Nonlinear Differ. Equ. Appl. (2023) 30:76
© 2023 The Author(s)

1021-9722/23 /060001-34 : : : :
published online September 12, 2023 Nonlinear Differential Equations

https://doi.org/10.1007/s00030-023-00876-6 and Applications NoDEA

Check for
updates

The bounded slope condition for parabolic
equations with time-dependent integrands

Leah Schatzler and Jarkko Siltakoski

Abstract. In this paper, we study the Cauchy—Dirichlet problem

Ou — div (De f (¢, Du)) =0  in Qrp,
{ U= Uy on 0pQr,
where 2 C R" is a convex and bounded domain, f : [0,7] x R" — R is
L'-integrable in time and convex in the second variable. Assuming that
the initial and boundary datum wu, : @ — R satisfies the bounded slope
condition, we prove the existence of a unique variational solution that is
Lipschitz continuous in the space variable.
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1. Introduction and results

Tt follows from classical theory [15,17,18,26,29] (see also [14, Chapter 1]) that
any variational functional F : W>°(Q) — R of the form

F(v) ::/Qf(Dv)d:v,

where f : R™ — R is convex and 2 C R™ is a convex domain, admits a unique
Lipschitz continuous minimizer in the class {v € W1>(Q) : v = v, on 9Q}
provided that the boundary datum v, satisfies the bounded slope condition
(see Definition 2.1). Modern elliptic results involving one-sided bounded slope
conditions or more general integrands include for example [2—4,10,13,22-24].

Surprisingly, while Hardt and Zhou [16, Chapter 4] used the bounded
slope condition in a regularity argument in a time-dependent setting involving
functionals with linear growth, an evolutionary analogue of the above sta-
tionary theorem was established only rather recently by Boégelein, Duzaar,
Marcellini and Signoriello [7]. They considered the Cauchy—Dirichlet problem
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6,511, — div (Df(Du)) =0 in QT,
U= U, on OpQr,

where Qr := Q x (0,T) with Q C R™ and T € (0, o0] denotes a space-time
cylinder and 9pQ7 := 90 x (0, T)U (2 x {0}) its parabolic boundary. Given a
Lipschitz continuous initial and boundary datum u, that satisfies the bounded
slope condition, in [7] it was proven that the above problem admits a unique
variational solution that is globally Lipschitz continuous with respect to the
spatial variables. Moreover, if the integrand f fulfills an additional p-coercivity
condition with some p > 1, Bogelein and Stanin [8] obtained the local Lipschitz
continuity of variational solutions in space and time under the assumption
that u, is convex and Lipschitz continuous. Further, global continuity of u was
proven in the case that 2 is uniformly convex.

For the same class of integrands and merely convex domains €2, Stanin [30]
showed that variational solutions are still globally Holder continuous even if the
convexity assumption on u, is dropped. Equations with lower-order terms were
considered by Rainer, Siltakoski and Stanin [27] who extended a stationary
Haar-Rado type theorem by Mariconda and Treu [24] to the parabolic problem

Opu — div (Df(Du)) + Dyg(z,u) =0 in Qp,
U= U, on OpQrp,

where f is convex and p-coercive with some p > 1 and the lower-order term
g satisfies a technical condition, in particular convexity with respect to u. As
a corollary, the authors in [27] obtained the global Lipschitz continuity with
respect to the spatial variables of variational solutions under the classical two-
sided bounded slope condition provided that f € C? is uniformly convex in a
suitable sense.

Existence and regularity of solutions under general growth conditions,
such as the so called p — g-growth conditions, have been recently considered by
many authors, see for example [21,25] and the references therein. We emphasize
that in the present manuscript, because of the bounded slope condition, no
special growth conditions are imposed on the elliptic part of the operator.

The objective of the present paper is to extend the result of [7] to include
time-dependent integrands. In order to focus on the novelty and to include
integrands f with linear growth, we consider the classical bounded slope con-
dition and avoid lower-order terms. We are concerned with parabolic partial
differential equations of the form

Oru — div(De f(t, Du)) =0 in Qrp, (1.1)
where @ C R” is a convex and bounded domain and T € (0, 0o]. The integrand
f:00,T] x R™ — R is assumed to be a Carathéodory function that satisfies
the following assumptions:

& f(t,€) is convex in R™  for a.e. t € [0,T], (1.2)
t f(t,&) € LY(0,7) for all ¢ € R" and 7 € (0,T]NR. ’
In particular, for any L > 0 and 7 € (0, 7] N R the map ¢ — max¢|<y, [ f(t,§)]

belongs to L'(0,7) (see Sect. 2.3 below). Therefore, for any 7 € (0,7] NR and
V e L>®(Qp,R™) we have that
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//Q |f(t, V)| dzdt < oo.

We emphasize that t — f(t,€) is neither assumed to be continuous nor weakly
differentiable.

Examples of admissible integrands are functionals with linear growth such
as the area integrand f(£) = /1 + |£|?, integrands with exponential growth
like f(&) = exp(|¢[?), Orlicz type functionals such as f(£) = |¢|log(1+ |£]) and
time-dependent, combinations thereof like f(t,£) = Xjo,e,1/1(&) + X(¢,,17.f2(€)
or more general f(t,&) = Y0 a;(t)f;(£) for functions a; € L'(0,T), i =
1,...,m.

In the present paper, we define variational solutions in the same way as
in [5]. This notion of solution, inspired by Lichnewsky and Temam [20], was
introduced by Bousquet [2,3] in the time-independent setting. We consider the
following class of functions that are Lipschitz continuous in space

K> :={ve L=(Qr)nC°([0,T); L*(Q)) : Dv € L>®(Qr,R™)}.

Further, we denote the subclass related to time-independent boundary values
u, € WH>(Q) by

K72 :={v € K>(Qr) : v =u, on the lateral boundary 092 x (0,T)}.

Definition 1.1. (Variational solutions) Assume that f: [0,7] x R" — R sat-
isfies (1.2) and consider a boundary datum u, € W1>°(). In the case T €
(0,00) a map u € K;°(Qr) is called a variational solution to the Cauchy—
Dirichlet problem associated with (1.1) and u, in Qp if and only if the varia-
tional inequality

/ f(t, Du) dadt < / Ov(v — u) + f(t, Dv) dzdt
Qr Qrp

+5[0(0) = uollf20) = 5ll(v —W)(D)72 ) (13)

holds true for any comparison map v € K°(Qr) with ;v € L?(Qr). If T = oo
and u € K3°(Q) is a variational solution in €, for any 7 € (0, 00), u is called
a global variational solution or variational solution in 2., to the Cauchy—
Dirichlet problem associated with (1.1) and w,.

Our main result concerning the existence of variational solutions which
are Lipschitz continuous with respect to the spatial variables can be formulated
as follows.

Theorem 1.2. Let Q) C R™ be an open, bounded and convex set and T € (0, o0].
Assume that f:[0,T] x R™ — R satisfies hypotheses (1.2). Further, let u, €
Wb (Qr) denote a boundary datum such that the bounded slope condition with
some positive constant Q (see Definition 2.1 below) is fulfilled for U, := o) 5,
Then, there exists a unique variational solution w to the Cauchy—Dirichlet
problem associated with (1.1) and u, in Qr. Moreover, u satisfies the gradient
bound

[ Dull Loe (@7 rn) < max{Q, [| Duol| oo (0,rn) }- (1.4)
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Furthermore, we show that variational solutions to (1.1) are weak solu-
tions and consequently, they are 1/2-Holder continuous in time provided that
the map & — f(t,€) is C' and uniformly locally Lipschitz in the following
sense: For each L > 0, there exists a constant M, > 0 such that

sup |Def(t,6)| < My forall &€ Br(0). (1.5)
te(0,T)

Theorem 1.3. Suppose that the assumptions of Theorem 1.2 hold. Moreover,
assume that the mapping & — f(t,€) is in C*(R™) for almost allt € (0,T) and
satisfies (1.5). Then the unique variational solution u to the Cauchy—Dirichlet
problem associated with (1.1) and u, is a weak solution (see (7.1)). Further,
it is contained in the space of Holder continuous functions C%V1/2(Qq).

To prove Theorem 1.2, we may assume without a loss of generality that
T < o0, see the beginning of Sect. 6. The proof is divided into three parts. We
first assume that the integrand is suitably regular and in particular has a weak
derivative with respect to the time variable. Then the method of minimizing
movements yields a solution u to the so called gradient constrained obstacle
problem to (1.1), where the L>-norms of the gradients of the solution and
the comparison maps are bounded by a fixed constant L € (0, c0). Moreover,
the regularity assumption on f ensures that u has a weak time derivative in
L2(Q7).

Next, under the same regularity assumptions on f as in the first step,
a standard argument exploiting the bounded slope condition and the maxi-
mum principle yields the uniform gradient bound (1.4) for w. Choosing L large
enough, this in turn allows us to deduce that u is in fact already a solution to
the unconstrained problem in the sense of Definition 1.1.

To deal with a general integrand f, we consider its Steklov average f-.
Since f. admits a weak time derivative, by the results mentioned in the preced-
ing paragraph there exists a solution u. to the Cauchy—Dirichlet problem asso-
ciated with f. in the sense of Definition 1.1. Moreover, since for each € > 0 the
solution u, satisfies the gradient bound (1.4) and u. = u, on 92 x (0,7T), there
exists a limit map v € L>(Q7) such that u. — u uniformly and Du. - Du
weakly® up to a subsequence as € | 0. This allows us to conclude that u
is a variational solution in the sense of Definition 1.1, finishing the proof of
Theorem 1.2.

The proof of Theorem 1.3 is similar to the one found in [7, Chapter 8].
The C! assumption on the integrand ensures the validity of the weak Euler—
Lagrange equation, which lets us apply the argument from [6, pp. 23-24] to
prove a Poincaré inequality for variational solutions. The Hoélder continuity
then follows from the Campanato space characterization of Holder continuity
by Da Prato [9].

The paper is organized as follows. Section 2 contains preliminary defini-
tions and basic observations about the integrand. In Sect.3 we prove certain
properties of variational solutions that are required in later sections, including
the comparison and maximum principles. Under additional regularity assump-
tions on f we use the method of minimizing movements to prove the existence
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of variational solutions to the gradient constrained problem in Sect.4 and in
Sect. 5 we consider the unconstrained problem. Finally, in Sect.6 we consider
general integrands and finish the proof of Theorem 1.2 and Holder continuity
in time is proven in Sect. 7 under additional regularity assumptions.

2. Preliminaries

2.1. Notation

Throughout the paper, for p € [1,00] and m € N the space L? (€, R™) denotes
the usual Lebesgue space (we omit R™ if m = 1) and W1?(Q) and W, *(Q)
denote the usual Sobolev spaces. If Q is a bounded Lipschitz domain, W1>°(Q)
can be identified with the space C%1(Q) of functions v: Q — R that are
Lipschitz continuous (with Lipschitz constant [v]o;1 = ||[Dv| g (qrn)) up to
the boundary of . Note that in particular any convex set has a Lipschitz
continuous boundary, since convex functions are locally Lipschitz [11, Corollary
2.4]. Further, for a Banach space X and an integrability exponent p € [1, co] we
write LP(0,T; X) for the space of Bochner measurable functions v: [0,7] — X
with ¢ — |lv(t)||x € LP(0,T). Moreover, C°([0,T]; X) is defined as the space of
the continuous functions v: [0,7] — X. For maps v defined in Q1 we also use
the short notation v(t) for the partial map x — v(z,t) defined in Q. Finally,
for a set A C R™, the characteristic function x4: R™ — {0,1} is given by
xa(z)=1ifz € A and xa(z) =0 else.

2.2. Bounded slope condition

In the proof of the existence result in Sect.5 it is crucial that there exist
affine comparison functions below and above the initial/boundary datum wu,
coinciding with u, in a point z, € 0€2. This is ensured by applying the following
bounded slope condition to ;-

Definition 2.1. A function U: 992 — R satisfies the bounded slope condition
with constant @@ > 0 if for any x, € 0} there exist two affine functions
wE : R" — R with Lipschitz constants [wE ]o,; < Q such that

{w;o (z) < U(z) < wy (x) for any = € 09,
wy (2o) = Ul(z,) = wi (o).

Zo

Note that unless U itself is affine, the convexity of 2 is necessary for the
bounded slope condition to hold. Even strict convexity of € is not sufficient for
general U, since the boundary can become “too flat”. However, we know that
for a uniformly convex, bounded C?-domain  and v € C?(R™) the restriction
U = v|yq fulfills the bounded slope condition. For more details, we refer to
[14,26]. On the other hand, in the parabolic setting the following example is
relevant: Consider a convex domain 2 with flat parts (such as a rectangle) and
a Lipschitz continuous function u, that vanishes at the boundary of Q; i.e. we
prescribe zero lateral boundary values, but the initial datum is not necessarily
identical to zero.

We need the following lemma from [7, Lemma 2.3]. It states that if u, is
Lipschitz and w,|sq satisfies the bounded slope condition, then w, can be
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squeezed between two affine functions that touch wu, at a given boundary
boundary point and the Lipschitz constant of these affine functions is bounded
by either the Lipschitz constant of u, or the constant in the bounded slope
condition.

Lemma 2.2. Let u, € C%1(Q) with Lipschitz constant [u,)o1 < Q1 such that
the restriction U := wu,|yq satisfies the bounded slope condition with constant
Q2. Then for any x, € 0 there exist two affine functions wiﬁ with (w3 ]0 1 <
max{Q1, @2} such that

{wx()<uo(m)<w (x)  for any x € Q,
W (70) = Uo(,) = wchr (7).

2.3. Dominating functions for the integrand

Observe that for any L > 0 the map ¢ — max¢|<y, f(t,&) is measurable, since
we have that maxe|<z, f(¢,§) = maxeep, (0)ng» f(t,€) and the maximum of
countably many measurable functions is measurable. The same holds true for
t — ming <y, f(2,€). In the following lemma, we show that they are contained
in L1(0,T).

Lemma 2.3. Let T € (0,00) and assume that f: [0,T]xR™ — R satisfies (1.2).
Then, for any L > 0 there erists a function g, € L*(0,T) such that

(LI < gult) for all t € (0,T) and € € By (0). (2.1)
Proof. First, we show that for any L > 0, we have that
t— max f(t,€) e LY0,T). (2.2)

To this end, fix &1,...,&,+1 € R™ such that the closed ball By, (0) is a subset
of the simplex

n+1 n+1
= {geR”:gZAigi with 0 < \; < 1,i1,...,n+1,z/\i1}.
i=1 i=1
Note that for any ¢ € [0,7] such that R™ 3 £ — f(t,£) is convex, the mapping
& — f(t,€) attains its maximum in one of the points &1, ..., &,+1. Hence, for
a.e. t we obtain that
n+1
£(2,0) < max f(t,) <Z|ft£z

Since the maps ¢t — f(¢,0) and t — f(t,&), i =1,...,n+ 1, belong to
LY(0,T) by (1.2)2, this implies (2.2).

Next, we fix L > 0 and prove

t— |Igmn f(t,€) e LY0,T). (2.3)

Consider ¢t € [0, T] such that £ — f(¢,£) is convex. Then, there exist &min, Emax

€ B (0) such that f(t, &min) =minge|<p f(£,€) and f(t, §mae) =maxej<p f(2,€).
Assume that &nin # Emar (otherwise, & — f(¢,€) is constant in Br(0) and
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thus f(t,0) = miny <) f(t,£)). First, note that for C' := ﬁ(f(t,fmaz) —
F(t,&min)) € (0,00), we find that

f(t7 gmin) < f(tv fmax) - C‘gmax - fmm|
Furthermore, since £ — f(¢,£) is convex in R™, its subdifferential at &4, is
non-empty [11, Proposition 5.2], i.e. there exists 7 = 17({maz) € R™ such that
f(t7§) > f(t7§max) + n- (g - gmaz)
for any & € R™. In particular, we have that

f(t, gmin) > f(t7 gmax) +n- (gmm - fmax)
= f<t7€maw) + COS(a)|77||£min - fmaa:|a

where a denotes the angle between 1 and &5, — Emas. Together, the preceding
two inequalities imply that
cos(a)|n| < —C.

Next, choose s > 1 such that &, := &nin + $(Emaz — Emin) € 0BL+1(0). Note
that the vector £, —&mar = (1—5)(&min — Emaz) points in the opposite direction
as &min — Emaz- Therefore, the angle between 1 and &, — &40 i m— . Using the
facts that cos(m — @) = — cos(a) and |€, — Emaz| > 1, the preceding inequality
and the definition of C', we conclude that

max f(ta 5) > f(ta 50) > f(t7£maz) +n- (go - gmaz)

[€]<L+1
= f(t7fmaw) - COS(G)\UHEO - gmaw'
> f(t gmaﬂc) +C
= max J(4,€) + 3 (ma £(4.€) — min 7(4.9)

€< €< l€1<L

This is equivalent to

2L+ 1 max t — 2L max t,&) < min f(¢,€) < max f(t,§),
(2L-+1) max f(t.€) = 2L max f(1) < min £(1.6) < max f(t.©)
which holds for almost every ¢ € [0,7T]. Since we have already shown that
t — maxj¢<, f(t,§) and ¢ — max|¢ <41 f(,€) are contained in LY(0,T), the
preceding inequality proves (2.3). The claim of Lemma 2.3 follows by combin-
ing (2.2) and (2.3). O

2.4. Lower semicontinuity

In the course of the paper we will need the following result on the lower
semicontinuity of integrals involving f with respect to the weak™ topology
of LOO(QT, Rn)

Lemma 2.4. Let Q C R™ be a bounded open set and 0 < T < oo. Assume
that f:[0,T] x R" — R satisfies (1.2). Then, for any sequence (V;);en C
L>®(Qp,R™) and V € L*>®(Qp,R™) such that V; = V weakly* in L>=(Qr,R™)
as i — oo we have that
/ f&,V)dadt < hmlnf/ f(t, Vi) dzdt.
Qp Qr

11— 00
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Proof. Consider an arbitrary sequence (V;);eny C L% (227, R™) and a limit map
V e L*>®(Qr,R™) such that V; = V weakly* in L>=(Qr,R™) as i — oo. First,
note that (V;);en is bounded in L (27, R™) and set M :=sup, /|| Vi |l o (7 ,r)
> HVHL‘x(QT,R”)' We find that

C:={W e L*(Qr,R") : WL @prny < M}

is a convex subset of L?(Qr,R™). Therefore, since & — f(t,£) is convex for
a.e. t € [0,7] and since [[, f(t,W)dadt is finite for any W € C by (2.1), we
obtain that the functional F': L?(Qr, R") — (—00, 00| given by

{fo Ft,W)dazdt it W e C,

FIW
W else

is proper and convex. Further, F' is lower semicontinuous with respect to the
norm topology in L?(Q7,R™). Indeed, assume that the sequence (W;);en C
L?(Qr,R™) converges strongly in L?(Qr, R™) to a limit map W € L?(Qr, R")
as i — oo. If liminf; .. F[W;] = oo, the assertion F[W] < liminf; ., F[W;]
holds trivially. Otherwise, there exists a subsequence & C N such that W; € C'
for any i € R, liminf, . F[W;] = limgs;—oo F[W;] and W; — W a.e. in
Qr as R 3 i — oo. By (2.1) and the dominated convergence theorem, we
conclude that F[W] = limgsi—eo F[W;] = liminf, . F[W;]. Therefore, F is
also lower semicontinuous with respect to the weak topology in L?(Q7,R™),
cf. [11, Corollary 2.2]. Since Qr is bounded, we have that V; — V weakly in
L?(Qr,R") as i — oo and hence

/ f(t,V)dzedt = F[V] < liminf F[V;] = liminf f(t,V;) dadt.
Qr

11— 00 i—00 QT

This concludes the proof of the lemma. O

2.5. Steklov averages of the integrand

For the final approximation argument in the proof of Theorem 1.2 we need
to regularize the integrand f with respect to time. To this end, extend f to
[0, 00] x R™ by zero if T' < co. For € > 0 define the Steklov average fe: [0,T] x
R™ — R of the extended integrand by

t+e
fo(t6) = ][ f(s.6) ds. (2.4)

In order to investigate convergence of the Steklov averages as € | 0, first note
that specializing the proof of [11, Corollary 2.4] gives us the following result.

Lemma 2.5. Let L > 0 and assume that f: R" — R is a convex function with
Ifll Lo (Brii(0)) < C. Then, f satisfies the local Lipschitz continuity condition

|f(&1) = f(&2)] <2C|& — &|  for all 1,82 € Br(0).

We also need the following variant of the dominated convergence theorem
that can be found for example in [12, Theorem 1.20].
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Lemma 2.6. Assume that v,v, € L'(R™) and w,w;, € L*(R™) are measurable
for all k € N. Suppose that wy, — w a.e. in R™ and |wg| < vi, for all k € N.
Suppose moreover that v, — v a.e. in R™ and

lim v dr = vdax.
k—o0 R n

Then

lim |wg — w|dz = 0.
k—oo Jpn

With the preceding lemmas at hand, we prove the following convergence
result.

Lemma 2.7. Let T € (0,00) and assume that f: [0,T] x R" — R satisfies
hypotheses (1.2). Fore > 0 let f.: [0,T] x R™ — R denote the Steklov average
of [ given by (2.4). Then, we have that

T

lim sup |f:(t,&) — f(t,€)|dt =0 for any L > 0.
€10 Jo jgl<L

Proof. Fix L > 0. First of all, we show that
lim sup |f:(¢,€) — f(¢,€)| =0 for a.e. t €[0,T]. (2.5)
=10 g<L

By (1.2), for fixed £ € R™ we have that fe(t,&) — f(,€) for a.e. t € [0,T] by
Lebesgue’s differentiation theorem. Thus, there exists a set N of £'-measure
zero such that

J-(1,€) = F(t,€) for any ¢ € [0,T]\ N and € € Q™. (2.6)
Without loss of generality assume that additionally for all ¢ € [0, T]\N the
map & — f(t,€) is convex, the function gr41 from (2.1) fulfills gr4+1(t) < oo
and there holds ftﬂ_e gr+1(s)ds — gr+1(t). Now, fix t € [0,T]\N. By (2.1)
and Lemma 2.5 we conclude that £ — f(¢,€) is Lipschitz continuous in Br,(0)

with Lipschitz constant 2g7,11(t). Using this together with the definition of
the Steklov average, for any &;,& € Br(0) we compute that

t+e
|f€(t7£1)_f€(t7§2)| S]{ |f(8,§1)—f(8,€2)|d8

t+e
< 2][ gr41(5)ds|ér — &),
t

Since f:% gri1(s)ds — gry1(t), there exists g, > 0 such that € — f.(£,€) is
Lipschitz continuous with Lipschitz constant 4g7,11(¢) for all € € (0,&,]. This
shows that the sequence (f-(t,))-c(0,e,] is equicontinuous in Br,(0). Moreover,
(fe(t,+))ec(0,e,) is equibounded in B (0), since for any ¢ € Br(0) and € €
(0, 0], we find that

t+e t+e
£a(.6)] < ][ F(s,6)]ds < ][ gp11(s) ds < 2gpa (1),
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Therefore, we infer from the Arzeéla-Ascoli theorem that (f:(t,-))ce(0,e,) cOn-
verges uniformly in By, (0) as ¢ | 0 and the limit f(¢,-) is determined by (2.6).
This concludes the proof of (2.5). Next, since

sup |fe(t,§) = f(t,§)] < sup [f-(t,&)] + EUPLIf(LE)I

1§I<L [§I<L 1€1<

t+e
S][ gr(s)ds + gr(t),
t

where f:+5 gr(s)ds — gr(t) in L1(0,7T), the claim now follows from Lemma
2.6. O

2.6. Mollification in time

In general, variational solutions are not admissible as comparison maps in the
variational inequality (1.3), since they do not necessarily admit a derivative
with respect to time. Therefore, we use the following mollification procedure
with respect to time. More precisely, consider a separable Banach space X,
an initial datum v, € X and a map v € L"(0,T; X) for some r € [1,0]. For
h > 0 define the mollification

t
[W]a(t) = e v, + %/ esgtv(s) ds for any t € [0,7]. (2.7)
0

Later on, we will mainly use X = L9(Q2) or X = W14(Q) for some q € [1, 00).
A vital feature of this mollification procedure is that [v], solves the ordinary
differential equation

vl = £ (v — [v]n) (2.8)
with initial condition [v],(0) = v,. This shows in particular that if v and [v],
are contained in a function space, the same holds true for the time derivative

of [v]p,. The basic properties of time mollifications are collected in the following
lemma (cf. [19, Lemma 2.2] and [5, Appendix B] for the proofs).

Lemma 2.8. Let X be a separable Banach space and v, € X. Ifv € L"(0,T; X)
for some r € [1,00], then also [v]n, € L™(0,T; X) and if r < oo, then [v]p — v
in L"(0,T;X) as h | 0. Further, for any t, € (0,T] there holds the bound

Lo\ 17
1wl g+ [2(1=e75)] lwlix,

where the bracket []% has to be interpreted as 1 if r = oo. Moreover, if
v e CY[0,T); X), then also [v], € C°([0,T]; X) with [v],(0) = v, and there
holds [v]p, — v in L>=(0,T;X) as h | 0.

For maps v € L"(0,T; X) with d;v € L"(0,T; X) we have the following
assertion.

LT(O,tU;X) S HU|

Lemma 2.9. Let X be a separable Banach space and r > 1. Assume that v €
L7(0,T; X) with Opv € L™(0,T; X). Then, for the mollification in time defined
by
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the time derivative can be computed by

3. Properties of variational solutions

As mentioned in the introduction, besides variational solutions in the sense
of Definition 1.1, we consider variational solutions of the so-called gradient
constrained obstacle problem to (1.1). They enjoy the same basic properties
as variational solutions to the unconstrained Cauchy—Dirichlet problem to (1.1)
and proofs will be given in a unified way in this section.

Let L € (0,00]. We define the following class of functions that are L-
Lipschitz in space

KL(QT) = {’U S KOO(QT) : ||D’U||L°C(QT,R”) S L}

and given time-independent boundary values wu, € W1>(Q) with
| Dol oo (o,rn) < L, we denote the subclass

KL (Qr) = {ve K"(Qr) : v =1u, on the lateral boundary 99 x (0,T)}.

Definition 3.1. Assume that f: [0,7] x R” — R satisfies (1.2), consider a
boundary datum u, € W°°(Q) and let L € (0, 00) be such that || Du, || 00 ()
< L. In the case T' < co amap u € Ki (Qr) is called a variational solution to
the gradient constrained Cauchy-Dirichlet problem associated with (1.1) and
u, in Q7 if and only if the variational inequality

/ f(t, Du)dadt < / Ov(v —u) + f(t, Dv) dzdt (3.1)
Qr Qrp

+ 3[0(0) — uollf2(0) — 3ll(v — w)(D)IZ2q)

holds true for any comparison map v € KX (Qr) with 0,0 € L?(Q7). If T = o0
and u € KL (Q) is a variational solution in Q, for any 7 > 0, u is called
a global variational solution or variational solution in ., to the gradient
constrained Cauchy-Dirichlet problem associated with (1.1) and u,.

3.1. Continuity with respect to time

In Definitions 1.1 and 3.1 we require that variational solutions are contained
in the space C°([0,T; L*(£2)). However, this is already implied if u satisfies a
variational inequality for a.e. 7 € [0,T]. More precisely, we have the following
Lemma, which will be applied with L = oo in Sect. 6.

Lemma 3.2. Let Q@ C R™ be open and bounded and T € (0,00) and assume that
f:00,T) x R — R satisfies (1.2). Let L € (0,00] and consider u, € W>(Q)
such that || Duo| e (orny < L. Further, consider uw € L*(Qr) with u = u,
on 9pQr and || Dul| e, gny < L if L € (0,00) and [|Du|| o, gny < 00 if
L = oo, respectively. Suppose that u satisfies the variational inequality
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//QT f(t, Du)dzdt < //QT (v —u) dmdtJr//QT f(t, Dv) dzdt

1 0(0) ~ o2y — 2 o(r) = u()2agy  (3:2)

for almost all 7 € (0,T) whenever v € KL (Qr) with Oyv € L*(Qr). Then, we
have that uw € C°([0,T]; L*()).

Proof. The proof is similar to that of Lemma 2.6 in [28] except for the es-
timate of the second integral in (3.3) below. Denote by [u], the time mol-
lification of u with initial values u, as defined in (2.7). In particular, ob-
serve that [u], € C°([0,T]; L?(f2)), since we know that d;[u];, € L?(Q27) and
[u](0) = u, € L?(Q2). Using [u], as a comparison function in (3.2), taking the
essential supremum over 7 € (0,7) and recalling that ([u], —u) = —ho:[u]p,
we obtain that

sup 3 da(r) = ) Eaey < sup [ oufudu(fuly —w dot

7€(0,T) 7€(0,T)

+/ f(t, Dlu]n) — f(t, Du) dodt
Qr

< / /Q 17, D) ~ (0 D]z (33)

Furthermore, we have that D[u], — Du almost everywhere in Qp as h | 0
(up to a subsequence) and that |D[u],| < [Duo| + supg,. |Dul|. Therefore, by
(2.1) and the dominated convergence theorem we find that the second integral
in (3.3) vanishes in the limit » | 0. Hence, we have shown that [u], — u in
L°(0,T; L?(£2)). Combining this with the fact that [u], € C°([0,T]; L*(Q)),
it follows that also u € C°([0, T]; L?(£2)). O

3.2. Localization in time
Here, we show that a variational solution in a space-time cylinder Qp is also

a solution in any sub-cylinder Q,, 7 € (0,7).

Lemma 3.3. (Localization in time) Let T € (0,00), assume that Q@ C R™ is
open and bounded, and that f: [0,T] x R™ — R satisfies (1.2). Consider u, €
Wheo(Q) and L € (0,00] such that |Duo| pqrny < L. Suppose that u is
a variational solution to (1.1) in K% (Qr) (in the sense of Definition 3.1 if
L < o0, in the sense of Definition 1.1 if L = o0). Then U|QT is a variational
solution to (1.1) in K[ (Q;) for any T € (0,T].

Proof. For 6 € (0,7), consider the cut-off function

T—t
g@(t) = X[0,7—6] (t) + TX(Tfe,T] (t)
For v € KL (Q;) satisfying 9;v € L?(Q;) we define a function vg: Qr — R by
vg := &ov + (1 — &p)[uln,

where v has been extended to Qr by zero and [u], is defined according to
(2.7) with initial datum u,. Then we have vy € KX (Qr) with d,vg € L*(Qr),
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and therefore we may use vy as a comparison map for u in the variational
inequality. This yields

/ f(t, Du)dzdt < / Opvg(vg — u) + f(t, Dvg) dzdt
QT QT

+ 5 [lv(0) — Uo||i2(9) — 5 I([u]n - U)(T)Hizm) - (34)

The first term on the right-hand side of (3.4) is identical to the one in [7,
Equation (3.2)] and can be estimated in the same way to obtain

lim sup/ Opvg(vg — u) dadt
6—0

/ (v —u dacdt—i—// ([u]p — w) dadt
QX(TT)

—§/Q<v—[u] P(r >dx+/ﬁ<[ I — w)(v — [ula)(r) d.

The second term on the right-hand side of (3.4) is given by

/ f(t,Dvg)d:vdt:// F(t.€9Dv + (1 — €) Dluly) daxdt
Qr Qx(r—0,7)

+ // f(t, Dv) dzdt
Qx(0,7—0)

+ // f(t, D[u]p) dzdt.
Qx(r,T)
Since we know that

€6 Dv + (1 = &) D[ulnl| Lo~ (27 &) < 1DV oo (@ mr) + [D[ulnll Lo (@ &m)
< | Dv||zee (r r7) +
by ) we find that

‘// Ft,&9Dv+ (1 —&)Dluln) dxdt‘ < |Q|/ gu(t)dt — 0
Qx(r— 07‘) T—0

in the limit # | 0. Combining the preceding estimates we arrive at

/QT £(t, Du) dzdt < //QXW) F(t, Dv) d:rdt—f—//ﬂx(ﬂmf(t,D[u]h)d:rdt
3 [ 0= [ @) de+ [ (=)o - 1)) do

/ Ov(v — u) dedt 4+ // ([u]lp, — u) dedt
Qx(r, T)

+3 IIU(O) = oll720) = 5 I (fuln = WD) 720 - (3.5)

Note that [u], — u in L>(0,T; L*(Q)) as h | 0, since u € C°([0,T]; L*(Q2)).
Further, we have that D[u], — Du pointwise almost everywhere in Qr ash | 0
(up to a subsequence) and that

\DuoHLm(QRﬂ =+ | DUHL‘”(QT,R") =M < o0,

IDu]nll o (g gry < 1DUollL=(@rn) + DUl Lo (0 gn) = L' < oo forany h > 0.
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Therefore, assumption (2.1), the fact that  is bounded and the dominated
convergence theorem imply that

lim // f(t, Dulp) dzdt = // f(t, Du) dadt.
R10 J Jax(r,T) Qx(7,T)

Hence, using that 0;[u]n([u], —u) < 0 and letting A | 0 in (3.5), we obtain the
desired inequality

//Q f(¢, Du) dadt < //Q (v —u) + f(t, Dv) dadt

2 2
+ 5 10(0) = wollz2 0y — 5 110 = W) ()72 -
O
3.3. The initial condition

As a consequence of the localization in time principle, we find that variational
solutions attain the initial datum u, in the C%-L2-sense. The precise statement
is as follows.

Lemma 3.4. Let T € (0,00), assume that Q@ C R™ is bounded and open, and
that f: [0, T]xR™ — R satisfies (1.2). Consider u, € W (Q) and L € (0, ]
such that || Do o ( gny < L. Suppose that u is a variational solution to (1.1)
in KL (Qr) (in the sense of Definition 3.1 if L < oo, in the sense of Definition
1.1 4f L = o). Then, there holds

i () )2 ) = 0.

Proof. By Lemma 3.3, the function u is a variational solution in any smaller
cylinder ., 7 € (0,T]. Using v: Q, — R, v(x,t) := u,(x) as a comparison
function for v and taking (2.1) with M :=max{||Du/| 1 (2, k"), Do || Lo (2,r7) }
into account, we obtain that

3 u(r) = ol 2y < //Q f(t, Du,) — f(t, Du)dzdt < 2|Q|/0 g (t) dt.

Since gpr € L1(0,T), this implies the claim. O

3.4. Comparison principle
The following comparison principle ensures in particular that variational solu-
tions to the problems considered in the present paper are unique.

Theorem 3.5. (Comparison principle) Let T € (0,00), assume that Q C R™ is
bounded and open, and that f:[0,T] x R™ — R satisfies (1.2). Let L € (0, 0]
and suppose that u and @ are variational solutions to (1.1) in K*(Q7) (in
the sense of Definition 3.1 if L < oo and in the sense of Definition 1.1 if
L = o0) such that || Du(0)|| L rny and ||Da(0)||p(o,rn) are bounded by L if
L € (0,00) and finite if L = oo, respectively. Then the assumption that
u<a on OpQr
implies

u<a in Qp.
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Proof. Let 7 € (0,T]. By Lemma 3.3, the functions u and @ are variational
solutions in K%(£,). Consider the functions

v :=min([u]p, [@]n) and w := max([u]n, [4]n),

where [u], and [a], denote the mollifications of u and @ according to (2.7)
with initial values u(0) € W1>°(Q) and a(0) € W1°°(Q), respectively. Since
the boundary values attained by u and @ are independent of time, we have
that v € KL(Q,) and w € KX (Q,) with d,v, 0w € L*(12;). Therefore we may
use v and w as comparison functions in the variational inequalities of v and 1,
respectively. Adding the resulting inequalities and using that [u],(0) = u(0) <
(0) = [a]n(0), we obtain

0</ O (v — u) + dpw(w — ) dedt

// f(t, Dv) — f(t, Du) + f(t, Dw) — f(t, D) dzdt

31w =w) ()72 — 5 1w =) (1)l - (3.6)
Using the identities
{v — w = min([ulp, [@]n) = [uln — (v = [uln) = = ([uln — [a]n)+ — hO:[uln,
w— U= ([u]p = [@ln)+ — hO[t]n,

we compute that
(v — u) + Orw(w — @)
= (Olulnxqru, <ty + Oclalnxqan, <quny) (= ([uln = [@n) , — hoi[uln)
+ (Oclalnx(rupn<iany + Oclulnxqra, <tuny) (([Wln = [@n) | — ho[i]n)
= (Oela]n ([uln — [@]n) . — Oeluln([uln — [@ln)+ — h(Be[u]n)? — h(B:[a]n)?)
* X{[u]ln<[aln}
+ (Oeluln ([uln = [@]n) . — Oclaln ([uln — [aln) , — hO[@]nd:[uln — hO:[ulnd:[a]n)
X{[a]n<[uln}
< ([uln([uln — [aln) . — Oe[aln ([uln — [aln) . — hO[a]ndt[uln — hO:[u]nd:[a]n)
“X{laln <[uln}
= Oc([uln — [aln) ([uln — [@]n) , — 2RO [ulndela]n X 1a) <[u]1}
< 30u(([uln — [ln) )?) + A((Ouludn)” + (@:laln)?).
Therefore, taking into account that [u],(0) = u(0) < @(0) = [@],(0), we find
that

// (v — u) + Qpw(w — @) dedt
Q,
< 30~ ), 0 gy + [ (@dn)? + (@) amar. 7

Furthermore, using [u]}, as a comparison function for  and omitting the bound-
ary term at time 7 on the right-hand side of the variational inequality, we
obtain
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//QT h(@t[u]h)Qdfcdt =— //m Olu)p ([ulp — u) dadt
, D[u|n) — f(t, Du) dad 3.8
< [[[ #Dw) - st D)zt 9
and a similar inequality holds for @. Observe also that
= Xqtun <ty f (& Dlwln) + Xqap, <y f (¢ Dl@ln) = f(t, Du)
+ X<ty f (& Dliln) + Xqag <ty f (8 Dluln) = f(t, D)
Combining the estimates (3.7), (3.8) and (3.9) with (3.6) we arrive at

Il = @), ey + B0 = ) (D) + Sl = By
: 2//9 f(t.Dluly) = f(t. D) + f (¢, Dfaln) — f(¢, D@) dadt. (3.10)

By the same argument as in the end of the proof of Lemma 3.3 involving the
dominated convergence theorem, the integral on the right-hand side of (3.10)
vanishes in the limit & | 0. Writing v — u = —([u]p, — [@]n)+ + [u]p — v and
w—1u = ([u]p, — [U]n)+ + [U]p — @ and using that [u], — v and [4], — @ in
L>([0,7], L*(Q)) as h | 0 since u, @ € C°([0,T]; L*(R2)), we conclude that

tm (= 4 (s = [@0) , (D[ + 310 = Oy + Bl = Do)

= 1w = @) () 320

Hence, taking the limit 4 | 0 in (3.10), we infer

- 2
%H(u - u)+(T)HL2(Q) <0,
which implies that v < @ in .. Since 7 was arbitrary, the claim follows. [

3.5. Maximum principle and localization in space for regular solutions

In this section, we consider more regular variational solutions w satisfying
Oyu € L2(27). As a consequence, u is directly admissible as comparison map
in its variational inequality without regularization with respect to the time
variable. Further, due to the requirements of the proof of the existence result
in Sect. 5, we will take time-dependent boundary values ug,, 0.7) into account
here. In particular, the proof of the comparison principle in Theorem 3.5 is
easily adapted to allow time-dependent boundary values if d;u and O;u are
contained in L?(Q7) by using min(u, %) and max(u, %) as comparison maps in
the variational inequalities satisfied by v and w, respectively, and proceeding
in a similar way as above. However, most arguments can be simplified, since
mollification with respect to time is not necessary in the present situation.
This allows us to deduce the following maximum principle.
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Lemma 3.6. (Maximum principle) Let T' € (0,00), assume that Q@ C R™ is
open and bounded, and that f: [0,T] x R™ — R satisfies (1.2). Consider L €
(0,00] and functions u, @ € K*(Qr) such that Oyu, 0yt € L*(Qr). Suppose
moreover that | Du(0)| 1o (o rny and | D@(0)[| o (o gy are bounded by L if L €
(0,00) and finite if L = oco. Finally, assume that for any T € (0,T] the function
u satisfies the variational inequality

// f(t, Du) dadt < / Ov(v —u) + f(t, Dv) dadt
Q. Q.

2 2
+ 5 [u(0) = v(0)lIz20) — 5 lu(r) = v(7)lIL2(q) (3.11)
whenever v € K(Q,) with Oy € L*(Q,) and v =u on Q x (0,7), and that i
fulfills the analogical inequality. Then

sup(u — @) = sup (u — ).
Qp QPQT

Proof. Let T € (0,T]. Define

=1+ sup (u—a).
OpQr
Then 4 satisfies the variational inequality (3.11) with its own boundary values,
and
u<t on OpQr. (3.12)

Consider the functions v := min(u,4) and w := max(u,%). Then v,w €
KE(Q,) with 0v, 0yw € L*(;) and v = u, w = 4 on 9§ x (0, 7). Observe also
that v —u = —(u — @)+ and w — & = (u — @) 4. Using v and w as comparison
functions for v and 4 in the variational inequality (3.11), we obtain

0< / Opv(v — u) + Ow(w — 4) daedt

/7)f — f(t, Du) + f(t, Dw) — f(t, Da) dzdt

+1 ||<v —u)(0)]1 72 () + 1w — @) (0)]32(q
><7>|\L2<Q Hlw = a)(D)17q)

[/ (1 — @)4)* dadt — [[(u— @)+ (7) |22 0

(U @)y (7 )HL?(Q
where we used that (v —u)(0) = (w —4)(0) = 0 and that the terms with f
cancel one another. As 7 was arbitrary, we obtain
u<t=u+ sup (u—a) in Qp
apQr

so that

sup(u — @) < sup (u — ).

Qr OpQr

Since the reverse inequality holds by continuity, this proves the claim. 0
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Lemma 3.7. (Localization in space) Let T € (0,00), assume that Q@ C R"
is open and bounded, and that f: [0,T] x R" — R satisfies (1.2). Consider
u, € WhH(Q) and L € (0,00] such that [ Dol o (@ gn) < L. Suppose that
u is a variational solution to (1.1) in KX (Qr), L € (0,00] (in the sense of
Definition 3.1 if L < oo, in the sense of Definition 1.1 if L = oo). Moreover,
suppose that Oyu € L?(Qr). Then for any domain Q' C Q and any 7 € (0,T],
the variational inequality

/ f(t, Du)dadt < / Ov(v —u) + f(t, Dv) dadt
QL QL

2 2
+ 5 [u(0) = v(0)|[ 720y — 3 u(7) — v(T)lIz2(0r) (3-13)
holds whenever v € KX () with 0w € L*(Q;) and v =u on Q' x (0,7).

Proof. By Lemma 3.3 the function u|q, is a variational solution to (1.1) in the
function space K (Q2;). Observe that

v in
w =
u in (Q\ Q)
is an admissible comparison function for ulg, in the variational inequality.

Inserting w into the variational inequality (3.1) if L < oo (or (1.3) if L = o0)
with T replaced by 7 immediately yields (3.13). O

4. Existence for the gradient constrained problem for regular
integrands

In this section, we are concerned with integrands that admit a time derivative.
More precisely, we consider f: [0,7] x R™ — R such that

& f(t,€) is convex for any ¢ € [0, 7],

t f(t,&) € WHY0,T) for any & € R",

for any L > 0 there exists g, € L*(0,7) such that |9, f(t,&)| < gr.(¢)
for a.e. t € [0,7] and all £ € B(0).

(4.1)

The aim of this section is to prove the following existence result.

Theorem 4.1. Let Q@ C R™ be a bounded Lipschitz domain and T € (0,00).
Consider a boundary datum u, € W(Q) such that |Du,| p~@rn) < L
for a constant L € (0,00). Further, assume that the integrand f: [0,T] x
R™ — R satisfies hypothesis (4.1). Then, there exists a variational solution
u € Kfn (Q27) to the gradient constrained problem in the sense of Definition 3.1.
Further, there holds Oyu € L*(Qr) with the quantitative bound

/ / 10l dadt < 4191( sup [£0,6)] + |32l 0).
Qr |¢|<L

We prove Theorem 4.1 via the method of minimizing movements. The
proof is divided into five steps.
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4.1. A sequence of minimizers to elliptic variational functionals

Fix a step size h := % for some m € N and consider times ih, ¢ = 0,...,m.
For i = 0, set ug := u, € WH>(Q) with |[Duel|=(rn) < L. Further, for
i=1,...,m, u; is defined as the minimizer of the elliptic variational functional

F;[v] ::/f(ih,Dv)dz—&—Qih/ v —u;_1|*da
Q Q

in the class A := {v € Wh*°(Q) : v = u, ondQ and||Dv|| (o rn) < L}. The
existence of a minimizer to F; in this class is ensured by the direct method in
the calculus of variations. More precisely, note that A # @, since u, € A, and
consider a minimizing sequence to F; in A, i.e. a sequence (u; ;)jen C A such
that

J—00

Further, by definition of A and Rellich’s theorem there exists a limit map
u; € A and a (not relabelled) subsequence such that

e — s strongly in L2(©) as j — oo,
Duj,j — Du; weakly in L*(9,R") asj — oo.

Since the functional F;: W12(Q) — (—oo0, o<,

= {FL[U] if’UEA,

Filv] := oo else

is proper, convex and lower semicontinuous with respect to strong convergence
in W12(Q), it is also lower semicontinuous with respect to weak convergence
in W12(Q), see [11, Corollary 2.2]. Therefore, we obtain that

Filw] = F;Ju;] < liminf Fj[u, ;] = jli{f)lo Filu; ;] = vlfelJf‘le[U]

j—oo

4.2. Energy estimates

Since u;_1 € A is an admissible comparison map for the minimizer u; and f
fulfills (4.1)3, we have that

Q Q

< Fylui—1]
:/f((i—l)h,Dui_l)dx+/f(ih,Dui_l)—f((z'—l)h,Dui_l)dx
Q Q

< f((i—l)h,Dui_l)dx+// 0, (£, Dus_y)| dadt
Q Qx ((i—1)h,ih)

S/ﬂW%MDwﬂ®+M/ 3()] .
Q ((i—1)h,ih)
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Summing up the preceding inequalities from i = 1 to i = m, we find that
m m
> [ i Duydedt+ 35> [ fus - wial s
i=1"79 i=1"79

sg / £ = Db, Dus)de+ 120 [ Jgo()]dt.

(0,1)

Subtracting the first term on the left-hand side, we conclude that
Re 2 -
HY [l —wislde < [ $0.Du0) o~ [ T Dun) o+ (0152l
—Ja Q Q
< 2IQ|(|§IU<I>L 1£(0, )] + 119zl L1 0,7))- (4.2)

4.3. The limit map

In the following we denote the step size by h,, in order to emphasize the
dependence on m. First, we join the minimizers u; to a map that is piecewise
constant with respect to time. More precisely, we define u("™): Q x (—h,,, T] —
R by

u™ (t) == wu; fort e ((i— )hm,ihm), i =0,...,m.

Observe that the sequence (u(™) . is bounded in L*(Qr), since
Hu(m)HLoc(QT) = max;—q,...m ||[til| L), ui € A for all i = 0,...,m and
A is equibounded. Further, we know that HDU(m)||Loo(QT7Rn) = maX;—o,...m
| Dug||p=(orn)y < L for any m € N. Therefore, there exists a subsequence
A C N and a limit map u € L*(Q7) such that || Du| p~,rr) < L, u = u,
on 092 x (0,T) and

u(™ 2 4 weakly * inL>®(Q7) asf 3 m — oo,

u(™ (t) — u(t) uniformly as & > m — oo for eacht € [0,T],  (4.3)

Du™ %, Dy weakly * inL>(Q7, R™) asf > m — oo.
In order to prove that u has a time derivative, we consider the linear inter-

polation of minimizers @™ : Q x (—h,,,T] — R given by @™ (t) := u, for
t € (—hm,0] and

@™ (1) = (z - ﬁ)ui_l n (1 it i)ui for t € ((i — Vhm, ihm], i = 1,...,m.

Similar arguments as above ensure that (ﬂ(m))m ¢y is bounded in L>(Q27) and

that ||D12(m)||Loo(QT7Rn) < L for any m € N. Moreover, by the energy bound
(4.2) we obtain that

// |6tﬁ(m)\2 dazdt = Z // h%|ul — ui_1|2 dzdt
Qr =1 Ox ((i=1D)hm,ihy,] ™

m
DO RIS

i=179

< 4\QI(§‘H<pL|f(0,£)I + 3zl 0,1))- (4.4)
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Hence, (ﬁ(m))meN is bounded in W2(Qr). By Rellich’s theorem we conclude
that there exists a subsequence still labelled K and a limit map @ € L*(Qr)
with || Dl sy rn) < L, &=, on 92 x (0,T) and ya € L?(Qr) such that

{a(m) — u strongly in L?(Qr) as & 3 m — oo, (4.5)

0, — 9,1 weakly in L?(Qr) as & > m — 0.

Note that 8,4 € L2(Qy) in particular implies that @ € C%z([0,T]; L%(Q))
and therefore @ is contained in the class of functions K (Qr). Next, since
‘(u(””) — a<m>)( )| < |u; —ui—q| for t € ((i = V)hpm, ihy], i = 1,...,m, we infer
from (4.2) that

// ‘u(m) - &(m)‘gdxdt < hm Z/ lu; —u;—1|* da
Qr =179
< 4\Q|(‘;u<pL £, + 13l o2 0,m)) i

Together with (4.5); this implies that u(™) — @ strongly in L?(Qr) as & >
m — oo and thus in particular that v = @ € K% (Qr) with d,u € L*(Qr).
Finally, by lower semicontinuity with respect to weak convergence, (4.4) gives
us the claimed bound

[ 100 ot < ai9( sup 170.6) + g2l 0m)-
Qr [€l<L

4.4. Minimizing property of the approximations

First, define piecewise constant approximations of the integrand by
FO(t,€) = f(ih, &) for t € ((i — VA, ihm], i =0,...,m

We claim that v(™) is a minimizer of the functional
F[] = / Fe(t, Do) dadt + 5t / / lw(t) — ul™ (t = hyy,)|? dzdt
QT m QT

in the class of functions

Ar = {v € L=(Qr) : | Dul| @ rr) < L and u = u, on 02 x (0,T)}.

Indeed, consider an arbitrary map v € Ar. Since v(t) € A for a.e. t € [0,T],
by the minimizing property of u; with respect to F; in the class A we find that

FOO[u™] = / Fifu] dt < / Fo(t)] dt = F™ [y].
; ((i—=1)hm ihm] ; ((i—=1)ham ,ihm]
A straightforward computation shows that this is equivalent to

/ Fom (¢, Du™) dadt

// f(m t, Dv) dxdt
Qr

+ ﬁ // v - u(m)‘ + (v —u™) (u™ —u™ (& — hyy,)) dzdt
Qr
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for any v € Ap. Choosing the convex combination u("™) + s(v — ul ) e Ar
with s € (0,1) as comparison map and using the convexity of £ — f(¢,§) for
all t € [0,T], we obtain that

/ £ (¢, Dul™) dadt
Qr

< (1—5)/Q fm (t,Du<m>)ola;dt+s/Q (¢, Dv) dadt

htﬂ // §|’U — u(m) ‘2 + S(U — u(m)) (u(m) _ u(m)(t _ hm)) dxdt.
Qr

Reabsorbing the first term on the right-hand side into the left-hand side, di-
viding the resulting inequality by s and taking the limit s | 0 gives us that

/ £ (t, Du™) dadt

Qp
g/ £ (¢, Do) dadt + 7 // w™)) (W™ = w ™ (¢ — hyn)) dzdt.
JJQr Qr

Next, assume without loss of generality that v(0) € L*°(Q), extend v to
(—=hm, 0] by v(0) and note that

(v — u(m)) (u(m) —u™(t— him))
=(v— u(m)) (v—v(t —hm)) + 5 (v(t — hm) — w™ (¢ — hm))2 —3(v— u(m))2
—3(v—v(t —hm)— ™ (™ (¢ — hm))2
< (v =u"™) (v =0t = hm)) + L (v(t = him) — u™ (¢ — hm))2 —1(v- u(m))Q.

Inserting this into the preceding inequality and recalling that v(¢) = v(0) for
€ (—hm, 0], we infer

/ (¢, Dut™) dadt
Qr

S/QTf(m)(t Dv)dxdt + 5 //QT v—ul™)(v—v(t - hny)) dedt
(4.6)

+ //Q (0t = hum) = ul™ (t = hyp))* = (v = ul™)® dzdt
= /QT £ (t, Dv) dzdt + ﬁ // (v _ u(m)) (v —o(t— hm)) dzdt

+%/(v—uo dx—— / v—u ’dmdt
Q QX (T—hy, T

4.5. Variational inequality for the limit map

We fix an arbitrary map v € K (Qr) with 8;v € L*(Qr). Thus, in particular
we have that v € Ap, so v is an admissible comparison map in (4.6). Our goal
is to pass to the limit 8 3 m — oo in (4.6) in order to deduce the variational
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inequality (3.1) for u. To this end, we consider the terms separately. First, we
write the first term on the left-hand side of (4.6) as

// £ (¢, Dut™) dadt
Qr
Qp Qr

By Lemma 2.4 and (4.3)3, we obtain that

/ f(t, Du)dadt < liminf // f(t,Du(m)) dadt.
Qr KOImM—o0 Qr

Further, since HDu( < L for all m € N and f fulfills (4.1)3, we

N Lo (2 my
estimate

’// £ (t, Dul™) — f(t, Dul™) dt‘
Qr

< Z// | £ (ihun, Dul™)) — f(t, Du™)|dadt
i—1 QX ((i—1)hp, ,ih

m]

< 0 D dsdxdt
_Z//Qx (i—1) o yihm] /((il)hm,ihm]| tf(s ur )| e
< Q) o Z/ gr(s)ds

((i— 1 ms 'Lh'm]
= QgL !l 0,7 hom-

Therefore, this term vanishes in the limit m — oo. Joining the preceding
estimates, we conclude that

/ f(t, Du) dzdt < hmlnf // fm (t,Du(m)) dadt. (4.7)
QT QT

DM —00

Repeating the estimates in the penultimate inequality with u(™ replaced by
v, for the first term on the right-hand side of (4.6) we find that

/ f(t, Dv)dzdt = lim ™ (t, D) dzdt. (4.8)
Qr

m— 00 QT

Next, since h—(v(t) —v(t — hy)) — Oy strongly in L*(Q7) and (™ — «u
weakly in LQ(QT) as & 2 m — oo by (4.3)1, we have that

/ (v —u)dedt = lim - // v— u(m (v —v(t — hy,)) dzdt.
Qr RKO3mMm—o0 "M Qr
(4.9)
Finally, by the fact that v € C°([0,T]; L*(Q)) and by (4.3)a, we obtain that
3l = w)(D)Zq)

= lim / / o — u(™(T)[* dadt. (4.10)
KOmM—o0 m QX(T*hm,T]
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Collecting the assertions (4.7)—(4.10) yields

/ f(t, Du)dzdt < / f(t, Dv) dadt + / Opv(v — u) dedt
Qr Qr

Qr
+ 3[0(0) = uoll72() — 5ll(v = w)(T)|72(q)-

Since v € KL (Qr) with dyv € L*(Qr) was arbitrary, we have shown that
u € KL (Qr) is the desired variational solution. O

5. Existence for the unconstrained problem for regular
integrands

In this section we show the existence of variational solutions to the uncon-
strained problem under the regularity condition (4.1) provided that the initial
and boundary datum satisfies the bounded slope condition. To this end, we
need the following lemma, whose proof is similar to that of [7, Lemma 7.1].
It states that affine functions independent of time are variational solutions to
(1.1) with respect to their own initial and lateral boundary values.

Lemma 5.1. Let Q be open and bounded. Assume that f:[0,T] x R* — R
satisfies (1.2). Let w(z,t) := a+ & - x with constants a € R and £ € R™ be an
affine function independent of time. Then w is a variational solution in the
sense of Definition 1.1 in K2 (Qr).

With the preceding lemma at hand, we are able to prove the following.

Theorem 5.2. Let T € (0,00), assume that Q@ C R™ is open, bounded and
convex, and that the integrand f: [0,T] x R® — R satisfies (4.1). Consider
u, € WHo2(Q) such that [Duoll e (o rny < @ and suppose that u|aq satisfies
the bounded slope condition with the same parameter Q. Then there exists
a variational solution u € K°(Qr) to (1.1) in the sense of Definition 1.1.
Further, we have the quantitative bound

HDUHLoo(QT,Rn) <Q. (5.1)

Proof. Let L > @Q. By Theorem 4.1 there exists a variational solution u €
KL (Qr) with 8;u € L?(Qr) to the gradient constrained problem in the sense
of Definition 3.1. We begin by proving the Lipschitz bound (5.1) and then
show that u is in fact already a solution to the unconstrained problem.

Fix z, € 99 and denote by w the affine functions from Lemma 2.2. In
particular we have w, < u, < wj . Since by Lemma 5.1 the functions w;
and w;o are variational solutions, it follows from the comparison principle in
Theorem 3.5 that

w (z) < u(w,t) <w, (x) forall (z,t) € Q.

Consequently, there holds

|u(z,t) — up(20)] < Q |z — x| for all (z,t) € Qr.
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Since z, € 0f) was arbitrary, we obtain that

[wl ) =wo(@o)l _ () g1 all 4, € 092, (1) € O (52)

Consider z1,29 € Q, 1 # x2, t € (0,T) and set y := xo — x1. Define the
shifted set Qr = {(z —y,t) € R""!: (z,t) € Qr} and the shifted function
Uy S~2T — R by
uy(x,t) == u(z +y,t).
Then w, is a variational solution in K~ (Qp). Since dyu, dyu, € L2((2NQ)7)
by the spatial localization principle in Lemma 3.7, the functions u and u, both
satisfy variational inequality (3.11) from Lemma 3.6 in (2N Q)p. Therefore by
Lemma 3.6 there exists (z,,%,) € Op((2N Q))r such that
[u(@1,t) — uy (21, 8)| < |ulZo,to) — uy (2o, to)] -

By definition of y and u,, this yields

lu(z1,t) — u(xs, t)| <|u(zo,to) — u(wo +y,to)] -
Since either t, = 0 or one of the points x, or z, + y belongs to 02, it follows
from the assumption || Duo|| ;0 gny < @ and (5.2) that

[u(o,to) —u(@o +y,t0)| < Qlyl = Qlz1 — 22|

Combining this with the preceding estimate, we obtain (5.1).

It remains to show that u is a variational solution to the unconstrained
problem. Let w € K°(Qr) with d,w € L*(Qr) and choose the comparison
map v := u+ s(w —u) for 0 < s < 1; in particular, since Q < L, for s small
enough we have that

”DUHLW(QT,R")
SIDull poe @y rmy + 5U1PWI oo (0 gy + DUl oo (0 mmy) < L

Thus v is an admissible comparison function for the gradient constrained prob-
lem and we obtain that

/ f(t, Du) dadt < // sOwu(w —u) + sf(t, Dw) + (1 — s) f(¢t, Du) dadt
Qr Qrp

2 2
+ 5 [w(0) = o2 (0, — 5 1w(T) — w(T) 12y

Reabsorbing the integral with f(¢, Du) to the left-hand side and dividing by s,
we see that v satisfies the variational inequality (1.3). Thus w is a variational
solution in the sense of Definition 1.1. 0

6. Existence for the unconstrained problem for general
integrands
In this section we finish the proof of Theorem 1.2. Note that we only need to

consider the case T' < oo. Indeed, assume that for any 7 € (0,00) we have
constructed a variational solution with initial and boundary datum u, in the
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sense of Definition 1.1 such that the gradient bound (1.4) holds in .. Let
0 <71 < T2 < oo and denote by u; and us the variational solutions in 2., and
Q.,, respectively. By the localization principle with respect to time in Lemma
3.3, ug is also a variational solution in €, . Further, u; and us coincide in
Q,, by the comparison principle in Theorem 3.5. Therefore, a unique global
variational solution in the sense of Definition 3.1 can be constructed by taking
an increasing sequence of times (7;);eny with lim; .. 7; = 0.

Thus we suppose that T' < co. For € > 0 we define the Steklov average
fe:[0,T] x R™ — R of f by (2.4). A straightforward computation shows that
& — fo(t,&) is convex for any t € [0,T]. Further, for any & > 0 the derivative
of f. with respect to the time variable is given by

Ocf(t,€) = L(f(t+e,6) = f(L,6)).
Combining this with (2.1), for any L > 0 we have that

|0:f(t,€)] < L(gr(t +¢) +gr(t)) forall t €[0,T],¢ € BL(0).

Hence, for any € > 0, the integrand f. fulfills assumption (4.1). By Theorem 5.2
we conclude that for any € > 0 there exists a variational solution u. € K;°(Q2r)
to the Cauchy—Dirichlet problem associated with f. in the sense of Definition
1.1 satisfying the bound

| Ducl| oo (p,rr) < max{Q, [|[Du,|| Lo (,rm) }-

Together with the fact that u. = u, on 9Q x (0,7T), this implies in particular
that the sequence (uc)eso is bounded in L (7). Thus, there exists a (not
relabelled) subsequence and a limit map v € L*(dr) such that u = u, on

o0 x (0,T),
[Dull Lo (@7 rn) < max{Q, || Duo||p< (0}
and in the limit € | O there holds
ue — u weakly™ in L>°(Qr),
ue () — wu(t) uniformly for a.e. t € [0,T], (6.1)
Du. = Du weakly™ in L (Qp, R™).

It remains to show that w is a variational solution to the Cauchy-Dirichlet
problem associated with f in the sense of Definition 1.1. To this end, note
that u. satisfies the variational inequality

//QT fe(t, Du.) dadt < //QT Opv(v — ue) daedt + //QT fe(t, Dv)dzdt (6.2)

+ 5 10(0) = |72 () — 31l(v — u)(7) 720

for any 7 € [0, T]NR and any comparison map v € K°(Q;) with 9w € L*(,).
In the following, we pass to the limit € | 0 in (6.2). In order to treat the left-
hand side, we rewrite

//Q fe(t, Duc) dzdt = //Q f(t, Dus) dzdt + //Q fe(t, Dus) — f(t, Duc) dzdt.
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By (6.1)3 and Lemma 2.4 we obtain that

// f(t, Du) dzdt < liminf/ f(t, Du,) dadt.
Q. £l0 Q.

Further, for M := max{Q, || Duo|| = q,r»)} we find that

T

‘/ fe(t, Du.) — f(t, Duc) dmdt’ < |9 sup |f:(t, &) — f(t,€)]dt — 0
Q- 0 [§I<M

as € | 0 by means of Lemma 2.7. Joining the preceding two estimates yields

// f(t, Du)dzdt < hmmf // f=(t, Du.) dzdt. (6.3)

Next, by (6.1); we have that
// Ov(v — u) daedt = lim inf/ Opv(v — u.) dadt. (6.4)
Q. elo Q.

For the second term on the right-hand side of (6.2), by Lemma 2.7 we conclude
that

‘/ f-(t, Dv) — f(t, Dv) dxdt‘
Q-

<9 [ sup [fe(t,§) — f(t,€)|dt =0 (6.5)
0 l¢l<M

as € | 0. Finally, (6.1)2 shows that
[[(v— U)(T)H%%Q) = Hm [[(v — Ue)(T)Hiz(Q) (6.6)

for a.e. 7 € [0,T]. Collecting (6.3)—(6. 6) we infer that

//ftDudxdt<// 8tvv—udxdt—|—// f(t, Dv) dxdt

§||U( )—Uo||L2(Q) - §||( —u)(r )||L2(Q)

for a.e. 7 € [0,7] and any v € K3°(2,) with dyv € L*(€;). In particular, this
implies that u € C°([0,T]; L*(Q)), see Lemma 3.2. Therefore, we have that
u € K°(Qr) is a variational solution associated with the integrand f in the
sense of Definition 1.1. Finally, by the comparison principle in Theorem 3.5, u
is unique. This concludes the proof of Theorem 1.2.

7. Continuity in time (Proof of Theorem 1.3)

To prove Theorem 1.3, we begin by verifying that the unique variational solu-
tion u to the Cauchy-Dirichlet problem associated with (1.1) and u, in Qr is a
weak solution to (1.1) in Q. To this end, let ¢ € C§°(2r) be a test function.
We want to show that

// udpp dadt = / D¢ f(t,Du) - Dy dzdt. (7.1)
QT QT
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We set vp, == [u]n + s[g]n, where in the convolution we use the starting
values u, and ¢(0) = 0 for u and ¢, respectively. Using vj, as a comparison
function in (1.3) and omitting the boundary term at 7', we obtain that

0< / Opop, (v, — w) dedt —|—/ f(t,Dvy) — f(t, Du)dzdt.  (7.2)
Qr Qr

Since by (1.4) we have that

[ Dvn|| oo (2 rn) < [[DUol| Lo (@ rn) + DUl Lo (07 mr) + 1Dl oo (2 1)
< 2| Duol|poe (,rmy + Q + ([Pl Lo (2 m7) s

it follows from (2.1) that the sequence of mappings (x,t) — f(t, Dup(x,t))
has an integrable dominant independent of h. Therefore by the dominated
convergence theorem, we conclude that

lim/ f(t, Duy) dadt = / f(t, Du+ sDyp) dzdt.
ho ) Ja, Qr

Further, by integration by parts and the convergence assertions from Lemmas
2.8 and 2.9, we find that

/ QTatUh(Uh — u) dzdt
- / Orletln ([ul — u) + sdy[ulnliln + s0:ln(fuln + slipl — ) dadt
=[] H= 1t ) - sdeluaoar
+/QS[U]h[s0}h(T)+§[¢]?L(T)dm
<~ [[| sdeluuisar+ [ sululo () + D) o

s
Q
— 7// sOrpu dadt
Qr

in the limit A | 0. Thus, letting A | 0 in (7.2) and dividing by s we deduce
that

udpp drdt < L(f(t,Du+ sDy) — f(t, Du)) dxdt
/1, /h,.}

1
= // / D¢ f(t, Du+ soDy) - Dy dodadt.
Qpr JO

Finally, observe that by the gradient bound (1.4) and the assumption (1.5),
the integrand at the right-hand side of the above inequality is bounded. Thus
we may let s — 0 to obtain that

/ / ubyp dadt < / D¢ f(t, Du) - Dy dadt.
QT QT

The reverse inequality in (7.1) follows by replacing ¢ by —.
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Consider cylinders of the form
Q. = Br(l‘o) X (to — Tz,to + 7"2) NQr

where (x¢,t9) € Q7 and r > 0. We show that u satisfies the Poincaré inequality

]6[ lu — (u)q, |* dedt
Qr

gC(n,Q)r2<][][ Dl dedt + sup |D5f(t,Du(J;,t))2> (7.3)

, (z,1)€Qr
for all small » > 0, where the mean value of u over @), is denoted by

(w)o. ::]Zj[ udadt.

T

Thus the gradient bound (1.4) together with condition (1.5) yields

][][ lu— (u)g, |* dzdt < C(n,Q,Q, || Duo|| L= (rn), f)r° (7.4)
Qr
for all » > 0. The claim then follows from [9, Theorem 3.1].

To prove (7.3), we first note that since €2 is a convex domain, there exist
positive constants R(Q) and C(Q) such that for any r € (0, R) and x¢ € ,
the set 2 N By(xg) contains a ball of radius r/C(Q2). Then we assume that
Q, with 7 < R is given and denote B, = B,.(x¢), t; := max(ty — r2,0),
to == min(ty +r2,7T) so that Q, = (B, N ) x (t1,t2). We fix a non-negative
weight function n € C§° (B, N Q) such that

£ wde=1 and ol + rlDall o < cn,9).
B,.NQ

For the second assertion, we have used that B, N € contains a ball of size
r/C (). Since B, N is convex, the Poincaré inequality

2
/ v — ()g,nal>dz < T—Q |Dv|? dz
B,.NQ T JB,.nQ

holds for any v € W2(B,.NQ), see for example [1]. An application of Holder’s
and Minkowski’s inequalities on the above further yields

][ |v — (vn) B, nal? dz < crz][ | Do|* da (7.5)
B.NQ B.NQ

with a constant ¢ = ¢(n, 2). We denote the weighted mean of u at time t by

Uy (t) :z]{B . u(z, t)n(x) de



76 Page 30 of 34 L. Schitzler and J. Siltakoski NoDEA

and decompose the left-hand side of (7.3) as follows

][][ lu — (u)q, |* dedt
][ ][ |un () )QT|2dxdt+c][ ][ u(z,t) — u,(t)]* dadt
t1 /B, mQ B.NQ

_C]{l tl Cu(t) - ()ds+][t2 2($)ds — g, |

dt
+c][ ][ u(z,t) — uy(t)]* dzdt
B.NQ

_c]{l ]{ |un(t)_un(s)|2dsdt+c]{lzun(s)ds_(u)Qf

to
+ c][ ][ [u(, t) — u,(t)|* dodt
t1 ~NQ
= C([l + I -‘1-]3).

To estimate I3, we apply (7.5) to obtain that

I3 < c(n,Q)rQJ[ | Dul? dz.
B.NQ

The same estimate holds for I since by Hélder’s inequality we have that

t 2
I, = ‘][ ][ Up(s) —u(x,s)deds| < I3.
t1 JB,.NQ

To estimate I, let 71,70 € (t1,t2) with 74 < 2. As shown above, u is a weak
solution to (1.1). That is, abbreviating F(xz,t) := D¢ f(t, Du(z,t)), we find
that

T
/ / udyp — F - Dodadt =0 for all ¢ € W™ (Qp).
0o Ja

Fix § > 0 and consider

0, (0,7‘1 ]

55 (t—(Tl—(S)) (7'1—6 T1+(5)
Ys(t) =<1, € [m +9,m2— 4],

172%;@7(7'275))7 (7'275 T2+5)

O, [T2+§,T).

Using the test function p(z,t) := ns in the weak Euler-Lagrange equation
yields

T
0= / / unOips — YsF - Dp dzdt

T1+6 To+6 To+6
][ / un dxdt — ][ / un dedt —|—/ / Y5 F - Dndaxdt.
T1 B,NQ T2 B,NQ T1—0 B,.NQ
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Passing to the limit § | 0, the preceding inequality implies that

T2
|ty (1) — up(72)| < / ][ |F' - Dn| dzdt
1 J B.NQ

< (72— )| DL~ (QR") sup |F(x,)
(z,t)EQr
— 2¢(n,Q)r sup | Def(t, Du(a,1))|
(z,t)eQr
holds true for almost every 71, 72 € (t1,t2). In the last inequality, we used that
To—T1 Sl —11 < 27"2. Thus
I <c(n,Q)r? sup |Def(t, Du(x,t))|?. (7.6)
(z,t)EQr

Inequality (7.3) now follows by combining the estimates of I, I5 and Is.
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