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Abstract. Multiplicity results are proved for solutions both with posi-
tive and negative energy, as well as nonexistence results, of a generalized
quasilinear Schrödinger potential free equation in the entire R

N involving
a nonlinearity which combines a power-type term at a critical level with a
subcritical term, both with weights. The equation has been derived from
models of several physical phenomena such as superfluid film in plasma
physics as well as the self-channelling of a high-power ultra-short laser
in matter. Proof techniques, also in the symmetric setting, are based on
variational tools, including concentration compactness principles, to over-
come lack of compactness, and the use of a change of variable in order to
deal with a well defined functional.
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1. Introduction

In this paper, we are interested in multiplicity results for nontrivial weak so-
lutions, both with negative and positive energy of the following generalized
quasilinear Schrödinger equation involving a critical term

− Δpu − α

2
Δp(|u|α)|u|α−2u = λV (x)|u|k−2u + βK(x)|u|αp∗−2u in R

N , (1.1)

where Δmu = div(|Du|m−2Du) is the m-Laplacian of u, α > 1, β, λ > 0,
1 < p < N , p∗ = Np/(N − p) is the critical Sobolev’s exponent, the exponent
k is such that α < k < αp∗ and the weights are nontrivial and satisfy

0 ≤ V ∈ Lr(RN ) ∩ C(RN ), r =
αp∗

αp∗ − k
, (1.2)

K ∈ L∞(RN ) ∩ C(RN ). (1.3)
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In particular, we emphasize that the weight K can change sign.
Actually, in the last section of the paper, we deal also with the singular

case, given by 0 < α < 1, and, in particular, thanks to a technique used to
attach the case α > 1, we succeed in extending some previous results proved
in [6]. Our multiplicity results are a first contribution in the study of critical
generalized quasilinear Schrödinger equations involving p-Laplacian and gen-
eral α > 1. To the best of our knowledge, they are new even in the Laplacian
case.

Solutions of problems of type (1.1) are related to the existence of standing
wave solutions for Schrödinger equations of the form

i∂tψ = −Δψ + W (x)ψ − ϕ(|ψ|2)ψ − κΔ	(|ψ|2)	′(|ψ|2)ψ, (1.4)

where ψ : R × R
N → C, W is a given potential, κ ∈ R and ϕ, 	 real functions

of mainly pure power form. By using the well known energy methods, the
semilinear subcase κ = 0 of (1.4) was studied deeply in [20], see also and the
references therein.

Equation (1.4), according to different types of 	, has been derived from
models of several physical phenomena. For instance, when 	(s) = s, then
(1.4) is interpreted as the superfluid film equation in plasma physics, while
if 	(s) = (1 + s)1/2, Eq. (1.4) models the self-channelling of a high-power
ultra short laser in matter. We refer to [25], for applications, in the theory
of Heisenberg ferromagnets and magnons and to [7], where models for binary
mixtures of ultracold quantum gases are treated.

It is worth pointing out that there are many difficulties in treating this
class of generalized critical quasilinear Schrödinger equations (1.1) in R

N , such
as lack of compactness, the presence of the term Δp(|u|α)|u|α−2u which pre-
vents us from working directly in a classical working space, to manage weights
and finally to deal with an “apparently” supercritical term K(x)|u|αp∗−2u. In
light of this, challenging tasks, tricky to be managed, appear.

Actually, when α > 1, the exponent αp∗ plays the role of the critical
exponent, differently from the case 0 < α < 1 in which p∗ behaves like the
critical exponent, as it appears in the critical equation (7.1) below. In partic-
ular, Sect. 2 is aimed to justify the appearance of the new critical exponent
αp∗ in terms of the compactness of a suitable embedding and of the nonexis-
tence of solutions beyond αp∗. In the spirit of Theorem 2.11 in [2], where the
semilinear version (p = 2) of (1.1) is investigated. We refer also to [18,19,35].

In addition, the choice of the parameter α gives rise to a different nature
of the equation under consideration since for α > 1, the term Δp(|u|α)|u|α−2u,
p > 1, is degenerate at u = 0, while for 0 < α < 1 it becomes singular when
u = 0.

In literature, critical Schrödinger equations in R
N are mainly studied

in their physical relevance, corresponding to the situation p = 2 and when
a potential term is involved, starting from the pioneering paper by Brezis
and Niremberg [12]. We refer also to [13] for existence results for semilin-
ear elliptic equations with singular potential. The degenerate case, α > 1, is
mostly studied when α = 2, see [33], where existence results can be deduced



NoDEA Generalized quasilinear Schrödinger equations in R
N Page 3 of 31 8

by applying the Mountain Pass Theorem in the superlinear subcritical case
4(= αp) < k < 2 · 2∗ of (1.1). As for equations where the reaction combines
the multiple effects generated by a singular term and a critical term even with
nonhomogeneous operators and in bounded domains, we refer to the recent
works [23,29].

For existence results in the critical semilinear case when α > 1 in (1.1)
very few is known in the entire interval α < k < αp∗. Nonlinearities only sub-
critical are studied in [1] when 2∗ < k < 2∗α. Among subcritical problems, we
also mention [22], where multiplicity results for Schrödinger equations when
p = 2 are proved. In the critical case, see also [18,32] where a general nonlinear-
ity is included. Furthermore, for α = 2, concerning concentrating behavior of
solutions, we quote [14] where a new phenomenon occurs passing from critical
to supercritical nonlinearities in terms of the limit equation.

Passing to the general quasilinear case, 1 < p < N , with α > 1, it
seems that there are no multiplicity results for quasilinear critical Schrödinger
problems on R

N when a potential term is not involved in the equation and
the growth rate of the subcritical term is less than αp. Motivated by this
observation and with the sake of completing the picture started in [6], where
the singular case 0 < α < 1 in (1.1) is treated, in this paper we investigate the
case α < k < p in the following theorem, where Eλ stands for the standard
energy functional associated to Eq. (1.1), see Sect. 2.

Theorem 1. Assume N ≥ 3, 1 < α < k < p. Let V , K satisfying (1.2) and
(1.3), respectively. Then,

(i) For any λ > 0, there exists β∗ > 0 such that for any 0 < β < β∗, then
Eq. (1.1) has infinitely many nontrivial solutions (un)n ⊂ D1,p(RN ) such
that Eλ(un) < 0 and ‖un‖ → 0 as n → ∞.

(ii) For any β > 0, there exists λ∗ > 0 such that for any 0 < λ < λ∗, then
Eq. (1.1) has infinitely many nontrivial solutions (un)n ⊂ D1,p(RN ) such
that Eλ(un) < 0 and ‖un‖ → 0 as n → ∞.

The proof of the above multiplicity result relies on the concentration
compactness principle, the truncation of the energy functional and the theory
of Krasnosel’skii genus. In particular, we cannot manage directly the energy
functional Eλ associated with (1) since it might be not well defined, but we
need to perform a suitable change of variables, in the spirit of [17], to achieve a
nice functional. This causes some further obstacles in recovering in some sense
compactness beyond p∗, since, as noted above, αp∗ > p∗. While the behaviour
of the norm of the solutions follows from the application of the symmetric
Mountain Pass Theorem, see [3,21,34].

Moreover, we also need to restrict the entire sublinear interval α < k < αp
to α < k < p due to the shape of the transformed energy functional which
yields tricky estimates, cfr. Remark 3. As far as we know, in [36] there is an
attempt to cover the entire interval α < k < αp when K ≡ 1, by using an
inequality which seems difficult to be verified.

In the second part of our paper, we study (1.1) in a symmetric setting re-
lated to a subgroup T of O(N), the group of orthogonal linear transformations
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in R
N . Here,

|T | := inf
x∈RN , x �=0

|Tx|,

where |Tx| the cardinality of a T -orbit Tx := {τx|τ ∈ T} with |T∞| := 1 (so
that |T0| = 1).

We make use of T -symmetric functions f : Ω → R
N , i.e. f(τx) = f(x) for

all τ ∈ T and x ∈ Ω, with Ω open T -symmetric subset of RN (i.e. if x ∈ Ω, then
τx ∈ Ω for all τ ∈ T ). For example, even functions are T -symmetric functions
with T = {id,−id}, thus |T | = 2, and radially symmetric functions are T -
symmetric functions with T = O(N), thus |T | = ∞. Then, we denote with
D1,p

T (RN ) the subspace of D1,p(RN ) consisting of all T -symmetric functions,
cfr. Sect. 2.

A pioneering paper about critical symmetric problems in the entire R
N

is [9] by Bianchi, Chabrowskii and Szulkin, where existence and multiplicity
results are obtained for p = 2 under appropriate assumptions on the single
weight involved and on the group T , no subcritical terms are included. In this
context, we mention also [16] where the symmetry of solutions is shown by
applying the improved “moving plane” method.

Differently from Theorem 1, where no assumptions on the sign for the
weight K are required, in the next result, nonnegativity for the weight K
is needed. Furthermore, we consider solutions with positive energy, with no
additional restrictions on α, p, k, indeed the range for α and k is the largest
possible.

Theorem 2. Assume N ≥ 3, 1 < α < k < αp∗. Let V , K be T -symmetric
functions satisfying (1.2), (1.3), with K nonnegative (nontrivial) in R

N . If

K(0) = K(∞) = 0 and |T | = ∞, (1.5)

where K(∞) = lim sup|x|→∞ K(x). Then, for all λ, β > 0 Eq. (1.1) possesses
infinitely many solutions (un)n ⊂ D1,p

T (RN ) with positive energy such that
Eλ(un) → ∞ as n → ∞.

The main ingredient used in the proof of Theorem 2 is the Fountain
Theorem, which requires the Palais Smale property for the functional at any
positive level. This is in force by virtue of the crucial assumption (1.5).

The paper is structured as follows. The description of the functional set-
ting, the reformulation of the problem by a suitable change of variable and
motivations on the critical exponent αp∗ are contained in Sect. 2. Section 3
encloses compactness properties thanks to which we overcome the lack of com-
pactness, while in Sect. 4 we perform a deep analysis on the possible behaviours
of the energy functional and of its truncated version, this latter introduced to
restore the boundedness from below. The proof of Theorem 1 is disclosed in
Sect. 5, whereas in Sect. 6 we deal with solutions with positive energy and
we develop the proof Theorem 2 in the symmetric setting described before.
Finally, Sect. 7, by using some ideas given in Sect. 3, is devoted to extending
Theorem 1.1 in [6], relative to the singular case 0 < α < 1, covering the entire
interval 1 < k < αp.
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2. Preliminaries

In this section, we introduce the main notations and we present preliminary re-
sults useful for the proof of the main theorems of the paper, given in Sects. 5, 6.

Let D1,p(RN ) be the closure of C∞
0 (RN ) with respect to the norm ‖u‖D1,p

= ‖Du‖p, where ‖ · ‖p is the Lp norm in R
N . In particular, we can define the

reflexive Banach space D1,p(RN ) = {u ∈ Lp∗
(RN ) : Du ∈ Lp(RN )}.

The Euler Lagrange functional associated with Eq. (1.1) is the following

Eλ(u) =
1
p

∫
RN

g(u)p|Du|pdx − λ

k

∫
RN

V |u|kdx − β

αp∗

∫
RN

K|u|αp∗
dx,(2.1)

for u ∈ D1,p(RN ), where

g(t) =
[
1 +

αp

2
|t|p(α−1)

]1/p

, t ∈ R. (2.2)

Due to the appearance of the coercive term g, indeed g(t) → ∞ as |t| → ∞,
when α > 1, the functional Eλ may be not well defined in D1,p(RN ), so we
cannot apply variational methods or nonsmooth critical point theory to deal
directly with (2.1). For example, from [31], if we consider ue(x) = |x|−(N−p)/2p,
x ∈ B1\{0} then ue ∈ D1,p(RN ) but g(ue)p|Due|p /∈ L1(RN ) for any α ≥ 2.
To overcome this difficulty, we make a change of variables developed in [17],
following an idea in [25], precisely

v = G(u) =
∫ u

0

g(z)dz. (2.3)

In particular, the function g defined in (2.2) is an even function in R, g(0) = 1,
g is increasing in R

+ and decreasing in R
−. For any α > 0 and t ∈ R, we have

|G(t)| ≤
∫ |t|

0

(
1 +

α

21/p
yα−1

)
dy = |t| +

1
21/p

|t|α (2.4)

Thus, G is well defined and continuous in R. Moreover, G is a strictly increasing
function being g ≥ 1, G(0) = 0 and lim|t|→∞ G(t) = ∞. So, we can define G−1,
an invertible, odd and C1 function such that G−1(s) ≥ 0 for any s ≥ 0. Thanks
to the change of variables described above, the energy functional Eλ can be
written by the following functional

Fλ(v):=
1

p

∫
RN

|Dv|pdx−λ

k

∫
RN

V |G−1(v)|kdx− β

αp∗

∫
RN

K|G−1(v)|αp∗
dx, (2.5)

for v ∈ D1,p(RN ). The proof of the regularity of Fλ takes the following steps,
starting with the properties of g and G. Especially, the following lemma holds.

Lemma 1. Let α > 1. Then, it holds

(a) lims→0
|G−1(s)|

|s| = 1 thus lims→0
|G−1(s)|α

|s| = 0;

(b) lims→∞
|G−1(s)|α

|s| = 21/p thus lims→∞
|G−1(s)|

|s| = 0;
(c) |G−1(s)| ≤ |s|, for every s ∈ R;
(d) 0 ≤ g′(t)t

g(t) < α − 1, for every t ∈ R;
(e) |G−1(s)| ≤ |G−1(s)g(G−1(s))| < α|s|, for every s ∈ R;
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(f ) Take ℘ ≥ 0. Then the following hold for every t ∈ R.
If ℘ > α then ℘−α

g(t) < (℘−1)g(t)−tg′(t)
g2(t) ≤ ℘ − 1.

If 1 < ℘ < α then ℘ − α < (℘−1)g(t)−tg′(t)
g2(t) ≤ ℘ − 1.

(g) |G−1(s)|α ≤ 2p−1|s|, for every s ∈ R;
(h) |G−1(s)|α ≥ |G−1(1)|α|s|, for every s ∈ R such that |s| ≥ 1;
(i) |G−1(s)|α−1(G−1(s))′ ≤ C with C > 0.

Proof. Since G−1 is odd, we only consider the case s ≥ 0. Property (a) is
trivial by Hospital’s rule, being t = G−1(s) so that G′(t) = g(t) with g(0) = 1.
Also (b) follows immediately again from Hospital’s rule since

lim
t→∞

tα

G(t)
= α lim

t→∞
tα−1

g(t)
= 21/p, lim

t→∞
t

G(t)
= lim

t→∞
1

g(t)
= 0,

where we have used also that

g(t) ∼ α

21/p
tα−1, as t → ∞. (2.6)

Condition (c) follows since g(t) > 1 for all t > 0, thus G(t) =
∫ t

0
g(z)dz ≥ t for

every t ≥ 0. To prove (d), since g is increasing in R
+ and positive, we have

0 ≤ g′(t)t
g(t)

= (α − 1) · αptp(α−1)

2 + αptp(α−1)
< α − 1,

being α > 1. To get (e), multiply (d) by g(t) > 0 and integrate so that

(α − 1)G(t) >

∫ t

0

{
[g(z)z]′ − g(z)

}
dz = g(t)t − G(t), t > 0.

In turn, inequality (e) follows taking s = G(t). For the proof of (f ), it is enough
to multiply (d) by −1/g(t) and then add (℘ − 1)/g(t) so that

℘ − α

g(t)
<

(℘ − 1)g(t) − tg′(t)
g2(t)

≤ ℘ − 1
g(t)

,

yielding (f ) depending on the case. In order to prove (g) and (h) take( |G−1(s)|α
s

)′
=

G−1(s)α−1[αs − g(G−1(s))G−1(s)]
s2g(G−1(s))

> 0, for s ≥ 0

from (e). Consequently, |G−1(s)|α/s is strictly increasing and by (b) its limit at
infinity is 21/p, thus (g) follows immediately. In addition, we get |G−1(s)|α >
|G−1(1)|αs for s ≥ 1 and (h) holds by virtue of symmetry. Finally, (i) follows
from G−1(0) = 0 and (2.6). �

Remark 1. Note that, by definition, we have

[G−1(s)g(G−1(s))]′ = 1 +
G−1(s)g′(G−1(s))

g(G−1(s))
∈ (1, α) (2.7)

thanks to Lemma 1-(d). Moreover, for any v ∈ D1,p(RN )

D[G−1(v)g(G−1(v))] =

[
1 +

G−1(v)g′(G−1(v))
g(G−1(v))

]
Dv



NoDEA Generalized quasilinear Schrödinger equations in R
N Page 7 of 31 8

so, by using (2.7), we obtain

|Dv| ≤ |D[G−1(v)g(G−1(v))]| ≤ α|Dv|. (2.8)

In addition, since g ≥ 1, then we have |DG−1(v)| = |Dv|/g(G−1(v)) ≤ |Dv|.
Thus, for any v ∈ D1,p(RN ) we have G−1(v)g(G−1(v)), G−1(v) ∈ D1,p(RN ).
On the other hand, if we take v ∈ D1,p(RN ), by using the definition of g in
(2.2), we have

|D(|G−1(v)|α)|p = αp|G−1(v)|p(α−1)|DG−1(v)|p = αp|G−1(v)|p(α−1)

∣∣∣∣ Dv

g(G−1(v))

∣∣∣∣
p

= 2

αp

2
|G−1(v)|p(α−1)

1 +
αp

2
|G−1(v)|p(α−1)

|Dv|p ≤ 2|Dv|p,

(2.9)

so that for any v ∈ D1,p(RN ) also |G−1(v)|α ∈ D1,p(RN ).

In what follows we make use of the next crucial lemma, for its proof we
refer to Lemma 2.2 in [6] where we consider |G−1(·)|α in place of G−1(·) and,
by Remark 1, |G−1(v)|α ∈ D1,p(RN ) for every v ∈ D1,p(RN ).

Lemma 2. Assume vn ⇀ v in D1,p(RN ), then |G−1(vn)|α ⇀ |G−1(v)|α in
D1,p(RN ).

Actually, as described in the Introduction, Eq. (1.1) is critical since the
corresponding critical exponent in the nonlinearity is αp∗, as soon as α > 1.
For the Laplacian case p = 2, we refer to [2] where a detailed discussion in this
direction is conducted, see also [18,35]. In order to justify this assumption, we
first prove nonexistence beyond αp∗, and then we recover continuity and local
compactness until αp∗.

In the following theorem, by the celebrated variational identity by Pucci
and Serrin [30], we immediately get that for k ≥ αp∗ nonexistence follows at
all, generalizing the result in [26] where the authors studied the case p = α = 2
provided nonexistence of solutions in H1(RN ) with |Du|2|u|2 ∈ L1(RN ).

Theorem 3. Equation (1.1) does not admit any solutions if the following hold

k ≥ αp∗, x · DV (x) ≤ 0, x · DK(x) ≤ 0 (2.10)

Proof. By using the following Pucci and Serrin variational identity [30], in R
N

0 =

∫
RN

{
F(x, u, Du)divh + hiFxi(x, u, Du) −

[
∂u

∂xj

∂hj

∂xi
+ u

∂a

∂xi

]
Fpi(x, u, Du)

− a

[
∂u

∂xi
Fpi(x, u, Du) + uFu(x, u, Du)

]}
dx,

for

F(x, u,Du) =
1
p
g(u)p|Du|p − λ

k
V (x)|u|k − β

αp∗ K(x)|u|αp∗
,
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we get

0 =
∫
RN

{[
1
p
g(u)p|Du|p − λ

k
V |u|k − β

αp∗ K|u|αp∗
]

divh

+ hi

(
−λ

k

∂V

∂xi
|u|k − β

αp∗
∂K

∂xi
|u|αp∗

)
− g(u)p|Du|p−2 ∂u

∂xi

∂u

∂xj

∂hj

∂xi

− g(u)p|Du|p−2u
∂u

∂xi

∂a

∂xi
− ag(u)p−1|Du|p[g(u) + ug′(u)

]

+ a
[
λV |u|k + βK|u|αp∗]}

dx.

Choosing h(x) = x and a(x) = N/αp∗ we arrive to

0 =
∫
RN

{[
N

p
g(u)p|Du|p − Nλ

k
V |u|k − βN

αp∗ K|u|αp∗
]

− λ

k

∂V

∂xi
|u|k − β

αp∗
∂K

∂xi
|u|αp∗ − g(u)p|Du|p−2 ∂u

∂xi

∂u

∂xj
δij

− N

αp∗ g(u)p−1|Du|p[g(u) + ug′(u)
]
+

λN

αp∗ V |u|k +
βN

αp∗ K|u|αp∗
}

dx,

namely∫
RN

{
N − p

αp

[
(α − 1)g(u) − ug′(u)

]
g(u)p−1|Du|p − λN

(
1
k

− 1
αp∗

)
V |u|k

}
dx

=
∫
RN

{
λ

k
|u|k x · DV (x) +

β

αp∗ |u|αp∗
x · DK(x)

}
dx, (2.11)

which yields to a contradiction when (2.10) holds since the left hand side of
(2.11) is positive being k ≥ αp∗, λ > 0 and thanks also to Lemma 1-(d), while
the right hand side of (2.11) is non positive. �

Moreover, in what follows we will prove the compactness of the inverse
map of G defined in (2.3) in some sense until αp∗, taking into account similar
results in [19,25].

Theorem 4. The map |G−1|α : D1,p(RN ) → Lq(RN ) is continuous for p ≤ q ≤
p∗ and |G−1|α : D1,p(RN ) → Lq

loc(R
N ) is compact for p ≤ q < p∗. Moreover,

it holds the following

G−1(vn(x)) → G−1(v(x)) a.e. x ∈ R
N . (2.12)

Proof. Take v ∈ D1,p(RN ) and, by using (2.9) and Sobolev’s inequality, we
have

‖G−1(v)‖αp∗ = ‖|G−1(v)|α‖1/α
p∗ ≤ S−1/αp‖D(|G−1(v)|α)‖1/α

p

≤ (2/S)1/αp‖Dv‖1/α
p , (2.13)

where S is Sobolev’s constant, i.e. S = inf
{‖Du‖p

p · ‖u‖−p
p∗ : u ∈ D1,p(RN )\{0}} .

So that (2.13) imply

‖|G−1(v)|α‖p∗ = ‖G−1(v)‖α
αp∗ ≤ C‖Dv‖p, (2.14)
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so that we get continuity for q = p∗. To prove continuity for q < p∗, consider
x, y > 1 with 1 < x < q and use Hölder’s inequality with exponents y and
y′ > 1

‖G−1(v)‖αq =
(∫

RN

(|G−1(v)|α)q−x(|G−1(v)|α)x
dx

)1/αq

≤
(∫

RN

(|G−1(v)|α)(q−x)y′
dx

)1/αqy′(∫
RN

(|G−1(v)|α)xydx

)1/αqy

Now choose y = p∗/x > 1, y′ = p∗/(p∗ − x) so that we get

‖G−1(v)‖αq ≤
(∫

RN

(|G−1(v)|α)(q−x)p∗/(p∗−x)
dx

)(p∗−x)/αqp∗

(∫
RN

(|G−1(v)|α)p∗
dx

)x/αqp∗

≤ ‖v‖(q−x)/αq
(q−x)p∗/(p∗−x) · ‖|G−1(v)|α‖x/αq

p∗

≤ C‖Dv‖(q−x)/αq
p · ‖Dv‖x/αq

p = C‖Dv‖1/α
p ,

where we have used Lemma 1-(g), (2.14) and the continuity of embedding
D1,p(RN ) ↪→ L(q−x)p∗/(p∗−x)(RN ), since q < p∗. In turn ‖|G−1(v)|α‖q ≤
C‖Dv‖p.

To prove the compactness of the map |G−1|α : D1,p(RN ) ↪→ Lq
loc(R

N ) for
p ≤ q < p∗, we start from a bounded sequence (vn)n in D1,p(RN ), so that up
to subsequences vn ⇀ v in D1,p(RN ) then, by Lemma 2 we have |G−1(vn)|α ⇀
|G−1(v)|α in D1,p(RN ) and by the compactness of the embedding of D1,p(RN )
in Ls

loc(R
N ) for any 1 < s < p∗ we have

|G−1(vn)|α → |G−1(v)|α in Ls(ω), ω ⊂ R
N , 1 ≤ s < p∗. (2.15)

Finally, from (2.15), by using an increasing sequence of compact sets whose
union is R

N and a diagonal argument, we get (2.12). �

In order to prove the regularity of Fλ, we need to analyze the regularity
of

J(v) =
∫
RN

V |G−1(v)|kdx and H(v) =
∫
RN

K|G−1(v)|αp∗
dx

Lemma 3. If V ∈ Lr
(
R

N
)

and 1 < α < k < αp∗, then J(v) is weakly
continuous on D1,p(RN ). Moreover, J is continuously differentiable and J ′ :
D1,p(RN ) → [D1,p(RN )]′, for all ψ ∈ D1,p(RN ), is given by

J ′(v)ψ = k

∫
RN

V
|G−1(v)|k−2G−1(v)

g(G−1(v))
ψdx. (2.16)

Proof. For any v ∈ D1,p(RN ), by Theorem 4, then |G−1(v)|α ∈ Lp∗
(RN ), so

that by Hölder inequality with exponents r = αp∗/(αp∗ − k) and r′ = αp∗/k
we have

‖V |G−1(v)|k‖1 ≤ ‖V ‖r‖G−1(v)‖k
αp∗ (2.17)
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This implies that J is well defined. Let (vn)n ∈ D1,p(RN ) such that vn ⇀ v
in D1,p(RN ), thus, (vn)n is bounded in D1,p(RN ) and, by Theorem 4, also
(G−1(vn))n is bounded in Lαp∗

(RN ) and (|G−1(vn)|k)n in Lαp∗/k(RN ).
Since V ∈ Lr(RN ), by (2.12) and (2.17), the latter applied with vn in-

stead of v, we get the weakly continuity of J , thanks to Lebesgue convergence
Theorem, that is

J(vn) =
∫
RN

V |G−1(vn)|kdx →
∫
RN

V |G−1(v)|kdx = J(v). (2.18)

In order to prove the Fréchet differentiability, that is J ∈ C1, it is enough
to show that J is Gâteaux differentiable and has a continuous Gâteaux deriv-
ative on D1,p(RN ). First, consider v, ψ ∈ D1,p(RN ) and 0 < |t| < 1, so that

J(v + tψ) − J(v)
t

=
∫
RN

V
|G−1(v + tψ)|k − |G−1(v)|k

t
dx. (2.19)

Using the mean value theorem, there exists δ ∈ (0, 1) such that
∣∣|G−1(v + tψ)|k − |G−1(v)|k∣∣

|t|
= k|G−1(v + tδψ)|k−1|(G−1(v + tδψ))′||ψ|
≤ c|v + tδψ|(k−α)/α|ψ| ≤ c

(
|v|(k−α)/α|ψ| + |ψ|k/α

)
,

(2.20)

with c > 0, where we have used, for the first inequality, the following condition

|G−1(s)|k−1(G−1(s))′

s(k−α)/α
≤ c (2.21)

which holds for on bounded sets in R
+
0 by using Lemma 1-(g), (i) . While,

the last inequality in (2.20) follows from the elementary formula (a + b)r ≤
C(ar + br), a, b, r > 0 and C > 0.

Now, by applying Hölder’s inequality twice with exponents r, αp∗/(k−α),
p∗ and r, αp∗/k, we get
∫
RN

V
(
|v|(k−α)/α|ψ| + |ψ|k/α

)
dx ≤ ‖V ‖r ‖ψ‖p∗

(
‖v‖(k−α)/α

p∗ + ‖ψ‖k/α−1
p∗

)
.

The right hand side of the above inequality is finite thanks to the suitable
summabilities of the functions V, ψ, v. Thus, by letting t → 0 in (2.19) us-
ing (2.20), from the Lebesgue dominated convergence theorem, J is Gâteaux
differentiable.

Before proving the continuity of the Gâteaux derivative, we claim that
the functional J ′(v) is well defined for every v ∈ D1,p(RN ), that is J ′(v) ∈
[D1,p(RN )]′. Indeed, as in Lemma 2.5 in [19], consider ψn → 0 in D1,p(RN ) so
that, by (2.18), we get

∫
RN

V |G−1(ψn)|kdx → 0, as n → ∞ (2.22)
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Now, by using that g ≥ 1, (2.4) and Lemma 1-(i) we have∫
RN

V |G−1(v)|k−1G−1(v)′ψndx

≤ C1

(∫
RN

V |G−1(v)|kdx

)1−1/k

·
(∫

RN

V |G−1(ψn)|kdx

)1/k

+ C2

(∫
RN

V |G−1(v)|k
)1−α/k

·
(∫

RN

V |G−1(ψn)|kdx

)α/k

where we used Hölder’s inequality and the fact that α < k. Now, applying
(2.22), we get∫

RN

V |G−1(v)|k−1G−1(v)′ψndx → 0 as n → ∞

obtaining the continuity of J ′ and, consequently, the claim.
Now, to get (Fréchet) differentiability we check that the Gâteaux deriv-

ative J ′ : D1,p(RN ) → [D1,p(RN )]′ defined in (2.16) is continuous. To reach
the claim, consider vn → v in D1,p(RN ), so that there exists U ∈ Lp∗

(RN ) such
that |vn| ≤ U(x) a.e. in R

N . Now, define W (v) = V |G−1(v)|k−2G−1(v)(G−1(v))′

hence, by (2.21) and Young’s inequality with exponents α(p∗ − 1)/(αp∗ − k)
and α(p∗ − 1)/(k − α), we get for c > 0

|W (vn) − W (v)|(p∗)′ ≤ c(|W (vn)|(p∗)′
+ |W (v)|(p∗)′

)

≤ c
(|V |p∗/(p∗−1)|vn|p∗(k−α)/α(p∗−1)

+ |V |p∗/(p∗−1)|v|p∗(k−α)/α(p∗−1)
)

≤ c
(|V |r + |vn|p∗

+ |v|p∗) ≤ c
(|V |r + Up∗

+ |v|p∗) ∈ L1(RN ).

In turn, Lebesgue dominated convergence Theorem gives ‖W (vn)−W (v)‖(p∗)′

→ 0 as n → ∞. Consequently, by Hölder’s inequality, for ψ ∈ D1,p(RN ), we
have

|(J ′(vn) − J ′(v)
)
ψ|

≤ k

∫
RN

|W (vn) − W (v)||ψ|dx ≤ k‖W (vn) − W (v)‖(p∗)′‖ψ‖p∗ → 0,

as n → ∞. Namely, J ∈ C1. �

Lemma 4. If K ∈ L∞(RN ) ∩ C(RN ), then H is continuously differentiable
in D1,p(RN ) and its derivative H ′ : D1,p(RN ) → [D1,p(RN )]′, for all v, ψ ∈
D1,p(RN ), is given by

H ′(v)ψ = αp∗
∫
RN

K
|G−1(v)|αp∗−2G−1(v)

g(G−1(v))
ψdx.

Proof. The proof relies on the one of Lemma 3 but with some adjustments.
First, note that here there are no conditions on the exponent k. Trivially, the
functional is well defined and weakly continuous on D1,p(RN ). In order to prove
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the Gâteaux differentiability of H, we use again the Mean Value Theorem but,
instead of (2.20), we have∣∣|G−1(v + tψ)|αp∗ − |G−1(v)|αp∗ ∣∣

|t|
= αp∗|G−1(v + tδψ)|αp∗−1|(G−1(v + tδψ))′||ψ|

≤ c|G−1(v + tδψ)|α(p∗−1)|ψ| ≤ c|v + tδψ|p∗−1|ψ| ≤ c
(
|v|p∗−1|ψ| + |ψ|p∗)

,

where we have used Lemma 1-(g), (i) and the elementary formula (a + b)r ≤
C(ar + br), a, b, r > 0 and C > 0. Concerning the well definition of H on
[D1,p(RN )]′, we get∫

RN

K|G−1(v)|αp∗−1G−1(v)′ψndx

≤ C1

∫
RN

K|G−1(v)|αp∗−1G−1(v)′G−1(ψn)dx

+ C2

∫
RN

K|G−1(v)|αp∗−1G−1(v)′|G−1(ψn)|αdx

≤ C1

(∫
RN

|G−1(v)|αp∗
dx

)1−1/αp∗

·
(∫

RN

|G−1(ψn)|αp∗
dx

)1/αp∗

+ C2

∫
RN

|G−1(v)|α(p∗−1)|G−1(ψn)|αdx

≤ C1

(∫
RN

|G−1(v)|αp∗
dx

)1−1/αp∗

·
(∫

RN

|G−1(ψn)|αp∗
dx

)1/αp∗

+ C2

(∫
RN

|G−1(v)|αp∗
)1−1/p∗

·
(∫

RN

|G−1(ψn)|αp∗
dx

)1/p∗

where, for the integral near C1 we use that g ≥ 1 and Hölder’s inequality with
exponents αp∗ and αp∗/(αp∗ − 1), while for the integral with C2 we use in
Lemma 1-(i) and Hölder’s inequality with exponents p∗ and p∗/(p∗ − 1).

Finally, the continuity of the Gâteaux derivative follows by defining W̃ in-
stead of W as W̃ (v) = |G−1(v)|αp∗−2G−1(v)(G−1(v))′ and from the following

|W (v)|(p∗)′ ≤ |G−1(v)|αp∗ ≤ |v|p∗

where Lemma 1-(g), (i) is used. �

Now, if we consider vn → v in D1,p(RN ), then by Lemma 2, also |G−1(vn)|α
→ |G−1(v)|α in D1,p(RN ). Since the first term of Fλ is a norm with ex-
ponent p > 1, and thanks to Lemmas 3 and 4 with 1 < α < k, then
we get Fλ ∈ C1(D1,p(RN )), and F ′

λ : D1,p(RN ) → (D1,p(RN ))′, for all
v, ψ ∈ D1,p(RN ), is given by

F ′
λ(v)ψ =

∫
RN

|Dv|p−2DvDψdx − λ

∫
RN

V
|G−1(v)|k−2G−1(v)

g(G−1(v))
ψdx

− β

∫
RN

K
|G−1(v)|αp∗−2G−1(v)

g(G−1(v))
ψdx.

(2.23)
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We say that v ∈ D1,p(RN ) is a (weak) solution of Eq. (1.1) if

F ′
λ(v)ψ = 0 for all ψ ∈ D1,p(RN ),

Clearly, (weak) solutions of (1.1) are exactly critical points of the Euler-
Lagrange functional Eλ, or equivalently Fλ, associated with (1.1). Moreover,
every critical point of Fλ correspond to a solution of the following equation

− Δpv = λV
|G−1(v)|k−2G−1(v)

g(G−1(v))
+ βK

|G−1(v)|αp∗−2G−1(v)
g(G−1(v))

. (2.24)

As a consequence, Theorems 7 and 2, whose statements are given in the In-
troduction in terms of u satisfying (1.1), can be stated in terms of v = G(u)
solutions of (2.24).

A key role in the proof of our results is the concentration compactness
principles by Lions. For a detailed discussion on them, we refer to [4,5]. In
particular, we are interested in the second concentration compactness prin-
ciple, which regards a possible concentration only at finite points and where
two different types (since we are in unbounded domains) of convergences are
considered: the tight convergence of measures, whose symbol is ∗

⇀, and the
“weak” convergence, denoted with ⇀. Precisely,

Lemma 5. (Lemma I.1, [24]) Assume Ω ⊂ R
N a domain, 1 ≤ p < N . Let

(un)n be a bounded sequence in D1,p(Ω) converging weakly to some u and such
that |Dun|pdx ⇀ μ and either |un|p∗

dx ⇀ ν if Ω is bounded or |un|p∗ ∗
⇀ ν

if Ω is unbounded, where μ, ν are bounded nonnegative measures on Ω. Then
there exists some at most countable set J such that

ν = |u|p∗
+

∑
j∈J

νjδxj
, μ ≥ |Du|p +

∑
j∈J

μjδxj
, νj ≥ 0, μj ≥ 0

with Sν
p/p∗

j ≤ μj and
∑
j∈J

ν
p/p∗

j < ∞, where (xj)j∈J are distinct points in Ω,

δx is the Dirac-mass of mass 1 concentrated at x ∈ Ω.

Since the tight convergence excludes a possible concentration at infinity,
by using the lemma above, in order to get compactness, it remains only to
show that concentration around points, described by νj , cannot occur. How-
ever, the proof of tightness by definition as well as using the first concentration
compactness principle leads to rather cumbersome and tricky calculations. To
overcome these difficulties, Chabrowskii presented a version at infinity of the
second principle, cfr. Proposition 2 in [15], see also Bianchi et al. [9] for the
Laplacian case. In this principle Chabrowskii manages to enclose the concen-
tration at infinity in the parameter ν∞, in according to the νjs in Lemma 5 so
that the non concentration at infinity occurs if one proves that ν∞ = 0. Later
Ben-Naoum et al. in [8] obtain a version for the p-Laplacian, here reported for
completeness.
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Proposition 1. (Proposition 3.3, [8]) Let (un)n be a bounded sequence in D1,p

(RN ) and define

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|p∗
dx, μ∞ = lim

R→∞
lim sup

n→∞

∫
|x|>R

|Dun|pdx.

Then, the quantities ν∞ and μ∞ exist and satisfy

lim sup
n→∞

∫
RN

|un|p∗
dx =

∫
RN

dν + ν∞, lim sup
n→∞

∫
RN

|Dun|pdx =
∫
RN

dμ + μ∞,

with Sν
p/p∗
∞ ≤ μ∞, where ν and μ are as in (i) and (ii) in Lemma 5 and such

that (iii) holds.

Another key tool in proving the multiplicity result of solutions with pos-
itive energy, namely Theorem 2, is the Fountain Theorem. However, before
its statement, we briefly report the setting needed. For some well-known basic
definitions of actions, invariant functions, we refer to [5].
(A1) The compact group G acts isometrically on the space M =

⊕
j∈N

Mj ,
which is a Banach space, where the spaces Mj are G-invariant and there
exists a finite dimensional space W such that, for every j ∈ N, Mj � W
and the action of G on W is admissible.
From the decomposition of the Banach space M in (A1), we define Ym

and Zm as follows

Ym :=
m⊕

j=0

Mj , Zm :=
∞⊕

j=m

Mj (2.25)

and set Bm := {u ∈ Ym : ‖u‖ ≤ ρm}, Nm = {u ∈ Zm : ‖u‖ = rm} where ρm >
rm > 0.

Now we are ready to state the Fountain Theorem.

Theorem 5. (Theorem 3.6, [37]) Under assumption (A1). Let ϕ ∈ C1(M,R)
be an invariant functional. If, for every m ∈ N, there exists ρm > rm > 0 such
that
(A2) am = maxu∈Ym,‖u‖=ρm

ϕ(u) ≤ 0,
(A3) bm = infu∈Zm,‖u‖=rm

ϕ(u) → ∞, m → ∞,
(A4) ϕ satisfies the (PS)c condition for every c > 0,
where Ym and Zm as in (2.25). Then ϕ has an unbounded sequence of critical
values.

Remark 2. In our setting, as done in [5], we set G = Z/2, M = D1,p
T (RN )

so that, since D1,p
T (RN ) is a separable Banach space, there is a linearly in-

dependent sequence (ej)j such that the decomposition in (A1) holds with
Mj = Xj := span {ej}. Note that Xj are trivially G-invariant and isomorphic
to R. Thus, condition (A1) is satisfied with W = R.

Finally, a crucial ingredient when a symmetric setting is involved is the
following principle of symmetric criticality due to Palais, cfr. [27,28], which
states that any critical point of Fλ restricted on D1,p

T (RN ), is a critical point
of the same functional on D1,p(RN ). For further details, we refer to [5].
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Lemma 6. Let v ∈ D1,p
T (RN ). If Fλ(v)ψ = 0 for all ψ ∈ D1,p

T (RN ), then
Fλ(v)ψ = 0 for all ψ ∈ D1,p(RN ).

3. On Palais Smale sequences

We start this section by giving the definition of (PS)c sequence.

Definition 1. Let Y be a Banach space and E : Y → R be a differentiable
functional. A sequence (un)n ⊂ Y is called a (PS)c sequence for E if E(uk) → c
and E′(uk) → 0 as k → ∞. Moreover, we say that E satisfies the (PS)c

condition if every (PS)c sequence for E has a converging subsequence in Y .

As standard, we need to deal with bounded (PS)c sequences for the func-
tional Fλ in (2.5). In addition, a useful inequality holds only if α < k < αp is
proved in the next lemma.

Lemma 7. Assume α < k < αp∗ and the further condition K ≥ 0 in R
N if

αp < k < αp∗. Let (1.2) and (1.3) be verified and consider (vn)n ⊂ D1,p(RN )
a (PS)c sequence for Fλ for all c ∈ R. Then (vn)n is bounded in D1,p(RN ).

In particular, if α < k < αp and c < 0, it holds

‖Dvn‖p < C∗λα/(αp−k), C∗ =
[
p(αp∗ − k)
αk(p∗ − p)

·
(

2
S

)k/αp

‖V ‖r

]α/(αp−k)

,(3.1)

where S is Sobolev’s constant.

Proof. We follow Lemma 4 in [4]. Let (vn)n ⊂ D1,p(RN ) be a (PS)c se-
quence of Fλ for all c ∈ R that is, using Definition 1, Fλ(vn) = c + o(1),
F ′

λ(vn)ψ = o(1)‖ψ‖ as n → ∞, for every ψ ∈ D1,p(RN ). Now take ψ =
G−1(vn)g(G−1(vn)) as a test function, since ψ ∈ D1,p(RN ) thanks to Re-
mark 1, and using |D[G−1(vn)g(G−1(vn))]| ≤ α|Dvn| by (2.8), we have

o(1)‖ψ‖ = F ′
λ(vn)(ψ) ≤ α‖Dvn‖p

p

− λ

∫
RN

V |G−1(vn)|kdx − β

∫
RN

K|G−1(vn)|αp∗
dx

(3.2)

Now we disjoint the proof in two cases.
Case α < k ≤ αp: using (3.2), thanks to Lemma 1-(c), (e), (2.13) and

Hölder’s inequalities with exponents r and r′ we get

c + o(1) + o(1)‖Dvn‖p ≥ Fλ(vn) − 1
αp∗ F ′

λ(vn)(G−1(vn)g(G−1(vn)))

≥
(

1
p

− 1
p∗

)
‖Dvn‖p

p − λ

(
1
k

− 1
αp∗

)
‖V ‖r‖G−1(vn)‖k

αp∗

≥
(

1
p

− 1
p∗

)
‖Dvn‖p

p − λ

(
1
k

− 1
αp∗

)
(2/S)k/αp‖V ‖r‖Dvn‖k/α

p .

(3.3)

Thus, since k < αp < αp∗, we conclude that ‖Dvn‖p should be bounded.
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Case αp < k < αp∗: arguing as in (3.3), with 1/αp∗ replaced by 1/k,
since K(x) ≥ 0 in R

N , we obtain

c + o(1) + o(1)‖Dvn‖p ≥ Fλ(vn) − 1
k

F ′
λ(vn)(G−1(vn)g(G−1(vn)))

≥
(

1
p

− α

k

)
‖Dvn‖p

p − β

(
1

αp∗ − 1
k

)∫
RN

K|G−1(vn)|αp∗
dx

≥
(

1
p

− α

k

)
‖Dvn‖p

p.

The conclusion follows immediately since k > αp. For the proof of inequality
(3.1), as in Lemma 4 in [4], it is enough to observe that if c < 0, then (3.3)
gives

‖Dvn‖(αp−k)/α
p <

λp(αp∗ − k)
αk(p∗ − p)

‖V ‖r(2/S)k/αp,

from which (3.1) follows immediately. �
In the lemma below we prove the validity of (PS)c condition of Fλ, that

is the point in which the lack of compactness becomes manifest.

Lemma 8. Suppose (1.2), (1.3), α < k < αp, c < 0 and define c1, c2 as follows

c1 =
1
N

(
S

2

)p∗/(p∗−p)

, c2 =
[
2p(αp∗ − k)
Sα(p∗ − p)

]k/(αp−k) 1
kαp/(αp−k)

. (3.4)

Then
(I) For any λ > 0, there exists β∗

PS > 0 defined as follows

β∗
PS =

(
c1

c2

)(p∗−p)/p

· 1
(λ‖V ‖r)α(p∗−p)/(αp−k)

· 1
‖K‖∞

, (3.5)

such that for every β ∈ (0, β∗
PS), then Fλ satisfies (PS)c condition.

(II) For any β > 0, there exists λ∗
PS > 0 defined as follows

λ∗
PS =

(
c1

c2

)(αp−k)/αp

· 1
(β‖K‖∞)(αp−k)/α(p∗−p)

· 1
‖V ‖r

, (3.6)

such that for every λ ∈ (0, λ∗
PS), then Fλ satisfies (PS)c condition.

Proof. Let (vn)n be a (PS)c sequence, by Lemma 7, then (vn)n is bounded
in D1,p(RN ) and by Banach-Alaoglu’s Theorem, there exists v ∈ D1,p(RN )
such that, up to subsequences, we get vn ⇀ v in D1,p(RN ). On the other
hand, By Lemma 2, follows that |G−1(vn)|α ⇀ |G−1(v)|α in D1,p(RN ), so
that (|G−1(vn)|α)n is bounded in D1,p(RN ). In addition, Theorem 4 gives
(2.12). Applying in Proposition 1, there exist μ, ν, ν∞, μ∞ bounded nonnega-
tive measures on R

N such that

lim sup
n→∞

∫
RN

|G−1(vn)|αp∗
dx =

∫
RN

dν + ν∞, (3.7)

and

lim sup
n→∞

∫
RN

∣∣D(|G−1(vn)|α)
∣∣pdx =

∫
RN

dμ + μ∞,
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where

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|G−1(vn)|αp∗
dx,

μ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

∣∣D(|G−1(vn)|α)
∣∣pdx.

Moreover, there exists at most countable set J , a family (xj)j∈J of distinct
points in R

N and two families (νj)j∈J , (μj)j∈J ∈]0,∞[ so that

ν = |G−1(v)|αp∗
+

∑
j∈J

νjδxj
, νj ≥ 0, μ ≥ ∣∣D(|G−1(vn)|α)

∣∣p

+
∑
j∈J

μjδxj
, μj ≥ 0,

satisfying

Sν
p/p∗

j ≤ μj , Sνp/p∗
∞ ≤ μ∞. (3.8)

Following an idea in [6], where now we use (2.9) and that V ∈ Lr(RN )
with r given in (1.2), it holds

2βK(xj)νj ≥ μj . (3.9)

Inequality (3.9) establishes that concentration of the measure μ cannot occur
at points in which K(xj) ≤ 0 being the right hand side positive. Consequently,
K(xj) > 0 for all j ∈ J . We claim that J = ∅. Indeed, combining (3.8)1 and
(3.9), we arrive to

νj ≥
(

S

2βK(xj)

)p∗/(p∗−p)

≥
(

S

2β‖K‖∞

)p∗/(p∗−p)

, j ∈ J. (3.10)

To reach the claim, we show that (3.10) cannot occur for λ or β belonging to a
suitable interval. As in [4], assumption (3.10) forces that |J | < ∞. Now, being
(vn)n a (PS)c sequence, choose again G−1(vn)g(G−1(vn))ψε as a test function
in (2.23), where ψε(x) = ψ ((x − xj)/ε) for 0 < ε < 1 and ψ ∈ C∞

c (RN ) such
that 0 ≤ ψ ≤ 1 in R

N , ψ = 0 for |x| > 1, ψ = 1 for |x| ≤ 1/2. Then, using
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(2.8) and 0 ≤ ψε ≤ 1, we have, for n → ∞,

c + o(1)‖Dvn‖p = Fλ(vn) − 1
αp∗ F ′

λ(vn)(G−1(vn)g(G−1(vn)))ψε

=
1
p
‖Dvn‖p

p − λ

k

∫
RN

V |G−1(vn)|kdx

− 1
αp∗

∫
RN

|Dvn|p−1
∣∣D(G−1(vn)g(G−1(vn)))

∣∣ψεdx

− 1
αp∗

∫
RN

G−1(vn)g(G−1(vn))|Dvn|p−2Dvn · Dψεdx

+
λ

αp∗

∫
RN

V |G−1(vn)|kψεdx

≥ 1
N

∫
RN

|Dvn|pψεdx

− λ

k

∫
RN

V |G−1(vn)|kdx

− 1
αp∗

∫
Bε(xj)\Bε/2(xj)

G−1(vn)g(G−1(vn))|Dvn|p−1|Dψε|dx.

In particular, since |Dψε| ≤ C/ε in the entire R
N , by Lemma 1-(e), Lemma 7

and using Hölder’s inequality twice with exponents p, p′ and N/(N − p), N/p
respectively, we obtain

∣∣∣∣
∫

Bε(xj)\Bε/2(xj)

G−1(vn)g(G−1(vn))|Dvn|p−1|Dψε|dx

∣∣∣∣
≤ α

∫
Bε(xj)\Bε/2(xj)

|vn||Dvn|p−1|Dψε|dx

≤ α

(∫
RN

|Dvn|p
)(p−1)/p

·
(∫

Bε(xj)\Bε/2(xj)

|vn|p|Dψε|pdx

)1/p

≤ C

(∫
Bε(xj)\Bε/2(xj)

|vn|p∗
dx

)1/p∗(∫
Bε(xj)\Bε/2(xj)

|Dψε|Ndx

)1/N

≤ C

(∫
Bε(xj)\Bε/2(xj)

|vn|p∗
dx

)1/p∗

→ 0,

as ε → 0, since vn ∈ Lp∗
(RN ). In turn, applying Hölder’s inequality with

exponents r, r′ and (2.13) we arrive to

c + o(1)‖Dvn‖p ≥ 1

N

∫
RN

|Dvn|pψεdx − λ

k

(
2

S

)k/αp

‖V ‖r‖Dvn‖k/α
p + o(1) (3.11)

as n → ∞. Now, thanks to (2.9) and (3.1), from (3.11), we get

c + o(1)‖Dvn‖p >
1

2N

∫
Bε/2(xj)

|D(|G−1(vn)|α)|pdx − (C∗)k/α

k
·
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(
2
S

)k/αp

‖V ‖rλ
αp/(αp−k) + o(1),

where C∗ is given in (3.1), so that, letting n → ∞, ε → 0 and using (3.8) and
(3.10), we arrive to

0 > c > c1

(
β‖K‖∞

)−p/(p∗−p) − c2

(‖V ‖rλ
)αp/(αp−k)

,

where we have replaced the value of C∗ and c1, c2 are defined in (3.4). To
obtain the required contradiction we need to have

c1 > c2

(
β‖K‖∞

)p/(p∗−p)(‖V ‖rλ
)αp/(αp−k)

. (3.12)

Consequently, since k < αp, if we choose any β > 0, then there exists λ∗
PS ,

defined in (3.6), such that for every λ ∈ (0, λ∗
PS ], inequality (3.12) is verified.

Similarly, for any λ > 0 fixed, there exists β∗
PS , defined in (3.5), such that for

every β ∈ (0, β∗
PS ], inequality (3.12) holds. Thus J = ∅, concluding the proof

of the claim.
On the other hand, following the idea of Chabrowski [15] and Ben-Naoum

et al. [8], also a possible concentration at infinity is refused.
Consequently, (3.7) gives

lim
n→∞

∫
RN

|G−1(vn)|αp∗
dx =

∫
RN

|G−1(v)|αp∗
dx.

Furthermore, since G−1(vn)(x) → G−1(v)(x) a.e. in R
N from (2.12), then

Brezis Lieb Lemma in [11] implies

‖G−1(vn)‖αp∗
αp∗ − ‖G−1(vn) − G−1(v)‖αp∗

αp∗ = ‖G−1(v)‖αp∗
αp∗ + o(1). (3.13)

in other words, limn→∞ ‖G−1(vn) − G−1(v)‖αp∗ = 0. Using that by weak
continuity of the functional Fλ(vn) → Fλ(v) = c, that is

∫
RN

|Dvn|pdx −
∫
RN

|Dv|pdx + o(1)

=
λp

k

∫
RN

V
[|G−1(vn)|k − |G−1(v)|k]

dx

+
βp

αp∗

∫
RN

K
[|G−1(vn)|αp∗ − |G−1(v)|αp∗]

dx

as n → ∞. Thus, by (3.13), the right hand side tends to 0, so that ‖Dvn‖p →
‖Dv‖p as n → ∞. Consequently, since D1,p(RN ) is uniformly convex and by
Dvn ⇀ Du in R

N , by Proposition 3.32 in [10], we immediately get

lim
n→∞

∫
RN

|D(vn − v)|pdx = 0,

that is the strong convergence in Lp(RN ) of the sequence (Dvn)n. �
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4. The truncated functional F∞

In this section, we introduce F∞, the truncated functional of Fλ, which has
the very useful property to be bounded from below, differently from Fλ.

Taking into account Theorem 4, in particular (2.14), Hölder’s inequality
and by using (2.5), for all v ∈ D1,p(RN ) we have

Fλ(v) ≥ 1
p
‖v‖p − λcV ‖v‖k/α − βcK‖v‖p∗

.

where cV = (2/S)k/αp‖V ‖r/k and cK = (2/S)p∗/p‖K‖∞/αp∗ are positive
constants.

For simplicity, just to describe some qualitative properties of Fλ, we define
the auxiliary function h(t) = tp/p−λcV tk/α −βcKtp

∗
in R

+
0 . Indeed, even if h

is smaller than Fλ, it will appear in the proof of Theorem 1 that the behaviour
of Fλ will be roughly the same of h near 0. Following the same argument of
Sect. 4 in [6], we write

h(t) = tk/αĥ(t), ĥ(t) := −λcV +
1
p
t(αp−k)/α − βcKt(αp∗−k)/α,

with ĥ(0) < 0, ĥ(t) → −∞ as t → ∞ and there is a unique point TM > 0 such
that

ĥ′(TM ) = 0, TM =
[

αp − k

βcKp(αp∗ − k)

]1/(p∗−p)

, ĥ′(t) > 0 for 0 < t < TM .

Hence, the maximum value of the function ĥ is given by

ĥ(TM ) =
α(p∗ − p)
αp − k

(
βcK

)−(αp−k)/α(p∗−p)

(
αp − k

p(αp∗ − k)

)(αp∗−k)/α(p∗−p)

− λcV . (4.1)

In turn, since ĥ and h have the same zeros and the same sign in R
+, if ĥ(TM ) ≥

0, then there exists T0 ∈ (0, TM ) such that ĥ(T0) = h(T0) = 0 so that ĥ(t) < 0
in (0, T0) and consequently h(t) < 0 in (0, T0), cfr. Figure 1a and Figure 1b.

While, if ĥ(TM ) < 0 then ĥ(t), h(t) < 0 in R
+, so that h does not have

zeros in all of R+. In addition, in this latter case h is nonincreasing, indeed

h′(t) = tk/αĥ(t)
[

k

α

1
t

+
ĥ′(t)

ĥ(t)

]
= tk/αĥ(t)

(
log Z(t)

)′
, Z(t) := tk/α|ĥ(t)|,

so that if h′(t) ≥ 0, then it turns out that Z is non increasing, being ĥ(t) < 0
in R

+. Thus, 0 < Z(t) ≤ Z(0) = 0 in R
+, a contradiction. So, if ĥ(TM ) < 0,

then h′(t) < 0 in R
+.

In conclusion, there is always a right neighborhood of 0, say (0, P0), with
P0 ∈ (0,∞) opportune, in which h is negative.
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(a) h if ĥ(TM ) > 0 (b) h if ĥ(TM ) = 0 (c) h if ĥ(TM ) < 0

Figure 1. h(t)

Now, consider a cutoff function τ ∈ C∞(R+
0 ), nonincreasing and such

that

τ(t) = 1, if 0 ≤ t ≤ P0 and τ(t) = 0 if t ≥ P1,

for some real positive number P1 > P0 and P0 given above. For instance, in the
case in which ĥ(TM ) > 0, we can choose P0 = T0 and P1 = T1, respectively the
first and the second zero of h, whose existence is guaranteed by the behavior
of h, cfr. Figure 1a. Differently, if ĥ(TM ) = 0, then h(TM ) = h′(TM ) = 0, and
we can choose P0 = TM , while P1 any point in (TM ,∞), cfr. Figure 1b.

Finally, if ĥ(TM ) < 0 we can choose P0 and P1 in R
+ without any re-

striction, cfr. Figure 1c. We point out that, by (4.1), this latter case occurs
roughly either if λ > 0 arbitrary and β large or if β > 0 arbitrary and λ large.
Precisely, define λ∗

T and β∗
T as follows

λ∗
T = k(p∗ − p)

(
p∗(αp − k)
β‖K‖∞

)(αp−k)/α(p∗−p)

(
Sα

2p(αp∗ − k)

)(αp∗−k)/α(p∗−p)

· 1
‖V ‖r

(4.2)

β∗
T = p∗(αp − k)

(
k(p∗ − p)
λ‖V ‖r

)α(p∗−p)/(αp−k)

(
Sα

2p(αp∗ − k)

)(αp∗−k)/(αp−k)

· 1
‖K‖∞

. (4.3)

Consequently, ĥ(TM ) < 0 holds either for all λ > 0 and β > β∗
T or for all β > 0

and λ > λ∗
T . This property will appear crucial in the proof of Theorem 1.

By virtue of the cut-off function τ it is possible to define the truncated
functional

F∞(v) =
1
p
‖Dv‖p

p − λ

k

∫
RN

V |G−1(v)|kdx − β
τ (‖v‖D1,p)

αp∗

∫
RN

K|G−1(v)|αp∗
dx.

As above, we associate the real function h(t) = 1
p tp − λcV tk/α − βcKtp

∗
τ(t),

t ∈ R
+
0 , whose behaviour, can be represented for instance by cfr. Figure 2a
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(a) h̄ if ĥ(TM ) > 0 (b) h̄ if ĥ(TM ) = 0 (c) h̄ if ĥ(TM ) < 0

Figure 2. h̄(t)

if P0 = T0, P1 = T1 and by Figures 2b, 2c for the corresponding cases to
Figures 1b, 1c.

In particular, we have F∞(v) ≥ h (‖v‖D1,p) for all v ∈ D1,p(RN ) and
Fλ(v) = F∞(v) if 0 ≤ ‖v‖D1,p ≤ P0. Moreover, by the regularity both of the
cut-off τ and of Fλ, we get F∞ ∈ C1(D1,p(RN ),R) satisfying (PS)c for λ < λ∗

or β < β∗, as stated below, with

λ∗ = min{λ∗
PS , λ∗

T } =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ∗
PS if

(
αp − k

p

)p

>

(
αp∗ − k

αp∗

)p∗

λ∗
T if

(
αp − k

p

)p

<

(
αp∗ − k

αp∗

)p∗

and

β∗ = min{β∗
PS , β∗

T } =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β∗
PS if

(
αp − k

p

)p

>

(
αp∗ − k

αp∗

)p∗

β∗
T if

(
αp − k

p

)p

<

(
αp∗ − k

αp∗

)p∗

with λ∗
PS , β∗

PS given in (3.6), (3.5), while λ∗
T , β∗

T defined in (4.2), (4.3). Choos-
ing either λ or β small is equivalent to fall in the cases described in Figures 1a-
2a and 1b-2b.

Lemma 9. Let F∞ be the truncated functional of Fλ.

(a) For all λ > 0 and β ∈ (0, β∗), then F∞ satisfies the (PS)c with c < 0.
(b) For all β > 0 and λ ∈ (0, λ∗), then F∞ satisfies the (PS)c with c < 0.

Proof. Assume either λ > 0 and β ∈ (0, β∗) or β > 0 and λ ∈ (0, λ∗), then it
holds

(h) If F∞(v) < 0, then ‖v‖D1,p < P0 and Fλ(u) = F∞(u) for all u in a small
enough neighbourhood of v.

Indeed, choosing λ, β as above, it immediately follows that ĥ(TM ) ≥ 0, so
that the existence of P0, with h(P0) = 0, is guaranteed, cfr. Figures 1a, 1b.
Consequently, we can apply the proof of Lemma 9 in [4], provided that the
change of variables is taken into account. �
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5. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Before stating the symmetric
Mountain Pass Theorem, we need the notion of the genus.

Definition 2. Let Σ = {A ⊂ Y \ {0} | A closed and symmetric u ∈ A ⇒ −u ∈ A},
with Y a real Banach space. Let A ∈ Σ, the genus γ (A) of A is defined as the
smallest integer N such that there exists Φ ∈ C

(
Y,RN\ {0})

such that Φ is
odd and Φ (x) �= 0 for all x ∈ A. We set γ (∅) = 0 and γ (A) = ∞ if there are
no integers with the above property.

For an even functional on a Banach space, the symmetric Mountain Pass
Theorem due to Ambrosetti–Rabinowitz [3], Rabinowitz [34], as follows.

Theorem 6. Let (Y, ‖ · ‖Y ) be an infinite dimensional Banach space and E ∈
C1(Y,R) satisfying the following assumptions.
(C1) E is even, bounded from below, E(0) = 0 and E satisfies the Palais–Smale

condition.
(C2) For each j ∈ N, there exists an Aj ∈ Σj such that supu∈Aj

E(u) < 0.

Define cj = infA∈Σj
supu∈A E(u), Σj =

{
A ⊂ Y \

{
0
}

: A is closed in Y,

−A = A, γ(A) ≥ j
}
.

Then each cj is a critical value of E with cj ≤ cj+1 < 0 for j ∈ N

and (cj)j converges to zero. Moreover, if cj = cj+1 = · · · = cj+i = c, then
γ(Kc) ≥ i + 1, where Kc is defined by Kc = {u ∈ Y : E′(u) = 0, E(u) = c}.

Thus, for an even functional on an infinite dimensional Banach space, the
symmetric Mountain Pass Theorem gives a sequence of critical values which
converges to zero. Under the same assumptions on the functional, Kajikiya in
[21] establishes the following critical point theorem which provides a sequence
of critical points converging to zero.

Theorem 7. (Theorem 1, [21]) Let (Y, ‖·‖Y ) be an infinite dimensional Banach
space and E ∈ C1(Y,R) satisfying (C1) and (C2), then one of the following
holds.

• There exists a sequence (uk)k such that E′(uk) = 0, E(uk) < 0 and
lim

k→∞
‖uk‖Y = 0.

• There exist two sequences (uk)k and (vk)k such that:
(i) E′(uk) = 0, E(uk) = 0, uk �= 0, lim

k→∞
‖uk‖Y = 0

(ii) E′(vk) = 0, E(vk) < 0, lim
k→∞

E(vk) = 0 and lim
k→∞

‖vk‖Y = c, with

c �= 0.

Proof of Theorem 1. In order to get our multiplicity result, we need to prove
conditions (C1) and (C2) of Theorem 6, as well as Theorem 7, for the functional
F∞. In particular, F∞ is even, bounded from below and satisfies the (PS)c

condition for all c < 0, see Sect. 4, thus (C1) is proved. In order to prove (C2)
consider Kc = Kc,F∞ =

{
u ∈ D1,p(RN ) : F∞(u) = c, F ′

∞(u) = 0
}

defined in
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Theorem 6 and take m ∈ N
+. For 1 ≤ j ≤ m let cj and Σj as in Theorem 6.

Our claim consists in proving that

cj < 0 for all j ≥ 1. (5.1)

To reach (5.1) it is enough to prove that for all j ∈ N, there exists an εj =
ε(j) > 0 s.t.

γ(F−εj∞ ) ≥ j, F a
∞ =

{
v ∈ D1,p(RN ) : F∞(v) ≤ a

}
with a ∈ R. (5.2)

Let ΩV ⊂ R
N , |ΩV | > 0, be a bounded open set where V > 0 and extend func-

tions in D1,p
0 (ΩV ) by 0 outside ΩV , where D1,p

0 (ΩV ) is the closure of C∞
0 (ΩV )

in the norm ‖v‖D1,p
0 (ΩV ). Take Wj a j-dimensional subspace of D1,p

0 (ΩV ), thus
all the norms in Wj are equivalent. For every v ∈ Wj\{0}, we write v = rjw
with w ∈ Wj and ‖w‖D1,p

0 (ΩV ) = 1. In what follows we specify the choice of
rj . Note that there exists dj > 0 such that

dj ≤
∫

ΩV

V |w|kdx (5.3)

In particular, V |w|k ∈ L1(ΩV ) being ΩV bounded, V ∈ C(RN ) and k < p < p∗.
By Lemma 1-(a), for ε > 0 there exists σ = σ(ε) sufficiently small such

that

|G−1(t)| ≥ 1
21/k

|t| if |t| ≤ σ. (5.4)

Thus, since α < k < p, by (5.3) and (5.4), we get
∫
ΩV

V |G−1(v)|kdx =

∫
ΩV

V

(
1

2
|v|k + |G−1(v)|k − 1

2
|v|k

)
dx

≥ 1

2

∫
ΩV

V |v|kdx +

∫
{|v|≥σ}∩ΩV

V

(
|G−1(v)|k − 1

2
|v|k

)
dx

≥ 1

2
djr

k
j − 1

2

∫
{|v|≥σ}∩ΩV

V |v|k−p∗+p∗
dx

≥ 1

2
djr

k
j − 1

2
‖V ‖L∞(ΩV )σ

k−p∗‖v‖p∗
p∗ =

1

2
djr

k
j − crp∗

j , c > 0.

Consequently, by Lemma 1-(g), the following holds

Fλ(v) =
1
p

∫
ΩV

|Dv|pdx − λ

k

∫
ΩV

V |G−1(v)|kdx − β

αp∗

∫
ΩV

K|G−1(v)|αp∗
dx

≤ 1
p
rp
j − λ

k

(
1
2
djr

k
j − crp∗

j

)
+

β2(p−1)p∗

αp∗ ‖K‖∞
∫

ΩV

|v|p∗
dx

≤ rk
j

[
1
p
rp−k
j − λ

2k
dj + Crp∗−k

j

]
,

where C > 0. Consequently, for every v ∈ Wj , v �= 0, we can choose rj ∈
(0, P0) sufficiently small such that ‖v‖ = rj and, since α < k < p, we
obtain F∞(v) = Fλ(v) ≤ −εj < 0, by virtue of Lemma 9. Now, letting
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Srj
=

{
v ∈ D1,p(RN ) : ‖v‖D1,p

0 (ΩV ) = rj

}
, then Srj

∩ Wj ⊂ F
−εj∞ . By Def-

inition 2, γ(F−εj∞ ) ≥ γ(Srj
∩ Wj) = γ(Sj−1) = j, which proves claim (5.2).

Thus, from F
−εj∞ ∈ Σj , we obtain cj ≤ sup

u∈F
−εj∞

F∞(v) ≤ −εj < 0.

In particular, applying Theorem 7, we get a sequence of solutions with
negative energy of problem (1.1) such that, in both cases, either ‖un‖ → 0 or
‖un‖ → c �= 0 and Eλ(un) → 0 as n → ∞. In addition, in the latter case, there
is also another sequence of nontrivial solutions (ūn)n such that Eλ(ūn) = 0
and ‖ūn‖ → 0 as n → ∞. This concludes the proof. �

Remark 3. The case p < k < αp is not covered in Theorem 1 because of some
considerable difficulties. Indeed, to prove (5.1) we need that F∞ has to be
negative near 0. Unfortunately, if p < k it holds the opposite condition. Indeed,
for any v = rjw ∈ Wj with ‖w‖D1,p

0 (ΩV ) = 1 and rj positive suitable, using
Lemma 1-(c), (g) and Hölder’s inequality with exponents p∗/k and p∗/(p∗−k),
we have

Fλ(v) ≥ 1

p
rp
j − λ

k

∫
ΩV

V |v|kdx − β2(p−1)p∗

αp∗

∫
ΩV

K|v|p∗
dx

≥ 1

p
rp
j − λ

k
S−k/p‖V ‖L∞(ΩV )|ΩV |(p∗−k)/p∗

rk
j − β2(p−1)p∗

αp∗ S−p∗/p

‖K‖L∞(ΩV )r
p∗
j ,

since V,K ∈ C(RN ) and ΩV is bounded, see the proof of Theorem 1. Conse-
quently, if rj is sufficiently small, say rj < P0, and k > p, then, by definition,
F∞(v) = Fλ(v) > 0.

On the other hand, as it will be clear from the proof of Theorem 2 below,
assuming K ≥ 0 in R

N , then one can obtain Fλ(v) < 0 for rj sufficiently large,
since p, k/α < p∗. This choice of rj fits with the behaviour of the functions h, h̄
given in Figure 1c and 2c, see Sect. 4 for details, namely when h is nonincreas-
ing. However, this latter case cannot occur since (PS)c property for Fλ follows
from Lemma 8 by requiring either λ fixed and β small or viceversa, in turn
ĥ(TM ) ≥ 0 by (4.1), that are situations described in Figures 1a-2a and 1b-2b.

6. Proof of Theorem 2

This section is devoted to the proof of the result under a symmetric setting.
In particular, Theorem 2, whose statement is given in the Introduction, gives
infinitely many solutions for problem (1) with no assumptions on the param-
eters λ and β. Indeed, thanks to the symmetric environment considered, by
the corollary below, the (PS)c condition for the energy functional Fλ holds in
a very general setting.

Corollary 1. Let α < k < αp∗. If (1.5) holds, then the functional Fλ satisfies
(PS)c condition in D1,p

T (RN ) for every c ∈ R.

For the proof of the result above we refer to Corollary 1 in [5].
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Remark 4. Unfortunately, we cannot improve Theorem 1 in a symmetric set-
ting in view of the new property given by Corollary 1, since Lemma 9 seems
difficult to be extended to any λ, β > 0. Indeed, in the proof of Lemma 9 we
deduce the validity of (PS)c condition for the truncated energy functional E∞
from property (h). This latter property is easily obtained for the cases 2a, 2b,
valid roughly for either λ or β small, but, for the case in Figure 2c it fails since,
if F∞(v) < 0, it could be possible that ‖v‖D1,p > P0, yielding F∞(v) �= Fλ(v).

Now we are ready to prove Theorem 2, by using the Fountain Theorem.
Proof of Theorem 2. The proof consists in applying Theorem 5 with G = Z/2
and M = D1,p

T (RN). Note that, by Remark 2, assumption (A1) is verified. The
energy functional Fλ, from Corollary 1, satisfies the (PS)c condition for every
c ∈ R, so that also (A4) of Theorem 5 holds. Since 0 �≡ K ≥ 0 in R

N and
K ∈ C(RN ), there exists an open bounded subset ΩK of RN with K > 0 in
ΩK . By the T -symmetry of K, then also ΩK is T -symmetric, in turn we can
define D1,p

T (ΩK). Now, extending functions in D1,p
T (ΩK) by 0 outside ΩK , we

can consider D1,p
T (ΩK) ⊂ D1,p

T (RN ). Assume (Ym)m be an increasing sequence
of subspaces of D1,p

T (ΩK) with dim(Ym) = m. In particular, if v ∈ Ym, v �= 0,
then we can write v = ρmω with ω ∈ Ym such that ‖ω‖ = 1, so that ρm = ‖v‖.
Moreover, there exists a constant εm > 0 such that∫

RN

K|ω|p∗
dx =

∫
ΩK

K|ω|p∗
dx ≥ εm. (6.1)

By Lemma 1-b), for all ε > 0 there exists M > 0 large enough, such that
|G−1(t)|α ≥ p−1/p∗ |t| for |t| ≥ M choosing ε = 21/p − p−1/p∗

, so that, thanks
to Lemma 1-(g), (6.1) and since K,V ≥ 0, the following holds

Fλ(v) =
1

p
ρp

m − λ

k

∫
ΩK

V |G−1(v)|kdx − β

αp∗

∫
ΩK

K

[ |v|p∗

p
+ |G−1(v)|αp∗ − |v|p∗

p

]
dx

=
1

p
ρp

m − λ

k

∫
ΩK

V |G−1(v)|kdx − β

αpp∗

∫
ΩK

K|v|p∗
dx

− β

αp∗

∫
{|v|≥M}∩ΩK

K

[
|G−1(v)|αp∗ − |v|p∗

p

]
dx

− β

αp∗

∫
{|v|<M}∩ΩK

K|G−1(v)|αp∗
dx +

β

αpp∗

∫
{|v|<M}∩ΩK

K|v|p∗
dx

≤ 1

p
ρp

m − β

αpp∗

∫
ΩK

K|v|p∗
dx +

β

αpp∗

∫
{|v|<M}∩ΩK

K|v|p∗
dx

≤ 1

p
ρp

m − β

αpp∗

∫
ΩK

K|v|p∗
dx +

β

αpp∗ ‖K‖∞Mp∗−k/α

∫
ΩK

|v|k/αdx

≤ 1

p
ρp

m − βεm

αpp∗ ρp∗
m + Cρk/α

m < 0

for sufficiently large ρm, since k < αp∗, where C = β
αpp∗ ‖K‖∞Mp∗−k/α

|ΩK |1−k/αp∗
S−k/αp. This proves (A2) of Theorem 5. Condition (A3) follows

exactly as in [5], taking into account the properties of v. Then applying The-
orem 5, the energy functional Fλ has unbounded sequence of critical values in
D1,p

T (RN), so that Theorem 2 is proved. �
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7. Further results in the singular case: 0 < α < 1

In this section we extend Theorem 1.1 in [6] where the so called singular version
of Eq. (1.1), i.e. 0 < α < 1, is considered, and for which the critical exponent
is p∗,

− Δpu − α

2
Δp(|u|α)|u|α−2u = λV (x)|u|k−2u + βK(x)|u|p∗−2u in R

N , (7.1)

where 1 < k < p∗. This case is known as “singular” since the function g(t) in
(2.2) is singular for t = 0, differently from the case α > 1 where g is coercive
at ∞.

The natural energy functional associated with Eq. (7.1) is

Êλ(v) =
1
p

∫
RN

g(u)p|Du|pdx − λ

k

∫
RN

V |u|kdx − β

p∗

∫
RN

K|u|p∗
d,

while, the functional we have to deal with, after the same change of variable
described in Sect. 2, is the following

F̂λ(v) =
1
p

∫
RN

|Dv|pdx − λ

k

∫
RN

V |G−1(v)|kdx − β

p∗

∫
RN

K|G−1(v)|p∗
dx.

To manage the singular case, we have to take care of the different growth
of G−1 at 0 and at ∞ respect to the case α > 1. Multiplicity results for
solutions of (7.1) with negative energy in the singular case are obtained using
the same technique as for Theorem 1 but under the more restrictive condition
2 < k < αp. Here, we enlarge the interval for k, p up to consider 1 < k < αp
and we add properties on the behaviour of solutions, as follows.

Theorem 8. Let 1 < p < N and 1 < k < αp. Assume that K satisfies (1.3)
and 0 ≤ V ∈ L�(RN ) ∩ C(RN ) with 	 = p∗/(p∗ − k). Then,

(i) For any λ > 0, there exists β̂ > 0 such that for any 0 < β < β̂, then
Eq. (7.1) has infinitely many nontrivial solutions (un)n ⊂ D1,p(RN ) such
that Êλ(un) < 0 and ‖un‖ → 0 as n → ∞.

(ii) For any β > 0, there exists λ̂ > 0 such that for any 0 < λ < λ̂, then
Eq. (7.1) has infinitely many nontrivial solutions (un)n ⊂ D1,p(RN ) such
that Êλ(un) < 0 and ‖un‖ → 0 as n → ∞.

The smaller interval 2 < k < αp in [6] follows from the application of
Lemma 3.3 in [6], which is crucial in order to obtain the validity of (PS)c

condition for F̂λ. We point out that the restriction 2 < k < αp is not required
in proving that concentration around points and at infinity cannot occur. On
the other hand, Lemma 3.3 in [6] cannot be applied in the case α > 1 since
the critical exponent becomes αp∗ > p∗ so different arguments are required.
Surprisingly, these last tools, applied to the singular case, allow us to cover
the entire interval 1 < k < αp. In particular, it holds the following.

Lemma 10. Suppose 0 ≤ V ∈ L�(RN ) ∩ C(RN ) with 	 = p∗/(p∗ − k) and K
satisfy (1.3). Let 1 < k < p and c < 0. Then
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(I) For any λ > 0, there exists β̂ > 0 defined as follows

β̂ =
α

‖K‖∞

(
kp∗

λN‖V ‖r(p∗ − k)

)p2/(N−p)(p−k)

S(p∗−k)/(p−k)

such that for every β ∈ (0, β̂], then F̂λ satisfies (PS)c condition.
(II) For any β > 0, there exists λ̂ > 0 defined as follows

λ̂ = S(p∗−k)/(p∗−p) kp∗

N(p∗ − k)
· 1
‖V ‖r

·
(

α

β‖K‖∞

)(p−k)/(p∗−p)

,

such that for every λ ∈ (0, λ̂], then F̂λ satisfies (PS)c condition.

Proof. Let (vn)n be a (PS)c sequences for the functional F̂λ(v). We now repeat
word by word up the proof of Lemma 3.4 in [6] until formula (3.28) obtained
thanks to the application of the Brezis Lieb Lemma, precisely

lim
n→∞ ‖G−1(vn) − G−1(v)‖p∗ = 0. (7.2)

At this point, using that F̂λ(vn) → F̂λ(v) = c by weak continuity of the
functional, we have∫

RN

|Dvn|pdx −
∫
RN

|Dv|pdx + o(1) =
λp

k

∫
RN

V
[|G−1(vn)|k − |G−1(v)|k]

dx

+
βp

αp∗

∫
RN

K
[|G−1(vn)|p∗ − |G−1(v)|p∗]

dx

as n → ∞. Thus, by (7.2) and Hölder’s inequality, the right hand side of the
above equation tends to 0 as n → ∞, so that ‖Dvn‖p → ‖Dv‖p as n → ∞.
Consequently, since D1,p(RN ) is uniformly convex and by Dvn ⇀ Dv in R

N ,
by Proposition 3.32 in [10], we get the strong convergence in Lp(RN ) of the
sequence (Dvn)n. �

Proof of Theorem 8. It is enough to follow the proof Theorem 1 in [6] where,
in place of Lemma 3.4, we use Lemma 10 above. In addition, to obtain the
asymptotic behaviours we refer to Theorems 6, 7 given in Sect. 5. �

As described in Remark 4 it seems difficult to extend the above theo-
rem for every λ, β > 0 in the symmetric setting of Theorem 2, while for the
corresponding multiplicity result for solutions with positive energy we refer to
Theorem 1.3 in [6].
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