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Abstract. We construct and study the intrinsic sub-Laplacian, defined
outside the set of characteristic points, for a smooth hypersurface em-
bedded in a contact sub-Riemannian manifold. We prove that, away from
characteristic points, the intrinsic sub-Laplacian arises as the limit of
Laplace–Beltrami operators built by means of Riemannian approxima-
tions to the sub-Riemannian structure using the Reeb vector field. We
carefully analyse three families of model cases for this setting obtained
by considering canonical hypersurfaces embedded in model spaces for
contact sub-Riemannian manifolds. In these model cases, we show that
the intrinsic sub-Laplacian is stochastically complete and in particular,
that the stochastic process induced by the intrinsic sub-Laplacian almost
surely does not hit characteristic points.
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1. Introduction

Recent years have seen increased activity in the study of hypersurfaces em-
bedded in contact sub-Riemannian manifolds, with notable subtleties as well
as distinctions compared to the Riemannian setting arising in the presence of
characteristic points. These are points on the hypersurface where the tangent
space coincides with the contact hyperplane.

First works in this direction have concerned the study of geometry of
hypersurfaces in Heisenberg groups, and more generally in Carnot groups, in
particular related to a notion of horizontal mean curvature and isoperimetric
inequalities. For a review of these topics, see [9,12] and references therein.

For surfaces embedded in the Heisenberg group the horizontal mean cur-
vature, which may blow up at characteristic points, is locally integrable with
respect to the sub-Riemannian perimeter measure, as shown by Danielli, Garo-
falo and Nhieu. Their conjecture given in [13] that around isolated characteris-
tic points the horizontal mean curvature is also locally integrable with respect
to the Riemannian induced measure is verified by Rossi [23] for characteristic
points which are isolated and mildly degenerate. Rizzi and Rossi [24] give an
example for a domain in the Heisenberg group where a higher-order coefficient
in the asymptotic expansion for the heat content of smooth non-characteristic
domains blows up at an isolated characteristic point.

Diniz and Veloso [14], assuming absence of characteristic points, and
Balogh, Tyson and Vecchi [7,8], allowing for characteristic points, introduce
a Gauss–Bonnet theorem for surfaces in the Heisenberg group, which is ex-
tended by Veloso [26] to surfaces without characteristic points in general three-
dimensional contact sub-Riemannian manifolds. A Gauss–Bonnet theorem re-
covering topological information concentrated around the characteristic points
is obtained by Grong, Hidalgo Calderón and Vega-Molino [16] for surfaces in
three-dimensional contact sub-Riemannian manifolds.

The work [2] analyses the metric structure, particularly near character-
istic points, induced on surfaces embedded in three-dimensional contact sub-
Riemannian manifolds, and [3] introduces and studies properties of a canonical
stochastic process on surfaces in three-dimensional contact sub-Riemannian
manifolds which exhibits different behaviours near an elliptic characteristic
point and a hyperbolic characteristic point.

The present article aims to initiate further studies of hypersurfaces em-
bedded in higher-dimensional contact sub-Riemannian manifolds. We intrin-
sically construct a sub-Laplacian on hypersurfaces in contact sub-Riemannian
manifolds, which for surfaces in three-dimensional contact sub-Riemannian
manifolds gives rise to the generator of the stochastic process obtained in [3]
by means of Riemannian approximations, and we use our analysis to propose
model cases for this setting. Some notions such as horizontal connectivity,
horizontal connection and horizontal mean curvature on hypersurfaces in sub-
Riemannian manifolds are studied by Tan and Yang [25].

We close this literature overview by highlighting that whilst the powerful
convex surface theory in three-dimensional contact topology, that is, without
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additionally equipping the contact structure with a fibre inner product, has
been introduced by Giroux [17], the theory of convex hypersurfaces in higher-
dimensional contact topology is still a relatively new endeavour, see Honda
and Huang [20].

Let M be a smooth manifold of dimension 2n + 1 for n ≥ 1, let D
be a contact structure on M , and let g be a smooth fibre inner product on
D. Since this gives rise to a contact manifold (M,D) and as (D, g) defines a
sub-Riemannian structure on the manifold M , the triple (M,D, g) is called
a contact sub-Riemannian manifold. Throughout, we shall assume that there
exists a global one-form ω on M such that D = ker ω and ω ∧ (dω)n �= 0. Such
a global one-form ω is called contact form for the contact structure D. The
existence of a contact form ω ensures that the manifold M is orientable as it
can then be oriented by the volume form

Ω = ω ∧ (dω)n
. (1)

We shall further assume that the one-form ω is normalised such that

(dω)n|D = n! volg, (2)

with volg denoting the volume form on the distribution D induced by the fibre
inner product g. The Reeb vector field X0 on M associated with the contact
form ω is uniquely characterised by requiring ω(X0) = 1 and dω(X0, ·) = 0.
Subject to the normalisation condition (2), a fixed sub-Riemannian manifold
(M,D, g) admits a unique Reeb vector field X0 as there exists a unique one-
form ω on M which both defines the contact structure D and satisfies (2).

Let S be an orientable hypersurface embedded in the contact manifold
(M,D). We denote by C(S) the set of characteristic points of S, namely the
set of points x ∈ S such that TxS = Dx. Observe that C(S) is a closed subset
of S, which implies that S \C(S) is a well-defined hypersurface in M . Outside
the set of characteristic points, that is, on S \C(S), we define the distribution
F = D ∩ TS which by construction has corank one in the tangent bundle
of the hypersurface S \ C(S). Let ζ be the one-form on S \ C(S) obtained
by restricting the one-form ω defined on M to S \ C(S), and note that the
distribution F is given as F = ker ζ.

A crucial observation to be made at this stage is that the case n = 1 needs
to be treated differently from the case n > 1. Indeed, for n = 1, the manifold M
has dimension three, the hypersurface S is a two-dimensional surface and the
distribution F is a line field, which is always integrable. On the other hand, if
n > 1, then F is a rank 2n − 1 distribution on a 2n-dimensional hypersurface.
As discussed in more details in Sect. 2, when n > 1, the distribution F is
always bracket generating as a result of F defining a quasi-contact structure
on S \ C(S). In particular, the kernel ker dζ|F has dimension one.

In this article, we construct an intrinsic sub-Laplacian on S \ C(S) ob-
tained by taking the divergence of the horizontal gradient on S \ C(S) with
respect to a volume form for S \ C(S) which is the restriction of the volume
form Ω on M . We show that the intrinsic sub-Laplacian arises as the limit of
Laplace–Beltrami operators built by means of Riemannian approximations to
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the sub-Riemannian structure using the Reeb vector field. We further deter-
mine the radial part of the constructed intrinsic sub-Laplacian explicitly for
canonical hypersurfaces in the sphere S2n+1 and the anti-de Sitter space H2n+1

both equipped with standard sub-Riemannian contact structures as well as in
the higher-dimensional Heisenberg group H

n, which together constitute model
spaces for our setting.

The construction of the intrinsic sub-Laplacian presented below carries
over for any alternative normalisation condition fixing the one-form ω in place
of (2). The associated sub-Laplacian then still arises as the limit of Laplace–
Beltrami operators, except that the Reeb vector field used to define the Rie-
mannian approximations is uniquely characterised in terms of the new nor-
malisation. As can be observed later, any choice of normalisation which only
changes the one-form ω by a constant gives rise to the same sub-Laplacian as
obtained subject to the condition (2).

1.1. Intrinsic sub-Laplacian on hypersurface

We start with the construction of a sub-Laplacian on the embedded hyper-
surface S \ C(S) which is intrinsic to the contact sub-Riemannian manifold
(M,D, g) and the normalisation condition (2). We then state the result that
it emerges as the limit of Laplace–Beltrami operators. This particularly im-
plies that the operator Δ0 constructed in [3] on surfaces in three-dimensional
contact sub-Riemannian manifolds coincides with the intrinsic sub-Laplacian
defined in this article for the case n = 1.

The sub-Riemannian normal in (M,D, g) to the hypersurface S away
from the set C(S) of characteristic points is formed from directions contained
in the contact structure D and orthogonal to the distribution F . Once the
orientations of S and M are fixed, we have a unique unit and normal vector
field N compatible with the orientations, which is defined as follows.

Definition 1. The sub-Riemannian normal vector field N along the hypersur-
face S \ C(S) in the contact sub-Riemannian manifold (M,D, g) is the unit-
length vector field in the distribution D, that is,

ω(N) = 0 and g(N,N) = 1, (3)

such that, for any vector field Y on S \ C(S) and in the distribution F ,

g(N,Y ) = 0, (4)

and, for any positively oriented local orthonormal frame (Z1, . . . , Z2n) for the
hypersurface S \C(S), the frame (N,Z1, . . . , Z2n) for M is positively oriented.

Using the volume form Ω on M given by (1) and the sub-Riemannian
normal vector field N along S \ C(S), we define a volume form μ on S \ C(S)
with respect to which we later take the divergence when constructing the
intrinsic sub-Laplacian on S \ C(S).

Definition 2. Let μ be the volume form defined on S \ C(S) as

μ = ιNΩ,
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that is, the contraction of the form Ω with the vector field N restricted to
S \ C(S).

From the compatibility of N with the orientations of M and S, it follows
that μ = ιNΩ is positive on S \ C(S), meaning it has positive values when
evaluated on positively oriented orthonormal frames.

The final ingredient needed before we can introduce the intrinsic sub-
Laplacian of a smooth function f : S \ C(S) → R is the horizontal gradient
∇Sf .

Definition 3. Let f : S \ C(S) → R be a smooth function. The horizontal
gradient ∇Sf of the function f is the unique vector field in the distribution
F , that is,

ζ(∇Sf) = 0,

such that, for any vector field Y in F ,

g(∇Sf, Y ) = df(Y ).

In particular, with a local orthonormal frame (Y1, . . . , Y2n−1) for F , we
can write

∇Sf =
2n−1
∑

i=1

(Yif)Yi, (5)

which follows by noting that, for all j ∈ {1, . . . , 2n − 1},

g(∇Sf, Yj) =
2n−1
∑

i=1

(Yif)g(Yi, Yj) = Yjf = df(Yj).

The intrinsic sub-Laplacian Δ on S\C(S) is constructed as the divergence
with respect to the volume form μ of the horizontal gradient ∇S .

Definition 4. The intrinsic sub-Laplacian Δ for a hypersurface S\C(S) embed-
ded in a contact sub-Riemannian manifold (M,D, g) is given by, for a smooth
function f : S\C(S) → R,

Δf = divμ (∇Sf) .

The sub-Laplacian Δ defined on S \ C(S) arises as the limit of Laplace–
Beltrami operators on S in the following way. For ε > 0, we consider the
Riemannian metric gε on M obtained as

gε = g ⊕ 1
ε2

(ω ⊗ ω) . (6)

We use i for the inclusion map i : S → M and observe that i∗gε is the Riemann-
ian metric on S induced by the Riemannian metric gε on M . The Laplace–
Beltrami operator Δε of the 2n-dimensional Riemannian manifold (S, i∗gε)
then converges to the intrinsic sub-Laplacian Δ uniformly on compacts as
ε → 0.

Theorem 5. For any smooth function f ∈ C∞
c (S \ C(S)) compactly supported

in S\C(S), the functions Δεf converge uniformly on S\C(S) to Δf as ε → 0.
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Since the operator Δ0 introduced in [3] on surfaces in three-dimensional
contact sub-Riemannian manifolds is constructed as the limit of Laplace–
Beltrami operators and subject to the normalisation condition dω|D = −volg,
it follows from Theorem 5 that, for n = 1, the intrinsic sub-Laplacian Δ from
Definition 4 coincides with the operator Δ0. Whilst the additional sign in the
normalisation condition compared to (2) flips the direction of the Reeb vector
field X0, it does not affect the operator Δ because the divergence remains
unchanged for measures differing by a non-zero constant factor.

1.2. Hypersurfaces in contact sub-Riemannian model spaces

In [3], the operator Δ0 is explicitly determined for natural choices of surfaces
in the three classes of model spaces for three-dimensional sub-Riemannian
structures. We extend these considerations to higher dimensions by studying
the intrinsic sub-Laplacian Δ from Definition 4 for canonical hypersurfaces
in the three classes of model spaces for contact sub-Riemannian manifolds.
Moreover, we analyse the radial part of the stochastic process with generator
1
2Δ which is sufficient to deduce that in all these cases the sub-Laplacian Δ
defined away from characteristic points is stochastically complete. At the same
time, the geometry induced on each hypersurface minus characteristic points
is not geodesically complete.

The model spaces for contact sub-Riemannian manifolds arise by equip-
ping the Euclidean space R2n+1, the sphere S2n+1 and the hyperboloid H2n+1,
respectively, with a standard contact structure D and the following fibre inner
product g on D. For R

2n+1, we choose g such that (R2n+1,D, g) gives rise to
the higher-dimensional Heisenberg group H

n. For the sphere S2n+1 embedded
in R

2n+2, we choose k ∈ R positive and set, with 〈·, ·〉 denoting the Euclidean
inner product on R

2n+2,

g(·, ·) =
1
k2

〈·, ·〉|D .

This gives rise to a one-parameter family of model spaces with underlying
manifold S2n+1 and parameter k > 0. Similarly, for the hyperboloid H2n+1

embedded in the Lorentzian space R
2n,2 with signature (2n, 2), we use the flat

Lorentzian metric η on R
2n,2 and k ∈ R positive to define

g(·, ·) =
1
k2

η(·, ·)|D ,

which yields a one-parameter family of model spaces with underlying manifold
H2n+1 and parameter k > 0. The model spaces for contact sub-Riemannian
manifolds are described in more details in Sect. 4.

The hypersurface which we consider embedded in R
2n+1, in S2n+1 and

in H2n+1, respectively, serves as a model hypersurface in the corresponding
model space and can be identified with R

2n, S2n and ˜H2n, respectively, with a
unique characteristic point in the first and third case, and with two antipodal
characteristic points in the second case. We refer to Sects. 4.1, 4.2 and 4.3
for more details on the choice of the model hypersurface. In our analysis of
the model cases, we first obtain expressions for the volume form Ω on M and
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for the sub-Riemannian normal vector field N to derive an expression for the
volume form μ on the hypersurface away from characteristic points.

Proposition 6. Let (M,D, g) be a (2n+1)-dimensional contact sub-Riemannian
model space. Set I = (0, π

k ) if M = S2n+1 associated with parameter k > 0
and set I = (0,∞) otherwise. Define hk : I → R by, for r ∈ I,

hk(r) =

⎧

⎪

⎨

⎪

⎩

r if M = R
2n+1

k−1 sin(kr) if M = S2n+1

k−1 sinh(kr) if M = H2n+1

.

For the model hypersurface S in the model space (M,D, g) and in suitable
coordinates (r, ϕ1, . . . , ϕ2n−1) for S \ C(S) with r ∈ I, ϕ1, . . . , ϕ2n−2 ∈ [0, π]
and ϕ2n−1 ∈ [0, 2π), the volume form μ defined on S \ C(S) is given by

μ =
n!
2

(hk(r))2n

(

2n−2
∏

i=1

(sin(ϕi))
2n−i−1

)

dr ∧ dϕ1 ∧ · · · ∧ dϕ2n−1.

We observe that, except for a leading constant, the volume forms in-
duced on the Euclidean space R

2n, the sphere S2n and the hyperboloid ˜H2n

differ from the standard Riemannian volume forms by a factor of hk. This
additional factor is the main reason why the radial part of the stochastic pro-
cess with generator 1

2Δ is of one order higher than in the model spaces for
Riemannian manifolds of the same topological dimension. For a discussion on
the radial process of Brownian motion on the model Riemannian manifolds,
see e.g. Grigor’yan [18, Sect. 3.10] and Hsu [21, Sect. 3.3]. The radial part of
sub-Riemannian Brownian motion in the setting of totally geodesic foliations
is studied in [4].

Theorem 7. Let (M,D, g) be a (2n + 1)-dimensional contact sub-Riemannian
model space. For the model hypersurface S in the model space (M,D, g), the
radial part of the stochastic process with generator 1

2Δ on S \ C(S) is

• the Bessel process of order 2n + 1 if M = R
2n+1,

• a Legendre process of order 2n + 1 if M = S2n+1,
• a hyperbolic Bessel process of order 2n + 1 if M = H2n+1.

Since a Bessel process of order 2n + 1 and a hyperbolic Bessel process of
order 2n + 1 for n ≥ 1 almost surely neither hits the origin nor explodes in
finite time, and as a Legendre process of order 2n + 1 for n ≥ 1 almost surely
hits neither endpoint of the interval (0, π

k ), it is an immediate consequence of
Theorem 7 that in all model cases considered the intrinsic sub-Laplacian Δ
defined on S\C(S) is stochastically complete. On the other hand, the geometry
induced on the hypersurface S \ C(S) is not geodesically complete. This can
be seen by noting that a radial ray, that is, a path along the radial direction
emanating from one of the characteristic points, parameterised by arc length
is a geodesic which cannot be extended indefinitely towards the characteristic
point.
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Organisation of the article

In Sect. 2, we first provide an overview of contact sub-Riemannian manifolds
and of quasi-contact sub-Riemannian manifolds before showing that, for n ≥ 2,
a contact structure on a manifold M of dimension 2n+1 induces a quasi-contact
structure on a hypersurface embedded in M away from the set of characteristic
points. We illustrate this phenomenon by considering a canonical hypersurface
in the Heisenberg group H

2. In Sect. 3, we describe the Laplace–Beltrami op-
erators Δε obtained by means of Riemannian approximations in a convenient
way which allows us to subsequently prove Theorem 5. We proceed by explic-
itly determining the intrinsic sub-Laplacian for the considered hypersurface in
H

2. In Sect. 4, we analyse model cases for our setting, which results in proofs
of Proposition 6 and Theorem 7.

2. Hypersurfaces in contact sub-Riemannian manifolds

We start by providing a concise overview of contact sub-Riemannian man-
ifolds and of quasi-contact sub-Riemannian manifolds. For more exhaustive
discussions, see e.g. [1], Boscain, Neel and Rizzi [6, Sect. 10], and Charlot
[10]. For an in-depth account on contact geometry, one may consult Blair [5]
and Geiges [15]. We then link contact sub-Riemannian manifolds and quasi-
contact sub-Riemannian manifolds by showing that for a hypersurface S in a
manifold M of dimension bigger than three, a contact structure on M induces
a quasi-contact structure on the hypersurface S away from the set C(S) of
characteristic points.

A contact sub-Riemannian manifold is a triple (M,D, g) consisting of
a smooth manifold M with dimM = 2n + 1 for n ≥ 1, a contact structure
D on M and a smooth fibre inner product g defined on D. The distribution
D is called a contact structure on M if it is locally defined as the kernel
D = ker ω of a one-form ω on M which satisfies the non-degeneracy condition
ω∧(dω)n �= 0. The latter is equivalent to requiring that dω|D is non-degenerate
and implies that the contact structure D is a corank one distribution in the
tangent bundle TM . Recall we assume throughout that there exists a global
one-form ω defining the contact structure D, which also induces an orientation
on M through the volume form ω ∧ (dω)n.

We observe that for a smooth and positive function f : M → (0,∞), we
have

(fω) ∧ (d(fω))n = fn+1 ω ∧ (dω)n

as well as ker fω = ker ω. Thus, the one-forms ω and fω define the same
contact structure D on M and the associated sub-Riemannian structures are
equivalent. Due to D = ker ω, we further obtain that

d(fω)|D = f dω|D.

Hence, we can and do assume that the contact form ω satisfies the normalisa-
tion condition (2), that is,

(dω)n|D = n! volg.
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The Reeb vector field X0 on M with respect to the one-form ω normalised
according to (2) is uniquely characterised by requiring that ω(X0) = 1 and
dω(X0, ·) = 0.

A quasi-contact sub-Riemannian manifold is a triple (S,F , g) which con-
sists of a smooth even-dimensional manifold S where dim S = 2n for n ≥ 2, a
quasi-contact structure F on S and a smooth fibre inner product g defined on
F . A distribution F is called a quasi-contact structure on S if it has corank
one in the tangent bundle TS and is locally given as F = ker ζ for a one-form
ζ on S satisfying the non-degeneracy condition that dζ|F has one-dimensional
kernel. Note that since the manifold S is of even dimension, the distribution
F has odd rank and dζ|F necessarily possesses a non-trivial kernel. Therefore,
the above non-degeneracy condition can be understood as a minimal degener-
acy assumption. If there exists a global one-form ζ defining the quasi-contact
structure F , we call this one-form ζ a quasi-contact form.

The following property for quasi-contact structures is well-known but
we include its proof for completeness as it implies that the triple (S,F , g)
introduced above is indeed a sub-Riemannian manifold.

Lemma 8. A quasi-contact structure F on a manifold S is a bracket generating
distribution on S.

Observe that we define quasi-contact structures only in dimension 2n for
n ≥ 2, which is an important condition here because a rank one distribution,
that is, a line field, is always integrable.

Proof of Lemma 8. Let ζ be a one-form locally defining the distribution F
through F = ker ζ. Since the kernel ker dζ|F has dimension one and as F is of
rank at least three, we can locally choose two vector fields Y1 and Y2 in F such
that dζ(Y1, Y2) is non-zero. Applying the Leibniz rule and the Cartan identity,
we further obtain

LY1 (ζ(Y2)) = (LY1ζ) (Y2)+ζ ([Y1, Y2]) = dζ(Y1, Y2)+ιY2 d (ζ(Y1))+ζ ([Y1, Y2]) .
(7)

For the vector fields Y1 and Y2, we have ζ(Y1) = ζ(Y2) = 0 with dζ(Y1, Y2)
being non-zero. The above identity then implies that ζ ([Y1, Y2]) is non-zero
because (7) simplifies to

0 = dζ(Y1, Y2) + ζ ([Y1, Y2]) .

It follows that the Lie bracket [Y1, Y2] is not a vector field in F . As a quasi-
contact structure is a distribution of rank 2n − 1 on a manifold of dimension
2n for some n ≥ 2, this concludes the proof. �

We now take a (2n + 1)-dimensional contact sub-Riemannian manifold
(M,D, g) for n ≥ 1 with contact form ω satisfying the normalisation condi-
tion (2), and we consider an orientable hypersurface S embedded in M , where
dim S = 2n. Recall that the set C(S) of characteristic points of S is given by

C(S) = {x ∈ S : TxS = Dx} .

The distribution F defined on the hypersurface S \ C(S) as F = D ∩ TS has,
by construction, corank one in the tangent bundle of S \ C(S). As previously
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remarked, in the case n = 1 studied in [2,3] the distribution F is a line field,
which is always integrable. In contrast to this, the following result states that,
for n > 1, the rank 2n − 1 distribution F is a quasi-contact structure on the
2n-dimensional hypersurface S \ C(S). Together with Lemma 8, this shows
that the distribution F is bracket generating for n > 1.

Lemma 9. For n ≥ 2, the distribution F defined on S \ C(S) as F = D ∩ TS
is a quasi-contact structure on S \ C(S).

Proof. For any x ∈ S \ C(S), we need to show that dζx|Fx
: Fx × Fx → R,

that is,

dωx|Fx
: Fx × Fx → R

has one-dimensional kernel, which is a consequence of the following linear
algebra observation.

We recall the skew-symmetric bilinear form dωx : Dx × Dx → R is non-
degenerate by assumption. This means that if w ∈ Dx satisfies

dωx(v, w) = 0 for all v ∈ Dx

then w = 0. Moreover, since x ∈ S \ C(S), we know that Fx ⊂ Dx is a
subspace of codimension one. The non-degeneracy of dωx then implies that
the orthogonal complement F⊥

x of Fx defined with respect to the bilinear
form dωx, that is,

F⊥
x = {w ∈ Dx : dωx(v, w) = 0 for all v ∈ Fx}

has
dim F⊥

x = dim Dx − dim Fx = 1. (8)
Let ξ ∈ F⊥

x be non-zero. If ξ �∈ Fx, we would have Dx = Fx ⊕ F⊥
x and ξ

would lie in the kernel of dωx. As this contradicts the non-degeneracy of dωx,
it follows that ξ ∈ Fx. Therefore, we obtain

F⊥
x = ker dζx|Fx

,

and the desired result follows from (8). �

As a direct consequence of Lemma 9, we recover the result [25, The-
orem 1.1] concerning the horizontal connectivity of points on a hypersurface
embedded in a contact sub-Riemannian manifold of dimension 2n+1 for n > 1.

Moreover, we see that dζ|F induces a line field on S \ C(S) which can
be oriented and extended to the set C(S) of characteristic points to yield
an oriented singular line field on the hypersurface S, called the characteristic
foliation of S and defined in [20, Definition 2.0.1].

By equipping the pair (S \C(S),F) with the restriction of the fibre inner
product of the contact sub-Riemannian manifold (M,D, g) to the distribution
F , we obtain a quasi-contact sub-Riemannian manifold provided that n ≥ 2.

Remark 10. Throughout the article, we consider the distribution F as defined
on S \C(S), that is, away from the set C(S) of points x ∈ S where TxS = Dx.
One may also regard F as a generalised distribution given at every point of S
by setting Fx = TxS for x ∈ C(S).
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In this viewpoint, F is not a rank-varying distribution in the sense of
vector fields because there does not exist a family of globally defined vector
fields Y1, . . . , Ym on S such that, for all x ∈ S,

Fx = span {Y1(x), . . . , Ym(x)} .

Indeed, in such a case the map x �→ dim Fx would be lower semicontinuous,
which is not true in our situation. Instead, the dimension of Fx increases at
singular points. This is typical of a distribution defined by Pfaffian equations,
that is, the zero locus of a family of linear forms.

Examples illustrating the geometry and in particular the singular one-
dimensional foliation induced on surfaces embedded in three-dimensional con-
tact sub-Riemannian manifolds are discussed, among others, in [2,3,22]. For an
example which demonstrates the geometry induced on hypersurfaces in higher-
dimensional contact sub-Riemannian manifolds and which further highlights
that for n > 1 the distribution F defined away from characteristic points
becomes quasi-contact, we study a canonical hypersurface embedded in the
Heisenberg group H

2.

Example 11. Let (x1, y1, x2, y2, z) denote Cartesian coordinates on R
5 and con-

sider the contact form ω on R
5 defined by

ω =
1
2

(x1 dy1 − y1 dx1) +
1
2

(x2 dy2 − y2 dx2) − dz. (9)

Equipping the contact structure D = ker ω with the fibre inner product

g = dx1 ⊗ dx1 + dy1 ⊗ dy1 + dx2 ⊗ dx2 + dy2 ⊗ dy2, (10)

we obtain the contact sub-Riemannian manifold (R5,D, g), which is the Heisen-
berg group H

2. We observe that our choice of contact form ω satisfies the
normalisation condition (2) since

dω = dx1 ∧ dy1 + dx2 ∧ dy2,

which implies that

(dω)2 = dω ∧ dω = 2dx1 ∧ dy1 ∧ dx2 ∧ dy2,

and therefore, we have (dω)2
∣

∣

D = 2volg .
The hypersurface S which we study in the Heisenberg group H

2 is the
one defined by {z = 0}. It illustrates well the changes in properties of the
distribution F for n > 1 compared to n = 1 whilst still allowing for explicit
computations and constructions. From

ω

(

∂

∂x1

)

= −y1
2

, ω

(

∂

∂y1

)

=
x1

2
, ω

(

∂

∂x2

)

= −y2
2

, ω

(

∂

∂y2

)

=
x2

2
,

we see that the origin of R5 is the only characteristic point of this hypersurface
S. The distribution F defined on S\{0} as D ∩ TS is a subbundle of corank
one in the tangent bundle of S \ {0} and can be described as the kernel of the
one-form

ζ =
1
2

(x1 dy1 − y1 dx1) +
1
2

(x2 dy2 − y2 dx2) , (11)
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which is obtained by restricting the contact form ω to the tangent bundle of
S \ {0}.

To gain a better understanding of the distribution F , we find an orthonor-
mal frame for F , which we later further work with to explicitly determine the
intrinsic sub-Laplacian Δ on S \ {0}. Let U1, U2, U3, U4 be the vector fields on
S \ {0} defined by

U1 =
1

√

x2
1 + y2

1 + x2
2 + y2

2

(

x1
∂

∂x1
+ y1

∂

∂y1
+ x2

∂

∂x2
+ y2

∂

∂y2

)

,

U2 =
1

√

x2
1 + y2

1 + x2
2 + y2

2

(

y2
∂

∂x1
+ x2

∂

∂y1
− y1

∂

∂x2
− x1

∂

∂y2

)

,

U3 =
1

√

x2
1 + y2

1 + x2
2 + y2

2

(

x2
∂

∂x1
− y2

∂

∂y1
− x1

∂

∂x2
+ y1

∂

∂y2

)

,

U4 =
1

√

x2
1 + y2

1 + x2
2 + y2

2

(

y1
∂

∂x1
− x1

∂

∂y1
+ y2

∂

∂x2
− x2

∂

∂y2

)

.

Using (10) and (11), we verify that (U1, U2, U3) is an orthonormal frame for
F , and we further note that (U1, U2, U3, U4) is a frame for the tangent bundle
of S \ {0}. Due to

dζ = dx1 ∧ dy1 + dx2 ∧ dy2,

we obtain that

dζ (U1, U2) = dζ (U1, U3) = 0 and dζ (U2, U3) = −1.

It follows that

ker dζ|F = span {U1} = span
{

x1
∂

∂x1
+ y1

∂

∂y1
+ x2

∂

∂x2
+ y2

∂

∂y2

}

, (12)

and thus, consistent with Lemma 9, the rank three distribution F is a quasi-
contact structure on the four-dimensional hypersurface S \ {0}. According to
Lemma 8, this implies that the distribution F is bracket generating on S \{0},
which can be seen directly by noting that

[U2, U3] =
2

x2
1 + y2

1 + x2
2 + y2

2

(

−y1
∂

∂x1
+ x1

∂

∂y1
− y2

∂

∂x2
+ x2

∂

∂y2

)

= − 2U4
√

x2
1 + y2

1 + x2
2 + y2

2

.

We continue our analysis for this case by determining the intrinsic sub-Laplacian
Δ in the forthcoming Example 16. Moreover, in Sect. 4.1, we discuss the radial
part of the stochastic process with generator 1

2Δ, which as a result of (12)
is exactly the stochastic process induced on the characteristic foliation of the
hypersurface S.
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3. Intrinsic sub-Laplacian as limit of Laplace–Beltrami
operators

After discussing the construction of the Laplace–Beltrami operators Δε on
the hypersurface S using Riemannian approximations of the contact sub-
Riemannian manifold (M,D, g), we proceed with proving Theorem 5.

The Riemannian approximation for ε > 0 to the contact sub-Riemannian
manifold (M,D, g) with respect to the Reeb vector field X0 equips the smooth
manifold M with the Riemannian metric gε given by

gε = g ⊕ 1
ε2

(ω ⊗ ω) .

In particular, if (X1, . . . , X2n) is a positively oriented local orthonormal frame
for the distribution D with respect to g, then (X1, . . . ,
X2n, εX0) is a positively oriented orthonormal frame for the tangent bundle
TM with respect to the Riemannian metric gε. Using this observation, we can
establish the property for the volume form Ωε = volgε on M stated below.

Lemma 12. For ε > 0, the volume forms Ω and Ωε on the manifold M are
related by

εn! Ωε = Ω.

Proof. Let (X1, . . . , X2n) be a positively oriented local orthonormal frame for
the distribution D. Then ω(Xi) = 0 for all i ∈ {1, . . . , 2n} as well as ω(X0) = 1
and dω(X0, ·) = 0 together with (1) and the normalisation condition (2) yield

Ω(X1, . . . , X2n, εX0) = n!ω(εX0)volg(X1, . . . , X2n) = εn! .

On the other hand, we have, by construction,

Ωε(X1, . . . , X2n, εX0) = 1,

which implies the claimed result. �
Similarly to Definition 1 for the sub-Riemannian normal vector field N

to S \ C(S) in the contact sub-Riemannian manifold (M,D, g), we define the
Riemannian normal vector field Nε for ε > 0 to the hypersurface S embedded
in the Riemannian manifold (M, gε) of dimension 2n + 1.

Definition 13. The Riemannian normal vector field Nε along the hypersurface
S embedded in the Riemannian manifold (M, gε) is the unit-length vector field
along S, that is,

gε(Nε, Nε) = 1,

such that, for any vector field Z on S,

gε(Nε, Z) = 0,

and, for any positively oriented local orthonormal frame (Z1, . . . , Z2n) for the
hypersurface S\C(S), the frame (Nε, Z1, . . . , Z2n) for M is positively oriented.

The next result states that as ε → 0 the Riemannian normal vector fields
Nε converge uniformly on compact subsets of S \C(S) to the sub-Riemannian
normal vector field N .
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Lemma 14. Uniformly on compact subsets of S \ C(S), we have

Nε → N as ε → 0.

Proof. We use that the hypersurface S is locally given as the zero set of some
smooth function u ∈ C∞(M) with du �= 0 on S, and we fix a local orthonormal
frame (X1, . . . , X2n) for the contact structure D with respect to the fibre inner
product g.

Since x ∈ S is a characteristic point of the hypersurface S if the tangent
space TxS coincides with Dx, that is, if

(Xiu) (x) = 0 for all i ∈ {1, 2, . . . , 2n},

we have

C(S) =

{

x ∈ S :
2n
∑

i=1

((Xiu)(x))2 = 0

}

. (13)

In terms of the local orthonormal frame (X1, . . . , X2n) for the distribution
D and with σ = 0 or σ = 1 depending on the orientation of S, the sub-
Riemannian normal vector field N along S \ C(S) can be written as

N = (−1)σ

∑2n
i=1(Xiu)Xi

√

∑2n
i=1(Xiu)2

, (14)

due to the following reasoning. The expression (14) is well-defined away from
the set of characteristic points as a result of (13). Moreover, the conditions
in Definition 1 are satisfied because of (X1, . . . , X2n) being an orthonormal
frame for D and since, for any vector field Y in the distribution F = D ∩ TS
on S \ C(S),

g(N,Y ) = (−1)σ

∑2n
i=1(Xiu)g(Xi, Y )
√

∑2n
i=1(Xiu)2

= (−1)σ Y u
√

∑2n
i=1(Xiu)2

= 0.

Similarly, we verify that the Riemannian normal vector field Nε for ε > 0 to
the hypersurface S can be expressed as

Nε = (−1)σ

∑2n
i=1(Xiu)Xi + ε2(X0u)X0
√

∑2n
i=1(Xiu)2 + ε2(X0u)2

. (15)

The claimed result then follows from (14), (15) and u ∈ C∞(M). �

The Riemannian volume form με induced on the hypersurface S embed-
ded in the Riemannian manifold (M, gε) is given on S by

με = ιNεΩε, (16)

and the Riemannian gradient ∇ε
Sf of a smooth function f : S → R is uniquely

characterised by requiring that, for any vector field Z on S,

gε(∇ε
Sf, Z) = df(Z).
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The Laplace–Beltrami operator Δε on the Riemannian manifold (S, i∗gε),
where i : S → M is the inclusion map, is then defined by, for a smooth function
f : S → R,

Δεf = divμε (∇ε
Sf) .

The following result is crucial in proving the convergence of the Laplace–
Beltrami operators Δε as ε → 0 to the intrinsic sub-Laplacian Δ.

Lemma 15. Uniformly on compact subsets of S \ C(S), we have

εn!με → μ as ε → 0.

Proof. This is a direct consequence of Definition 2, the identity (16), Lemma 12
and Lemma 14. �

We are finally in a position to prove Theorem 5. Note that as a result of
Lemma 8 and Lemma 9, the intrinsic sub-Laplacian Δ is indeed a hypoelliptic
operator on S \ C(S) as long as n ≥ 2.

Proof of Theorem 5. Choose a local orthonormal frame (Y1, . . . , Y2n−1) for F .
From the observation (5), it follows that the intrinsic sub-Laplacian Δ on
S \ C(S) can be written as

Δ =
2n−1
∑

i=1

(

Y 2
i + (divμYi) Yi

)

. (17)

We now aim to extend the local orthonormal frame (Y1, . . . , Y2n−1) for F to
a local orthonormal frame for the tangent bundle of S \ C(S) with respect to
the Riemannian metric gε. To this end, we again use that the hypersurface
S is locally given as the zero set of some smooth function u ∈ C∞(M) with
du �= 0 on S and we consider the vector field Z on S \ C(S) given by

Z = X0 − X0u

Nu
N.

This vector field Z can be seen as the projection of the Reeb vector field X0 on
M onto the hypersurface S \ C(S). Using (3) and (6), we compute, for ε > 0,

gε(Z,Z) =
1
ε2

+
(X0u)2

(Nu)2
> 0, (18)

which implies that we can define a vector field Zε on S \ C(S) by setting

Zε =
Z

√

gε(Z,Z)
.

Since both the Reeb vector field X0 and the sub-Riemannian normal vector
field N are orthogonal with respect to the Riemannian metric gε to any vector
field in F , it follows that (Y1, . . . , Y2n−1, Z

ε) is a local orthonormal frame for
the tangent bundle of S \ C(S) with respect to the Riemannian metric gε.
Similarly as above, we can then express the Laplace–Beltrami operator Δε on
S \ C(S) as

Δε =
2n−1
∑

i=1

(

Y 2
i + (divμεYi)Yi

)

+ (Zε)2 + (divμεZε) Zε. (19)
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From (18), we deduce

1
√

gε(Z,Z)
≤ ε,

which shows that for any smooth function f ∈ C∞
c (S\C(S)) compactly sup-

ported in S \ C(S), we have, as ε → 0 and uniformly on S \ C(S),

(Zε)2 f → 0 and Zεf → 0. (20)

Therefore, it remains to analyse the divergence terms in the expression (19)
for the Laplace–Beltrami operator Δε. Working in a local coordinate chart
(x1, . . . , x2n) for the hypersurface S \ C(S), we let ρ and ρε denote the local
coefficient of μ and με, respectively, and we use Lemma 15 as well as the
uniform convergence of the derivatives on compacts, which can be established
similarly, to argue that, for all i ∈ {1, . . . , 2n} and uniformly on compact
subsets of S \ C(S),

lim
ε→0

divμεYi = lim
ε→0

2n
∑

j=1

1
εn! ρε

∂

∂xj
(εn! ρεYi,j)

=
2n
∑

j=1

1
ρ

∂

∂xj
(ρYi,j) = divμYi.

(21)

Similarly, we conclude that, as ε → 0 and uniformly on compact subsets of
S \ C(S),

divμε Z → divμ Z.

Hence, as a consequence of

divμε Zε =
divμε Z
√

gε(Z,Z)
+ gε

(

∇ε
S

(

1
√

gε(Z,Z)

)

, Z

)

and since, by definition of the gradient ∇ε
S ,

gε

(

∇ε
S

(

1
√

gε(Z,Z)

)

, Z

)

= Z

(

1
√

gε(Z,Z)

)

,

we obtain that, as ε → 0 and uniformly on compact subsets of S \ C(S),

divμε Zε → 0.

Together with (20) and (21), the claimed result then follows from (17) and
(19). �

As a first illustration of the general strategy laid out for constructing
the intrinsic sub-Laplacian Δ, we return to our analysis for the hypersurface
given by {z = 0} in the Heisenberg group H

2 started in Example 11 and we
demonstrate how to derive an explicit expression for the intrinsic sub-Laplacian
Δ on {z = 0} away from the unique characteristic point at the origin.



NoDEA Intrinsic sub-Laplacian for hypersurface Page 17 of 31 3

Example 16. As discussed in Example 11, the quasi-contact structure F on
S \{0} admits the orthonormal frame (U1, U2, U3) with respect to g. It follows
that the horizontal gradient ∇Sf of a smooth function f : S\{0} → R can be
expressed as

∇Sf = (U1f)U1 + (U2f)U2 + (U3f)U3.

It remains to determine the volume form μ on the hypersurface S \ {0} and to
compute the divergence of the vector fields U1, U2 and U3 with respect to μ.

The volume form Ω on R
5 defined by (1) in terms of the contact form ω

in (9) is given by

Ω = ω ∧ (dω)2 = −2 dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dz,

and the sub-Riemannian normal vector field N along the hypersurface S \ {0}
in H

2 characterised by (3) as well as (4) and compatible with the orientations
on M and S can be written as

N = U4 −
√

x2
1 + y2

1 + x2
2 + y2

2

2
∂

∂z
.

It follows that defining the volume form μ on S\{0} as ιNΩ yields

μ =
√

x2
1 + y2

1 + x2
2 + y2

2 dx1 ∧ dy1 ∧ dx2 ∧ dy2.

This implies that

divμ U1 =
4

√

x2
1 + y2

1 + x2
2 + y2

2

and divμ U2 = divμ U3 = 0.

Thus, the intrinsic sub-Laplacian Δ on the hypersurface S \{0} in the Heisen-
berg group H

2 can be expressed as

Δ = U2
1 + U2

2 + U2
3 +

4U1
√

x2
1 + y2

1 + x2
2 + y2

2

. (22)

Due to the quasi-contact structure F on S \ {0} being bracket generat-
ing, the intrinsic sub-Laplacian Δ is hypoelliptic, see Hörmander [19]. This
illustrates a crucial change in property of the intrinsic sub-Laplacian for n > 1
compared to the case n = 1. As seen in [3], the operator Δ on surfaces in
three-dimensional contact sub-Riemannian manifolds is never hypoelliptic as
a result of F being a line field in that setting.

We close by highlighting that, as discussed in more details in the forth-
coming analysis in Sect. 4, thanks to the drift term in (22), the intrinsic sub-
Laplacian Δ on S \ {0} is stochastically complete, and in particular, the sto-
chastic process with generator 1

2Δ on S \ {0} almost surely does not hit the
unique characteristic point at the origin.

4. Canonical hypersurfaces in contact sub-Riemannian model
spaces

We consider canonical hypersurfaces in contact sub-Riemannian model spaces
which extend the family of model cases given in [3, Theorem 1.5]. Choosing
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suitable coordinates, we establish Proposition 6 by explicitly computing the
volume form μ induced on the hypersurface away from characteristic points.
This in turn allows us to prove Theorem 7, which characterises the radial part
of the stochastic process with generator 1

2Δ and which implies that in these
model cases analysed the intrinsic sub-Laplacian Δ defined on the hypersurface
away from characteristic points is stochastically complete, whilst the induced
geometry is not geodesically complete.

We first study R
2n suitably embedded in the Heisenberg group H

n for
n ≥ 1, which pushes the analysis from Example 11 and Example 16 to all
possible dimensions, with the exception we do not provide a full expression
for the intrinsic sub-Laplacian. Instead, we restrict our attention to its radial
contribution.

We then proceed by considering the sphere S2n embedded in S2n+1

equipped with the standard sub-Riemannian contact structure subject to an
additional parameter k > 0, and the hyperboloid ˜H2n embedded in H2n+1

equipped with the standard sub-Riemannian contact structure subject to an
additional parameter k > 0.

4.1. R
2n embedded in R

2n+1

Let (x1, . . . , x2n, x2n+1) be Cartesian coordinates on R
2n+1. Use the contact

form ω on R
2n+1 given by

ω =
1
2

n
∑

m=1

(x2m−1dx2m − x2mdx2m−1) − dx2n+1 (23)

to define the contact structure D = ker ω on R
2n+1. As fibre inner product g

on D, we take

g =
2n
∑

i=1

dxi ⊗ dxi. (24)

This is the unique fibre inner product on the distribution D such that the
vector fields, for m ∈ {1, . . . , n},

X2m−1 =
∂

∂x2m−1
− x2m

2
∂

∂x2n+1
, X2m =

∂

∂x2m
+

x2m−1

2
∂

∂x2n+1

form an orthonormal frame (X1, . . . , X2n) for D.
We obtain the contact sub-Riemannian manifold (R2n+1,D, g), which is

referred to as Heisenberg group H
n. The contact form ω given in (23) satisfies

the imposed normalisation condition (2) because

dω =
n
∑

m=1

dx2m−1 ∧ dx2m

gives rise to

(dω)n = n!
2n
∧

i=1

dxi,
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whilst (24) implies that

volg =
2n
∧

i=1

dxi.

We further deduce that the volume form Ω on R
2n+1 defined by (1) can be

expressed as

Ω = −n!
2n+1
∧

i=1

dxi. (25)

The hypersurface S in H
n which we study closer is the one given by

{x2n+1 = 0}. Since, for m ∈ {1, . . . , n}, we have

ω

(

∂

∂x2m−1

)

= −x2m

2
and ω

(

∂

∂x2m

)

=
x2m−1

2
,

the set C(S) of characteristic points contains only the origin of R2n+1. More-
over, the quasi-contact form ζ induced on S \ C(S) by the contact form ω on
R

2n+1 is

ζ =
1
2

n
∑

m=1

(x2m−1dx2m − x2mdx2m−1) .

Due to the kernel ker dζ|F with F = ker ζ being guaranteed to be one-
dimensional by Lemma 9, we can verify directly that

ker dζ|F = span

{

2n
∑

i=1

xi
∂

∂xi

}

. (26)

The lemma stated below provides an expression for the sub-Riemannian
normal vector field N along S \C(S) in H

n, which we prove in detail as a sim-
ilar approach can be used to confirm the expressions for the sub-Riemannian
normal vector fields in Sects. 4.2 and 4.3.

Lemma 17. The sub-Riemannian normal vector field N along S \ C(S) in H
n

is given by

N =
1

√

∑2n
i=1 x2

i

(

n
∑

m=1

(

x2m
∂

∂x2m−1
− x2m−1

∂

∂x2m

)

− 1
2

2n
∑

i=1

x2
i

∂

∂x2n+1

)

.

Proof. Since the vector field N is well-defined along the hypersurface S away
from the unique characteristic point at the origin of R

2n+1, it remains to
check that N satisfies the defining properties (3) as well as (4) and that it is
compatible with the orientations.

From the expressions for the contact form ω in (23) and the fibre inner
product g in (24), it follows that

ω(N) = 0 and g(N,N) = 1.
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Furthermore, using that any vector field Y in the distribution F satisfies
ζ(Y ) = 0, we deduce

g(N,Y ) = − 2ζ(Y )
√

∑2n
i=1 x2

i

= 0.

Finally, we obtain from (25) that ιNΩ is positive on S \ C(S), which shows
that N is indeed the sub-Riemannian normal vector field along S \C(S) in H

n

according to Definition 1. �

Using the expression (25) for the volume form Ω on R
2n+1 as well as

Lemma 17, we compute that the volume form μ defined on S \ C(S) as ιNΩ
is given by

μ =
n!
2

√

√

√

√

2n
∑

i=1

x2
i

2n
∧

i=1

dxi . (27)

At this point, it is convenient to change from Cartesian coordinates (x1, . . . , x2n)
for S\C(S) to spherical coordinates (r, ϕ1, . . . , ϕ2n−1) with r > 0, ϕ1, . . . , ϕ2n−2

∈ [0, π] and ϕ2n−1 ∈ [0, 2π), where

xi = r cos(ϕi)
i−1
∏

l=1

sin(ϕl) for i ∈ {1, . . . , 2n − 1},

x2n = r

2n−1
∏

l=1

sin(ϕl).

By means of induction over n ≥ 1, it can be shown explicitly that the deter-
minant of the associated Jacobian matrix J2n equals

det J2n = r2n−1
2n−2
∏

i=1

(sin(ϕi))
2n−i−1

.

Since we further know that

2n
∧

i=1

dxi = det J2n dr ∧
2n−1
∧

i=1

dϕi and

√

√

√

√

2n
∑

i=1

x2
i = r,

the expression for the volume form μ on S \C(S) in H
n stated in Proposition 6

follows from (27).
We close by analysing the radial part of the stochastic process with gen-

erator 1
2Δ on S \ C(S). Using (24), (26) and

∂

∂r
=

2n
∑

i=1

∂xi

∂r

∂

∂xi
=

1
√

∑2n
i=1 x2

i

2n
∑

i=1

xi
∂

∂xi
,

we obtain that

ker dζ|F = span
{

∂

∂r

}

as well as g

(

∂

∂r
,

∂

∂r

)

= 1.
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Thus, the vector field R = ∂
∂r defined on S\C(S) is a unit-length representative

of the characteristic foliation induced on the hypersurface S by the contact
structure D. We compute

divμ (R) =
2n

r
,

which implies that the radial part of the stochastic process with generator 1
2Δ

on S \C(S) is the one-dimensional diffusion process on (0,∞) with generator

1
2

∂2

∂r2
+

n

r

∂

∂r
.

This indeed gives rise to a Bessel process of order 2n+1, which proves the first
part of Theorem 7. Since a Bessel process of order 2n + 1 for all n ≥ 1 almost
surely neither hits the origin nor explodes in finite time, it follows that the
intrinsic sub-Laplacian Δ on S \C(S) is stochastically complete. On the other
hand, the geometry induced on the hypersurface S \ C(S) is not geodesically
complete because rays emanating from the characteristic point and param-
eterised by arc length are geodesics which cannot be extended indefinitely
towards the characteristic point not included in the underlying space.

Remark 18. Taking n = 1, we recover the analysis for the plane {x3 = 0} in
the Heisenberg group H

1 which arises from [3, Sect. 4.1] by considering a = 0,
with the contact forms differing by a sign as a result of the normalisation
conditions differing by a sign.

4.2. S2n embedded in S2n+1

In terms of Cartesian coordinates (x1, . . . , x2n+2) for R2n+2, we take the sphere
S2n+1 ⊂ R

2n+2 to be

S2n+1 =

{

(x1, . . . , x2n+2) ∈ R
2n+2 :

2n+2
∑

i=1

x2
i = 1

}

.

Fix k ∈ R positive and consider the contact form ω on the sphere S2n+1 given
by

ω =
1

2k2

n+1
∑

m=1

(x2m−1dx2m − x2mdx2m−1) . (28)

We further equip the contact structure D = ker ω on S2n+1 with a smooth
fibre inner product g obtained by restricting a positive constant multiple of
the Euclidean inner product 〈·, ·〉 on R

2n+2. More precisely, we set, for vector
fields X1 and X2 in D,

g(X1,X2) =
1
k2

〈X1,X2〉.
This construction gives rise to the standard sub-Riemannian contact structure
(D, g) on S2n+1 with an additional parameter k > 0 which mimics the intro-
duction of an additional scalar in [3, Sect. 5.1] and which later allows us to
recover all Legendre processes of order 2n + 1.
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It follows from the following considerations that the choice (28) of contact
form ω is in line with the normalisation condition (2). We compute

dω =
1
k2

n+1
∑

m=1

dx2m−1 ∧ dx2m

as well as

(dω)n =
n!
k2n

n+1
∑

m=1

2n+2
∧

l=1
l �=2m−1,2m

dxl,

which implies that the volume form Ω on S2n+1 defined by (1) takes the form

Ω =
n!

2k2n+2

2n+2
∑

i=1

(−1)i−1xi

2n+2
∧

l = 1
l �= i

dxl. (29)

On the other hand, the volume form on Euclidean space R
2n+2 with respect

to the inner product 1
k2 〈·, ·〉 can be expressed as

1
k2n+2

2n+2
∧

i=1

dxi.

Since (kx1, . . . , kx2n+2) is the unit normal vector at (x1, . . . , x2n+2) ∈ S2n+1

for the inner product 1
k2 〈·, ·〉, the above volume form on R

2n+2 induces the

volume form volS
2n+1

k on the sphere S2n+1 given by

volS
2n+1

k =
1

k2n+1

2n+2
∑

i=1

(−1)i−1xi

2n+2
∧

l = 1
l �= i

dxl. (30)

To restrict the volume form volS
2n+1

k to the contact structure D, we use the
vector field X̂0 defined by

X̂0 = k
n+1
∑

m=1

(

x2m−1
∂

∂x2m
− x2m

∂

∂x2m−1

)

, (31)

which is the positive constant multiple of the Reeb vector field X0 such that

1
k2

〈X̂0, X̂0〉 = 1.

To establish that the contact form ω indeed satisfies the normalisation condi-
tion (2), it remains to observe that (29), (30) and (31) imply

(dω)n|D =
1

ω(X̂0)
ιX̂0

Ω = n! ιX̂0
volS

2n+1

k = n! volg .



NoDEA Intrinsic sub-Laplacian for hypersurface Page 23 of 31 3

In the contact sub-Riemannian manifold (S2n+1,D, g) with parameter
k > 0, we study the hypersurface S given by {x2n+2 = 0}. Phrased differently,
we choose

S =

{

(x1, . . . , x2n+2) ∈ S2n+1 :
2n+1
∑

i=1

x2
i = 1

}

,

which shows that the hypersurface S can be identified with the sphere S2n.
The set C(S) of characteristic points contains exactly the two poles given by

x1 = x2 = · · · = x2n = 0 and x2n+1 = ±1,

and the contact form ω on S2n+1 induces the quasi-contact form ζ on S \C(S)
defined by

ζ =
1

2k2

n
∑

m=1

(x2m−1dx2m − x2mdx2m−1) . (32)

Using the approach demonstrated in the proof of Lemma 17, one verifies
that the sub-Riemannian normal vector field N along S \ C(S) in S2n+1 can
be expressed as

N =
k

√

∑2n
i=1 x2

i

(

n
∑

m=1

(

x2mx2n+1
∂

∂x2m−1
− x2m−1x2n+1

∂

∂x2m

)

+
2n
∑

i=1

x2
i

∂

∂x2n+2

)

.

This allows us to prove the next result.

Lemma 19. The volume form μ defined on S \ C(S) as ιNΩ is given by

μ =
n!

2k2n+1

√

√

√

√

2n
∑

i=1

x2
i

2n+1
∑

i=1

(−1)i−1xi

2n+1
∧

l=1
l �=i

dxl.

Proof. Since the hypersurface S is defined by {x2n+2 = 0} in S2n+1, the
interior product ιNΩ on S \ C(S) simplifies to

ιNΩ = ιN

⎛

⎜

⎜

⎜

⎜

⎜

⎝

n!
2k2n+2

2n+1
∑

i=1

(−1)i−1xi

2n+2
∧

l = 1
l �= i

dxl

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
n!

2k2n+2

2n+1
∑

i=1

(−1)i−1xi (ιNdx2n+2)
2n+1
∧

l = 1
l �= i

dxl.

Due to

ιNdx2n+2 = k

√

√

√

√

2n
∑

i=1

x2
i

the claimed result follows. �
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To show that Lemma 19 gives rise to the expression for the volume
form μ stated in Proposition 6, it remains to change to spherical coordinates
(r, ϕ1, . . . , ϕ2n−1) for S \ C(S) where r ∈ (0, π

k ), ϕ1, . . . , ϕ2n−2 ∈ [0, π] and
ϕ2n−1 ∈ [0, 2π) are such that

xi = sin(kr) cos(ϕi)
i−1
∏

l=1

sin(ϕl) for i ∈ {1, . . . , 2n − 1},

x2n = sin(kr)
2n−1
∏

l=1

sin(ϕl),

x2n+1 = cos(kr).

Using sin(kr) > 0 for r ∈ (0, π
k ), we obtain
√

√

√

√

2n
∑

i=1

x2
i = sin(kr).

Comparing the expressions in Cartesian coordinates and in spherical coordi-
nates for the volume form of a 2n-dimensional Euclidean sphere, we deduce
that

2n+1
∑

i=1

(−1)i−1xi

2n+1
∧

l=1
l �=i

dxl

can be written as

k (sin(kr))2n−1

(

2n−2
∏

i=1

(sin(ϕi))
2n−i−1

)

dr ∧ dϕ1 ∧ · · · ∧ dϕ2n−1.

The result claimed in Proposition 6 for (S2n+1,D, g) with parameter k > 0
then follows from Lemma 19.

In the last part, we discuss the random dynamics induced by the operator
1
2Δ on the characteristic foliation of S. We have, with F = ker ζ,

ker dζ|F = span
{

∂

∂r

}

,

which is implied by (32) and

∂

∂r
=

2n+1
∑

i=1

∂xi

∂r

∂

∂xi
=

k
√

∑2n
i=1 x2

i

(

2n
∑

i=1

xix2n+1
∂

∂xi
−

2n
∑

i=1

x2
i

∂

∂x2n+1

)

.

We further compute

g

(

∂

∂r
,

∂

∂r

)

=
1

∑2n
i=1 x2

i

⎛

⎝

2n
∑

i=1

x2
i x

2
2n+1 +

(

2n
∑

i=1

x2
i

)2
⎞

⎠ = x2
2n+1 +

2n
∑

i=1

x2
i = 1,
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showing that the representative R = ∂
∂r on S \ C(S) of the characteristic

foliation of S is a unit-length vector field. From Proposition 6, we obtain

divμ (R) =
2nk cos (kr)

sin (kr)
= 2nk cot (kr) .

This establishes the second part of Theorem 7 that the latitudinal process
between the two characteristic points on S of the stochastic process with gen-
erator 1

2Δ on S \ C(S) follows the one-dimensional diffusion process on (0, π
k )

with generator

1
2

∂2

∂r2
+ nk cot (kr)

∂

∂r
,

that is, a Legendre process of order 2n+1 and with parameter k > 0. Similarly
to the observations made in Sect. 4.1, as a Legendre process of order 2n+1 for
n ≥ 1 almost surely hits neither endpoint of the interval (0, π

k ), we deduce that
the intrinsic sub-Laplacian Δ on S \ C(S) is stochastically complete, whilst
the geometry induced on S \ C(S) is not geodesically complete.

Remark 20. For n = 1, the analysis presented above is in line with the discus-
sions in [3, Sect. 5.1] for the sphere S2 embedded in SU(2), which is isomorphic
to S3, equipped with the standard sub-Riemannian contact structure.

4.3. ˜H2n embedded in H2n+1

Our construction closely mimics the hyperboloid model for hyperbolic space.
Let (x1, . . . , x2n+2) denote Cartesian coordinates on R

2n+2 and consider the
(2n + 1)-dimensional hyperboloid H2n+1 defined as

H2n+1 =

{

(x1, . . . , x2n+2) ∈ R
2n+2 :

2n
∑

i=1

x2
i − x2

2n+1 − x2
2n+2 = −1

}

.

Fix k ∈ R positive and let η be the Lorentzian metric on R
2n,2 given by

η =
2n
∑

i=1

dxi ⊗ dxi − dx2n+1 ⊗ dx2n+1 − dx2n+2 ⊗ dx2n+2.

Using the contact form ω on the anti-de Sitter space H2n+1 defined by

ω =
1

2k2

n+1
∑

m=1

(x2m−1dx2m − x2mdx2m−1) , (33)

we get the contact structure D = ker ω on H2n+1 which we equip with the
smooth fibre inner product g obtained by setting, for vector fields X1 and X2

in D,

g(X1,X2) =
1
k2

η(X1,X2) (34)

This yields the standard sub-Riemannian contact structure (D, g) on H2n+1

subject to an additional parameter k > 0. Note that (34) indeed defines a
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smooth fibre inner product g on the contact structure D because the Reeb
vector field X0 on H2n+1 given by

X0 = 2k2

(

x2n+1
∂

∂x2n+2
− x2n+2

∂

∂x2n+1
−

n
∑

m=1

(

x2m−1
∂

∂x2m
− x2m

∂

∂x2m−1

)

)

is timelike due to

η(X0,X0) = −4k4,

which implies that the distribution D is spanned by spacelike vector fields.
As in Sect. 4.2, the volume form Ω on H2n+1 given by (1) can be expressed

as

Ω =
n!

2k2n+2

2n+2
∑

i=1

(−1)i−1xi

2n+2
∧

l=1
l �=i

dxl,

and one can show as before that the choice (33) for the contact form ω satisfies
the normalisation condition (2).

Many of the subsequent computations are similar to the computations
performed in Sect. 4.2, but because the sub-Riemannian metric in this section
is obtained by restricting a Lorentzian metric we choose to treat these two
families of model cases separately for clarity.

The hypersurface S in (H2n+1,D, g) which we study below is the upper
sheet of the hypersurface given by {x2n+2 = 0} or, phrased differently,

S =

{

(x1, . . . , x2n+2) ∈ H2n+1 :
2n
∑

i=1

x2
i − x2

2n+1 = −1, x2n+1 > 0

}

,

that is, S can be identified with the upper sheet of a 2n-dimensional two-
sheeted hyperboloid. The hypersurface S has a unique characteristic point
given by

x1 = x2 = · · · = x2n = 0 and x2n+1 = 1,

and inherits from the contact form ω on H2n+1 the quasi-contact form ζ on
S \ C(S) defined by

ζ =
1

2k2

n
∑

m=1

(x2m−1dx2m − x2mdx2m−1) . (35)

Analogous to Sect. 4.2, the sub-Riemannian normal vector field N along
the hypersurface S \ C(S) in H2n+1 can be written as

N =
k

√

∑2n
i=1 x2

i

(

n
∑

m=1

(

x2mx2n+1
∂

∂x2m−1
− x2m−1x2n+1

∂

∂x2m

)

+
2n
∑

i=1

x2
i

∂

∂x2n+2

)
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and the volume form μ defined on S \ C(S) as ιNΩ takes the form

μ =
n!

2k2n+1

√

√

√

√

2n
∑

i=1

x2
i

2n+1
∑

i=1

(−1)i−1xi

2n+1
∧

l = 1
l �= i

dxl. (36)

In terms of the spherical coordinates (r, ϕ1, . . . , ϕ2n−1) for S \C(S) with
r > 0, ϕ1, . . . , ϕ2n−2 ∈ [0, π] and ϕ2n−1 ∈ [0, 2π), where

xi = sinh(kr) cos(ϕi)
i−1
∏

l=1

sin(ϕl) for i ∈ {1, . . . , 2n − 1},

x2n = sinh(kr)
2n−1
∏

l=1

sin(ϕl),

x2n+1 = cosh(kr),

we have
√

√

√

√

2n
∑

i=1

x2
i = sinh(kr).

By further observing that
2n+1
∑

i=1

(−1)i−1xi

2n+1
∧

l=1
l �=i

dxl

and

k (sinh(kr))2n−1

(

2n−2
∏

i=1

(sin(ϕi))
2n−i−1

)

dr ∧ dϕ1 ∧ · · · ∧ dϕ2n−1

are expressions for the volume form on a 2n-dimensional hyperboloid in Carte-
sian coordinates and in spherical coordinates, respectively, we deduce from (36)
that the volume form μ on S\C(S) embedded in (H2n+1,D, g) with parameter
k > 0 can be written as stated in Proposition 6. This concludes the proof of
Proposition 6.

We further obtain

∂

∂r
=

2n+1
∑

i=1

∂xi

∂r

∂

∂xi
=

k
√

∑2n
i=1 x2

i

(

2n
∑

i=1

xix2n+1
∂

∂xi
+

2n
∑

i=1

x2
i

∂

∂x2n+1

)

,

which together with (35) implies that, for F = ker ζ,

ker dζ|F = span
{

∂

∂r

}

.

Due to the fibre inner product g on the contact structure D arising by re-
stricting a positive constant multiple of the Lorentzian metric η on R

2n,2, we
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have

g

(

∂

∂r
,

∂

∂r

)

=
1

∑2n
i=1 x2

i

⎛

⎝

2n
∑

i=1

x2
i x

2
2n+1 −

(

2n
∑

i=1

x2
i

)2
⎞

⎠ = x2
2n+1 −

2n
∑

i=1

x2
i = 1.

It follows that the representative R = ∂
∂r on S \ C(S) of the characteristic

foliation of S is a vector field of unit length. Using Proposition 6, we compute

divμ (R) =
2nk cosh (kr)

sinh (kr)
= 2nk coth (kr) ,

which shows that the radial part of the stochastic process with generator 1
2Δ

on S \C(S) is the one-dimensional diffusion process on (0,∞) with generator

1
2

∂2

∂r2
+ nk coth (kr)

∂

∂r
.

Since this yields a hyperbolic Bessel process of order 2n + 1 with parameter
k > 0 that completes the proof of Theorem 7. Moreover, as in Sects. 4.1 and 4.2,
we conclude that the intrinsic sub-Laplacian Δ on S \ C(S) is stochastically
complete despite the geometry induced on S \ C(S) not being geodesically
complete.

Remark 21. Since the Lie group SL(2,R) is isomorphic to the hyperboloid
given by x2

1+x2
2−x2

3−x2
4 = −1, see Wang [27, Remark 2.1], we obtain the results

from [3, Sect. 5.2] by taking n = 1 in the above analysis. Chang, Markina and
Vasil’ev [11] study further properties of the sub-Riemannian structure on the
anti-de Sitter space H3 as well as of a sub-Lorentzian structure on H3.
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