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Abstract. In this paper, we study the Cauchy–Dirichlet problem{
∂tu − div (Dξf(t, Du)) = 0 in ΩT ,
u = uo on ∂PΩT ,

where Ω ⊂ R
n is a convex and bounded domain, f : [0, T ] × R

n → R is
L1-integrable in time and convex in the second variable. Assuming that
the initial and boundary datum uo : Ω → R satisfies the bounded slope
condition, we prove the existence of a unique variational solution that is
Lipschitz continuous in the space variable.
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1. Introduction and results

It follows from classical theory [15,17,18,26,29] (see also [14, Chapter 1]) that
any variational functional F : W 1,∞(Ω) → R of the form

F (v) :=
∫

Ω

f(Dv) dx,

where f : Rn → R is convex and Ω ⊂ R
n is a convex domain, admits a unique

Lipschitz continuous minimizer in the class {v ∈ W 1,∞(Ω) : v = vo on ∂Ω}
provided that the boundary datum vo satisfies the bounded slope condition
(see Definition 2.1). Modern elliptic results involving one-sided bounded slope
conditions or more general integrands include for example [2–4,10,13,22–24].

Surprisingly, while Hardt and Zhou [16, Chapter 4] used the bounded
slope condition in a regularity argument in a time-dependent setting involving
functionals with linear growth, an evolutionary analogue of the above sta-
tionary theorem was established only rather recently by Bögelein, Duzaar,
Marcellini and Signoriello [7]. They considered the Cauchy–Dirichlet problem
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{
∂tu − div (Df(Du)) = 0 in ΩT ,
u = uo on ∂PΩT ,

where ΩT := Ω × (0, T ) with Ω ⊂ R
n and T ∈ (0,∞] denotes a space-time

cylinder and ∂PΩT := ∂Ω× (0, T )∪ (Ω×{0}) its parabolic boundary. Given a
Lipschitz continuous initial and boundary datum uo that satisfies the bounded
slope condition, in [7] it was proven that the above problem admits a unique
variational solution that is globally Lipschitz continuous with respect to the
spatial variables. Moreover, if the integrand f fulfills an additional p-coercivity
condition with some p > 1, Bögelein and Stanin [8] obtained the local Lipschitz
continuity of variational solutions in space and time under the assumption
that uo is convex and Lipschitz continuous. Further, global continuity of u was
proven in the case that Ω is uniformly convex.

For the same class of integrands and merely convex domains Ω, Stanin [30]
showed that variational solutions are still globally Hölder continuous even if the
convexity assumption on uo is dropped. Equations with lower-order terms were
considered by Rainer, Siltakoski and Stanin [27] who extended a stationary
Haar-Rado type theorem by Mariconda and Treu [24] to the parabolic problem{

∂tu − div (Df(Du)) + Dug(x, u) = 0 in ΩT ,
u = uo on ∂PΩT ,

where f is convex and p-coercive with some p > 1 and the lower-order term
g satisfies a technical condition, in particular convexity with respect to u. As
a corollary, the authors in [27] obtained the global Lipschitz continuity with
respect to the spatial variables of variational solutions under the classical two-
sided bounded slope condition provided that f ∈ C2 is uniformly convex in a
suitable sense.

Existence and regularity of solutions under general growth conditions,
such as the so called p−q-growth conditions, have been recently considered by
many authors, see for example [21,25] and the references therein. We emphasize
that in the present manuscript, because of the bounded slope condition, no
special growth conditions are imposed on the elliptic part of the operator.

The objective of the present paper is to extend the result of [7] to include
time-dependent integrands. In order to focus on the novelty and to include
integrands f with linear growth, we consider the classical bounded slope con-
dition and avoid lower-order terms. We are concerned with parabolic partial
differential equations of the form

∂tu − div(Dξf(t,Du)) = 0 in ΩT , (1.1)

where Ω ⊂ R
n is a convex and bounded domain and T ∈ (0,∞]. The integrand

f : [0, T ] × R
n → R is assumed to be a Carathéodory function that satisfies

the following assumptions:{
ξ �→ f(t, ξ) is convex in R

n for a.e. t ∈ [0, T ],
t �→ f(t, ξ) ∈ L1(0, τ) for all ξ ∈ R

n and τ ∈ (0, T ] ∩ R.
(1.2)

In particular, for any L > 0 and τ ∈ (0, T ] ∩ R the map t �→ max|ξ|≤L |f(t, ξ)|
belongs to L1(0, τ) (see Sect. 2.3 below). Therefore, for any τ ∈ (0, T ] ∩R and
V ∈ L∞(ΩT ,Rn) we have that
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∫∫
ΩT

|f(t, V )|dxdt < ∞.

We emphasize that t �→ f(t, ξ) is neither assumed to be continuous nor weakly
differentiable.

Examples of admissible integrands are functionals with linear growth such
as the area integrand f(ξ) =

√
1 + |ξ|2, integrands with exponential growth

like f(ξ) = exp(|ξ|2), Orlicz type functionals such as f(ξ) = |ξ| log(1+ |ξ|) and
time-dependent combinations thereof like f(t, ξ) = χ[0,to]f1(ξ) + χ(to,T ]f2(ξ)
or more general f(t, ξ) =

∑m
i=1 ai(t)fi(ξ) for functions ai ∈ L1(0, T ), i =

1, . . . , m.
In the present paper, we define variational solutions in the same way as

in [5]. This notion of solution, inspired by Lichnewsky and Temam [20], was
introduced by Bousquet [2,3] in the time-independent setting. We consider the
following class of functions that are Lipschitz continuous in space

K∞ := {v ∈ L∞(ΩT ) ∩ C0([0, T ];L2(Ω)) : Dv ∈ L∞(ΩT ,Rn)}.

Further, we denote the subclass related to time-independent boundary values
uo ∈ W 1,∞(Ω) by

K∞
uo

:= {v ∈ K∞(ΩT ) : v = uo on the lateral boundary ∂Ω × (0, T )}.

Definition 1.1. (Variational solutions) Assume that f : [0, T ] × R
n → R sat-

isfies (1.2) and consider a boundary datum uo ∈ W 1,∞(Ω). In the case T ∈
(0,∞) a map u ∈ K∞

uo
(ΩT ) is called a variational solution to the Cauchy–

Dirichlet problem associated with (1.1) and uo in ΩT if and only if the varia-
tional inequality∫∫

ΩT

f(t,Du) dxdt ≤
∫∫

ΩT

∂tv(v − u) + f(t,Dv) dxdt

+ 1
2‖v(0) − uo‖2

L2(Ω) − 1
2‖(v − u)(T )‖2

L2(Ω) (1.3)

holds true for any comparison map v ∈ K∞
uo

(ΩT ) with ∂tv ∈ L2(ΩT ). If T = ∞
and u ∈ K∞

uo
(Ω∞) is a variational solution in Ωτ for any τ ∈ (0,∞), u is called

a global variational solution or variational solution in Ω∞ to the Cauchy–
Dirichlet problem associated with (1.1) and uo.

Our main result concerning the existence of variational solutions which
are Lipschitz continuous with respect to the spatial variables can be formulated
as follows.

Theorem 1.2. Let Ω ⊂ R
n be an open, bounded and convex set and T ∈ (0,∞].

Assume that f : [0, T ] × R
n → R satisfies hypotheses (1.2). Further, let uo ∈

W 1,∞(ΩT ) denote a boundary datum such that the bounded slope condition with
some positive constant Q (see Definition 2.1 below) is fulfilled for Uo := uo|∂Ω.
Then, there exists a unique variational solution u to the Cauchy–Dirichlet
problem associated with (1.1) and uo in ΩT . Moreover, u satisfies the gradient
bound

‖Du‖L∞(ΩT ,Rn) ≤ max{Q, ‖Duo‖L∞(Ω,Rn)}. (1.4)
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Furthermore, we show that variational solutions to (1.1) are weak solu-
tions and consequently, they are 1/2-Hölder continuous in time provided that
the map ξ �→ f(t, ξ) is C1 and uniformly locally Lipschitz in the following
sense: For each L > 0, there exists a constant ML > 0 such that

sup
t∈(0,T )

|Dξf(t, ξ)| < ML for all ξ ∈ BL(0). (1.5)

Theorem 1.3. Suppose that the assumptions of Theorem 1.2 hold. Moreover,
assume that the mapping ξ �→ f(t, ξ) is in C1(Rn) for almost all t ∈ (0, T ) and
satisfies (1.5). Then the unique variational solution u to the Cauchy–Dirichlet
problem associated with (1.1) and uo is a weak solution (see (7.1)). Further,
it is contained in the space of Hölder continuous functions C0;1,1/2(ΩT ).

To prove Theorem 1.2, we may assume without a loss of generality that
T < ∞, see the beginning of Sect. 6. The proof is divided into three parts. We
first assume that the integrand is suitably regular and in particular has a weak
derivative with respect to the time variable. Then the method of minimizing
movements yields a solution u to the so called gradient constrained obstacle
problem to (1.1), where the L∞-norms of the gradients of the solution and
the comparison maps are bounded by a fixed constant L ∈ (0,∞). Moreover,
the regularity assumption on f ensures that u has a weak time derivative in
L2(ΩT ).

Next, under the same regularity assumptions on f as in the first step,
a standard argument exploiting the bounded slope condition and the maxi-
mum principle yields the uniform gradient bound (1.4) for u. Choosing L large
enough, this in turn allows us to deduce that u is in fact already a solution to
the unconstrained problem in the sense of Definition 1.1.

To deal with a general integrand f , we consider its Steklov average fε.
Since fε admits a weak time derivative, by the results mentioned in the preced-
ing paragraph there exists a solution uε to the Cauchy–Dirichlet problem asso-
ciated with fε in the sense of Definition 1.1. Moreover, since for each ε > 0 the
solution uε satisfies the gradient bound (1.4) and uε = uo on ∂Ω×(0, T ), there
exists a limit map u ∈ L∞(ΩT ) such that uε → u uniformly and Duε

∗⇁ Du
weakly∗ up to a subsequence as ε ↓ 0. This allows us to conclude that u
is a variational solution in the sense of Definition 1.1, finishing the proof of
Theorem 1.2.

The proof of Theorem 1.3 is similar to the one found in [7, Chapter 8].
The C1 assumption on the integrand ensures the validity of the weak Euler–
Lagrange equation, which lets us apply the argument from [6, pp. 23–24] to
prove a Poincaré inequality for variational solutions. The Hölder continuity
then follows from the Campanato space characterization of Hölder continuity
by Da Prato [9].

The paper is organized as follows. Section 2 contains preliminary defini-
tions and basic observations about the integrand. In Sect. 3 we prove certain
properties of variational solutions that are required in later sections, including
the comparison and maximum principles. Under additional regularity assump-
tions on f we use the method of minimizing movements to prove the existence
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of variational solutions to the gradient constrained problem in Sect. 4 and in
Sect. 5 we consider the unconstrained problem. Finally, in Sect. 6 we consider
general integrands and finish the proof of Theorem 1.2 and Hölder continuity
in time is proven in Sect. 7 under additional regularity assumptions.

2. Preliminaries

2.1. Notation

Throughout the paper, for p ∈ [1,∞] and m ∈ N the space Lp(Ω,Rm) denotes
the usual Lebesgue space (we omit R

m if m = 1) and W 1,p(Ω) and W 1,p
0 (Ω)

denote the usual Sobolev spaces. If Ω is a bounded Lipschitz domain, W 1,∞(Ω)
can be identified with the space C0,1(Ω) of functions v : Ω → R that are
Lipschitz continuous (with Lipschitz constant [v]0,1 = ‖Dv‖L∞(Ω,Rn)) up to
the boundary of Ω. Note that in particular any convex set has a Lipschitz
continuous boundary, since convex functions are locally Lipschitz [11, Corollary
2.4]. Further, for a Banach space X and an integrability exponent p ∈ [1,∞] we
write Lp(0, T ;X) for the space of Bochner measurable functions v : [0, T ] → X
with t �→ ‖v(t)‖X ∈ Lp(0, T ). Moreover, C0([0, T ];X) is defined as the space of
the continuous functions v : [0, T ] → X. For maps v defined in ΩT we also use
the short notation v(t) for the partial map x �→ v(x, t) defined in Ω. Finally,
for a set A ⊂ R

m, the characteristic function χA : Rm → {0, 1} is given by
χA(x) = 1 if x ∈ A and χA(x) = 0 else.

2.2. Bounded slope condition

In the proof of the existence result in Sect. 5 it is crucial that there exist
affine comparison functions below and above the initial/boundary datum uo

coinciding with uo in a point xo ∈ ∂Ω. This is ensured by applying the following
bounded slope condition to uo|∂Ω.

Definition 2.1. A function U : ∂Ω → R satisfies the bounded slope condition
with constant Q > 0 if for any xo ∈ ∂Ω there exist two affine functions
w±

xo
: Rn → R with Lipschitz constants [w±

xo
]0,1 ≤ Q such that{

w−
xo

(x) ≤ U(x) ≤ w+
xo

(x) for any x ∈ ∂Ω,
w−

xo
(xo) = U(xo) = w+

xo
(xo).

Note that unless U itself is affine, the convexity of Ω is necessary for the
bounded slope condition to hold. Even strict convexity of Ω is not sufficient for
general U , since the boundary can become “too flat”. However, we know that
for a uniformly convex, bounded C2-domain Ω and v ∈ C2(Rn) the restriction
U = v|∂Ω fulfills the bounded slope condition. For more details, we refer to
[14,26]. On the other hand, in the parabolic setting the following example is
relevant: Consider a convex domain Ω with flat parts (such as a rectangle) and
a Lipschitz continuous function uo that vanishes at the boundary of Ω; i.e. we
prescribe zero lateral boundary values, but the initial datum is not necessarily
identical to zero.

We need the following lemma from [7, Lemma 2.3]. It states that if uo is
Lipschitz and uo|∂Ω satisfies the bounded slope condition, then uo can be
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squeezed between two affine functions that touch uo at a given boundary
boundary point and the Lipschitz constant of these affine functions is bounded
by either the Lipschitz constant of uo or the constant in the bounded slope
condition.

Lemma 2.2. Let uo ∈ C0,1(Ω) with Lipschitz constant [uo]0,1 ≤ Q1 such that
the restriction U := uo|∂Ω satisfies the bounded slope condition with constant
Q2. Then for any xo ∈ ∂Ω there exist two affine functions w±

xo
with [w±

xo
]0,1 ≤

max{Q1, Q2} such that{
w−

xo
(x) ≤ uo(x) ≤ w+

xo
(x) for any x ∈ Ω,

w−
xo

(xo) = uo(xo) = w+
xo

(xo).

2.3. Dominating functions for the integrand

Observe that for any L > 0 the map t �→ max|ξ|≤L f(t, ξ) is measurable, since
we have that max|ξ|≤L f(t, ξ) = maxξ∈BL(0)∩Qn f(t, ξ) and the maximum of
countably many measurable functions is measurable. The same holds true for
t �→ min|ξ|≤L f(t, ξ). In the following lemma, we show that they are contained
in L1(0, T ).

Lemma 2.3. Let T ∈ (0,∞) and assume that f : [0, T ]×R
n → R satisfies (1.2).

Then, for any L > 0 there exists a function gL ∈ L1(0, T ) such that

|f(t, ξ)| ≤ gL(t) for all t ∈ (0, T ) and ξ ∈ BL(0). (2.1)

Proof. First, we show that for any L > 0, we have that

t �→ max
|ξ|≤L

f(t, ξ) ∈ L1(0, T ). (2.2)

To this end, fix ξ1, . . . , ξn+1 ∈ R
n such that the closed ball BL(0) is a subset

of the simplex

Δ :=

{
ξ ∈ R

n : ξ =
n+1∑
i=1

λiξi with 0 ≤ λi ≤ 1, i = 1, . . . , n + 1,

n+1∑
i=1

λi = 1

}
.

Note that for any t ∈ [0, T ] such that Rn � ξ �→ f(t, ξ) is convex, the mapping
ξ �→ f(t, ξ) attains its maximum in one of the points ξ1, . . . , ξn+1. Hence, for
a.e. t we obtain that

f(t, 0) ≤ max
|ξ|≤L

f(t, ξ) ≤
n+1∑
i=1

|f(t, ξi)|.

Since the maps t �→ f(t, 0) and t �→ f(t, ξi), i = 1, . . . , n + 1, belong to
L1(0, T ) by (1.2)2, this implies (2.2).

Next, we fix L > 0 and prove

t �→ min
|ξ|≤L

f(t, ξ) ∈ L1(0, T ). (2.3)

Consider t ∈ [0, T ] such that ξ �→ f(t, ξ) is convex. Then, there exist ξmin, ξmax

∈ BL(0) such that f(t, ξmin)=min|ξ|≤L f(t, ξ) and f(t, ξmax)=max|ξ|≤L f(t, ξ).
Assume that ξmin = ξmax (otherwise, ξ �→ f(t, ξ) is constant in BL(0) and



NoDEA The bounded slope condition for parabolic equations Page 7 of 34 76

thus f(t, 0) = min|ξ|≤L) f(t, ξ)). First, note that for C := 1
2 L (f(t, ξmax) −

f(t, ξmin)) ∈ (0,∞), we find that

f(t, ξmin) ≤ f(t, ξmax) − C|ξmax − ξmin|.
Furthermore, since ξ �→ f(t, ξ) is convex in R

n, its subdifferential at ξmax is
non-empty [11, Proposition 5.2], i.e. there exists η = η(ξmax) ∈ R

n such that

f(t, ξ) ≥ f(t, ξmax) + η · (ξ − ξmax)

for any ξ ∈ R
n. In particular, we have that

f(t, ξmin) ≥ f(t, ξmax) + η · (ξmin − ξmax)
= f(t, ξmax) + cos(α)|η||ξmin − ξmax|,

where α denotes the angle between η and ξmin −ξmax. Together, the preceding
two inequalities imply that

cos(α)|η| ≤ −C.

Next, choose s > 1 such that ξo := ξmin + s(ξmax − ξmin) ∈ ∂BL+1(0). Note
that the vector ξo−ξmax = (1−s)(ξmin−ξmax) points in the opposite direction
as ξmin−ξmax. Therefore, the angle between η and ξo−ξmax is π−α. Using the
facts that cos(π − α) = − cos(α) and |ξo − ξmax| ≥ 1, the preceding inequality
and the definition of C, we conclude that

max
|ξ|≤L+1

f(t, ξ) ≥ f(t, ξo) ≥ f(t, ξmax) + η · (ξo − ξmax)

= f(t, ξmax) − cos(α)|η||ξo − ξmax|
≥ f(t, ξmax) + C

= max
|ξ|≤L

f(t, ξ) + 1
2L (max

|ξ|≤L
f(t, ξ)) − min

|ξ|≤L
f(t, ξ))).

This is equivalent to

(2L + 1) max
|ξ|≤L

f(t, ξ) − 2L max
|ξ|≤L+1

f(t, ξ) ≤ min
|ξ|≤L

f(t, ξ) ≤ max
|ξ|≤L

f(t, ξ),

which holds for almost every t ∈ [0, T ]. Since we have already shown that
t �→ max|ξ|≤L f(t, ξ) and t �→ max|ξ|≤L+1 f(t, ξ) are contained in L1(0, T ), the
preceding inequality proves (2.3). The claim of Lemma 2.3 follows by combin-
ing (2.2) and (2.3). �

2.4. Lower semicontinuity

In the course of the paper we will need the following result on the lower
semicontinuity of integrals involving f with respect to the weak∗ topology
of L∞(ΩT ,Rn).

Lemma 2.4. Let Ω ⊂ R
n be a bounded open set and 0 < T < ∞. Assume

that f : [0, T ] × R
n → R satisfies (1.2). Then, for any sequence (Vi)i∈N ⊂

L∞(ΩT ,Rn) and V ∈ L∞(ΩT ,Rn) such that Vi
∗⇁ V weakly∗ in L∞(ΩT ,Rn)

as i → ∞ we have that∫∫
ΩT

f(t, V ) dxdt ≤ lim inf
i→∞

∫∫
ΩT

f(t, Vi) dxdt.
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Proof. Consider an arbitrary sequence (Vi)i∈N ⊂ L∞(ΩT ,Rn) and a limit map
V ∈ L∞(ΩT ,Rn) such that Vi

∗⇁ V weakly∗ in L∞(ΩT ,Rn) as i → ∞. First,
note that (Vi)i∈N is bounded in L∞(ΩT ,Rn) and set M :=supi∈N

‖Vi‖L∞(ΩT ,Rn)

≥ ‖V ‖L∞(ΩT ,Rn). We find that

C := {W ∈ L2(ΩT ,Rn) : ‖W‖L∞(ΩT ,Rn) ≤ M}
is a convex subset of L2(ΩT ,Rn). Therefore, since ξ �→ f(t, ξ) is convex for
a.e. t ∈ [0, T ] and since

∫∫
ΩT

f(t,W ) dxdt is finite for any W ∈ C by (2.1), we
obtain that the functional F : L2(ΩT ,Rn) → (−∞,∞] given by

F [W ] :=
{∫∫

ΩT
f(t,W ) dxdt if W ∈ C,

∞ else

is proper and convex. Further, F is lower semicontinuous with respect to the
norm topology in L2(ΩT ,Rn). Indeed, assume that the sequence (Wi)i∈N ⊂
L2(ΩT ,Rn) converges strongly in L2(ΩT ,Rn) to a limit map W ∈ L2(ΩT ,Rn)
as i → ∞. If lim infi→∞ F [Wi] = ∞, the assertion F [W ] ≤ lim infi→∞ F [Wi]
holds trivially. Otherwise, there exists a subsequence K ⊂ N such that Wi ∈ C
for any i ∈ K, lim infi→∞ F [Wi] = limK�i→∞ F [Wi] and Wi → W a.e. in
ΩT as K � i → ∞. By (2.1) and the dominated convergence theorem, we
conclude that F [W ] = limK�i→∞ F [Wi] = lim infi→∞ F [Wi]. Therefore, F is
also lower semicontinuous with respect to the weak topology in L2(ΩT ,Rn),
cf. [11, Corollary 2.2]. Since ΩT is bounded, we have that Vi ⇁ V weakly in
L2(ΩT ,Rn) as i → ∞ and hence∫∫

ΩT

f(t, V ) dxdt = F [V ] ≤ lim inf
i→∞

F [Vi] = lim inf
i→∞

∫∫
ΩT

f(t, Vi) dxdt.

This concludes the proof of the lemma. �

2.5. Steklov averages of the integrand

For the final approximation argument in the proof of Theorem 1.2 we need
to regularize the integrand f with respect to time. To this end, extend f to
[0,∞]×R

n by zero if T < ∞. For ε > 0 define the Steklov average fε : [0, T ]×
R

n → R of the extended integrand by

fε(t, ξ) := −
∫ t+ε

t

f(s, ξ) ds. (2.4)

In order to investigate convergence of the Steklov averages as ε ↓ 0, first note
that specializing the proof of [11, Corollary 2.4] gives us the following result.

Lemma 2.5. Let L > 0 and assume that f : Rn → R is a convex function with
‖f‖L∞(BL+1(0)) ≤ C. Then, f satisfies the local Lipschitz continuity condition

|f(ξ1) − f(ξ2)| ≤ 2C|ξ1 − ξ2| for all ξ1, ξ2 ∈ BL(0).

We also need the following variant of the dominated convergence theorem
that can be found for example in [12, Theorem 1.20].
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Lemma 2.6. Assume that v, vk ∈ L1(Rn) and w,wk ∈ L1(Rn) are measurable
for all k ∈ N. Suppose that wk → w a.e. in R

n and |wk| ≤ vk for all k ∈ N.
Suppose moreover that vk → v a.e. in R

n and

lim
k→∞

∫
Rn

vk dx =
∫
Rn

v dx.

Then

lim
k→∞

∫
Rn

|wk − w|dx = 0.

With the preceding lemmas at hand, we prove the following convergence
result.

Lemma 2.7. Let T ∈ (0,∞) and assume that f : [0, T ] × R
n → R satisfies

hypotheses (1.2). For ε > 0 let fε : [0, T ] ×R
n → R denote the Steklov average

of f given by (2.4). Then, we have that

lim
ε↓0

∫ T

0

sup
|ξ|≤L

|fε(t, ξ) − f(t, ξ)|dt = 0 for any L > 0.

Proof. Fix L > 0. First of all, we show that

lim
ε↓0

sup
|ξ|≤L

|fε(t, ξ) − f(t, ξ)| = 0 for a.e. t ∈ [0, T ]. (2.5)

By (1.2)2, for fixed ξ ∈ R
n we have that fε(t, ξ) → f(t, ξ) for a.e. t ∈ [0, T ] by

Lebesgue’s differentiation theorem. Thus, there exists a set N of L1-measure
zero such that

fε(t, ξ) → f(t, ξ) for any t ∈ [0, T ] \ N and ξ ∈ Qn. (2.6)

Without loss of generality assume that additionally for all t ∈ [0, T ]\N the
map ξ �→ f(t, ξ) is convex, the function gL+1 from (2.1) fulfills gL+1(t) < ∞
and there holds −

∫ t+ε

t
gL+1(s) ds → gL+1(t). Now, fix t ∈ [0, T ]\N . By (2.1)

and Lemma 2.5 we conclude that ξ �→ f(t, ξ) is Lipschitz continuous in BL(0)
with Lipschitz constant 2gL+1(t). Using this together with the definition of
the Steklov average, for any ξ1, ξ2 ∈ BL(0) we compute that

|fε(t, ξ1) − fε(t, ξ2)| ≤ −
∫ t+ε

t

|f(s, ξ1) − f(s, ξ2)|ds

≤ 2−
∫ t+ε

t

gL+1(s) ds |ξ1 − ξ2|.

Since −
∫ t+ε

t
gL+1(s) ds → gL+1(t), there exists εo > 0 such that ξ �→ fε(t, ξ) is

Lipschitz continuous with Lipschitz constant 4gL+1(t) for all ε ∈ (0, εo]. This
shows that the sequence (fε(t, ·))ε∈(0,εo] is equicontinuous in BL(0). Moreover,
(fε(t, ·))ε∈(0,εo] is equibounded in BL(0), since for any ξ ∈ BL(0) and ε ∈
(0, εo], we find that

|fε(t, ξ)| ≤ −
∫ t+ε

t

|f(s, ξ)|ds ≤ −
∫ t+ε

t

gL+1(s) ds ≤ 2gL+1(t).
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Therefore, we infer from the Arzèla–Ascoli theorem that (fε(t, ·))ε∈(0,εo] con-
verges uniformly in BL(0) as ε ↓ 0 and the limit f(t, ·) is determined by (2.6).
This concludes the proof of (2.5). Next, since

sup
|ξ|≤L

|fε(t, ξ) − f(t, ξ)| ≤ sup
|ξ|≤L

|fε(t, ξ)| + sup
|ξ|≤L

|f(t, ξ)|

≤ −
∫ t+ε

t

gL(s) ds + gL(t),

where −
∫ t+ε

t
gL(s) ds → gL(t) in L1(0, T ), the claim now follows from Lemma

2.6. �
2.6. Mollification in time

In general, variational solutions are not admissible as comparison maps in the
variational inequality (1.3), since they do not necessarily admit a derivative
with respect to time. Therefore, we use the following mollification procedure
with respect to time. More precisely, consider a separable Banach space X,
an initial datum vo ∈ X and a map v ∈ Lr(0, T ;X) for some r ∈ [1,∞]. For
h > 0 define the mollification

[v]h(t) := e− t
h vo + 1

h

∫ t

0

e
s−t

h v(s) ds for any t ∈ [0, T ]. (2.7)

Later on, we will mainly use X = Lq(Ω) or X = W 1,q(Ω) for some q ∈ [1,∞).
A vital feature of this mollification procedure is that [v]h solves the ordinary
differential equation

∂t[v]h = 1
h

(
v − [v]h

)
(2.8)

with initial condition [v]h(0) = vo. This shows in particular that if v and [v]h
are contained in a function space, the same holds true for the time derivative
of [v]h. The basic properties of time mollifications are collected in the following
lemma (cf. [19, Lemma 2.2] and [5, Appendix B] for the proofs).

Lemma 2.8. Let X be a separable Banach space and vo ∈ X. If v ∈ Lr(0, T ;X)
for some r ∈ [1,∞], then also [v]h ∈ Lr(0, T ;X) and if r < ∞, then [v]h → v
in Lr(0, T ;X) as h ↓ 0. Further, for any to ∈ (0, T ] there holds the bound

∥∥[v]h
∥∥

Lr(0,to;X)
≤ ‖v‖Lr(0,to;X) +

[
h
r

(
1 − e− tor

h

)] 1
r ‖vo‖X ,

where the bracket [. . .]
1
r has to be interpreted as 1 if r = ∞. Moreover, if

v ∈ C0([0, T ];X), then also [v]h ∈ C0([0, T ];X) with [v]h(0) = vo and there
holds [v]h → v in L∞(0, T ;X) as h ↓ 0.

For maps v ∈ Lr(0, T ;X) with ∂tv ∈ Lr(0, T ;X) we have the following
assertion.

Lemma 2.9. Let X be a separable Banach space and r ≥ 1. Assume that v ∈
Lr(0, T ;X) with ∂tv ∈ Lr(0, T ;X). Then, for the mollification in time defined
by

[v]h(t) := e− t
h v(0) + 1

h

∫ t

0

e
s−t

h v(s) ds
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the time derivative can be computed by

∂t[v]h(t) = 1
h

∫ t

0

e
s−t

h ∂sv(s) ds.

3. Properties of variational solutions

As mentioned in the introduction, besides variational solutions in the sense
of Definition 1.1, we consider variational solutions of the so-called gradient
constrained obstacle problem to (1.1). They enjoy the same basic properties
as variational solutions to the unconstrained Cauchy–Dirichlet problem to (1.1)
and proofs will be given in a unified way in this section.

Let L ∈ (0,∞]. We define the following class of functions that are L-
Lipschitz in space

KL(ΩT ) := {v ∈ K∞(ΩT ) : ‖Dv‖L∞(ΩT ,Rn) ≤ L}
and given time-independent boundary values uo ∈ W 1,∞(Ω) with
‖Duo‖L∞(Ω,Rn) ≤ L, we denote the subclass

KL
uo

(ΩT ) := {v ∈ KL(ΩT ) : v = uo on the lateral boundary ∂Ω × (0, T )}.

Definition 3.1. Assume that f : [0, T ] × R
n → R satisfies (1.2), consider a

boundary datum uo ∈ W 1,∞(Ω) and let L ∈ (0,∞) be such that ‖Duo‖L∞(Ω,Rn)

≤ L. In the case T < ∞ a map u ∈ KL
uo

(ΩT ) is called a variational solution to
the gradient constrained Cauchy–Dirichlet problem associated with (1.1) and
uo in ΩT if and only if the variational inequality∫∫

ΩT

f(t,Du) dxdt ≤
∫∫

ΩT

∂tv(v − u) + f(t,Dv) dxdt (3.1)

+ 1
2‖v(0) − uo‖2

L2(Ω) − 1
2‖(v − u)(T )‖2

L2(Ω)

holds true for any comparison map v ∈ KL
uo

(ΩT ) with ∂tv ∈ L2(ΩT ). If T = ∞
and u ∈ KL

uo
(Ω∞) is a variational solution in Ωτ for any τ > 0, u is called

a global variational solution or variational solution in Ω∞ to the gradient
constrained Cauchy–Dirichlet problem associated with (1.1) and uo.

3.1. Continuity with respect to time

In Definitions 1.1 and 3.1 we require that variational solutions are contained
in the space C0([0, T ];L2(Ω)). However, this is already implied if u satisfies a
variational inequality for a.e. τ ∈ [0, T ]. More precisely, we have the following
Lemma, which will be applied with L = ∞ in Sect. 6.

Lemma 3.2. Let Ω ⊂ R
n be open and bounded and T ∈ (0,∞) and assume that

f : [0, T ] ×R
n → R satisfies (1.2). Let L ∈ (0,∞] and consider uo ∈ W 1,∞(Ω)

such that ‖Duo‖L∞(Ω,Rn) ≤ L. Further, consider u ∈ L∞(ΩT ) with u = uo

on ∂PΩT and ‖Du‖L∞(ΩT ,Rn) ≤ L if L ∈ (0,∞) and ‖Du‖L∞(ΩT ,Rn) < ∞ if
L = ∞, respectively. Suppose that u satisfies the variational inequality
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∫∫
Ωτ

f(t,Du) dxdt ≤
∫∫

Ωτ

∂tv(v − u) dxdt +
∫∫

Ωτ

f(t,Dv) dxdt

+ 1
2 ‖v(0) − uo‖2

L2(Ω) − 1
2 ‖v(τ) − u(τ)‖2

L2(Ω) (3.2)

for almost all τ ∈ (0, T ) whenever v ∈ KL
uo

(ΩT ) with ∂tv ∈ L2(ΩT ). Then, we
have that u ∈ C0([0, T ];L2(Ω)).

Proof. The proof is similar to that of Lemma 2.6 in [28] except for the es-
timate of the second integral in (3.3) below. Denote by [u]h the time mol-
lification of u with initial values uo as defined in (2.7). In particular, ob-
serve that [u]h ∈ C0([0, T ];L2(Ω)), since we know that ∂t[u]h ∈ L2(ΩT ) and
[u]h(0) = uo ∈ L2(Ω). Using [u]h as a comparison function in (3.2), taking the
essential supremum over τ ∈ (0, T ) and recalling that ([u]h − u) = −h∂t[u]h,
we obtain that

sup
τ∈(0,T )

1
2 ‖[u]h(τ) − u(τ)‖2

L2(Ω) ≤ sup
τ∈(0,T )

∫∫
Ωτ

∂t[u]h([u]h − u) dxdt

+
∫∫

ΩT

f(t,D[u]h) − f(t,Du) dxdt

≤
∫∫

ΩT

|f(t,D[u]h) − f(t,Du)|dxdt. (3.3)

Furthermore, we have that D[u]h → Du almost everywhere in ΩT as h ↓ 0
(up to a subsequence) and that |D[u]h| ≤ |Duo| + supΩT

|Du|. Therefore, by
(2.1) and the dominated convergence theorem we find that the second integral
in (3.3) vanishes in the limit h ↓ 0. Hence, we have shown that [u]h → u in
L∞(0, T ;L2(Ω)). Combining this with the fact that [u]h ∈ C0([0, T ];L2(Ω)),
it follows that also u ∈ C0([0, T ];L2(Ω)). �

3.2. Localization in time

Here, we show that a variational solution in a space-time cylinder ΩT is also
a solution in any sub-cylinder Ωτ , τ ∈ (0, T ).

Lemma 3.3. (Localization in time) Let T ∈ (0,∞), assume that Ω ⊂ R
n is

open and bounded, and that f : [0, T ] × R
n → R satisfies (1.2). Consider uo ∈

W 1,∞(Ω) and L ∈ (0,∞] such that ‖Duo‖L∞(Ω,Rn) ≤ L. Suppose that u is
a variational solution to (1.1) in KL

uo
(ΩT ) (in the sense of Definition 3.1 if

L < ∞, in the sense of Definition 1.1 if L = ∞). Then u|Ωτ
is a variational

solution to (1.1) in KL
uo

(Ωτ ) for any τ ∈ (0, T ].

Proof. For θ ∈ (0, τ), consider the cut-off function

ξθ(t) := χ[0,τ−θ](t) +
τ − t

θ
χ(τ−θ,τ ](t).

For v ∈ KL
uo

(Ωτ ) satisfying ∂tv ∈ L2(Ωτ ) we define a function vθ : ΩT → R by

vθ := ξθv + (1 − ξθ)[u]h,

where ξθv has been extended to ΩT by zero and [u]h is defined according to
(2.7) with initial datum uo. Then we have vθ ∈ KL

uo
(ΩT ) with ∂tvθ ∈ L2(ΩT ),
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and therefore we may use vθ as a comparison map for u in the variational
inequality. This yields∫∫

ΩT

f(t,Du) dxdt ≤
∫∫

ΩT

∂tvθ(vθ − u) + f(t,Dvθ) dxdt

+ 1
2 ‖v(0) − uo‖2

L2(Ω) − 1
2 ‖([u]h − u)(T )‖2

L2(Ω) . (3.4)

The first term on the right-hand side of (3.4) is identical to the one in [7,
Equation (3.2)] and can be estimated in the same way to obtain

lim sup
θ→0

∫∫
ΩT

∂tvθ(vθ − u) dxdt

≤
∫∫

Ωτ

∂tv(v − u) dxdt +
∫∫

Ω×(τ,T )

∂t[u]h([u]h − u) dxdt

− 1
2

∫
Ω

(v − [u]h)2(τ) dx +
∫

Ω

([u]h − u)(v − [u]h)(τ) dx.

The second term on the right-hand side of (3.4) is given by∫∫
ΩT

f(t,Dvθ) dxdt =
∫∫

Ω×(τ−θ,τ)

f(t, ξθDv + (1 − ξθ)D[u]h) dxdt

+
∫∫

Ω×(0,τ−θ)

f(t,Dv) dxdt

+
∫∫

Ω×(τ,T )

f(t,D[u]h) dxdt.

Since we know that

‖ξθDv + (1 − ξθ)D[u]h‖L∞(ΩT ,Rn) ≤ ‖Dv‖L∞(ΩT ,Rn) + ‖D[u]h‖L∞(ΩT ,Rn)

≤ ‖Dv‖L∞(ΩT ,Rn) + ‖Duo‖L∞(Ω,Rn) + ‖Du‖L∞(ΩT ,Rn) =: M < ∞,

by (2.1) we find that∣∣∣∣
∫∫

Ω×(τ−θ,τ)

f(t, ξθDv + (1 − ξθ)D[u]h) dxdt

∣∣∣∣ ≤ |Ω|
∫ τ

τ−θ

gM (t) dt → 0

in the limit θ ↓ 0. Combining the preceding estimates we arrive at∫∫
ΩT

f(t, Du) dxdt ≤
∫∫

Ω×(0,τ)

f(t, Dv) dxdt +

∫∫
Ω×(τ,T )

f(t, D[u]h) dxdt

− 1
2

∫
Ω

(v − [u]h)2(τ) dx +

∫
Ω

([u]h − u)(v − [u]h)(τ) dx

+

∫∫
Ωτ

∂tv(v − u) dxdt +

∫∫
Ω×(τ,T )

∂t[u]h([u]h − u) dxdt

+ 1
2 ‖v(0) − uo‖2

L2(Ω) − 1
2 ‖([u]h − u)(T )‖2

L2(Ω) . (3.5)

Note that [u]h → u in L∞(0, T ;L2(Ω)) as h ↓ 0, since u ∈ C0([0, T ];L2(Ω)).
Further, we have that D[u]h → Du pointwise almost everywhere in ΩT as h ↓ 0
(up to a subsequence) and that

‖D[u]h‖L∞(ΩT ,Rn) ≤ ‖Duo‖L∞(Ω,Rn) + ‖Du‖L∞(ΩT ,Rn) =: L′ < ∞ for any h > 0.
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Therefore, assumption (2.1), the fact that Ω is bounded and the dominated
convergence theorem imply that

lim
h↓0

∫∫
Ω×(τ,T )

f(t,D[u]h) dxdt =
∫∫

Ω×(τ,T )

f(t,Du) dxdt.

Hence, using that ∂t[u]h([u]h −u) ≤ 0 and letting h ↓ 0 in (3.5), we obtain the
desired inequality∫∫

Ωτ

f(t,Du) dxdt ≤
∫∫

Ωτ

∂tv(v − u) + f(t,Dv) dxdt

+ 1
2 ‖v(0) − uo‖2

L2(Ω) − 1
2 ‖(v − u)(τ)‖2

L2(Ω) .

�
3.3. The initial condition

As a consequence of the localization in time principle, we find that variational
solutions attain the initial datum uo in the C0-L2-sense. The precise statement
is as follows.

Lemma 3.4. Let T ∈ (0,∞), assume that Ω ⊂ R
n is bounded and open, and

that f : [0, T ]×R
n → R satisfies (1.2). Consider uo ∈ W 1,∞(Ω) and L ∈ (0,∞]

such that ‖Duo‖L∞(Ω,Rn) ≤ L. Suppose that u is a variational solution to (1.1)
in KL

uo
(ΩT ) (in the sense of Definition 3.1 if L < ∞, in the sense of Definition

1.1 if L = ∞). Then, there holds

lim
τ↓0

‖u(τ) − uo‖2
L2(Ω) = 0.

Proof. By Lemma 3.3, the function u is a variational solution in any smaller
cylinder Ωτ , τ ∈ (0, T ]. Using v : Ωτ → R, v(x, t) := uo(x) as a comparison
function for u and taking (2.1) with M :=max{‖Du‖L∞(ΩT ,Rn),‖Duo‖L∞(Ω,Rn)}
into account, we obtain that

1
2 ‖u(τ) − uo‖L2(Ω) ≤

∫∫
Ωτ

f(t,Duo) − f(t,Du) dxdt ≤ 2 |Ω|
∫ τ

0

gM (t) dt.

Since gM ∈ L1(0, T ), this implies the claim. �
3.4. Comparison principle

The following comparison principle ensures in particular that variational solu-
tions to the problems considered in the present paper are unique.

Theorem 3.5. (Comparison principle) Let T ∈ (0,∞), assume that Ω ⊂ R
n is

bounded and open, and that f : [0, T ] × R
n → R satisfies (1.2). Let L ∈ (0,∞]

and suppose that u and ũ are variational solutions to (1.1) in KL(ΩT ) (in
the sense of Definition 3.1 if L < ∞ and in the sense of Definition 1.1 if
L = ∞) such that ‖Du(0)‖L∞(Ω,Rn) and ‖Dũ(0)‖L∞(Ω,Rn) are bounded by L if
L ∈ (0,∞) and finite if L = ∞, respectively. Then the assumption that

u ≤ ũ on ∂PΩT

implies

u ≤ ũ in ΩT .
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Proof. Let τ ∈ (0, T ]. By Lemma 3.3, the functions u and ũ are variational
solutions in KL(Ωτ ). Consider the functions

v := min([u]h, [ũ]h) and w := max([u]h, [ũ]h),

where [u]h and [ũ]h denote the mollifications of u and ũ according to (2.7)
with initial values u(0) ∈ W 1,∞(Ω) and ũ(0) ∈ W 1,∞(Ω), respectively. Since
the boundary values attained by u and ũ are independent of time, we have
that v ∈ KL

u (Ωτ ) and w ∈ KL
ũ (Ωτ ) with ∂tv, ∂tw ∈ L2(Ωτ ). Therefore we may

use v and w as comparison functions in the variational inequalities of u and ũ,
respectively. Adding the resulting inequalities and using that [u]h(0) = u(0) ≤
ũ(0) = [ũ]h(0), we obtain

0 ≤
∫∫

Ωτ

∂tv(v − u) + ∂tw(w − ũ) dxdt

+
∫∫

Ωτ

f(t,Dv) − f(t,Du) + f(t,Dw) − f(t,Dũ) dxdt

− 1
2 ‖(v − u)(τ)‖2

L2(Ω) − 1
2 ‖(w − ũ)(τ)‖2

L2(Ω) . (3.6)

Using the identities{
v − u = min([u]h, [ũ]h) − [u]h − (u − [u]h) = −([u]h − [ũ]h)+ − h∂t[u]h,
w − ũ = ([u]h − [ũ]h)+ − h∂t[ũ]h,

we compute that

∂tv(v − u) + ∂tw(w − ũ)

=
(
∂t[u]hχ{[u]h≤[ũ]h} + ∂t[ũ]hχ{[ũ]h<[u]h}

)( − (
[u]h − [ũ]h

)
+

− h∂t[u]h
)

+
(
∂t[ũ]hχ{[u]h≤[ũ]h} + ∂t[u]hχ{[ũ]h<[u]h}

)((
[u]h − [ũ]h

)
+

− h∂t[ũ]h
)

=
(
∂t[ũ]h

(
[u]h − [ũ]h

)
+

− ∂t[u]h([u]h − [ũ]h)+ − h(∂t[u]h)2 − h(∂t[ũ]h)2
)

· χ{[u]h≤[ũ]h}

+
(
∂t[u]h

(
[u]h − [ũ]h

)
+

− ∂t[ũ]h
(
[u]h − [ũ]h

)
+

− h∂t[ũ]h∂t[u]h − h∂t[u]h∂t[ũ]h
)

· χ{[ũ]h<[u]h}

≤ (
∂t[u]h

(
[u]h − [ũ]h

)
+

− ∂t[ũ]h
(
[u]h − [ũ]h

)
+

− h∂t[ũ]h∂t[u]h − h∂t[u]h∂t[ũ]h
)

· χ{[ũ]h<[u]h}

= ∂t

(
[u]h − [ũ]h

)(
[u]h − [ũ]h

)
+

− 2h∂t[u]h∂t[ũ]hχ{[ũ]h<[u]h}

≤ 1
2
∂t

((
[u]h − [ũ]h

)
+

)2
)
+ h

((
∂t[u]h

)2
+

(
∂t[ũ]h

)2)
.

Therefore, taking into account that [u]h(0) = u(0) ≤ ũ(0) = [ũ]h(0), we find
that∫∫

Ωτ

∂tv(v − u) + ∂tw(w − ũ) dxdt

≤ 1
2

∥∥(
[u]h − [ũ]h

)
+

(τ)
∥∥2

L2(Ω)
+

∫∫
Ωτ

h
((

∂t[u]h
)2 +

(
∂t[ũ]h

)2) dxdt. (3.7)

Furthermore, using [u]h as a comparison function for u and omitting the bound-
ary term at time τ on the right-hand side of the variational inequality, we
obtain
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∫∫
Ωτ

h
(
∂t[u]h

)2 dxdt = −
∫∫

Ωτ

∂t[u]h
(
[u]h − u

)
dxdt

≤
∫∫

Ωτ

f
(
t,D[u]h

) − f(t,Du) dxdt (3.8)

and a similar inequality holds for ũ. Observe also that

f(t,Dv) − f(t,Du) + f(t,Dw) − f(t,Dũ)

= χ{[u]h≤[ũ]h}f
(
t,D[u]h

)
+ χ{[ũ]h<[u]h}f

(
t,D[ũ]h

) − f(t,Du)

+ χ{[u]h≤[ũ]h}f
(
t,D[ũ]h

)
+ χ{[ũ]h<[u]h}f

(
t,D[u]h

) − f(t,Dũ)

= f
(
t,D[u]h

) − f(t,Du) + f
(
t,D[ũ]h

) − f(t,Dũ). (3.9)

Combining the estimates (3.7), (3.8) and (3.9) with (3.6) we arrive at

− 1
2

∥∥(
[u]h − [ũ]h

)
+

(τ)
∥∥2

L2(Ω)
+ 1

2‖(v − u)(τ)‖2
L2(Ω) + 1

2‖(w − ũ)(τ)‖2
L2(Ω)

≤ 2
∫∫

Ωτ

f
(
t,D[u]h

) − f(t,Du) + f
(
t,D[ũ]h

) − f(t,Dũ) dxdt. (3.10)

By the same argument as in the end of the proof of Lemma 3.3 involving the
dominated convergence theorem, the integral on the right-hand side of (3.10)
vanishes in the limit h ↓ 0. Writing v − u = −([u]h − [ũ]h)+ + [u]h − u and
w − ũ = ([u]h − [ũ]h)+ + [ũ]h − ũ and using that [u]h → u and [ũ]h → ũ in
L∞([0, τ ], L2(Ω)) as h ↓ 0 since u, ũ ∈ C0([0, T ];L2(Ω)), we conclude that

lim
h↓0

(
− 1

2

∥∥(
[u]h − [ũ]h

)
+

(τ)
∥∥2

L2(Ω)
+ 1

2‖(v − u)(τ)‖2
L2(Ω) + 1

2‖(w − ũ)(τ)‖2
L2(Ω)

)

= 1
2

∥∥(u − ũ)+(τ)
∥∥2

L2(Ω)
.

Hence, taking the limit h ↓ 0 in (3.10), we infer

1
2

∥∥(u − ũ)+(τ)
∥∥2

L2(Ω)
≤ 0,

which implies that u ≤ ũ in Ωτ . Since τ was arbitrary, the claim follows. �

3.5. Maximum principle and localization in space for regular solutions

In this section, we consider more regular variational solutions u satisfying
∂tu ∈ L2(ΩT ). As a consequence, u is directly admissible as comparison map
in its variational inequality without regularization with respect to the time
variable. Further, due to the requirements of the proof of the existence result
in Sect. 5, we will take time-dependent boundary values u|Ω×(0,T ) into account
here. In particular, the proof of the comparison principle in Theorem 3.5 is
easily adapted to allow time-dependent boundary values if ∂tu and ∂tũ are
contained in L2(ΩT ) by using min(u, ũ) and max(u, ũ) as comparison maps in
the variational inequalities satisfied by u and ũ, respectively, and proceeding
in a similar way as above. However, most arguments can be simplified, since
mollification with respect to time is not necessary in the present situation.
This allows us to deduce the following maximum principle.
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Lemma 3.6. (Maximum principle) Let T ∈ (0,∞), assume that Ω ⊂ R
n is

open and bounded, and that f : [0, T ] × R
n → R satisfies (1.2). Consider L ∈

(0,∞] and functions u, ũ ∈ KL(ΩT ) such that ∂tu, ∂tũ ∈ L2(ΩT ). Suppose
moreover that ‖Du(0)‖L∞(Ω,Rn) and ‖Dũ(0)‖L∞(Ω,Rn) are bounded by L if L ∈
(0,∞) and finite if L = ∞. Finally, assume that for any τ ∈ (0, T ] the function
u satisfies the variational inequality∫∫

Ωτ

f(t,Du) dxdt ≤
∫∫

Ωτ

∂tv(v − u) + f(t,Dv) dxdt

+ 1
2 ‖u(0) − v(0)‖2

L2(Ω) − 1
2 ‖u(τ) − v(τ)‖2

L2(Ω) (3.11)

whenever v ∈ KL(Ωτ ) with ∂tv ∈ L2(Ωτ ) and v = u on Ω × (0, τ), and that ũ
fulfills the analogical inequality. Then

sup
ΩT

(u − ũ) = sup
∂PΩT

(u − ũ).

Proof. Let τ ∈ (0, T ]. Define

û := ũ + sup
∂PΩT

(u − ũ).

Then û satisfies the variational inequality (3.11) with its own boundary values,
and

u ≤ û on ∂PΩT . (3.12)

Consider the functions v := min(u, û) and w := max(u, û). Then v, w ∈
KL(Ωτ ) with ∂tv, ∂tw ∈ L2(Ωτ ) and v = u, w = û on ∂Ω×(0, τ). Observe also
that v − u = −(u − û)+ and w − û = (u − û)+. Using v and w as comparison
functions for u and û in the variational inequality (3.11), we obtain

0 ≤
∫∫

Ωτ

∂tv(v − u) + ∂tw(w − û) dxdt

+
∫∫

Ωτ

f(t,Dv) − f(t,Du) + f(t,Dw) − f(t,Dû) dxdt

+ 1
2 ‖(v − u)(0)‖2

L2(Ω) + 1
2 ‖(w − û)(0)‖2

L2(Ω)

− 1
2 ‖(v − u)(τ)‖2

L2(Ω) − 1
2 ‖(w − û)(τ)‖2

L2(Ω)

=
∫∫

Ωτ

1
2∂t((u − û)+)2 dxdt − ‖(u − û)+(τ)‖2

L2(Ω)

= − 1
2 ‖(u − û)+(τ)‖2

L2(Ω) ,

where we used that (v − u)(0) = (w − û)(0) = 0 and that the terms with f
cancel one another. As τ was arbitrary, we obtain

u ≤ û = ũ + sup
∂PΩT

(u − û) in ΩT

so that

sup
ΩT

(u − ũ) ≤ sup
∂PΩT

(u − ũ).

Since the reverse inequality holds by continuity, this proves the claim. �
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Lemma 3.7. (Localization in space) Let T ∈ (0,∞), assume that Ω ⊂ R
n

is open and bounded, and that f : [0, T ] × R
n → R satisfies (1.2). Consider

uo ∈ W 1,∞(Ω) and L ∈ (0,∞] such that ‖Duo‖L∞(Ω,Rn) ≤ L. Suppose that
u is a variational solution to (1.1) in KL

uo
(ΩT ), L ∈ (0,∞] (in the sense of

Definition 3.1 if L < ∞, in the sense of Definition 1.1 if L = ∞). Moreover,
suppose that ∂tu ∈ L2(ΩT ). Then for any domain Ω′ ⊂ Ω and any τ ∈ (0, T ],
the variational inequality∫∫

Ω′
τ

f(t,Du) dxdt ≤
∫∫

Ω′
τ

∂tv(v − u) + f(t,Dv) dxdt

+ 1
2 ‖u(0) − v(0)‖2

L2(Ω′) − 1
2 ‖u(τ) − v(τ)‖2

L2(Ω′) (3.13)

holds whenever v ∈ KL
uo

(Ω′
τ ) with ∂tv ∈ L2(Ωτ ) and v = u on ∂Ω′ × (0, τ).

Proof. By Lemma 3.3 the function u|Ωτ
is a variational solution to (1.1) in the

function space KL
uo

(Ωτ ). Observe that

w :=

{
v in Ω′

τ ,

u in (Ω \ Ω′)τ ,

is an admissible comparison function for u|Ωτ
in the variational inequality.

Inserting w into the variational inequality (3.1) if L < ∞ (or (1.3) if L = ∞)
with T replaced by τ immediately yields (3.13). �

4. Existence for the gradient constrained problem for regular
integrands

In this section, we are concerned with integrands that admit a time derivative.
More precisely, we consider f : [0, T ] × R

n → R such that⎧⎪⎪⎨
⎪⎪⎩

ξ �→ f(t, ξ) is convex for any t ∈ [0, T ],
t �→ f(t, ξ) ∈ W 1,1(0, T ) for any ξ ∈ R

n,
for any L > 0 there exists g̃L ∈ L1(0, T ) such that |∂tf(t, ξ)| ≤ g̃L(t)
for a.e. t ∈ [0, T ] and all ξ ∈ BL(0).

(4.1)

The aim of this section is to prove the following existence result.

Theorem 4.1. Let Ω ⊂ R
n be a bounded Lipschitz domain and T ∈ (0,∞).

Consider a boundary datum uo ∈ W 1,∞(Ω) such that ‖Duo‖L∞(Ω,Rn) ≤ L
for a constant L ∈ (0,∞). Further, assume that the integrand f : [0, T ] ×
R

n → R satisfies hypothesis (4.1). Then, there exists a variational solution
u ∈ KL

uo
(ΩT ) to the gradient constrained problem in the sense of Definition 3.1.

Further, there holds ∂tu ∈ L2(ΩT ) with the quantitative bound∫∫
ΩT

|∂tu|2 dxdt ≤ 4|Ω|( sup
|ξ|≤L

|f(0, ξ)| + ‖g̃L‖L1(0,T )

)
.

We prove Theorem 4.1 via the method of minimizing movements. The
proof is divided into five steps.
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4.1. A sequence of minimizers to elliptic variational functionals

Fix a step size h := T
m for some m ∈ N and consider times ih, i = 0, . . . , m.

For i = 0, set u0 := uo ∈ W 1,∞(Ω) with ‖Duo‖L∞(Ω,Rn) ≤ L. Further, for
i = 1, . . . , m, ui is defined as the minimizer of the elliptic variational functional

Fi[v] :=
∫

Ω

f(ih,Dv) dx + 1
2h

∫
Ω

|v − ui−1|2 dx

in the class A := {v ∈ W 1,∞(Ω) : v = uo on∂Ω and‖Dv‖L∞(Ω,Rn) ≤ L}. The
existence of a minimizer to Fi in this class is ensured by the direct method in
the calculus of variations. More precisely, note that A = ∅, since uo ∈ A, and
consider a minimizing sequence to Fi in A, i.e. a sequence (ui,j)j∈N ⊂ A such
that

lim
j→∞

Fi[ui,j ] = inf
v∈A

Fi[v].

Further, by definition of A and Rellich’s theorem there exists a limit map
ui ∈ A and a (not relabelled) subsequence such that

{
ui,j → ui strongly in L2(Ω) as j → ∞,
Dui,j ⇁ Dui weakly in L2(Ω,Rn) asj → ∞.

Since the functional F̃i : W 1,2(Ω) → (−∞,∞],

F̃i[v] :=
{

Fi[v] if v ∈ A,
∞ else

is proper, convex and lower semicontinuous with respect to strong convergence
in W 1,2(Ω), it is also lower semicontinuous with respect to weak convergence
in W 1,2(Ω), see [11, Corollary 2.2]. Therefore, we obtain that

Fi[ui] = F̃i[ui] ≤ lim inf
j→∞

F̃i[ui,j ] = lim
j→∞

Fi[ui,j ] = inf
v∈A

Fi[v].

4.2. Energy estimates

Since ui−1 ∈ A is an admissible comparison map for the minimizer ui and f
fulfills (4.1)3, we have that

∫
Ω

f(ih,Dui) dx + 1
2h

∫
Ω

|ui − ui−1|2 dx = Fi[ui]

≤ Fi[ui−1]

=
∫

Ω

f((i − 1)h,Dui−1) dx +
∫

Ω

f(ih,Dui−1) − f((i − 1)h,Dui−1) dx

≤
∫

Ω

f((i − 1)h,Dui−1) dx +
∫∫

Ω×((i−1)h,ih)

|∂tf(t,Dui−1)|dxdt

≤
∫

Ω

f((i − 1)h,Dui−1) dx + |Ω|
∫

((i−1)h,ih)

|g̃L(t)|dt.
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Summing up the preceding inequalities from i = 1 to i = m, we find that
m∑

i=1

∫
Ω

f(ih,Dui) dxdt + 1
2h

m∑
i=1

∫
Ω

|ui − ui−1|2 dx

≤
m∑

i=1

∫
Ω

f((i − 1)h,Dui−1) dx + |Ω|
∫

(0,T )

|g̃L(t)|dt.

Subtracting the first term on the left-hand side, we conclude that

1
2h

m∑
i=1

∫
Ω

|ui − ui−1|2 dx ≤
∫
Ω

f(0, Duo) dx −
∫
Ω

f(T, Dum) dx + |Ω|‖g̃L‖L1(0,T )

≤ 2|Ω|( sup
|ξ|≤L

|f(0, ξ)| + ‖g̃L‖L1(0,T )

)
. (4.2)

4.3. The limit map

In the following we denote the step size by hm in order to emphasize the
dependence on m. First, we join the minimizers ui to a map that is piecewise
constant with respect to time. More precisely, we define u(m) : Ω×(−hm, T ] →
R by

u(m)(t) := ui for t ∈ ((i − 1)hm, ihm], i = 0, . . . , m.

Observe that the sequence
(
u(m)

)
m∈N

is bounded in L∞(ΩT ), since
‖u(m)‖L∞(ΩT ) = maxi=0,...,m ‖ui‖L∞(Ω), ui ∈ A for all i = 0, . . . , m and
A is equibounded. Further, we know that ‖Du(m)‖L∞(ΩT ,Rn) = maxi=0,...,m

‖Dui‖L∞(Ω,Rn) ≤ L for any m ∈ N. Therefore, there exists a subsequence
K ⊂ N and a limit map u ∈ L∞(ΩT ) such that ‖Du‖L∞(ΩT ,Rn) ≤ L, u = uo

on ∂Ω × (0, T ) and⎧⎨
⎩

u(m) ∗⇁ u weakly ∗ inL∞(ΩT ) asK � m → ∞,
u(m)(t) → u(t) uniformly as K � m → ∞ for eacht ∈ [0, T ],
Du(m) ∗⇁ Du weakly ∗ inL∞(ΩT ,Rn) asK � m → ∞.

(4.3)

In order to prove that u has a time derivative, we consider the linear inter-
polation of minimizers ũ(m) : Ω × (−hm, T ] → R given by ũ(m)(t) := uo for
t ∈ (−hm, 0] and

ũ(m)(t) :=
(
i − t

hm

)
ui−1 +

(
1 − i + t

hm

)
ui for t ∈ ((i − 1)hm, ihm], i = 1, . . . , m.

Similar arguments as above ensure that
(
ũ(m)

)
m∈N

is bounded in L∞(ΩT ) and
that ‖Dũ(m)‖L∞(ΩT ,Rn) ≤ L for any m ∈ N. Moreover, by the energy bound
(4.2) we obtain that∫∫

ΩT

|∂tũ
(m)|2 dxdt =

m∑
i=1

∫∫
Ω×((i−1)hm,ihm]

1
h2

m
|ui − ui−1|2 dxdt

= 1
hm

m∑
i=1

∫
Ω

|ui − ui−1|2 dx

≤ 4|Ω|( sup
|ξ|≤L

|f(0, ξ)| + ‖g̃L‖L1(0,T )

)
. (4.4)
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Hence,
(
ũ(m)

)
m∈N

is bounded in W 1,2(ΩT ). By Rellich’s theorem we conclude
that there exists a subsequence still labelled K and a limit map ũ ∈ L∞(ΩT )
with ‖Dũ‖L∞(ΩT ,Rn) ≤ L, ũ = uo on ∂Ω× (0, T ) and ∂tũ ∈ L2(ΩT ) such that{

ũ(m) → u strongly in L2(ΩT ) as K � m → ∞,
∂tũ

(m) ⇁ ∂tũ weakly in L2(ΩT ) as K � m → ∞.
(4.5)

Note that ∂tũ ∈ L2(ΩT ) in particular implies that ũ ∈ C0; 12 ([0, T ];L2(Ω))
and therefore ũ is contained in the class of functions KL

uo
(ΩT ). Next, since∣∣(u(m) − ũ(m)

)
(t)

∣∣ ≤ |ui − ui−1| for t ∈ ((i − 1)hm, ihm], i = 1, . . . , m, we infer
from (4.2) that∫∫

ΩT

∣∣u(m) − ũ(m)
∣∣2 dxdt ≤ hm

m∑
i=1

∫
Ω

|ui − ui−1|2 dx

≤ 4|Ω|( sup
|ξ|≤L

|f(0, ξ)| + ‖g̃L‖L1(0,T )

)
h2

m.

Together with (4.5)1 this implies that u(m) → ũ strongly in L2(ΩT ) as K �
m → ∞ and thus in particular that u = ũ ∈ KL

uo
(ΩT ) with ∂tu ∈ L2(ΩT ).

Finally, by lower semicontinuity with respect to weak convergence, (4.4) gives
us the claimed bound∫∫

ΩT

|∂tu|2 dxdt ≤ 4|Ω|( sup
|ξ|≤L

|f(0, ξ)| + ‖g̃L‖L1(0,T )

)
.

4.4. Minimizing property of the approximations

First, define piecewise constant approximations of the integrand by

f (m)(t, ξ) := f(ih, ξ) for t ∈ ((i − 1)hm, ihm], i = 0, . . . , m.

We claim that u(m) is a minimizer of the functional

F (m)[v] :=
∫∫

ΩT

f (m)(t,Dv) dxdt + 1
2hm

∫∫
ΩT

|v(t) − u(m)(t − hm)|2 dxdt

in the class of functions

AT := {v ∈ L∞(ΩT ) : ‖Du‖L∞(ΩT ,Rn) ≤ L and u = uo on ∂Ω × (0, T )}.

Indeed, consider an arbitrary map v ∈ AT . Since v(t) ∈ A for a.e. t ∈ [0, T ],
by the minimizing property of ui with respect to Fi in the class A we find that

F (m)[u(m)] =

m∑
i=1

∫
((i−1)hm,ihm]

Fi[ui] dt ≤
m∑

i=1

∫
((i−1)hm,ihm]

Fi[v(t)] dt = F (m)[v].

A straightforward computation shows that this is equivalent to∫∫
ΩT

f (m)
(
t,Du(m)

)
dxdt

≤
∫∫

ΩT

f (m)(t,Dv) dxdt

+ 1
hm

∫∫
ΩT

1
2

∣∣v − u(m)
∣∣2 +

(
v − u(m)

)(
u(m) − u(m)(t − hm)

)
dxdt
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for any v ∈ AT . Choosing the convex combination u(m) + s
(
v − u(m)

) ∈ AT

with s ∈ (0, 1) as comparison map and using the convexity of ξ �→ f(t, ξ) for
all t ∈ [0, T ], we obtain that∫∫

ΩT

f (m)
(
t,Du(m)

)
dxdt

≤ (1 − s)
∫∫

ΩT

f (m)
(
t,Du(m)

)
dxdt + s

∫∫
ΩT

f (m)(t,Dv) dxdt

+ 1
hm

∫∫
ΩT

s2

2

∣∣v − u(m)
∣∣2 + s

(
v − u(m)

)(
u(m) − u(m)(t − hm)

)
dxdt.

Reabsorbing the first term on the right-hand side into the left-hand side, di-
viding the resulting inequality by s and taking the limit s ↓ 0 gives us that∫∫

ΩT

f (m)(t, Du(m)) dxdt

≤
∫∫

ΩT

f (m)(t, Dv) dxdt + 1
hm

∫∫
ΩT

(
v − u(m))(u(m) − u(m)(t − hm)

)
dxdt.

Next, assume without loss of generality that v(0) ∈ L∞(Ω), extend v to
(−hm, 0] by v(0) and note that
(
v − u(m))(u(m) − u(m)(t − hm)

)
=

(
v − u(m))(v − v(t − hm)

)
+ 1

2

(
v(t − hm) − u(m)(t − hm)

)2 − 1
2

(
v − u(m))2

− 1
2

(
v − v(t − hm) − u(m) + u(m)(t − hm)

)2

≤ (
v − u(m))(v − v(t − hm)

)
+ 1

2

(
v(t − hm) − u(m)(t − hm)

)2 − 1
2

(
v − u(m))2

.

Inserting this into the preceding inequality and recalling that v(t) = v(0) for
t ∈ (−hm, 0], we infer∫∫

ΩT

f (m)
(
t,Du(m)

)
dxdt

≤
∫∫

ΩT

f (m)(t,Dv) dxdt + 1
hm

∫∫
ΩT

(
v − u(m)

)(
v − v(t − hm)

)
dxdt

(4.6)

+ 1
2hm

∫∫
ΩT

(
v(t − hm) − u(m)(t − hm)

)2 − (
v − u(m)

)2 dxdt

=
∫∫

ΩT

f (m)(t,Dv) dxdt + 1
hm

∫∫
ΩT

(
v − u(m)

)(
v − v(t − hm)

)
dxdt

+ 1
2

∫
Ω

(v − uo)2 dx − 1
2hm

∫∫
Ω×(T−hm,T ]

∣∣v − u(m)(T )
∣∣2 dxdt.

4.5. Variational inequality for the limit map

We fix an arbitrary map v ∈ KL
uo

(ΩT ) with ∂tv ∈ L2(ΩT ). Thus, in particular
we have that v ∈ AT , so v is an admissible comparison map in (4.6). Our goal
is to pass to the limit K � m → ∞ in (4.6) in order to deduce the variational
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inequality (3.1) for u. To this end, we consider the terms separately. First, we
write the first term on the left-hand side of (4.6) as∫∫

ΩT

f (m)
(
t,Du(m)

)
dxdt

=
∫∫

ΩT

f
(
t,Du(m)

)
dxdt +

∫∫
ΩT

f (m)
(
t,Du(m)

) − f
(
t,Du(m)

)
dxdt.

By Lemma 2.4 and (4.3)3, we obtain that∫∫
ΩT

f(t,Du) dxdt ≤ lim inf
K�m→∞

∫∫
ΩT

f
(
t,Du(m)

)
dxdt.

Further, since
∥∥Du(m)

∥∥
L∞(ΩT ,Rn)

≤ L for all m ∈ N and f fulfills (4.1)3, we
estimate∣∣∣∣

∫∫
ΩT

f (m)
(
t,Du(m)

) − f
(
t,Du(m)

)
dt

∣∣∣∣
≤

m∑
i=1

∫∫
Ω×((i−1)hm,ihm]

∣∣f(
ihm,Du(m)

) − f
(
t,Du(m)

)∣∣dxdt

≤
m∑

i=1

∫∫
Ω×((i−1)hm,ihm]

∫
((i−1)hm,ihm]

∣∣∂tf
(
s,Du(m)(t)

)∣∣ ds dxdt

≤ |Ω|hm

m∑
i=1

∫
((i−1)hm,ihm]

g̃L(s) ds

= |Ω|‖g̃L‖L1(0,T )hm.

Therefore, this term vanishes in the limit m → ∞. Joining the preceding
estimates, we conclude that∫∫

ΩT

f(t,Du) dxdt ≤ lim inf
K�m→∞

∫∫
ΩT

f (m)
(
t,Du(m)

)
dxdt. (4.7)

Repeating the estimates in the penultimate inequality with u(m) replaced by
v, for the first term on the right-hand side of (4.6) we find that∫∫

ΩT

f(t,Dv) dxdt = lim
m→∞

∫∫
ΩT

f (m)(t,Dv) dxdt. (4.8)

Next, since 1
hm

(v(t) − v(t − hm)) → ∂tv strongly in L2(ΩT ) and u(m) ⇁ u

weakly in L2(ΩT ) as K � m → ∞ by (4.3)1, we have that∫∫
ΩT

∂tv(v − u) dxdt = lim
K�m→∞

1
hm

∫∫
ΩT

(
v − u(m)

)(
v − v(t − hm)

)
dxdt.

(4.9)

Finally, by the fact that v ∈ C0([0, T ];L2(Ω)) and by (4.3)2, we obtain that
1
2‖(v − u)(T )‖2

L2(Ω)

= lim
K�m→∞

1
2hm

∫∫
Ω×(T−hm,T ]

∣∣v − u(m)(T )
∣∣2 dxdt. (4.10)
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Collecting the assertions (4.7)–(4.10) yields∫∫
ΩT

f(t,Du) dxdt ≤
∫∫

ΩT

f(t,Dv) dxdt +
∫∫

ΩT

∂tv(v − u) dxdt

+ 1
2‖v(0) − uo‖2

L2(Ω) − 1
2‖(v − u)(T )‖2

L2(Ω).

Since v ∈ KL
uo

(ΩT ) with ∂tv ∈ L2(ΩT ) was arbitrary, we have shown that
u ∈ KL

uo
(ΩT ) is the desired variational solution. �

5. Existence for the unconstrained problem for regular
integrands

In this section we show the existence of variational solutions to the uncon-
strained problem under the regularity condition (4.1) provided that the initial
and boundary datum satisfies the bounded slope condition. To this end, we
need the following lemma, whose proof is similar to that of [7, Lemma 7.1].
It states that affine functions independent of time are variational solutions to
(1.1) with respect to their own initial and lateral boundary values.

Lemma 5.1. Let Ω be open and bounded. Assume that f : [0, T ] × R
n → R

satisfies (1.2). Let w(x, t) := a + ξ · x with constants a ∈ R and ξ ∈ R
n be an

affine function independent of time. Then w is a variational solution in the
sense of Definition 1.1 in K∞

w (ΩT ).

With the preceding lemma at hand, we are able to prove the following.

Theorem 5.2. Let T ∈ (0,∞), assume that Ω ⊂ R
n is open, bounded and

convex, and that the integrand f : [0, T ] × R
n → R satisfies (4.1). Consider

uo ∈ W 1,∞(Ω) such that ‖Duo‖L∞(Ω,Rn) ≤ Q and suppose that uo|∂Ω satisfies
the bounded slope condition with the same parameter Q. Then there exists
a variational solution u ∈ K∞

uo
(ΩT ) to (1.1) in the sense of Definition 1.1.

Further, we have the quantitative bound

‖Du‖L∞(ΩT ,Rn) ≤ Q. (5.1)

Proof. Let L > Q. By Theorem 4.1 there exists a variational solution u ∈
KL

uo
(ΩT ) with ∂tu ∈ L2(ΩT ) to the gradient constrained problem in the sense

of Definition 3.1. We begin by proving the Lipschitz bound (5.1) and then
show that u is in fact already a solution to the unconstrained problem.

Fix xo ∈ ∂Ω and denote by w±
xo

the affine functions from Lemma 2.2. In
particular we have w−

xo
≤ uo ≤ w+

xo
. Since by Lemma 5.1 the functions w−

xo

and w+
xo

are variational solutions, it follows from the comparison principle in
Theorem 3.5 that

w+
xo

(x) ≤ u(x, t) ≤ w−
xo

(x) for all (x, t) ∈ ΩT .

Consequently, there holds

|u(x, t) − uo(xo)| ≤ Q |x − xo| for all (x, t) ∈ ΩT .
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Since xo ∈ ∂Ω was arbitrary, we obtain that
|u(x, t) − uo(xo)|

|x − xo| ≤ Q for all xo ∈ ∂Ω, (x, t) ∈ ΩT . (5.2)

Consider x1, x2 ∈ Ω, x1 = x2, t ∈ (0, T ) and set y := x2 − x1. Define the
shifted set Ω̃T :=

{
(x − y, t) ∈ R

n+1 : (x, t) ∈ ΩT

}
and the shifted function

uy : Ω̃T → R by

uy(x, t) := u(x + y, t).

Then uy is a variational solution in KL(Ω̃T ). Since ∂tu, ∂tuy ∈ L2((Ω ∩ Ω̃)T )
by the spatial localization principle in Lemma 3.7, the functions u and uy both
satisfy variational inequality (3.11) from Lemma 3.6 in (Ω∩ Ω̃)T . Therefore by
Lemma 3.6 there exists (xo, to) ∈ ∂P((Ω ∩ Ω̃))T such that

|u(x1, t) − uy(x1, t)| ≤ |u(xo, to) − uy(xo, to)| .
By definition of y and uy, this yields

|u(x1, t) − u(x2, t)| ≤ |u(xo, to) − u(xo + y, to)| .
Since either to = 0 or one of the points xo or xo + y belongs to ∂Ω, it follows
from the assumption ‖Duo‖L∞(Ω,Rn) ≤ Q and (5.2) that

|u(xo, to) − u(xo + y, to)| ≤ Q |y| = Q |x1 − x2| .
Combining this with the preceding estimate, we obtain (5.1).

It remains to show that u is a variational solution to the unconstrained
problem. Let w ∈ K∞

uo
(ΩT ) with ∂tw ∈ L2(ΩT ) and choose the comparison

map v := u + s(w − u) for 0 < s � 1; in particular, since Q < L, for s small
enough we have that

‖Dv‖L∞(ΩT ,Rn)

≤ ‖Du‖L∞(ΩT ,Rn) + s(‖Dw‖L∞(ΩT ,Rn) + ‖Du‖L∞(ΩT ,Rn)) ≤ L.

Thus v is an admissible comparison function for the gradient constrained prob-
lem and we obtain that∫∫

ΩT

f(t,Du) dxdt ≤
∫∫

ΩT

s∂tu(w − u) + sf(t,Dw) + (1 − s)f(t,Du) dxdt

+ s
2 ‖w(0) − uo‖2

L2(ΩT ) − s
2 ‖w(T ) − u(T )‖2

L2(ΩT )

Reabsorbing the integral with f(t,Du) to the left-hand side and dividing by s,
we see that u satisfies the variational inequality (1.3). Thus u is a variational
solution in the sense of Definition 1.1. �

6. Existence for the unconstrained problem for general
integrands

In this section we finish the proof of Theorem 1.2. Note that we only need to
consider the case T < ∞. Indeed, assume that for any τ ∈ (0,∞) we have
constructed a variational solution with initial and boundary datum uo in the
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sense of Definition 1.1 such that the gradient bound (1.4) holds in Ωτ . Let
0 < τ1 < τ2 < ∞ and denote by u1 and u2 the variational solutions in Ωτ1 and
Ωτ2 , respectively. By the localization principle with respect to time in Lemma
3.3, u2 is also a variational solution in Ωτ1 . Further, u1 and u2 coincide in
Ωτ1 by the comparison principle in Theorem 3.5. Therefore, a unique global
variational solution in the sense of Definition 3.1 can be constructed by taking
an increasing sequence of times (τi)i∈N with limi→∞ τi = ∞.

Thus we suppose that T < ∞. For ε > 0 we define the Steklov average
fε : [0, T ] × R

n → R of f by (2.4). A straightforward computation shows that
ξ �→ fε(t, ξ) is convex for any t ∈ [0, T ]. Further, for any ε > 0 the derivative
of fε with respect to the time variable is given by

∂tf(t, ξ) = 1
ε (f(t + ε, ξ) − f(t, ξ)).

Combining this with (2.1), for any L > 0 we have that

|∂tf(t, ξ)| ≤ 1
ε (gL(t + ε) + gL(t)) for all t ∈ [0, T ], ξ ∈ BL(0).

Hence, for any ε > 0, the integrand fε fulfills assumption (4.1). By Theorem 5.2
we conclude that for any ε > 0 there exists a variational solution uε ∈ K∞

uo
(ΩT )

to the Cauchy–Dirichlet problem associated with fε in the sense of Definition
1.1 satisfying the bound

‖Duε‖L∞(ΩT ,Rn) ≤ max{Q, ‖Duo‖L∞(Ω,Rn)}.

Together with the fact that uε = uo on ∂Ω × (0, T ), this implies in particular
that the sequence (uε)ε>0 is bounded in L∞(ΩT ). Thus, there exists a (not
relabelled) subsequence and a limit map u ∈ L∞(ΩT ) such that u = uo on
∂Ω × (0, T ),

‖Du‖L∞(ΩT ,Rn) ≤ max{Q, ‖Duo‖L∞(Ω,Rn)}
and in the limit ε ↓ 0 there holds⎧⎨

⎩
uε

∗⇁ u weakly∗ in L∞(ΩT ),
uε(t) → u(t) uniformly for a.e. t ∈ [0, T ],
Duε

∗⇁ Du weakly∗ in L∞(ΩT ,Rn).
(6.1)

It remains to show that u is a variational solution to the Cauchy–Dirichlet
problem associated with f in the sense of Definition 1.1. To this end, note
that uε satisfies the variational inequality∫∫

Ωτ

fε(t,Duε) dxdt ≤
∫∫

Ωτ

∂tv(v − uε) dxdt +
∫∫

Ωτ

fε(t,Dv) dxdt (6.2)

+ 1
2‖v(0) − uo‖2

L2(Ω) − 1
2‖(v − uε)(τ)‖2

L2(Ω)

for any τ ∈ [0, T ]∩R and any comparison map v ∈ K∞
uo

(Ωτ ) with ∂tv ∈ L2(Ωτ ).
In the following, we pass to the limit ε ↓ 0 in (6.2). In order to treat the left-
hand side, we rewrite∫∫

Ωτ

fε(t, Duε) dxdt =

∫∫
Ωτ

f(t, Duε) dxdt +

∫∫
Ωτ

fε(t, Duε) − f(t, Duε) dxdt.
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By (6.1)3 and Lemma 2.4 we obtain that∫∫
Ωτ

f(t,Du) dxdt ≤ lim inf
ε↓0

∫∫
Ωτ

f(t,Duε) dxdt.

Further, for M := max{Q, ‖Duo‖L∞(Ω,Rn)} we find that∣∣∣∣
∫∫

Ωτ

fε(t,Duε) − f(t,Duε) dxdt

∣∣∣∣ ≤ |Ω|
∫ τ

0

sup
|ξ|≤M

|fε(t, ξ) − f(t, ξ)|dt → 0

as ε ↓ 0 by means of Lemma 2.7. Joining the preceding two estimates yields∫∫
Ωτ

f(t,Du) dxdt ≤ lim inf
ε↓0

∫∫
Ωτ

fε(t,Duε) dxdt. (6.3)

Next, by (6.1)1 we have that∫∫
Ωτ

∂tv(v − u) dxdt = lim inf
ε↓0

∫∫
Ωτ

∂tv(v − uε) dxdt. (6.4)

For the second term on the right-hand side of (6.2), by Lemma 2.7 we conclude
that ∣∣∣∣

∫∫
Ωτ

fε(t,Dv) − f(t,Dv) dxdt

∣∣∣∣
≤ |Ω|

∫ τ

0

sup
|ξ|≤M

|fε(t, ξ) − f(t, ξ)|dt → 0 (6.5)

as ε ↓ 0. Finally, (6.1)2 shows that

‖(v − u)(τ)‖2
L2(Ω) = lim

ε↓0
‖(v − uε)(τ)‖2

L2(Ω) (6.6)

for a.e. τ ∈ [0, T ]. Collecting (6.3)–(6.6), we infer that∫∫
Ωτ

f(t,Du) dxdt ≤
∫∫

Ωτ

∂tv(v − u) dxdt +
∫∫

Ωτ

f(t,Dv) dxdt

+ 1
2‖v(0) − uo‖2

L2(Ω) − 1
2‖(v − u)(τ)‖2

L2(Ω)

for a.e. τ ∈ [0, T ] and any v ∈ K∞
uo

(Ωτ ) with ∂tv ∈ L2(Ωτ ). In particular, this
implies that u ∈ C0([0, T ];L2(Ω)), see Lemma 3.2. Therefore, we have that
u ∈ K∞

uo
(ΩT ) is a variational solution associated with the integrand f in the

sense of Definition 1.1. Finally, by the comparison principle in Theorem 3.5, u
is unique. This concludes the proof of Theorem 1.2.

7. Continuity in time (Proof of Theorem 1.3)

To prove Theorem 1.3, we begin by verifying that the unique variational solu-
tion u to the Cauchy–Dirichlet problem associated with (1.1) and uo in ΩT is a
weak solution to (1.1) in ΩT . To this end, let ϕ ∈ C∞

0 (ΩT ) be a test function.
We want to show that∫∫

ΩT

u∂tϕ dxdt =
∫∫

ΩT

Dξf(t,Du) · Dϕ dxdt. (7.1)
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We set vh := [u]h + s[ϕ]h, where in the convolution we use the starting
values uo and ϕ(0) = 0 for u and ϕ, respectively. Using vh as a comparison
function in (1.3) and omitting the boundary term at T , we obtain that

0 ≤
∫∫

ΩT

∂tvh(vh − u) dxdt +
∫∫

ΩT

f(t,Dvh) − f(t,Du) dxdt. (7.2)

Since by (1.4) we have that

‖Dvh‖L∞(ΩT ,Rn) ≤ ‖Duo‖L∞(Ω,Rn) + ‖Du‖L∞(ΩT ,Rn) + ‖Dϕ‖L∞(ΩT ,Rn)

≤ 2‖Duo‖L∞(Ω,Rn) + Q + ‖Dϕ‖L∞(ΩT ,Rn),

it follows from (2.1) that the sequence of mappings (x, t) �→ f(t,Dvh(x, t))
has an integrable dominant independent of h. Therefore by the dominated
convergence theorem, we conclude that

lim
h↓0

∫∫
ΩT

f(t,Dvh) dxdt =
∫∫

ΩT

f(t,Du + sDϕ) dxdt.

Further, by integration by parts and the convergence assertions from Lemmas
2.8 and 2.9, we find that∫∫

ΩT

∂tvh(vh − u) dxdt

=
∫∫

ΩT

∂t[u]h([u]h − u) + s∂t[u]h[ϕ]h + s∂t[ϕ]h([u]h + s[ϕ]h − u) dxdt

=
∫∫

ΩT

1
h (u − [u]h)([u]h − u) − s∂t[ϕ]hu dxdt

+
∫

Ω

s[u]h[ϕ]h(T ) + s2

2 [ϕ]2h(T ) dx

≤ −
∫∫

ΩT

s∂t[ϕ]hu dxdt +
∫

Ω

s[u]h[ϕ]h(T ) + s2

2 [ϕ]2h(T ) dx

→ −
∫∫

ΩT

s∂tϕu dxdt

in the limit h ↓ 0. Thus, letting h ↓ 0 in (7.2) and dividing by s we deduce
that ∫∫

ΩT

u∂tϕ dxdt ≤
∫∫

ΩT

1
s (f(t,Du + sDϕ) − f(t,Du)) dxdt

=
∫∫

ΩT

∫ 1

0

Dξf(t,Du + sσDϕ) · Dϕ dσdxdt.

Finally, observe that by the gradient bound (1.4) and the assumption (1.5),
the integrand at the right-hand side of the above inequality is bounded. Thus
we may let s → 0 to obtain that∫∫

ΩT

u∂tϕ dxdt ≤
∫∫

ΩT

Dξf(t,Du) · Dϕ dxdt.

The reverse inequality in (7.1) follows by replacing ϕ by −ϕ.
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Consider cylinders of the form

Qr := Br(x0) × (t0 − r2, t0 + r2) ∩ ΩT

where (x0, t0) ∈ ΩT and r > 0. We show that u satisfies the Poincaré inequality

−−
∫∫

Qr

|u − (u)Qr
|2 dxdt

≤ C(n,Ω)r2

(
−−
∫∫

Qr

|Du|2 dxdt + sup
(x,t)∈Qr

|Dξf(t,Du(x, t))|2
)

(7.3)

for all small r > 0, where the mean value of u over Qr is denoted by

(u)Qr
:= −−

∫∫
Qr

u dxdt.

Thus the gradient bound (1.4) together with condition (1.5) yields

−−
∫∫

Qr

|u − (u)Qr
|2 dxdt ≤ C

(
n,Ω, Q, ‖Duo‖L∞(Ω,Rn), f

)
r2 (7.4)

for all r > 0. The claim then follows from [9, Theorem 3.1].
To prove (7.3), we first note that since Ω is a convex domain, there exist

positive constants R(Ω) and C(Ω) such that for any r ∈ (0, R) and x0 ∈ Ω,
the set Ω ∩ Br(x0) contains a ball of radius r/C(Ω). Then we assume that
Qr with r < R is given and denote Br := Br(x0), t1 := max(t0 − r2, 0),
t2 := min(t0 + r2, T ) so that Qr = (Br ∩ Ω) × (t1, t2). We fix a non-negative
weight function η ∈ C∞

0 (Br ∩ Ω) such that

−
∫

Br∩Ω

η dx = 1 and ‖η‖L∞(Ω) + r‖Dη‖L∞(Ω;Rn) ≤ c(n,Ω).

For the second assertion, we have used that Br ∩ Ω contains a ball of size
r/C(Ω). Since Br ∩ Ω is convex, the Poincaré inequality

∫
Br∩Ω

|v − (v)Br∩Ω|2 dx ≤ r2

π2

∫
Br∩Ω

|Dv|2 dx

holds for any v ∈ W 1,2(Br ∩Ω), see for example [1]. An application of Hölder’s
and Minkowski’s inequalities on the above further yields

−
∫

Br∩Ω

|v − (vη)Br∩Ω|2 dx ≤ cr2−
∫

Br∩Ω

|Dv|2 dx (7.5)

with a constant c = c(n,Ω). We denote the weighted mean of u at time t by

uη(t) := −
∫

Br∩Ω

u(x, t)η(x) dx
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and decompose the left-hand side of (7.3) as follows

−−
∫∫

Qr

|u − (u)Qr
|2 dxdt

≤ c−
∫ t2

t1

−
∫

Br∩Ω

|uη(t) − (u)Qr
|2 dxdt + c−

∫ t2

t1

−
∫

Br∩Ω

|u(x, t) − uη(t)|2 dxdt

= c−
∫ t2

t1

∣∣∣−
∫ t2

t1

uη(t) − uη(s) ds + −
∫ t2

t1

uη(s) ds − (u)Qr

∣∣∣2 dt

+ c−
∫ t2

t1

−
∫

Br∩Ω

|u(x, t) − uη(t)|2 dxdt

≤ c−
∫ t2

t1

−
∫ t2

t1

|uη(t) − uη(s)|2 dsdt + c
∣∣∣−
∫ t2

t1

uη(s) ds − (u)Qr

∣∣2

+ c−
∫ t2

t1

−
∫

Br∩Ω

|u(x, t) − uη(t)|2 dxdt

=: c (I1 + I2 + I3).

To estimate I3, we apply (7.5) to obtain that

I3 ≤ c(n,Ω)r2−
∫

Br∩Ω

|Du|2 dx.

The same estimate holds for I2 since by Hölder’s inequality we have that

I2 =
∣∣∣−
∫ t2

t1

−
∫

Br∩Ω

uη(s) − u(x, s) dxds
∣∣∣2 ≤ I3.

To estimate I1, let τ1, τ2 ∈ (t1, t2) with τ1 < τ2. As shown above, u is a weak
solution to (1.1). That is, abbreviating F (x, t) := Dξf(t,Du(x, t)), we find
that ∫ T

0

∫
Ω

u∂tϕ − F · Dϕ dxdt = 0 for all ϕ ∈ W 1,∞
0 (ΩT ).

Fix δ > 0 and consider

ψδ(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (0, τ1 − δ],
1
2δ (t − (τ1 − δ)), t ∈ (τ1 − δ, τ1 + δ),
1, t ∈ [τ1 + δ, τ2 − δ],
1 − 1

2δ (t − (τ2 − δ)), t ∈ (τ2 − δ, τ2 + δ),
0, t ∈ [τ2 + δ, T ).

Using the test function ϕ(x, t) := ηψδ in the weak Euler–Lagrange equation
yields

0 =

∫ T

0

∫
Ω

uη∂tψδ − ψδF · Dϕ dxdt

= −
∫ τ1+δ

τ1−δ

∫
Br∩Ω

uη dxdt − −
∫ τ2+δ

τ2−δ

∫
Br∩Ω

uη dxdt +

∫ τ2+δ

τ1−δ

∫
Br∩Ω

ψδF · Dη dxdt.
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Passing to the limit δ ↓ 0, the preceding inequality implies that

|uη(τ1) − uη(τ2)| ≤
∫ τ2

τ1

−
∫

Br∩Ω

|F · Dη|dxdt

≤ (τ2 − τ1)‖Dη‖L∞(Ω,Rn) sup
(x,t)∈Qr

|F (x, t)|

= 2c(n,Ω)r sup
(x,t)∈Qr

|Dξf(t,Du(x, t))|

holds true for almost every τ1, τ2 ∈ (t1, t2). In the last inequality, we used that
τ2 − τ1 ≤ t2 − t1 ≤ 2r2. Thus

I1 ≤ c(n,Ω)r2 sup
(x,t)∈Qr

|Dξf(t,Du(x, t))|2. (7.6)

Inequality (7.3) now follows by combining the estimates of I1, I2 and I3.
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