), v & B (20),
o (y) = { e (F (), y € Tin BY (z0),
o (Fy M),y € T2 BY (20).

We can show, as in Sects. 5.2 and 5.3 that, 707 lies in W1 (N), F. \(907)(N)
= Fea(vl)(T), and the path r — 077 is continuous in WH%(N).

7.2. Completing path to b,

We construct the path from (6) to ‘+1’ in Fig.2. This is done in an identical
way to Sect. 6.4.
For r in [p,2diam(N)], we define the following function on N,

o (y):=H. (d(y) + 7).
Similar to arguments in Sect. 6.4 we have,
oH™(A;)

Fea(017) < Fen(ve) — 202" — 1)

+ IIT3P + TIT%° + I1T27,
where,

IIIg’T:/\/ O!, (s,2) — 02, (s,z)dH"(z)ds.

€,76 €,16
P

Again as in Sect. 6.4, we connect @?diam(m’m = 1, to b, by constant

functions, uZ = r, for r in [1, b.]. We have that for all » in [1, b.],
Fer(ul) < Fop(@2BemNImm) < 7, 5\(v2)
oH"(Ar) 2 8 9,2 diam(N
— L L ITPP 4TI 4 192 dem (),
2(211 _ 1) + 1> + 1> + 13

Both 9777 and u” give continuous paths in W12(N) with respect to 7.
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8. Conclusion of the paths

8.1. Error terms
8.1.1. Theta error terms. Consider a function 77: R x M — R, and the term

ot (x)

@;n(sw) — @g’n(s,x) = U/( ) Asn(s,z) (ML) (t — n(s,x))0(z) dt

ot ()
-/ ) B DIQH s, 2w
Assuming that 7 is monotone in the first variable, we have,

|®;,n(57 1‘) - Gg,n(sv $)| < 20|asn(87 x)|m8(77(87 Qf), JJ) + 07627
where,

T x)= 0 — i 0 .
me(T,z) tE[T—%?/%,);’+25A] () te[T—Qr?/{,r’}+25A] (2)

and C7 = C7(N,m, \, W, |n|c1) < +o0.
Now we assume that dsn > 0, and |as77|c°(RxM) < +o00. Apply Fubini’s
Theorem to swap integrals

/ / ‘9 (8, 7) (s a:)‘ dH™(z)ds < 20/ / mE(T,w)dTH"(w) + Crre?.

n(0,x)
Fixing z in M, we see that for all T in R\ {0~ (z), 0 ()},
m:(T,z) — 0, ase — 0,

2
and furthermore, we have the following bounds, 0 < m. (T, z) < esm . Therefore

we can apply Dominated Convergence Theorem for fixed x in M and r in
[0, c0),

n(r,x)
/ me(T,2)dT — 0, ase — 0.
n(0,x)

Furthermore, as 0 < n(r,z) — n(0,2) < |0s1|co gy 1) 7> We have the bounds,

n(r,z) 22
0< / me (T, 2) dT' < [0sn| co g x iryre>" -
n(0,x)

Therefore, again by Dominated Convergence Theorem, we have, for fixed r in
[0, 00)

n(r,z)
/~ / me(T, z) dT H"(z) — 0, ase — 0.
n(0,z)

Define the following continuous function on [0, +00),

Tw)
(r —/ / (T, x)dT H" (x).
n(0,z)

We have that M7 (r) — 0, pointwise, as € — 0, and furthermore, as

0 <me, (T,x) < me, (T, ),
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for all T in R, z in M, and 0 < &1 < &, this implies that,
O S Mgl (T) S M;’z (T)’
for all r in [0, +00). Therefore, by Dini’s Theorem, we have that,
M — 0, ase — 0,

uniformly on compact sets of [0, +00). Thus,

/T /~ ‘@;n(s,x) - @g’n(s,x)’ dH"(z)ds — 0 (14)
o Jur

as ¢ — 0, uniformly in r, on compact sets of [0, +00). The same holds assuming
that 7 satisfies 51 < 0, on R x M, and 10s7| co (rx iy < F00-

Fori=1,...,7ourn;’s are monotone in the first variable and |8577i|CO(RxM)
< +00. Therefore (14) holds for each 1.

8.1.2. The other error terms. We first consider,
| d@an@.
By,

with,

1 — —
¢ (z) = e A](Ht(x) Al (x).

By choice of € > 0, in Remark 15, 2e A << p. Therefore by choice of p > 0, in
Remark 11, and § > 0, from Remark 16, we have
0< max gl(x) < Sedr

< g al(e) < e
Fixing 2’ in By \ {z: 0~ (x) = 0}, we see that there exists an &’ = &'(2') > 0,
such that for all 0 < e < &/,

[—4eA, 2eA] C (o (2)), 0t (2)).

Therefore, (Hi(x') — \)0:(x'), is a smooth function in ¢ on [—4eA, 2¢A], and
clearly,

"N /
te[—rzﬁz}\},{kA](Ht(x ) — A0 (z') — 0, ase — 0.

Thus ¢! — 0, H"—a.e in By, and we can apply Dominated Convergence The-
orem to say that

/ ¢t (z) dH™(z) — 0, ase — 0.
Bay
Identically we also have,
/ ¢ (z)dH"(x) — 0, ase — 0,
Af
recalling ¢2(z) = maxye[—2eA,4eA] (A — Hi(2))0:(2).
Now considering

QS(Tvx) = C(l’,t+174(7’,f£)) 7§(x;774(7n7x))

max
te[—2eA,2eA]
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where we are recalling the function
((,t) = [V (2, 1)0:(2)

from Claim 4. For z in Bay, such that f(z) =0, we have that ((z,t) = 0, for
all t. Considering x in A¥ N {f # 0}, such that 7o f(x) > 2cA, then

[_25A+774(7"7 37),25/\"‘774(7”,35)] - (0727"0) C (U_($)70'+($)).
Thus, for ¢t in [—2eA + n4(r, x), 2eA + n4(r, )],
(.’E,If) S Tﬂ (BL X (—27‘0,27’0)) CC ‘71 U ‘72,

where we are recalling sets Vi and V5, from Remark 6. Therefore, ( is differen-
tiable at (z,t) and

10:¢ (2, )| < C(|Filc2(By x(—2re.200))s | Flets A) < C.

Where we are potentially rechoosing Ce = Ce(z0, M, N, g,k,L,5, W, \). There-
fore, for z in A% such that rof(x) > 2cA, we have that 0 < ¢3(r,z) < CgeA.
Furthermore, for all z in A%

g2 (r, )| < ((z,t) < Cs.

max
(z,t)€BL X (—270,270)

Again we are potentially rechoosing Cs = Cg(20, M, N, g, k, L, 5, W, \).
Therefore,

R = [ @raae @) dH (),
AR {ro f>2eA} Al N{0<ro f<2eA}
< Cs (eA FH ([ e AR 0 < rof(z) < 26A})) .
Thus

max pl(r) — 0
re(0,ro]

as ¢ — 0. Similarly, p?(0) — 0, as ¢ — 0.
For the remaining error terms, as H"({x € M: o~ (z) = 0}) = 0, by
Dominated Convergence Theorem, we have that,

H"({z e M: o~ (z) > —2eA}) — 0,

and
/~ mi(x) dH™(z) — 0,
M
where,
1 o . .
me () = tE[—Igs%\},(élaA] 6u(x) te[—r221/{1,451\] 6u(),
mZ(r) = max () — min 6 (2).

t
te[—6eA,2eA] te[—6eA,2eA]
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8.2. Path for Theorem 2
Consider the following continuous path in W12(N), for e > 0,

)
—1—2diam (N) —t, te€ [-2diam(N)—a. —1,2diam (N)],
Ye(t) = { Ho(d —t), t € [-2diam (N), 2 diam (N)],
1—2diam (N)+t¢, te€[2diam(N),2diam (N)+ b, — 1],
which satisfies v.(—1—2diam (N) —a.) = a., and 7. (1 —2diam (V) +b.) = b..

Replacing rg = 2eA, in Sect. 6.4, and p = 2eA, in Sect. 7.2, we see that,
for all € in (0, £), for some € = &(N, M, g, A\, W) > 0, fixed,

Fer(1e(t)) < For(ve) + 1162 dam(N) 4 ¢ [_9diam (N) — ac — 1,2diam (N)],
Fer(1e(t)) < Fer(ve) + ITIS7E, t € [-2diam (N), —2eA],

Fer(e(®)) < Fea(ve) 4+ IT121, t € [2eA, 2diam (N)],

Feor(ve(t)) < Fen(ve) + [T122d1am(N) -4 e [2 djam (N), 2diam (N) + be — 1].

Recalling from Sect. 3.6
Fenv2) = 20H (M) — oMty (E) + oMty (N \ B),
as ¢ — 0, and Sect.8.1.1,

max (111%" + 111" — 0,
te[2eA,2 diam (N)]

as € — 0. Therefore, for 7 > 0, there exists a 0 < &, = ,(N, M, g, \, W) <&,
such that for all £ in (0,e,) and ¢ in [-2diam (N) — a. — 1,2 diam (N) + b,
1]\ (—2eA, 2¢eA),

Feor(1(t)) < 20H" (M) — oAy (E) + o Apg(N\ E) + 7.

Furthermore by similar arguments to those in Sect. 3.6, and after potentially
rechoosing £; > 0, we have that for all ¢ in (0,¢,)

o ax | Fealre (1)) <20H" (M) — 0 Aug(E) + oAug(N\ E) + 7

Therefore this is an admissible path in W2(N), that proves that for the
limiting varifold V' = V) + Vj, we must have that Vy = 0. This completes the
proof of Theorem 2.

Remark 25. Note that we can build the path ., for any suitable Caccioppoli
set E. The suitable properties are the following:

1. O*E # (), has a quasi embedded \-CMC structure, with respect to unit
normal pointing into F.
2. 0*E satisfies the Geodesic Touching Lemma (Lemma 1).

From Remark 25 we can deduce that E must be a single connected com-
ponent and minimises the value

FA\(E) = H™(9"E) — Aty (E) > 0,

among all suitable competitors.



27 Page 52 of 57 C. Bellettini and M. Workman NoDEA

8.3. Contradiction path for Theorem 1

Recall all the error terms from Sects.5, 6 and 7. By Sects.3.6 and 8.1, for
7 > 0, there exists an e, = &(z9, M, N, g,0, W, \, L, k,r9,p,7) € (0,e3), such
that for all € in (0,e,), we have that

Fer(ve)+ max IITY" + max 11"+ max III27

ref0,4eA) r€ldeA,p] re[0,2eA]
+  max III4T+ max III5T—|— max IIIS’T
re(2eA,ro] r€l0,ro] r€[rg,2 diam (N)]
+ max III7"+ max III%7 max  [II77
re(0,2eA] re(2eA,p] 7‘6[p,2 diam (V)]

<20H" (M) — oApg(E) + oApug(N \ E) + 7.

Therefore, for any 7 > 0, there exists an €, > 0, such that for any ¢ in
(0,e,), we can define the continuous path,

Ye: [-1 = ac,4diam (N) 4+ ro + p + b — 1] — WH2(N),

by

7 (t)
14, tel-1-ac,0],
He(d 4 t — 2diam (N)), [0, 2 diam (N)) — 7o],
p2 diam (N)—t.na [2 diam (N) — 7o, 2 diam (N)],

2 diam (N)Fe—tons [2 diam (N), 2 diam (N) + p],

T g2 diam (N)Fptro—tms [2 diam (N) + p, 2 diam (N) + p + ro],
i~ (2diam (N)+p+ro)me [2diam (N) + p + ro, 2diam (N) + 2p + 7o},
EE(J+ t— (2diam (N) + p+r0)), [2diam (N)+ 2p + rg,4diam (N) + p + 7o],
1+t— (4diam (N) + p+19), [4diam (N) + p + rg,4diam (N) + p + 7o + be — 1]

This path satisfies the following; v.(—1 — ac) = ae, Ve (ddiam (N) 4+ ro +
p+b5 - 1) :bg’ and
H™ (A
Ve(t) < 20H" (M) — oApg(E) + oAug(N \ E) — 5(271(_[1)) + 7,

for all t in [-1 — a.,4diam (N) + 9 + p + b — 1]. This contradicts the min—
max construction of M, implying that M must be embedded, and therefore
completing Theorem 1.

9. Morse index

Recall the functional defined on Caccioppoli sets 2 C IV,
F\(©2) = H™"(0"Q) — Mg (2).
For a C? vector field X, we may take variations in direction X by considering
its flow {®;}. We define the first variation of F) by,
d

SEAN(Q)(X) = aFA(‘Dt(Q))\t:O» (15)



NoDEA Embeddedness of min-max CMC hypersurfaces Page 53 of 57 27

and the second variation by,

FFAQ)(X) = 1 P (#(0)) o (16)

We have that §F\(E)(X) = 0, for all C! vector fields X. Note that we
require M to be embedded and orientable for the following to be well defined.
Consider the class of vector fields X € C2(N \ (M \ M)), such that X, = ¢v,
where ¢ € C2(M). By [1, Proposition 2.5],

2P\ (E)(X) = /M VM |2 = (| A |? + Ric(v, 1))? dH™. (17)

We extend the expression on the right hand side to all functions in WO1 2 (M),
and define the following quadratic form,

Bar(p.0):= /M VMo — (Aul? + Ric(w, )@ dH", o € WEA(M).

After integrating by parts we obtain the second order elliptic operator on M,
Ly=An + |A1\4|2 + f{iC(V7 l/).

We restrict ourselves to a set W CC N\ (M \ M), to avoid our curvature
term |Aps|, from potentially blowing up. A value kK = k(W) € R is said to be
an eigenvalue of Ly, in W, if there exists an ¢ € Wo'>(W N M) such that

Ly + ko = 0.
By standard elliptic theory, see [9], the spectrum of Ly, in W N M,
K1(W) < k(W) <--- — 400,
is discrete and bounded from below. We then define the index of M in W by,
indyy (M) = [{p: 1,(W) < 0},

or equivalently, it is the maximum dimension of a linear subspace of WO1 ’2(Wﬁ
M) on which By is negative definite. If indy (ind M) = 0, then we say that
M is stable in W and «,(W) > 0, for all p in N, and

Bar(p, ) >0, forallp € Wy (W N M).
We define,

ind(M) = sup (indy (M)).
WCCN\(M\M)

As M is embedded, and our sequence of critical points {u;} from Sect. 1.1
has indu; < 1, by [14, Theorem 1a.], we have that indM < 1.

Remark 26. As M is two-sided and embedded, and the inhomogeneous term
is a constant, we may also apply the ideas and arguments of [11] verbatim to
conclude that indM < 1.

Claim 5. ind M = 1.
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Proof. We only need to show a lower bound, which follows from the Ricci
positivity on N. We construct an appropriate function on M, using a similar
argument to [2, Lemma 5.1].

We wish to prove that we can find a set W cC N\ (M \ M), and a
function ¢ in Wy *(M N W) such that,

Bu(p, ) < 0.

By the Ricci positivity of N, for any W cC N\ (M \ M), and ¢ in
Wy 2(M NW), we have

Ba(p,¢) < /M VM2 — | An[2i2 arr.
If M\ M =0, weset W=N,and p =1,
B (e, ) < —/ |Ap|? dH™ < 0.
M

For M\ M # (), we first we note that we must have n > 7, and H"~1(M \
M) = 0. Therefore, the 2-capacity of M \ M is 0, [8, Section 4.7.2, Theorem
3], implying that for all § > 0, there exists a function fs such that,

fs € CX(N\ (M \ M)),
fs(y) € [0,1], y € N,

Iy IV f5|2dpy < 6,

prg({fs = 1}) > pg(N) — 4.

Furthermore, as | M| is a multiplicity 1 integral varifold with uniformly bounded
generalised mean curvature, we have a monotonicity formula [17, Corollary
17.8]. The existence of such a monotonicity formula implies Euclidean vol-
ume growth about each point in M. Therefore, there exists a constant Cg =
Cs(N, M, g), such that, by the construction of f5 as in [8, Section 4.7.2, The-
orem 3],

/ (VM f5]? dH™ < Cgé.
M

Taking W5 = supp f5 CC N\ (M \ M), we have that (f5)n € Wy (M NWs),
and,

Bu(fs, f5) < C6 —n 2 X*H"({fs = 1} N M).

We have that as we send § — 0, H"({fs = 1} N M) — H"(M). Therefore
for small enough ¢ > 0, we have that Bas(fs, fs) < 0. This implies that ind
M >1. U

The fact that M is connected immediately follows from this, as on each
connected component we could construct a function as in Claim 5. Therefore
each connected component adds atleast 1 to the index.
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