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Abstract. We consider a system of forward backward stochastic differen-
tial equations (FBSDEs) with a time-delayed generator driven by Lévy-
type noise. We establish a non-linear Feynman–Kac representation for-
mula associating the solution given by the FBSDEs system to the solution
of a path dependent nonlinear Kolmogorov equation with both delay and
jumps. Obtained results are then applied to study a generalization of the
so-called large investor problem, where the stock price evolves according
to a jump-diffusion dynamic.
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1. Introduction

Stochastic delay differential equations are derived as a natural generalisation
of stochastic ordinary differential equations by allowing coefficients’ evolution
to depend not only on the present state but also on past values.

In this article, we analyze a stochastic process described by a system
of forward–backward stochastic differential equations (FBSDEs). The forward
path-dependent equation is driven by a Lévy process, while the backward one
presents a path-dependent behaviour with dependence on a small delay δ.

We establish a non-linear Feynman–Kac representation formula associat-
ing the solution of the latter FBSDE system to the one of a path-dependent
nonlinear Kolmogorov equation with delay and jumps. In particular, we prove
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that the stochastic system allows to uniquely construct a solution to the par-
abolic partial differential equation (PDE), in the spirit of the Pardoux–Peng
approach, see [31–33], i.e.:{

−∂tu
(
t, φ

) − Lu
(
t, φ

) − f
(
t, φ, u(t, φ), ∂xu(t, φ)σ(t, φ), J u(t, φ), (u(·, φ))t

)
= 0 ,

u(T, φ) = h(φ) , (t, φ) ∈ [0, T ] × Λ ,
(1.1)

T < ∞ being a fixed time horizon and Λ being D([0, T ];Rd), i.e. the space of
càdlàg R

d-valued functions defined on the interval [0, T ].
The integro-differential operator J is associated with the jump behaviour

and is defined as

J u(t, φ) :=
∫
R\{0}

[
u
(
t, φt,γ(t,φ,z)

) − u(t, φ)
]
λ(z)ν(dz) , (1.2)

where φt,γ models the vertical perturbation of the path φ defined by

φt,γ(θ) := φ(θ)1θ∈[0,t) + [φ(t) + γ]1θ∈[t,T ] , θ, t ∈ [0, T ] , γ ∈ R
d , (1.3)

with γ : [0, T ] × Λ × {R\{0}} → R
d being a continuous, non-anticipative

functional encoding the shifting at the (right) endpoint while λ models the
intensity of the jumps and ν represents the associated Lévy measure.

The second order differential operator L, associated to the diffusion, is
defined by

Lu
(
t, φ

)
:=

1
2
Tr [σ(t, φ)σ∗(t, φ)∂2

xxu(t, φ)] + 〈b(t, φ), ∂xu(t, φ)〉 (1.4)

+
∫
R\{0}

(
u
(
t, φγ(t,φ,z)

) − u(t, φ) − ∂xu(t, φ)γ(t, φ, z)
)

ν(dz) ,

with b : [0, T ] × Λ → R
d and σ : [0, T ] × Λ → R

d×l being two non-anticipative
functionals.

Also, for a fixed delay δ > 0 we set

(u(·, φ))t := (u((t + θ)+, φ))θ∈[−δ,0] . (1.5)

Let us underline that the study of a path-dependent Kolmogorov equation
whose generator f depends on both a delayed term (u(·, φ))t and on a jump
operator J u(t, φ), represents the main novelty we provide in this paper.

Under appropriate assumptions on the coefficients, the deterministic non-
anticipative functional u : [0, T ]×Λ → R given by the representation formula

u(t, φ) := Y t,φ(t) , (1.6)

is a mild solution of the Kolmorogov Equation (1.1).
Concerning the stochastic process Y t,φ(t) in Eq. (1.6), provided condi-

tions in Assumptions 2.2–3.1 are fulfilled, we prove that the quadruple(
Xt,φ, Y t,φ, Zt,φ, U t,φ

)
s∈[t,T ]

,



NoDEA Feynman–Kac formula for BSDEs with jumps and time Page 3 of 36 72

is the unique solution of the system of FBSDEs on [t, T ] given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,φ(s) = φ(t) +
∫ s

t

b(r,Xt,φ)dr +
∫ s

t

σ(r,Xt,φ)dW (r)

+
∫ s

t

∫
R\{0}

γ(r,Xt,φ, z)Ñ(dr, dz)

Y t,φ(s) = h(XT,φ) +
∫ T

s

f
(
r,Xt,φ, Y t,φ(r), Zt,φ(r), Ũ t,φ(r), Y t,φ

r

)
dr

−
∫ T

s

Zt,φ(r)dW (r) −
∫ T

s

∫
R\{0}

U t,φ(r, z)Ñ(dr, dz) ,

(1.7)

where W stands for a l-dimensional standard Brownian motion. Assuming a
delay δ ∈ R

+, the notation Y t,φ
r , appearing in the generator f of the backward

dynamic in the system (1.7), stands for the delayed path of the process Y t,φ

restricted to [r − δ, r], namely

Y t,φ
r :=

(
Y t,φ((r + θ)+)

)
θ∈[−δ,0]

. (1.8)

In Eq. (1.7), Ñ models a compensated Poisson random measure, indepen-
dent from W , with associated Lévy measure ν. This stochastic term appears
also in the definition of the integral term Ũ : Ω × [0, T ] → R related to the
jump process by

Ũ t,φ(r) =
∫
R\{0}

U t,φ(r, z)λ(z)ν(dz); (1.9)

we need it in order to introduce to express the solution of (1.1) via the FBSDE
system (1.7).

The connection between probability theory and PDEs is a widely anal-
ysed subject, the well-known Feynman–Kac formula [25] being one of its main
turning points stating that solutions for a large class of second order PDEs of
both elliptic and parabolic type, can be expressed in terms of expectation of a
diffusion process. The latter result has been then generalised by Pardoux and
Peng in [31,32] to show the connection between backward stochastic differen-
tial equations (BSDEs) and a system of semi-linear PDEs, then proving the
nonlinear Feynman–Kac formula within the Markovian setting. Concerning the
non-Markovian scenario, we know from [34,35] that a nonlinear Feynman–Kac
formula can be still established, associating a path-dependent PDE to a non-
Markovian BSDE. More recently, the introduction of horizontal and vertical
derivatives of non-anticipative functionals on path spaces by Dupire [18] and
by Cont and Fournié [8–10] facilitated the formulation of a new class of path
dependent PDEs and the introduction of the so-called viscosity solution con-
cept, see [20,21,35], for more details. For a complete overview about stochastic
calculus with delay we refer to [29,30,39].

A connection between time-delayed BSDEs and path-dependent PDEs
has been proved by an infinite dimensional lifting approach in [22,28]. In [3],
the authors consider a BSDE driven by a Brownian motion and a Poisson
random measure that provides a viscosity solution of a system of parabolic
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integral-partial differential equations. In [11], the existence of a viscosity solu-
tion to a path-dependent nonlinear Kolmogorov equation (without jumps) and
the corresponding nonlinear Feynman–Kac representation has been proved.

In this paper, we deal with the notion of mild solution which can be seen
as an intermediate notion for solutions of a PDE lying in between the notions
of classical and viscosity solutions. In [24], the authors provide the definition
of mild solution for nonlinear Kolmogorov equations along with its link with
a specific stochastic process. The latter has been also proved for semilinear
parabolic equations in [23], where the definition of the generalized directional
gradient is firstly introduced. The concept of mild solution together with the
generalized directional gradient to handle path-dependent Kolmogorov equa-
tion with jumps and delay has been widely analyzed in the functional formu-
lation, see, e.g., [12]. Moreover, a discrete-time approximation for solutions of
a system of decoupled FBSDEs with jumps has been proved in [7] by means
of Malliavin calculus tools.

Concerning the theory of BSDE with a dependence on a delay, in [16],
the authors proved the existence of a solution for a BSDE with a time-delayed
generator that depends on the past values of the solution. In particular, both
existence and uniqueness are proved assuming a sufficiently small time horizon
T or a sufficiently small Lipschitz constant for the generator. Let us underline
that the latter has an equivalent within our setting, as we state in Remark 3.2.
Moreover, in [15,17] the authors defined a path-dependent BSDE with time
delayed generators driven by Brownian motions and Poisson random measures,
with coefficients depending on the whole solution’s path.

In [2], following a different approach, namely considering systems with
memory and jumps, the authors provide a characterization of a strong solution
for a delayed SDE with jumps, considering both Lp-type space and càdlàg
processes to derive a non-linear Feynman–Kac representation theorem.

The present paper is structured as follows: we start stating notations
and problem setting in Sect. 2, according to the theoretical framework devel-
oped by [15,16]; in Sect. 3 we study the well-posedness of the path-dependent
BSDE mentioned appearing in the Markovian FBSDEs system (1.7) following
the approach in [11] by additionally considering jumps; in Sect. 4 we provide
a Feynman–Kac formula relating the BSDE to the Kolmogorov Equation de-
fined in (1.1) to then generalise results in [12] by considering a dependence in
the generator f of the backward dynamic on a delayed L2 term, namely Y t,φ

r ,
for a small delay δ; in Sect. 5 we derive the existence of a mild solution for the
Kolmogorov Equation within the setting developed in [23]; finally, in Sect. 6,
we provide an application based on the analyzed theoretical setting, namely
a version of the Large Investor Problem characterised by a jump-diffusion dy-
namic.

2. Notation and problem formulation

On a probability space
(
Ω,F ,P

)
, we consider a standard l-dimensional Brow-

nian motion W and a homogeneous Poisson random measure N on R
+ × (R \



NoDEA Feynman–Kac formula for BSDEs with jumps and time Page 5 of 36 72

{0}), independent from W , with intensity ν. With the notation R0 := R\{0},
we also define the compensated Poisson random measure Ñ defined on R

+×R0

by

Ñ(dt, dz) := N(dt, dz) − ν(dz)dt . (2.1)

For the sake of completeness, let us recall that the term ν(dz)dt represents the
compensator of the random measure N and we assume that∫

R0

|z|2ν(dz) < ∞, (2.2)

We refer to, e.g., [1,4] for further details about the stochastic integration in
the presence of jumps. We remark that the assumption in (2.2) is a standard
condition when dealing with financial applications.

2.1. The forward–backward delayed system

In this section we introduce the delayed forward-backward system, assuming
path-dependent coefficients for the forward and the backward components, a
dependence on a small delay into the generator f and the presence of jumps
modelled via a compound Poisson measure. Furthermore, the equation is for-
mulated on a general initial time t and initial values. Thus, we need to equip
the backward equation with a suitable condition in [0, t), as we introduced in
Equation (2.6).

On previously defined probability space, we consider a filtration F
t =

{F t
s}s∈[0,T ], which is nothing but the one jointly generated by W (s∧ t)−W (t)

and N(s ∧ t, ·) − N(t, ·), augmented by all P-null sets. We emphasize that
F

t depends explicitly on t, namely the arbitrary initial time in [0, T ] for the
dynamic in Eq. (1.7).

Furthermore, the components of the solution of the backward dynamic
are defined in the following Banach spaces:

• S
2
t (R) denotes the space of (equivalence class of) F

t-adapted, product
measurable càdlàg processes Y : Ω × [0, T ] → R satisfying

E

[
sup

t∈[0,T ]

|Y (t)|2
]

< ∞ ;

• H
2
t (R

l) denotes the space of (equivalence class of) F
t-predictable pro-

cesses Z : Ω × [0, T ] → R
l satisfying

E

[ ∫ T

0

|Z(t)|2dt

]
< ∞ ;

• H
2
t,ν(R) denotes the space of (equivalence class of) F

t-predictable pro-
cesses U : Ω × [0, T ] × R0 → R satisfying

E

[ ∫ T

0

∫
R0

|U(t, z)|2ν(dz)dt

]
< ∞ .
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The spaces S
2
t (R), H2

t (R
l) and H

2
t,ν(R) are endowed with the following

norms:

||Y ||2
S
2
t (R) = E

[
sup

t∈[0,T ]

eβt|Y (t)|2
]

,

||Z||2
H

2
t (Rl) = E

[ ∫ T

0

eβt|Z(t)|2dt

]
,

and

||U ||2
H

2
t,ν(R) = E

[ ∫ T

0

∫
R0

eβt|U(t, z)|2ν(dz)dt

]
,

for some β > 0, to be precised later.
The main goal is to find a family of stochastic processes

(
Xt,φ, Y t,φ, Zt,φ, U t,φ

)
for t, φ ∈ [0, T ] × Λ adapted to F

t such that the following decoupled forward-
backward system holds a.s.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,φ(s) = φ(t) +

∫ s

t

b(r, Xt,φ)dr +

∫ s

t

σ(r, Xt,φ)dW (r)+

+

∫ s

t

∫
R0

γ(r, Xt,φ, z)Ñ(dr, dz) , s ∈ [t, T ]

Xt,φ(s) = φ(s) , s ∈ [0, t]

Y t,φ(s) = h(Xt,φ) +

∫ T

s

f
(
r, Xt,φ, Y t,φ(r), Zt,φ(r), Ũ t,φ(r), Y t,φ

r

)
dr

−
∫ T

s

Zt,φ(r)dW (r) −
∫ T

s

∫
R0

U t,φ(r, z)Ñ(dr, dz) , s ∈ [t, T ]

Y t,φ(s) = Y s,φ(s) , Zt,φ(s) = U t,φ(s, z) = 0 , s ∈ [0, t] ,

(2.3)

recalling that the term Ũ t,φ was introduced in (1.9).
It is worth mentioning that, differently from [15], we work in a non-

Markovian setting, enforcing an initial condition over all the interval [0, t].
More precisely, for both forward and backward equations, the values of the
solution Xt,φ need to be known in the time interval [0, t]. Analogously, regard-
ing the backward component, the values of Y t,φ, Zt,φ and U t,φ need also to
be prescribed for s ∈ [0, t].

Remark 2.1. The δ-delayed feature concerns only Y , but we emphasize that
it is possible to generalize this result to treat the case where both Z and U
depend on their past values for a fixed delay δ.

For the sake of simplicity, we consider the case with Yr, hence limiting
ourselves to just one, the process Y , L2 delayed term. As a consequence, the
latter implies that we will have to consider a larger functional space to properly
define the contraction which is an essential step to prove the fix point argument
in Theorem 3.3.
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2.1.1. The forward path-dependent SDE with jumps. We first study the for-
ward component of X appearing in the system (2.3). It is defined according
to the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,φ(s) = φ(t) +
∫ s

t

b(r,Xt,φ)dr +
∫ s

t

σ(r,Xt,φ)dW (r)+

+
∫ s

t

∫
R0

γ(r,Xt,φ, z)Ñ(dr, dz) , s ∈ [t, T ]

Xt,φ(s) = φ(s) , s ∈ [0, t] .

(2.4)

More precisely, we say that Xt,φ is a solution to equation (2.4) if the
process s �→ Xt,φ(s) is F

t-adapted, P-a.s. continuous and (2.4) is satisfied for
any s ∈ [0, T ], P-a.s.

Recalling that a Borel-measurable function ϕ : [0, T ] × Λ × S is non-
anticipative if ϕ(t, φ, e) = ϕ(t, φ(·∧ t), e), for all (t, φ, e) ∈ [0, T ]×Λ×S, where
S is an arbitrary topological space, we assume the following assumptions to
hold.

Assumption 2.2. Let us consider three non-anticipative functions b : [0, T ] ×
Λ → R

d, σ : [0, T ] × Λ → R
d×l and γ : [0, T ] × Λ × R → R

d such that
(A1) b, σ and γ are continuous;
(A2) there exists � > 0 such that

|b(t, φ)−b(t, φ′)|+|σ(t, φ) − σ(t, φ′)| + ||γ(t, φ, ·) − γ(t, φ′, ·)||L2

≤ �||φ − φ′||L∞

for any t ∈ [0, T ], φ, φ′ ∈ Λ;
(A3) the following bound∫

R0

sup
φ∈Λ

|γ(r, φ, z)|2ν(dz) < ∞ ,

holds.

The existence and the pathwise uniqueness for a solution of forward SDE
with jumps under Lipschitz coefficients is a known result, already classical for
the case without path-dependent coefficients, see, e.g. [38]. For the sake of
completeness, we report the following proposition:

Proposition 2.3. If (A1), (A2), (A3) hold, then there exists a solution to (2.4)
and this solution is pathwise unique.

The proof for an equivalent path-dependent setting is stated in Theorem
2.12 in [2]. Both existence and uniqueness are derived via a Picard iteration
approach in the so-called Delfour–Mitter space that we introduce in Sect. 4.1.
It turns out that our Eq. (2.4) can be reformulated with Delfour–Mitter co-
efficients such as Eq. (4.4) by transformations of the coefficients we define in
Eq. (4.3). Hypotheses (D1) and (D2) required for the existence result can be
deduced from our conditions (A1)–(A3). A similar approach, but for a different
class of integrators is used in Theorem 5.2.15 in [6].
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2.1.2. The backward delayed path-dependent SDE with jumps. We now focus
on the BSDE appearing in the system (2.3), namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y t,φ(s) = h(Xt,φ) +

∫ T

s

f
(
r, Xt,φ, Y t,φ(r), Zt,φ(r), Ũ t,φ(r), Y t,φ

r

)
dr

−
∫ T

s

Zt,φ(r)dW (r) −
∫ T

s

∫
R0

U t,φ(r, z)Ñ(dr, dz) , s ∈ [t, T ]

Y t,φ(s) = Y s,φ(s) , Zt,φ(s) = U t,φ(s, z) = 0 , s ∈ [0, t] .

(2.5)

for a finite time horizon T < ∞ and φ ∈ Λ := D
(
[0, T ];Rd

)
. The path-

dependent process Xt,φ represents the solution of the forward SDE with jumps
of Eq. (2.4), while Ñ models the compensated Poisson random measure de-
scribed in Eq. (2.1) and W is a l-dimensional Brownian motion.

We recall that, when we fix the delay term δ, the notation Y t,φ
r stands

for the path of the process restricted to [r − δ, r], according to Eq. (1.8).
Notice that the terminal condition enforced by h depends on the solution
of the forward SDE (2.4) as well as the solution (Y,Z, U) of the backward
component considered in the time interval [t, T ].

Differently from the framework studied by Delong in [15], we consider a
general initial time s ∈ [0, t). As highlighted in [11], the Feynman–Kac formula
would fail with standard prolongation.

Thus, an additional initial condition has to be satisfied over the interval
[0, t], given by

Y t,φ(s) = Y s,φ(s) , s ∈ [0, t) . (2.6)

We remark that the supplementary initial condition stated in Eq. (2.6)
represents one of the main differences between Theorem 3.3 and Theorem
14.1.1 in [15].

3. The well posedness of the BSDE

Concerning the delayed backward SDE (2.5), we will assume the following to
hold.

Assumption 3.1. Let f : [0, T ]×Λ×R×R
l×R×L2 ([−δ, 0];R) → R, h : Λ → R

and λ : R0 → R+ (introduced in (1.9)) such that the following holds:
(A4) There exist L,K,M > 0, p ≥ 1 and a probability measure α on B ([−δ, 0])

such that, for any t ∈ [0, T ], φ ∈ Λ, (y, z, u) , (y′, z′, u′) ∈ R×R
l ×R and

ŷ, ŷ′ ∈ L2 ([−δ, 0];R), we have

(i) φ �→ f (t, φ, y, z, u, ŷ) is continuous,
(ii) |f(t, φ, y, z, u, ŷ) − f(t, φ, y′, z′, u′, ŷ)| ≤ L (|y − y′| + |z − z′| + |u − u′|) ,

(iii) |f(t, φ, y, z, u, ŷ) − f(t, φ, y, z, u, ŷ′)|2 ≤ K

∫ 0

−δ

(
|ŷ(θ) − ŷ′(θ)|2

)
α(dθ),

(iv) |f (t, φ, 0, 0, 0, 0)| < M(1 + ‖φ‖p
T ).



NoDEA Feynman–Kac formula for BSDEs with jumps and time Page 9 of 36 72

(A5) The function f is non-anticipative.
(A6) The function h is continuous and |h(φ)| ≤ M(1 + ‖φ‖p

T ), for all φ ∈ Λ.
(A7) The function λ is measurable and λ(z) ≤ M(1 ∧ |z|), for all z ∈ R0.

The following remark generalizes a classical result, see, e.g., Theorem
14.1.1 in [15], Theorem 2.1 in [16] or Theorem 2.1 in [17].

Remark 3.2. In order to show both the existence and uniqueness of a solution
to the backward part of the system (1.7) and to obtain the continuity of Y t,φ

with respect to φ, we need to impose K or δ to be small enough. More precisely,
we will assume that there exists a constant χ ∈ (0, 1), such that:

K
χe

(
χ+ 6L2

χ

)
δ

(1 − χ)L2
max {1, T} <

1
578

. (3.1)

The main difference between our result and Theorem 3.4 in [11] relies
upon the presence of a jump component in the dynamics of the unknown pro-
cess Y t,φ: this further term implies a stronger bound in the condition enforced
in Eq. (3.1).

Hence, if K or δ are small enough to satisfy the condition stated in Eq.
(3.1), then there exists a unique solution of (2.5) and the following theorem
holds

Theorem 3.3. Let assumptions (A1)–(A7) hold. If condition (3.1) is satisfied,
then there exists a unique solution (Y t,φ, Zt,φ, U t,φ)(t,φ)∈[0,T ]×Λ of the BSDE
(2.5) such that (Y t,φ, Zt,φ, U t,φ) ∈ S

2
t (R) × H

2
t (R

l) × H
2
t,ν(R) for all t ∈ [0, T ]

and the application t �→ (Y t,φ, Zt,φ, U t,φ) is continuous from [0, T ] into S
2
0(R)×

H
2
0(R

l) × H
2
0,ν(R).

The proof of Theorem 3.3 is provided in “Appendix 7” and it is mainly
based on the Banach fixed point theorem.

We emphasize that similar results hold also for multi-valued processes,
namely Y : Ω × [0, T ] → R

m, Z : Ω × [0, T ] → R
m×l and U : Ω × [0, T ] ×

(Rn\{0}) → R
m. Further difficulties may arise, due to the presence of cor-

relation between the different components of Y ∈ S
2
t (R

m) or the necessity of
introducing the n-fold iterated stochastic integral, see [5,7] or [12, Sec. 2.1] for
further details.

4. The Feynman–Kac formula

In what follows we prove that the solution of Eq. (1.7), namely the path-
dependent forward-backward system with delayed generator f and driven by
a Lévy process, can be connected to the solution of path-dependent PIDE
represented by the nonlinear Kolomogorov equation (1.1).
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4.1. The Delfour–Mitter space

According to [2], we need the solution of the forward SDE (1.7) to be a Markov
process to derive the Feynman–Kac formula. The Markov property of the so-
lution is fully known for the SDE without jumps, i.e. when γ = 0, see [29]
(Th. III. 1.1). Moreover, the Markov property also holds, by enlarging the
state space, for the solution in a setting analogous to that of Eq. (2.4), see
[12] (Prop. 2.6) where driving noises with independent increments are con-
sidered. Since Xt,φ : Ω × [0, T ] × D([0, T ];Rd) → R

d in not Markovian, we
enlarge the state space by considering the process X as a process of the path,
by introducing a suitable Hilbert space, as described in [22,28], where they
present a product-space reformulation of (2.4) splitting the present state X(t)
from the past trajectory Xt by a particular choice of the state space. Accord-
ingly, we enlarge the state space of our interest, starting from paths defined
on the Skorohod space D

(
[0, T ];Rd

)
to then consider a new functional space,

the so-called Delfour–Mitter space M2 := L2([−T, 0];Rd) × R
d, by exploiting

the continuous embedding of D
(
[−T, 0];Rd

)
into L2([−T, 0];Rd), as in-depth

analyzed in, e.g., [2,12].
It is worth mentioning that M2 has a Hilbert space structure, endowed

with the following scalar product

〈φ, ψ〉M2 = 〈φ, ψ〉L2 + φ(0) · ψ(0) ,

with associated norm

||φ||2M2 = ||φ||L2 + |φ(0)|2 ,

where · and | · | stand for the scalar product in R
d, resp. for the Euclidean

norm in R
d, while 〈·, ·〉L2 , resp. || · ||L2 , indicates the scalar product, resp. the

norm in L2 := L2([−T, 0];Rd).
For t ∈ [0, T ], φ ∈ Λ and (ϕ, x) ∈ M2, let us set:

• compatible initial conditions xt,φ := φ(t) and ηt,φ ∈ D([−T, 0];Rd) de-
fined by

ηt,φ(θ) :=

{
φ(t + θ), θ ∈ [−t, 0];

φ(0), θ ∈ [−T, t);
(4.1)

• (ϕ, x)t ∈ Λ defined by

(ϕ, x)t(θ) :=

⎧⎪⎪⎨
⎪⎪⎩

ϕ(θ − t), ϕ ∈ D([−T, 0];Rd), θ ∈ [0, t);

x, ϕ ∈ D([−T, 0];Rd), θ ∈ [t, T ];

0, ϕ /∈ D([−T, 0];Rd);

(4.2)

• b̃ : [0, T ] × M2 → R
d, σ̃ : [0, T ] × M2 → R

d×l, γ̃ : [0, T ] × M2 × R → R
d

defined by

b̃(t, ϕ, x) := b(t, (ϕ, x)t),
σ̃(t, ϕ, x) := σ(t, (ϕ, x)t),

γ̃(t, ϕ, x, z) := γ(t, (ϕ, x)t, z),

(4.3)
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where b : [0, T ] × Λ → R
d, σ : [0, T ] × Λ → R

d×l and γ : [0, T ] × Λ × R → R
d

are the given coefficients of Eq. (2.4).
We emphasize that (ϕ, x)t is well defined since it does not depend on

the choice of the representative in the class of ϕ ∈ L2, and the continuous
embedding D

(
[−T, 0];Rd

) ⊂ M2 is also injective.
We can now rewrite the forward equation (2.4) in the M2-setting:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xt,η,x(s) = x +

∫ s

t

b̃(r, Xt,η,x
r , Xt,η,x(r))dr +

∫ s

t

σ̃(r, Xt,η,x
r , Xt,η,x(r))dW (r)

+

∫ s

t

∫
R0

γ̃(r, Xt,η,x
r , Xt,η,x(r), z)Ñ(dr, dz) , s ∈ [t, T ]

(
Xt,η,x

t , Xt,η,x(t)
)

= (η, x) .

(4.4)

Here, for a process X, the term Xr means (X((r+θ)+))θ∈[−T,0], which is
slightly different from the delayed term introduced in (1.8). Since this notation
occurs only in the context of the M2-setting for the forward equation, the
reader can clearly distinguish between the two uses.

The link between the solution of equation Eq. (2.4) and that of equation
Eq. (4.4) is then provided by

Xt,φ = Xt,ηt,φ,xt,φ

,∀(t, φ) ∈ [0, T ] × Λ. (4.5)

In order to take advantage of the Feynman–Kac formula already derived
in [12] in the case of non-delayed but still path-dependent BSDE, we have to
additionally impose that b, σ, γ, f and h are locally Lipschitz-continuous with
respect to φ ∈ Λ in the L2-norm. Thus, in order to have the same regularity
for the solution of the BSDE system with forward Eq. (4.4), we require that
the coefficients b, σ and γ to be locally Lipschitz.

Assumption 4.1. There exists K ≥ 0 and m ≥ 0 such that:
(A8) for all t ∈ [0, T ] and for all φ1, φ2 ∈ Λ,

|b(t, φ1) − b(t, φ2)|2 + |σ(t, φ1) − σ(t, φ2)|2 +
∫
R0

|γ(t, φ1, z) − γ(t, φ2, z)|2ν(dz)

≤ K||φ1 − φ2||2L2(1 + ||φ1||2L2 + ||φ2||2L2) ;

(A9) for all t ∈ [0, T ], y ∈ R, z ∈ R
l, u ∈ R, ŷ ∈ L2([−δ, 0];R) and for all

φ1, φ2 ∈ Λ,

|f(t, φ1, y, z, u, ŷ) − f(t, φ2, y, z, u, ŷ)| ≤
K(1 + ||φ1||L2 + ||φ2||L2 + |y|)m · (1 + |z| + |u|)||φ1 − φ2||L2 .

(A10) for all φ1, φ2 ∈ Λ,

|h(φ1) − h(φ2)| ≤ K(1 + ||φ1||L2 + ||φ2||L2)m||φ1 − φ2||L2 .

We remark that b̃, σ̃ and γ̃, as defined by (4.3) are not necessarily locally
Lipschitz, since D

(
[0, T ];Rd

)
is dense in L2

(
[0, T ];Rd

)
, but they are set to

constants outside D
(
[0, T ];Rd

)
. However, one can define these coefficients first

on [0, T ]×D
(
[0, T ];Rd

)×R
d and then extend to [0, T ]×M2 by density, using



72 Page 12 of 36 L. Di Persio, M. Garbelli, and A. Zălinescu NoDEA

the uniform continuity provided by assumption (A8). It is this version of the
above functions that we will use in the sequel.

Within this setting, lifting the state space turns out to be particularly
convenient in order to investigate differentiability properties of the solution
and relate the solution of Eq. (4.4) (combined with the backward equation) to
the solutions of the non-linear Kolmogorov equation defined by Eq. (1.1) on
[0, T ] × Λ.

Remark 4.2. It is also possible to work directly on the Skorohod space D.
However, since D is not a separable Banach space, one has to consider weaker
topologies on D, following a semi-group approach like the one developed by
Peszat and Zabczyk in [36].

4.2. Main theorem

In what follows we provide the main result, namely a nonlinear version of the
Feynman–Kac formula in the case where the process Xt,φ has jumps and the
generator of the backward dynamic f depends on the past values of Y .

Theorem 4.3. (Feynman–Kac formula) Under hypotheses (A1)–(A10) with con-
dition (3.1) being verified, let (Xt,φ, Y t,φ, Zt,φ, U t,φ)(t,φ)∈[0,T ]×Λ be the solution
of the forward-backward system (2.3).

Let u : [0, T ] × Λ → R be the deterministic function defined by

u(t, φ) = Y t,φ(t), (t, φ) ∈ [0, T ] × Λ . (4.6)

Then u is a non-anticipative function and there exist constants C > 0 and
m ≥ 0 such that, for all t ∈ [0, T ] and φ1, φ2 ∈ Λ,

|u(t, φ1) − u(t, φ2)| ≤ C(1 + ||φ1||L2 + ||φ2||L2)m||φ1 − φ2||L2 .

Moreover, the following formula holds:

Y t,φ(s) = u(s,Xt,φ), ∀s ∈ [0, T ], (4.7)

for any (t, φ) ∈ [0, T ] × Λ.

To prove the representation formula (4.6), we adapt the proof of Theorem
4.10 of [11] by adding the contribution of U and Ũ , respectively modelling the
process and the integral term connected to the jump component.

Proof. We follow the Picard iteration scheme, hence considering the iterative
process of the BSDE with a delayed generator driven by Lévy process described
by

Y n+1,t,φ(s) = h(Xt,φ)

+

∫ T

s

f
(
r, Xt,φ, Y n+1,t,φ(r), Zn+1,t,φ(r), Ũn+1,t,φ(r), Y n,t,φ

r

)
dr

−
∫ T

s

Zn+1,t,φ(r)dW (r) −
∫ T

t

∫
R

Un+1,t,φ(r, z)Ñ(dr, dz) ,

with Y 0,t,φ ≡ 0, Z0,t,φ ≡ 0 and U0,t,φ ≡ 0 and initial condition

Y n+1,t,φ(s) = Y n+1,s,φ(s), Zn+1,t,φ(s) = Un+1,t,φ(s, z) = 0, s ∈ [0, t].
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Let us suppose that there exists a non-anticipative functional un : [0, T ]×
Λ → R such that un is locally Lipschitz and Y n,t,φ(s) = un(s,Xt,φ) for every
t, s ∈ [0, T ] and φ ∈ Λ.

Since Y n,t,φ(r + θ) = un(r + θ,Xt,φ) if r + θ ≥ 0 and Y n,t,φ(r + θ) =
Y n,t,φ(0) = un(0,Xt,φ) if r + θ < 0, by defining

ũn(t, φ) :=
(
un((t + θ)+, φ)

)
θ∈[−δ,0]

,

the delayed term reads

Y n,t,φ
r = ũn(r,Xt,φ)

and the above equation becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y n+1,t,φ(s) = h(Xt,φ)

+

∫ T

s

f
(
r, Xt,φ, Y n+1,t,φ(r), Zn+1,t,φ(r), Ũn+1,t,φ(r), ũn(r, Xt,φ)

)
dr

−
∫ T

s

Zn+1,t,φ(r)dW (r) −
∫ T

s

∫
R\{0}

Un+1,t,φ(r, z)Ñ(dr, dz), s ∈ [t, T ]

Y n+1,t,φ(s) = Y n+1,s,φ(s), Zn+1,t,φ(s) = Un+1,t,φ(s, z) = 0, s ∈ [0, t] .

For fixed n, we define ψn : [0, T ] × D([−T, 0];Rd) ×R
d ×R×R

l ×R → R as

ψn(t, ϕ, x, y, z, u) := f(t, (ϕ, x)t, y, z, u, ũn(t, (ϕ, x)t)) , (4.8)

and h̃ : D([−T, 0];Rd) × R
d → R as

h̃(ϕ, x) := h((ϕ, x)T ) . (4.9)

Since un is locally Lipschitz-continuous, one can show that ψn and h̃ are also
locally Lipschitz in ϕ. Therefore, one can extend them by density to [0, T ] ×
M2 × R × R

l × R, respectively to M2, keeping the locally Lipschitz property.
After setting η = ηt,φ, x = xt,φ (see (4.1)), we enlarge the state space and

write the forward–backward system in an equivalent way as (for simplicity, we
omit the dependence of n)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXτ,η,x(t) = b̃(t, Xτ,η,x
t , Xτ,η,x(t))dt + σ̃(t, Xτ,η,x

t , Xτ,η,x(t))dW (t)

+
∫
R0

γ̃(t, Xτ,η,x
t , Xτ,η,x(t), z)Ñ(dt, dz)

(Xτ,η,x
τ , Xτ,η,x(τ)) = (η, x)

dY τ,η,x(t) = ψn

(
t, Xτ,η,x

t , Xτ,η,x(t), Y τ,η,x(t), Zτ,η,x(t), Ũτ,η,x(t)
)

dt

+Zτ,η,x(t)dW (t) +
∫
R0

Uτ,η,x(t, z)Ñ(dt, dz)

Y τ,η,x(T ) = h̃(Xτ,η,x
T , Xτ,η,x(T )) .

It is easy to see that the two sets of solutions, (Xt,η,x, Y t,η,x, Zt,η,x, U t,η,x) and(
Xt,φ, Y n+1,t,φ, Zn+1,t,φ, Un+1,t,φ

)
coincide.

We have already observed that the extended coefficients b̃, σ̃, γ̃ satisfy
conditions (A1)–(A2) in [12, pp. 8–9]; in a similar manner, ψn and h̃ satisfy
(B1) and (B2) in [12, p. 24]. Then we can exploit Theorem 4.5 in [12] and infer
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that there exists a locally Lipschitz function ūn : [0, T ] × M2 → R such that
the following representation formula holds:

Y τ,η,x(t) = ūn (t,Xτ,η,x
t ,Xτ,η,x(t)) .

Let us define the following locally Lipschitz, non-anticipative functional un+1 :
[0, T ] × Λ → R by

un+1(t, φ) := ūn(t, ηt,φ, φ(t)) ,

where the time shifting ηt,φ is defined according to (4.1). Then

Y n+1,t,φ(s) = un+1(s,Xt,φ), ∀s ∈ [0, T ].

Notice that
(
Y n,t,φ, Zn,t,φ, Un,t,φ

)
is the Picard iterative sequence needed

to construct the solution
(
Y t,φ, Zt,φ, U t,φ

)
:(

Y n+1,·,φ, Zn+1,·,φ, Un+1,·,φ)
= Γ(Y n,·,φ, Zn,·,φ, Un,·,φ),

where Γ is the contraction defined in the proof of Theorem 3.3. By applying
Theorem 3.3, we then have:

lim
n→∞E

(
sup

s∈[0,T ]

∣∣Y n,t,φ(s) − Y t,φ(s)
∣∣2) = 0.

Of course, un(t, φ) converges to u(t, φ) := E [Y t,φ(t)], for every t ∈ [0, T ] and
φ ∈ Λ, hence implying that the nonlinear Feynman–Kac formula Y t,φ (s) =
u(s,Xt,φ) holds. From its definition, it is clear that u is non-anticipative. Re-
garding the locally Lipschitz property, it can be proven by applying Itô’s for-
mula to |Y t,φ1 − Y t,φ2 |2 and resorting to standard calculus. �

5. Mild solution of the Kolmogorov equation

In this section, we prove the existence of a mild solution of the path-dependent
partial integro-differential equation (PPIDE) Kolmorogov equation (1.1) show-
ing a dependence both on a delayed term and on integral term modelling jumps.

Let us start by recalling from [12] the notion of the Markov transition
semigroup corresponding to the operator L introduced by (1.4). From [12,
Prop. 2.6], we know that the strong solution X0,η,x ∈ M2 of Eq. (4.4) is a
Markov process in the sense that P-a.s.,

P((X0,η,x
t ,X0,η,x(t)) ∈ B|Fs) = P((X0,η,x

t ,X0,η,x(t)) ∈ B|(X0,η,x
s ,X0,η,x(s))),

for all (η, x) ∈ M2 and all Borel sets B of M2, the proof of this fundamental
result being given in several works, as, e.g. [2, Th. 3.9], [37, Prop. 3.3] or [36,
Sec. 9.6]; for more details, see, e.g., [23].

Denoting by Bp(S) the space of Borel functions with at most polynomial
growth on a metric space S, the transition semigroup P̃t,s, acting on Bp(M2)
is then defined by

P̃t,s[ϕ](η, x) := E[ϕ(Xt,η,x
s ,Xt,η,x(s))], ϕ ∈ Bp(M2), (η, x) ∈ M2.

Coming back to our setting, we define Pt,s : Bp(Λ) → Bp(Λ) by

Pt,s[ϕ](φ) := E[ϕ(Xt,φ(· ∧ s)], ϕ ∈ Bp(Λ), φ ∈ Λ.
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Obviously (see (4.1) for the notations), for ϕ ∈ Bp(Λ) and φ ∈ Λ,

Pt,s[ϕ](φ) = P̃t,s[ϕ](ηt,φ, xt,φ). (5.1)

In order to introduce the notion of mild solution, we will need to define
the generalized directional gradient of a function u : [0, T ] × Λ → R, following
the approach in [23], also described in [12]. Suppose that the function u satisfies
the following locally Lipschitz-continuity condition:

|u(t, φ1) − u(t, φ2)| ≤ C||φ1 − φ2||L2(1 + ||φ1||L2 + ||φ2||L2)m ;
|u(t, 0)| ≤ C ;

(5.2)

Since the procedure of defining the generalized directional gradient takes place
in Hilbert spaces, we will have to appeal again to the M2-lifting, as we have
already done for the coefficients of the forward equation. We define first

v(t, ϕ, x) := u(t, (ϕ, x)t)

for (t, ϕ, x) ∈ [0, T ]×D([−T, 0];Rd)×R
d and then extend it to [0, T ]×M2 by

density. Again, this is possible due to condition (5.2). Then, according to [23,
Th. 3.1], there exists a Borel function ζ : [0, T ] × M2 → R

d such that

〈v(·,Xt,η,x
· ,Xt,η,x(·)),W (·)〉[t,τ ] =

∫ τ

t

ζ(s,Xt,η,x
s ,Xt,η,x(·))ds, (5.3)

for any 0 ≤ t ≤ τ ≤ T and (η, x) ∈ M2, where 〈X,Y 〉[t,τ ] denotes the joint
quadratic variation of a pair of real stochastic processes (X(t), Y (t))t∈[0,T ] on
the interval [t, τ ],

〈X,Y 〉[t,τ ] := lim
ε↘0

1
ε

∫ τ

t

(X(s + ε) − X(s)) · (Y (s + ε) − Y (s))ds,

with the limit taken in probability and X(s), Y (s) defined as X(s), respectively
Y (s) for s > T .

The set of all functions ζ with the above property is called the generalized
directional gradient of v and is denoted ∇σv. Its name and notation come
from the observation that if v (and, consequently u) and the coefficients of
the forward equation are sufficiently regular, then ∇(η,x)v · σ̃ ∈ ∇σv (see [23,
Remark 3.3]).

We come back to the Λ-setting and define ∇σu, the generalized directional
gradient of u as the set of all non-anticipative functions ξ : [0, T ]×Λ → R such
that there exists ζ ∈ ∇σv satisfying

ζ(t, ϕ, x) = ξ(t, (ϕ, x)t)

for all (t, ϕ, x) ∈ [0, T ] × D([−T, 0];Rd) × R
d. Such a function can be defined

by setting ξ(t, φ) := ζ(t, ηt,φ, xt,φ).
It is clear that relation (5.3) translates into

〈u(·,Xt,φ),W (·)〉[t,τ ] =
∫ τ

t

ξ(s,Xt,φ)ds,
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for all (t, φ) ∈ [0, T ] × Λ and all τ ∈ [t, T ], if ξ ∈ ∇σu. From this relation, it is
clear (see also Remark 3.2 in [23]) that if ξ, ˆξ ∈ ∇σ

u, then

ξ(s,Xt,φ) = ξ̂(s,Xt,φ) ds-a.e., P-a.s.,

so there is no ambiguity if we write ∇σu(s,Xt,φ).
We have now all the ingredients for introducing the notion of a mild

solution.

Definition 5.1. A non-anticipative function u : [0, T ]×Λ → R is a mild solution
to Eq. (1.1) if u satisfies (5.2) and the following equality holds true for all
(t, φ) ∈ [0, T ] × Λ and ξ ∈ ∇σu:

u(t, φ) = Pt,T [h](φ)

+
∫ T

t

Pt,s [f (·, u(s, ·), ξ(s, ·),J u(s, ·)) , (u(·, ·))s] (φ)ds , (5.4)

where (u(·, ·))s is the delayed term defined in (1.5).

Given the definition of Pt,T and the above mentioned remark, we can
reformulate relation (5.4) as

u(t, φ) = E[h(Xt,φ
T )]

+E

[∫ T

t

f
(
Xt,φ, u(s, Xt,φ), ∇σu(s, Xt,φ), J u(s, Xt,φ), (u(·, Xt,φ))s

)
ds

]
.

(5.5)

The next theorem represents the core result of this section.

Theorem 5.2. (Existence and uniqueness) Let assumptions (A1)–(A10) and
(3.1) hold true. Then the function u defined by (4.6) is the unique mild so-
lution to the path-dependent partial integro-differential Eq. (1.1).

Proof. Existence. Let us consider the backward component of the FBSDE
described in Eq. (2.3) for s ∈ [t, T ]

Y t,φ(s) = h(Xt,φ) +

∫ T

s

f
(
r, Xt,φ, Y t,φ(r), Zt,φ(r), Ũ t,φ(r), Y t,φ

r

)
dr

−
∫ T

s

Zt,φ(r)dW (r) −
∫ T

s

∫
R\{0}

U t,φ(r, z)Ñ(dr, dz), s ∈ [t, T ] .

(5.6)

By Theorem 4.3, the non-anticipative function u defined by (4.6) is sat-
isfying (5.2) (the second part comes the continuity of t �→ Y t,φ, asserted in
Theorem 3.3) and the representation formula (4.7) holds. Moreover, by means
of Eq. (4.6), we can write the delayed term Yr as a function of the path of
solution of the forward dynamic Xt,φ and, thus, by defining

ũ(t, φ) :=
(
u((t + θ)+, φ)

)
θ∈[−δ,0]

,
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we can rewrite Eq. (5.6), leading to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y t,φ(s) = h(Xt,φ) +

∫ T

s

f
(
r, Xt,φ, Y t,φ(r), Zt,φ(r), Ũ t,φ(r), ũ(r, Xt,φ)

)
dr

−
∫ T

s

Zt,φ(r)dW (r) −
∫ T

s

∫
R\{0}

U t,φ(r, z)Ñ(dr, dz), s ∈ [t, T ]

Y t,φ(s) = Y s,φ(s), Zt,φ(s) = U t,φ(s, z) = 0, s ∈ [0, t],

.(5.7)

At this point, we enlarge the state space going through M2 coefficients
analogously to the proof of Theorem 3.3, obtaining

Y t,η,x(s) = h̃(Xs,η,x
T ,Xs,η,x(T ))

+
∫ T

s

ψ
(
r,Xt,η,x

r ,Xt,η,x(r), Y t,η,x(r), Zt,η,x(r), Ũ t,η,x(r)
)
dr

−
∫ T

s

Zt,η,x(r)dW (r) −
∫ T

t

∫
R0

U t,η,x(r, z)Ñ(dr, dz) ,

(5.8)

where the map h̃ was defined in Eq. (4.9) and ψ is defined similarly to ψn

introduced in Eq. (4.8):

ψ(t, ϕ, x, y, z, u) := f(t, (ϕ, x)t, y, z, u, ũ(t, (ϕ, x)t))

on [0, T ] × D([−T, 0];Rd) × R
d × R × R

l × R and extending it by density.
Since h̃ and ψ are locally Lipschitz, hence satisfying the conditions required
by Theorem 4.8 in [12], we can apply this result in order to conclude that the
function v : [0, T ] × M2 → R defined by

v(t, η, x) := Y t,η,x(t)

is a mild solution (in the sense of [12], but similar to ours) of the following
PPIDE⎧⎪⎪⎨

⎪⎪⎩
−∂tv

(
t, η, x

) − L̃v
(
t, η, x

)
−ψ

(
t, η, x, v(t, η, x), ∂xv(t, η, x)σ̃(t, η, x), J̃ v(t, η, x)

)
= 0 ,

v(T, η, x) = h̃(η, x) , (t, η, x) ∈ [0, T ] × M2 ,

where L̃ and J̃ are the straightforward modifications of L, respectively J in
M2. Since v(t, φ, x) = u(t, (ϕ, x)t) for any (t, φ, x) ∈ [0, T ]×D([−T, 0];Rd), by
playing on the relation (5.1) and the connection between the formulations of
the generalized directional gradient in the càdlàg, respectively M2 cases, it is
straightforward to show that u is a mild solution of (1.1).
Uniqueness. Let us take two mild solutions u1 and u2 of the path-dependent
PDE (1.1). We define

f i(t, φ, y, z, w) := f(t, φ, y, z, w,
(
ui (·, φ)

)
t
), i = 1, 2.
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Using these drivers we can consider the following BSDEs:

Y t,φ (s) = h(Xt,φ) +
∫ T

s

f i(r,Xt,φ, Y t,φ (r) , Zt,φ (r) , Ũ t,φ (r))dr

−
∫ T

s

Zt,φ (r) dW (r) −
∫ T

s

∫
R0

U t,φ(r, z)Ñ(dr, dz), i = 1, 2,

(5.9)

for which there exist unique solutions
(
Y i,t,φ , Zi,t,φ , U i,t,φ

) ∈ S
2
t (R)×H

2
t (R

l)×
H

2
t,ν(R) for i = 1, 2 .

By Theorem 4.3 we see that

Y i,t,φ (s) = vi(s,Xt,φ), for all s ∈ [0, T ] , a.s.,

for any (t, φ) ∈ [0, T ] × Λ, where vi : [0, T ] × Λ → R, i = 1, 2 are defined by

vi(t, φ) := Y i,t,φ (t) , (t, φ) ∈ [0, T ] × Λ.

Hence, by the existence part, we obtain that the functions vi are solutions of
the PDE of type (1.1), but without the delayed terms

(
vi (·, φ)

)
t
:{−∂tv

i(t, φ) − Lvi(t, φ) − f i(t, φ, vi(t, φ), ∂xvi (t, φ) σ(t, φ), J vi(t, φ)) = 0,

vi(T, φ) = h(φ), i = 1, 2.
(5.10)

Since ui is also solution to equation (5.10), by using the uniqueness part of
Theorem 4.5 from [12] we get that (after embedding these equations in M2,
as we did in the previous part)

ui(t, φ) = vi(t, φ), (t, φ) ∈ [0, T ] × Λ, i = 1, 2.

Hence

Y i,t,φ (s) = vi(s,Xt,φ) = ui(s,Xt,φ), i = 1, 2,

so BSDEs (5.9) become a single equation,

Y i,t,φ (s) = h(Xt,φ) +
∫ T

s

f(r,Xt,φ, Y i,t,φ (r) , Zi,t,φ (r) , Ũ i,t,φ (r) , Y i,t,φ
r )dr

−
∫ T

s

Zi,t,φ (r) dW (r) −
∫ T

s

∫
R0

U t,φ(r, z)Ñ(dr, dz),
(5.11)

with i = 1, 2, for which we have uniqueness from Theorem 3.3.
Therefore Y 1,t,φ = Y 2,t,φ and, consequently

u1(t, φ) = Y 1,t,φ (t) = Y 2,t,φ (t) = u2(t, φ).

�

Remark 5.3. From Theorem 4.5 in [12], besides relation (4.7), it can also be
inferred that for every (t, φ) ∈ [0, T ] × Λ the following representation formulas
hold, P-a.s. and for a.e. s ∈ [t, T ]:

Zt,φ(s) = ∇σu(s,Xt,φ);

U t,φ(s, z) = u
(
s, (Xt,φ)t,γ(s,Xt,φ,z)

) − u(s,Xt,φ),
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where we use the notation introduced in (1.3). These formulas could have
been used to prove directly the existence part of the above result, by taking
the expectation in equation (5.7) and using relation (5.5).

6. Financial application

In this section, we provide a financial application moving from the model
studied in, e.g. [13], or [19]. We consider a generalization of the so-called Large
Investor Problem, where a large investor wishes to invest in a given market,
buying or selling a stock. The investor has the peculiarity that his actions on
the market can affect the stock price. We refer to Example 14.1 in [15] for a
detailed example of the time-delayed setting for the large investor problem.

6.1. A perfect replication problem for a large investor

Concerning the problem of the perfect replication strategy for a large investor,
we generalize Example 14.1 in [15] by asking, in addition to path-dependent co-
efficients, the dynamic of the risky asset driven by a Poisson random measure.
Similar results are also presented in [11,19].

We denote the investor’s strategy by π and the investment portfolio by
Xπ and we assume that its past Xπ

r may affect directly the stock coefficients μ,
σ and γ and the bond rate. Consequently, we consider the following dynamic⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS0(t)
S0(t)

= r(t,Xπ(t),Xπ
t )dt,

S0(0) = 1,

dSi(t)
Si(t)

= μi (t,Xπ(t),Xπ
t ) dt + σi(t,Xπ(t),Xπ

t )dW (t)

+
∫
R0

γi(t,Xπ(t),Xπ
t , z)Ñ(dt, dz),

Si(0) = si > 0,

(6.1)

where ri, μi, σi and γi, i = 1, 2 are F
W,Ñ -predictable processes, FW,Ñ being

the natural filtration associated to the Brownian motion W and to the Poisson
random measure Ñ , with compensator defined according to Eq. (2.1).

The total amount of the portfolio of the large investor is described by

dXπ(t) = π1(t)
dS1(t)
S1(t)

+ π2(t)
dS2(t)
S2(t)

+ (Xπ(t) − π1(t) − π2(t))
dS0(t)
S0(t)

dt .

where, at any time t ∈ [0, T ], πi(t) represents the amount invested in the risky
asset Si, while Xπ(t) − π1(t) − π2(t) is the amount invested in the riskless one
S0.

Let us denote, for simplicity, φ := (φ1, φ2) for φ among the symbols S, π,
μ, σ or γ and by · the scalar product in R

2. The goal is to find an admissible
replicating strategy π ∈ A for a claim h(S(T )).
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We have that the portfolio X evolves according to

dXπ(t) =
π1(t)

S1(t)
dS1(t) +

π2(t)

S2(t)
dS2(t) +

Xπ (t) − π(t)

S0 (t)
dS0 (t)

= π(t) ·
[
μ (t, Xπ, Xπ

t ) dt + σ(t, Xπ, Xπ
t )dW (t) +

∫
R0

γ(t, Xπ, Xπ
t , z)Ñ(dt, dz)

]
+ [Xπ (t) − π1(t) − π2(t)] r(t, Xπ(t), Xπ

r )dt,

Hence, for t ∈ [0, T ], we have

Xπ(t) = h (S(T )) +
∫ T

t

F (s,Xπ(s),Xπ
s , π(s)) ds −

∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)Ñ(ds, dz), (6.2)

with final condition Xπ(T ) = h (S) by denoting

F (s, Xπ(s), Xπ
s , π(s))

:= −r(s, Xπ(s), Xπ
s ) (Xπ(s) − π1(s) − π2(s)) − π(s) · μ (s, Xπ(s), Xπ

s ) ;

Zπ(s) := π(s) · σ(s, Xπ(s), Xπ
s ) ;

Uπ(s, z) := π(s) · γ(s, Xπ(s), Xπ
s , z) .

(6.3)

The generator F can be rewritten to accommodate the dependence of Zπ and
Uπ by introducing the following transformation

F̄
(
s,Xπ(s),Xπ

s , Zπ(s), Ũπ(s)
)

= F (s,Xπ(s),Xπ
s , π(s)) (6.4)

since from Eq. (6.3) we have

[
π1 (s) π2 (s)

]
=

[
Zπ (s) Uπ (s, z)

] [
σ1(s,Xπ(s),Xπ

s ) γ1(s,Xπ(s),Xπ
s , z)

σ2(s,Xπ(s),Xπ
s ) γ2(s,Xπ(s),Xπ

s , z)

]−1

by imposing that the matrix
[
σT γT

]
is invertible.

We then ask the coefficients r, μ, σ and γ to be such that the function
F̄ : [0, T ] × R × L2 ([−δ, 0];R) × R × R → R satisfies assumptions (A4), (A5)
and (A9).

Furthermore, we need a couple of simplifying assumptions in order to fit
the theoretical framework of the article.

First, we introduce a functional aiming at encoding the forward process
in order to decouple the terminal condition in the BSDE (6.2) from the stock
forward dynamic (6.1). The risky assets vector S can be explicitly written, by a
variation of constants formula, as a functional of the random coefficients of the
stock (W and Ñ), on the wealth X and on the processes Z and U depending
on the allocation strategy π. Hence h(S(T )) can be written as

h(S(T )) = h̄
(
W, Ñ,Xπ, Zπ, Uπ

)
(6.5)

where h̄ is asked to satisfy, besides conditions (A6) and (A10) in the first two
coefficients, a Lipschitz condition in the last three with Lipschitz constant K1.
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Thus, we can rewrite (6.2) as

X(t) = h̄
(
W, Ñ, X, Z, U

)
+

∫ T

t

F̄
(
s, X(s), Xs, Z(s), Ũ(s)

)
ds −

∫ T

t

Z (s) dW (s)

−
∫ T

t

∫
R0

U(s, z)Ñ(ds, dz) t ∈ [0, T ] . (6.6)

If we assume that δ = T and the Lipschitz constants K and K1 are
sufficiently small, then the time-delayed BSDE (6.6) has a unique solution.
The setting is a little more general than ours, in the sense that the final
condition also depends on the path of the solution of the backward equation
(6.6), but one can use Theorem 14.1.1 in [15].

The further modelling concerns introducing the Markovian setting, i.e.
allowing the initial time and value to vary. Hence, we introduce the forward
processes W̄ and N̄ by⎧⎪⎨

⎪⎩
(W̄ (s), N̄(s)) =

(
φ1(t) +

∫ s

t

dW (r), φ2(t) +

∫ s

t

∫
R0

Ñ(dr, dz)

)
, s ∈ [t, T ],

(W̄ (s), N̄(s)) = (φ1(s), φ2(s)) , s ∈ [0, t),

(6.7)

with Brownian motion W , compensated Random measure Ñ and an initial
càdlàg datum φ = (φ1, φ2) ∈ Λ.

Finally, by recalling the coefficients F̄ , Z and U defined in Eq. (6.3) we
may write the following decoupled forward–backward stochastic system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̄ t,φ (s) = φ1 (t) +

∫ s

t
dW (r) , s ∈ [t, T ] ,

N̄t,φ (s) = φ2 (t) +

∫
R0

∫ s

t
dÑ(r, z), s ∈ [t, T ] ,(

W̄ t,φ (s) , N̄t,φ
)

= φ (s) , s ∈ [0, t),

Xt,φ (s) = h̄(W̄ t,φ, N̄t,φ, Xt,φ, Zt,φ, Ut,φ) +

∫ T

s
F̄

(
r, Xπ(r), Xπ

r , Zt,φ(r), Ũt,φ(r)
)
dr

−
∫ T

s
Zt,φ(r)dW (r) −

∫ T

s

∫
R0

Ut,φ(r)Ñ(dr, dz), s ∈ [t, T ] ,

Xt,φ (s) = Xs,φ (s) , Zt,φ (s) = Ut,φ (s, z) = 0, (s, z) ∈ [0, t) × R0.

(6.8)

where the BSDE coefficients are defined according to (6.3).
Then, imposing the same assumptions as before (where t = 0) there

exists a unique solution
(
Xt,φ, Zt,φ, U t,φ

)
(t,φ)∈[0,T ]×Λ

for the BSDE in (6.8).
Again, the final condition is a little more general that we have in our theo-
retical framework, but this can be easily modified by adapting the proof of
Theorem 3.3, as it is done, for example in Theorem 14.1.1 in [15].
Moreover, by Theorem 4.3, the solution of the backward equation in the above
system can be expressed as

Xt,φ (s) = u(s, W̄ t,φ, N̄ t,φ), for all s ∈ [t, T ] ,

for every (t, φ) ∈ [0, T ] × Λ, where u (t, φ) := Xt,φ (t). Furthermore, u is the
mild solution, according to Definition 5.1, of the following path-dependent
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PDE:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu(t, φ) +
1
2
∂2

xxu(t, φ) +
∫
R0

(
u(·, φ·,(0,1)) − u(t, φ) − ∂yu(t, φ)

)
ν(dz)

+F̄ (t, u(t, φ), (u (·, φ))t , ∂xu (t, φ) ,J u(t, φ)) = 0,

u(T, φ) = h̄
(
φ, u (·, φ) , ∂xu (·, φ) , u(·, φ·,(0,1)) − u(·, φ)

)
,

with (t, φ) ∈ [0, T ) × Λ.
We also present a concrete example of a jump-diffusion model for option

pricing that can help the reader to link the forward dynamic to a tractable
application. This example has a clear limitation if applied to our setting, such
as no path-dependence in the coefficients of the stock dynamic (6.9) but only in
the terminal condition h of the BSDE. Moreover, if we need to assume suitable
conditions on μ, σ and γ, e.g. asking μ bounded and σ, γ constant (w.r.t. X),
so that the terminal condition also satisfies the required Lipschitz condition.

Example 6.1. (Forward SDE with a discrete number of jumps). The stock price
may present a jump–diffusion dynamic with a discrete number of jumps trig-
gered by a Poisson process, namely we consider the following equation

dS(t)
S(t)

= μ (t) dt + σ(t)dW (t) + d

N(t)∑
i=1

(Vi − 1) , (6.9)

in place of Eq. (6.1), where N(t) is a standard Poisson process of fixed rate
and jumps size {Vi} modelled as a sequence of independent, identically, dis-
tributed non-negative random variables. We consider independence among all
the sources of randomness, namely W and N . We refer to, e.g., [26] for a
detailed treatment of this kind of jump-diffusion. Firstly, we notice that the
forward Eq. (6.9) can be explicitly solved by the following

S (t) = s0 exp

[∫ t

0

(
μ (s) − 1

2
σ2 (s)

)
ds +

∫ t

0

σ (s) dW (s)

] N(t)∑
i=1

Vi . (6.10)

If we assume no path-dependence in the coefficients, such as in Eq. (6.9), then
we may encode in the terminal condition of the BSDE (6.2), a dependence only
on W , N and {Vi}. Hence, by introducing the following functional

h (S) = h̃ (W,N, {Vi}) , (6.11)

we can decouple the FBSDEs system to fit the setting of Theorem 3.3.

7. Conclusions and future development

The core result of this paper relies on deriving a stochastic representation
for the solutions of a non-linear PDE and associating the PDE solution to a
FBSDE with jumps and a time-delayed generator. The presence of jumps both
in the forward and backward dynamic and, moreover, the dependence of the
generator on a (small) time-delayed coefficient represents the main aspect of
novelty arising in the analysis of this kind of FBSDE system. Furthermore, we
present an application for a large investor problem admitting a jump–diffusion
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dynamic. Throughout the article, we mention some possibilities to generalize
the setting of our equations such as considering the dependence of f also on
a delayed term for the processes Z and U , see Remark 2.1 for more details,
or in-depth analyzing the choice of a weaker topology, see Remark 4.2. A
different modelling choice deals with considering a further delay term affecting
the forward process, see [27] for more details. Furthermore, it might deserve
attention to investigate a discretization scheme for this equation, e.g. in line
with [7], for the considered equations to obtain a numerical approach based
on Neural Networks methods to efficiently compute an approximated solution
for the considered FBSDE.
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Proof of Theorem 3.3

Proof. The existence and the uniqueness are obtained by the Banach fixed
point theorem. We consider φ fixed in Λ and we define the map Γ on A with
A := C(

[0, T ] ; S2
0(R)

)
.

For R ∈ A, we define Γ(R) := Y , where, for t ∈ [0, T ], the triple of
adapted processes

(
Y t(s), Zt(s), U t(s, z)

)
s∈[t,T ]

is the unique solution of the
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following BSDE

Y t(s) = h(Xt,φ) +
∫ T

s

F (r,Xt,φ, Y t(r), Zt(r), Ũ t(r), Rt
r)dr

−
∫ T

s

Zt(r)dW (r) −
∫ T

s

∫
R

U t(r, z)Ñ(dr, dz) , s ∈ [t, T ] .

(A.1)

For s ∈ [0, t] we prolong the solution by taking Y t(s) := Y s(s) and
Zt(s) = U t,φ(s) := 0.

Step 1. Let us first show that Γ takes values in the Banach spaces A. We
take R ∈ A and we will prove that Y := Γ(R) ∈ A. Thus, for every t ∈ [0, T ]
we have to show that

Y t ∈ S
2
0(R) ,

and that the application

[0, T ] � t �→ Y t ∈ S
2
0(R) ,

is continuous.

Let t ∈ [0, T ] be fixed and t′ ∈ [0, T ]; with no loss of generality, we will
suppose that t < t′ and t′ − t < δ.

Concerning the solution of the BSDE defined in (A.1), we obtain the
following estimate

E
(
sups∈[0,T ] |Y t (s) − Y t′

(s) |2)
≤ E

(
sups∈[0,t′] |Y t (s) − Y t′

(s) |2) + E
(
sups∈[t′,T ] |Y t (s) − Y t′

(s) |2)
≤ 2E

(
sups∈[t,t′] |Y t (s) − Y t (t) |2) + 2E

(
sups∈[t,t′] |Y t (t) − Y s (s) |2)

+E
(
sups∈[t′,T ] |Y t (s) − Y t′

(s) |2).

We start by proving that

E
[

sup
s∈[t,t′]

|Y t (s) − Y t (t) |2] → 0,
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as t′ → t. By plugging the explicit solution and applying Doob’s inequality,
we get

E
(

sup
s∈[t,t′]

|Y t (s) − Y t (t) |2) = E

[
sup

s∈[t,t′]

∣∣∣ ∫ s

t

F (r, Xt,φ, Y t(r), Zt(r), Ũ t(r), Rt
r)dr+

−
∫ s

t

Zt(r)dW (r) −
∫ s

t

∫
R

U t(r, z)Ñ(dr, dz)
∣∣∣2]

≤ 3E

[∫ t′

t

∣∣∣F (r, Xt,φ, Y t(r), Zt(r), Ũ t(r), Rt
r)

∣∣∣2 dr

]
+

+ 3E

[
sup

s∈[t,t′]

∣∣∣∣
∫ s

t

Zt(r)dW (r)

∣∣∣∣
2
]

+ 3E

[
sup

s∈[t,t′]

∣∣∣∣
∫ s

t

∫
R

U t(r, z)Ñ(dr, dz)

∣∣∣∣
2
]

≤ 3E

[∫ t′

t

∣∣∣F (r, Xt,φ, Y t(r), Zt(r), Ũ t(r), Rt
r)

∣∣∣2 dr

]
+

+ 12E

[∫ t′

t

∣∣Zt(r)
∣∣2 dr

]
+ 12E

[∫ t′

t

∫
R

∣∣U t(r, z)
∣∣2 ν(dz)dr

]
,

From the absolute continuity of the Lebesgue integral, we deduce that

E
[

sup
s∈[t,t′]

|Y t (s) − Y t (t) |2] → 0 ,

as t′ → t.
Concerning the term E

(
sups∈[t′,T ] |Y t (s) − Y t′

(s) |2) let us denote for
short, only throughout this step,

ΔY (r) := Y t (r) − Y t′
(r) , ΔZ (r) := Zt (r) − Zt′

(r) ,

ΔU (r, z) := U t (r, z) − U t′
(r, z) , ΔRr (r) := Rt

r (r) − Rt′
r (r)

and

Δh := h(Xt,φ) − h(Xt′,φ),

ΔF (r) := F (r, Xt,φ, Y t (r) , Zt (r) , Ũ t (r) , Rt
r)

−F (r, Xt′,φ, Y t (r) , Zt (r) , Ũ t (r) , Rt
r).

We apply Itô’s formula to eβs|ΔY (s) |2 and we derive, for any β > 0 and
any s ∈ [t′, T ] ,
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eβs|ΔY (s) |2 +

∫ T

s

eβr|ΔZ (r) |2dr

+

∫ T

s

∫
R

eβr|ΔU (r, z) |2ν(dz)dr

= eβT |ΔY (T ) |2 − 2

∫ T

s

eβrΔY (r) ΔZ (r) · dW (r)

−2

∫ T

s

∫
R

eβrΔY (r) ΔU (r, z) Ñ(dr, dz) + 2

∫ T

s

eβrΔY (r)(
F (r, Xt,φY t (r) , Zt (r) , Ũ t (r) , Rt

r) − F (r, Xt′,φ, Y t′
(r) , Zt′

(r) , Ũ t′
(r) , Rt′

r )
)

dr

−
∫ T

s

∫
R

eβr|ΔU (r, z) |2Ñ(dr, dz).

We note that the following estimate∫ T

s

eβr

(∫ 0

−δ

(|ΔR (r + θ) |2) α(dθ)

)
dr =

∫ 0

−δ

[∫ T

s

eβr (|ΔR (r + θ) |2) dr

]
α(dθ)

≤ eβδ ·
∫ 0

−δ

α(dθ) ·
∫ T

0

eβr(|ΔR (r) |2)dr ≤ Teβδ sup
r∈[0,T ]

(
eβr|ΔR (r) |2),

holds. From assumptions (A3)–(A5), we have for any a > 0,

2

∫ T

s

eβrΔY (r)(
F (r, Xt,φ, Y t (r) , Zt (r) , Ũ t (r) , Rt

r) − F (r, Xt′,φ, Y t′
(r) , Zt′

(r) , Ũ t′
(r) , Rt′

r

)
dr

≤ a

∫ T

s

eβr|ΔY (r) |2dr +
3

a

∫ T

s

eβr|ΔF (r) |2dr

+
6L2

a

∫ T

s

eβr

(
|ΔY (r) |2 + |ΔZ (r) |2 +

∫
R

|ΔU (r, z) |2λ(z)ν(dz)

)
dr

+
3TKeβδ

a
sup

r∈[0,T ]

(
eβr|ΔR (r) |2) .

Therefore we have

eβs|ΔY (s) |2 +
(

β − a − 6L2

a

)∫ T

s

eβr|ΔY (r) |2dr

+
(

1 − 6L2

a

)∫ T

s

eβr|ΔZ (r) |2dr +
(

1 − 6L2

a

)
∫ T

s

∫
R

eβr|ΔU (r, z) |2λ(z)ν(dz)dr

≤ eβT |ΔY (T ) |2 +
3
a

∫ T

s

eβr|ΔF (r) |2dr

−2
∫ T

s

eβrΔY (r) ΔZ (r) · dW (r) − 2
∫ T

s

∫
R

eβrΔY (r) ΔU (r, z) Ñ(dr, dz)

+
3TKeβδ

a
sup

r∈[0,T ]

eβr|ΔR (r) |2 .
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We now choose β, a > 0 such that

a +
6L2

a
< β and

6L2

a
< 1, (A.2)

hence we obtain(
1 − 6L2

a

)
E

[ ∫ T

s

eβr|ΔZ (r) |2dr +

∫ T

s

∫
R

eβr|ΔU (r, z) |2λ(z)ν(dz)dr

]
≤

E
(
eβT |Δh|2) +

3

a
E

∫ T

s

eβr|ΔF (r) |2dr +
3TKeβδ

a
E

(
sup

r∈[0,T ]

eβr|ΔR (r) |2).(A.3)

By Burkholder–Davis–Gundy’s inequality, we have

2E

[
sup

s∈[t′,T ]

∣∣∣∣∣
∫ T

s

eβrΔY (r) ΔZ (r) · dW (r)

∣∣∣∣∣
]

≤ 1
4
E

[
sup

s∈[t′,T ]

eβs|ΔY (s) |2
]

+ 144E
∫ T

t′
eβr|ΔZ (r) |2dr.

and

2E

[
sup

s∈[t′,T ]

∣∣∣∣∣
∫ T

s

∫
R

eβrΔY (r) ΔU (r) Ñ(dr, dz)

∣∣∣∣∣
]

≤ 1
4
E

[
sup

s∈[t′,T ]

eβs|ΔY (s) |2
]

+ 144E
∫ T

t′

∫
R

eβr|ΔU (r, z) |2λ(z)ν(dz)dr.

which immediately implies

1
2
E

[
sup

s∈[t′,T ]

eβs|ΔY (s) |2
]

≤ E
(
eβT |Δh|2) +

3
a
E

∫ T

t′
eβr|ΔF (r) |2dr

+
3TKeβδ

a
E

(
sup

r∈[0,T ]

eβr|ΔR (r) |2) + 144E
∫ T

t′
|ΔZ (r) |2dr+

+144E
∫ T

t′

∫
R

eβr|ΔU (r, z) |2λ(z)ν(dz)dr.

Hence, we have

1

2
E

(
sup

s∈[t′,T ]

eβs|ΔY (s) |2
)

≤ E
(
eβT |Δh|2) +

3

a
C1E

∫ T

t′
eβr|ΔF (r) |2dr

+
3TKeβδC1

a
E

(
sup

r∈[0,T ]

eβr|ΔR (r) |2) ,

(A.4)

where

C1 := 1 +
144

1 − 6L2/a
.

Exploiting thus assumptions (A3) and (A5) together with the fact that
X ·,φ is continuous and bounded, we have

C1E
(
eβT |Δh|2) +

3
a
C1E

∫ T

t′
eβr|ΔF (r) |2dr → 0 as t′ → t .
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Since R ∈ A, and therefore we have

E

[
sup

r∈[0,T ]

eβr|ΔR (r) |2
]

→ 0 ,

as t′ → t, we have

E

[
sup

s∈[t′,T ]

eβs|ΔY (s) |2
]

→ 0 , (A.5)

as t′ → t.

We are left to show that the term E
(
sups∈[t,t′] |Y t (t) − Y s (s) |2) is also

converging to 0 as t′ → t.
Since the map t �→ Y t (t) is deterministic, we have from equation (A.1),

Y t (t) − Y s (s) = E
[
Y t (t) − Y s (s)

]
= E

[
h(Xt,φ) − h(Xs,φ)

]
+ E

∫ T

t

F (r, Xt,φ, Y t (r) , Zt (r) , Ũ t (r) , Rt
r)dr

−E

∫ T

s

F (r, Xs,φ, Y s (r) , Zs (r) , Ũs (r) , Rs
r)dr

= E
[
h(Xt,φ) − h(Xs,φ)

]
+ E

∫ s

t

F (r, Xt,φ, Y t (r) , Zt (r) , Ũ t (r) , Rt
r)dr

+E

∫ T

s

[
F (r, Xt,φ, Y t (r) , Zt (r) , Ũ t (r) , Rt

r)

−F (r, Xs,φ, Y s (r) , Zs (r) , Ũs (r) , Rs
r)

]
dr.

Using then the assumption (A3) we have

|Y t (t) − Y s (s) | ≤ E
∣∣h(Xt,φ) − h(Xs,φ)

∣∣ + E

∫ s

t

L
(|Y t (r) | + |Zt (r) |

+
∣∣∣ ∫

R
Ut (r, z) λ(z)ν(dz)

∣∣∣) dr

+

√
K

∫ s

t

E

[∫ 0

−δ

(|Rt (r + θ) |2) α(dθ)

]
dr · √

s − t + E

∫ s

t

∣∣F (r, Xt,φ, 0, 0, 0, 0, 0, 0)
∣∣dr

+E

∫ T

s

∣∣F (r, Xt,φ, Y t (r) , Zt (r) , Ũt (r) , Rt
r) − F (r, Xs,φ, Y t (r) , Zt (r) , Ũt (r) , Rt

r)
∣∣dr

+E

∫ T

s

L

(
|Y t (r) − Y s (r) | + |Zt (r) − Zs (r) | +

∣∣∣ ∫
R

Ut (r, z) − Us (r, z) λ(z)ν(dz)
∣∣∣) dr

+

√
K(T − s)

∫ T

s

E

[∫ 0

−δ

(
|Rt (r + θ) − Rs (r + θ) |2

∣∣∣) α(dθ)

]
dr ,

and therefore we obtain
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|Y t (t) − Y s (s) | ≤ E
∣∣h(Xt,φ) − h(Xs,φ)

∣∣
+L

√
s − t

√
TE sup

r∈[0,T ]
|Y t (r) |2 + E

∫ T

0
|Zt (r) |2dr + E

∫ T

0

∫
R

|Ut (r, z) |2λ(z)ν(dz)dr

+
√

K
√

s − t
√

TE sup
r∈[0,T ]

|Rt (r) |2 + (s − t) M(1 + E||Xt,φ||pT )

+E

∫ T

s

∣∣F (r, Xt,φ, Y t (r) , Zt (r) , Ũt (r) , Rt
r) − F (r, Xs,φ, Zt (r) , Ũt (r) , Rt

r)
∣∣dr

+L
√

T − s

(
TE sup

r∈[s,T ]
|Y t (r) − Y s (r) |2 + E

∫ T

s

|Zt (r) − Zs (r) |2dr

+E

∫ T

s

∫
R

|Ut (r, z) − Us,z (r, z) |2λ(z)ν(dz)dr

)1

2

+
√

K
√

T − s
√

TE supr∈[0,T ] |Rt (r) − Rs (r) |2.

Taking again into account the fact that R ∈ A, previous step and as-
sumptions (A3) and (A5), we infer that

E

[
sup

s∈[t,t′]
|Y t (t) − Y s (s) |

]
→ 0, as t′ → t. (A.6)

Concerning the term E
∫ T

0
|Zt (r) − Zt′

(r) |2dr, we see that

E

∫ T

0

|Zt (r) − Zt′
(r) |2dr = E

∫ t′

0

|Zt (r) − Zt′
(r) |2dr + E

∫ T

t′
|Zt (r) − Zt′

(r) |2dr

= E

∫ t′

t

|Zt (r) |2dr + E

∫ T

t′
|Zt (r) − Zt′

(r) |2dr,

hence, by (A.3),

E

∫ T

0

|Zt (r) − Zt′
(r) |2dr → 0, as t′ → t. (A.7)

Analogously, we can infer that

E

∫ T

0

∫
R

|U t (r, z) − U t′
(r, z) |2λ(z)ν(dz)dr → 0 ,

as t′ → t.
Step II. Step 2. We are going to prove that Γ is a contraction on A with
respect to the norm

||Y ||A :=

(
sup

t∈[0,T ]

E

[
sup

r∈[0,T ]

eβr|Y t (r) |2
])1/2

,

Let us recall that Γ : A → A is defined by Γ (R) = Y being Y the process
coming from the solution of the BSDE (A.1).
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Let us consider R1, R2 ∈ A and Y 1 := Γ
(
R1

)
, Y 2 := Γ

(
R2

)
. For the

sake of brevity, we will denote in what follows

ΔF t (r) := F (r,Xt,φ, Y 1,t (r) , Z1,t (r) , Ũ1,t (r) , R1,t
r )

−F (r,Xt,φ, Y 2,t (r) , Z2,t (r) , Ũ2,t (r) , R2,t
r ),

ΔRt (r) := R1,t (r) − R2,t (r) , ΔY t (r) := Y 1,t (r) − Y 2,t (r)
ΔZt (r) := Z1,t (r) − Z2,t (r) , ΔU t (r) := U1,t (r) − U2,t (r) .

Proceeding as in Step I , we have from Itô’s formula, for any s ∈ [t, T ]
and β > 0,

eβs|ΔY t (s) |2 + β

∫ T

s

eβr|ΔY t (r) |2dr +
∫ T

s

eβr|ΔZt (r) |2dr

+
∫ T

s

∫
R

eβr|ΔU t (r, z) |2λ(z)ν(dz)dr

= 2
∫ T

s

eβrΔY t (r) ΔF t (r) dr − 2
∫ T

s

eβrΔY t (r) ΔZt (r) · dW (r)

−2
∫ T

s

∫
R

eβrΔY t (r) ΔU t (r, z) Ñ(dr, dz).

(A.8)

Noticing that it holds

2K

a

∫ T

s

eβr

(∫ 0

−δ

(∣∣ΔRt(r + θ)
∣∣2) α(dθ)

)
dr

≤ 2K
a

∫ 0

−δ

(∫ T

s
eβr

(
|ΔRt(r + θ)|2

)
dr

)
α(dθ)

≤ 2K

a

∫ 0

−δ

(∫ T+r

s+r

eβ(r′−θ)
(∣∣ΔRt(r′)

∣∣2) dr′
)

α(dθ)

≤ 2K
a

∫ 0

−δ
e−βθα(dθ) · ∫ T

s−δ
eβr

(
|ΔRt(r)|2

∣∣∣) dr

≤ 2Keβδ

a

∫ T

s−δ

eβr
(∣∣ΔRt(r)

∣∣2) dr.

we immediately have, from assumptions (A4)–(A6), that for any a > 0,
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2

∣∣∣∣∣
∫ T

s

eβrΔY t (r) ΔF t (r) dr

∣∣∣∣∣ ≤ 2
∫ T

s

eβr|ΔY t (r) ,ΔF t (r) |dr

≤ a

∫ T

s

eβr|ΔY t (r) |2 +
1
a

∫ T

s

eβr|ΔF t (r) |2dr

≤ a

∫ T

s

eβr|ΔY t (r) |2 +
2
a

∫ T

s

eβrL2

(
|ΔY t (r) | + |ΔZt (r) +

∣∣∣ ∫
R

ΔU t (r, z) λ(z)ν(dz)
∣∣∣)2

dr

+
2
a

∫ T

s

eβr

(
K

∫ 0

−δ

(∣∣ΔRt(r + θ)
∣∣2) α(dθ)

)
dr

≤ a

∫ T

s

eβr|ΔY t (r) |2 +
4L2

a∫ T

s

eβr

(
|ΔY t (r) |2 + |ΔZt (r) |2 +

∣∣∣ ∫
R

ΔU t (r, z) λ(z)ν(dz)
∣∣∣2) dr

+
2Keβδ

a

∫ T

s−δ

eβr
(∣∣ΔRt(r)

∣∣2) dr.

(A.9)

Therefore equation (A.8) yields

eβs|ΔY t (s) |2 +

(
β − a − 4L2

a

) ∫ T

s
eβr|ΔY t (r) |2dr +

(
1 − 4L2

a

) ∫ T

s
eβr|ΔZt (r) |2dr

+

(
1 − 4L2

a

) ∫ T

s

∫
R0

eβr|ΔUt (r, z) |2λ(z)ν(dz)dr

≤ 2Keβδ

a
T sup

r∈[0,T ]
eβr|ΔRt (r) |2 − 2

∫ T

s
eβrΔY t (r)ΔZt (r) · dW (r)

−2

∫ T

s

∫
R0

eβrΔY t (r) , ΔUt (r, z) Ñ(dr, dz).

(A.10)

Let now β, a > 0 satisfying

β > a +
4L2

a
and 1 >

4L2

a
, (A.11)

we have

(
1 − 4L2

a

)
E

∫ T

s

eβr|ΔZt (r) |2dr +
(

1 − 4L2

a

)
E∫ T

s

∫
R0

eβr|ΔU t(r, z)|2λ(z)ν(dz)dr

≤ 2TKeβδ

a
E

(
sup

r∈[0,T ]

eβr|ΔRt (r) |2
) (A.12)
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Exploiting now Burkholder–Davis–Gundy’s inequality, we have

2E

[
sup

s∈[t,T ]

∣∣∣ ∫ T

s

eβrΔY t (r) ΔZt (r) · dW (r)
∣∣∣
]

≤ 1
4
E

[
sup

s∈[t,T ]

eβs|ΔY t (s) |2
]

+ 144E
∫ T

t

eβr|ΔZt (r) |2dr,

and, analogously,

2E

[
sup

s∈[t′,T ]

∣∣∣ ∫ T

s

∫
R

eβrΔY t (r) ΔU t (r) Ñ(dr, dz)
∣∣∣
]

≤ 1
4
E

[
sup

s∈[t,T ]

eβs|ΔY t (s) |2
]

+ 144E
∫ T

t

∫
R\{0}

eβr|ΔU t (r, z) |2λ(z)ν(dz)dr.

which implies

E

[
sup

s∈[t,T ]

eβs|ΔY t (s) |2
]

≤ 2Keβδ

a
TE

(
sup

s∈[0,T ]

eβs|ΔRt (s) |2)

+2E

[
sup

s∈[t,T ]

∣∣∣ ∫ T

s

eβrΔY t (r) ΔZt (r) · dW (r)
∣∣∣
]

+2E

[
sup

s∈[t′,T ]

∣∣∣ ∫ T

s

∫
R

eβrΔY t (r) ΔU t (r) Ñ(dr, dz)
∣∣∣
]

≤ 2Keβδ

a
TE

[
sup

s∈[0,T ]

eβs|ΔRt (s) |2
]

+
1
4
E

[
sup

s∈[t,T ]

eβs|ΔY t (s) |2
]

+ 144E
∫ T

t

eβr|ΔZt (r) |2dr

+
1
4
E

[
sup

s∈[t,T ]

eβs|ΔY t (s) |2
]

+ 144E
∫ T

t

∫
R0

eβr|ΔU t (r, z) |2λ(z)ν(dz)dr.

Hence, we have

E

[
sup

s∈[t,T ]

eβs|ΔY t (s) |2
]

≤ 4TKeβδ

a
C1E

[
sup

s∈[0,T ]

eβs|ΔRt (s] |2
]

(A.13)

where we have denoted by C1 := 1 + 144
1−4L2/a .

Let us now consider the term E
(
sups∈[0,t] e

βs|ΔY (s) |2). From equation
(A.1), we see that,

E
(

sup
s∈[0,t]

eβs|ΔY t (s) |2) = E
(

sup
s∈[0,t]

eβs|Y 1,t(s) − Y 2,t(s)|2)
= E

(
sup

s∈[0,t]

eβs|Y 1,s(s) − Y 2,s(s)|2) = sup
s∈[0,t]

eβs|ΔY s (s) |2 =

= sup
s∈[0,t]

E
(
eβs|ΔY s (s) |2)

(A.14)
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so that, exploiting Itô’s formula and proceeding as above, we obtain

E
(
eβs|ΔY s (s) |2) ≤ 2TKeβδ

a
E

[
sup

r∈[0,T ]

eβr|ΔRs (r) |2
]

. (A.15)

Thus from inequalities (A.12–A.15) we obtain

E

[
sup

s∈[0,T ]
eβr|ΔY t (s) |2

]
+ E

∫ T

0
eβr|ΔZt (r) |2dr + E

∫ T

0

∫
R

eβr|ΔUt (r, z) |2λ(z)ν(dz)dr

≤ 4TKeβδ

a
C1E

[
sup

s∈[0,T ]
eβs|ΔRt (s) |2

]
+

2TKeβδ

a (1 − 4L2/a)
E

[
sup

r∈[0,T ]
eβr|ΔRt (r) |2

]

+
2TKeβδ

a
sup

s∈[0,t]
E

[
sup

r∈[0,T ]
eβr|ΔRs (r) |2

]
.

Then, passing to the supremum for t ∈ [0, T ] we get

||Y 1 − Y 2||2A ≤ 2Keβδ

a

(
3 + 289

1−4L2/a

)
max {1, T}

[
||R1 − R2||2A

]
.

By choosing now a := 4 L2

χ and β slightly bigger than χ+ 4L2

χ , condition (A.11)
is satisfied and, by restriction (C) we have

2Keβδ

a

(
3 +

289
1 − 4L2/a

)
max {1, T} < 1. (A.16)

Eventually, since R is chosen arbitrarily, it follows that the application Γ
is a contraction on A. Therefore, there exists a unique fixed point Γ(R) = Y ∈
A and this finishes the proof of the existence and uniqueness of a solution to
BSDE with delay and driven by Lèvy process, described by Eq. (2.5). �
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