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Behavior in time of solutions of a
Keller–Segel system with flux limitation and
source term

Monica Marras, Stella Vernier-Piro and Tomomi Yokota

Abstract. In this paper we consider radially symmetric solutions of the
following parabolic–elliptic cross-diffusion system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = Δu − ∇ · (uf(|∇v|2)∇v) + g(u),

0 = Δv − m(t) + u,
∫

Ω
v dx = 0,

u(x, 0) = u0(x),

in Ω× (0, ∞), with Ω a ball in R
N , N ≥ 3, under homogeneous Neumann

boundary conditions, where g(u) = λu − μuk, λ > 0, μ > 0, and k > 1,
f(|∇v|2) = kf (1 + |∇v|2)−α, α > 0, which describes gradient-dependent
limitation of cross diffusion fluxes. The function m(t) is the time depen-
dent spatial mean of u(x, t) i.e. m(t) := 1

|Ω|
∫

Ω
u(x, t) dx. Under smallness

conditions on α and k, we prove that the solution u(x, t) blows up in
L∞-norm at finite time Tmax and for some p > 1 it blows up also in
Lp-norm. In addition a lower bound of blow-up time is derived. Finally,
under largeness conditions on α or k, we prove that the solution is global
and bounded in time.
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1. Introduction

Let us consider the chemotaxis system with flux limitation with source term,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = Δu − χ∇ · (uf(|∇v|2)∇v) + g(u), x ∈ Ω, t > 0,

0 = Δv − m(t) + u, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

with Ω a ball in R
N , N ≥ 3, m(t) = 1

|Ω|
∫

u(x, t) dx > 0,
∫

Ω
v dx = 0,

f(|∇v|2) = kf (1 + |∇v|2)−α (1.2)

with some kf > 0 and α > 0,

g(u) = λu − μuk (1.3)

with λ > 0, μ > 0, and k > 1, u0 is a given nonnegative function.
The chemotaxis model (1.1) with g(u) = 0 and f(|∇v|2) = 1 is just

the classical Keller–Segel system (see [11]), which permits the concentration
phenomena to result in the possible blowing up of solutions, and has been ex-
tensively studied since 1970 s, such as the existence of global bounded solutions
and the detection of some solutions blowing up in either finite or infinite time,
in a great number of literature (see [1,5,6,9,12,13,15–17] and the references
therein).

We refer that in the case f(|∇v|2) = 1, χ > 0 with g(u) = λu − μuk, λ ≥
0, μ ≥ 0, and 1 < k < 3

2 + 1
2n−2 , Ω a ball in R

N , with N ≥ 5, Winkler in [20]
proved that there exist initial data such that the radially symmetric solution
blows up in finite time. In [21], with Ω a ball in R

N , N ≥ 3, λ ∈ R, μ > 0, k > 1,
and with m(t) replaced by the function v(x, t) in the second equation, under
the assumption

k <

⎧
⎨

⎩

7
6 , if N ∈ {3, 4},

1 + 1
2(N−1) , if N ≥ 5,

the author derived a condition on the initial data sufficient to ensure the
occurrence of blowing up solutions in finite time.

The range of k has been improved by Fuest in [8], where a nonnegative
initial datum u0 has been constructed such that the solution blows up in finite
time when χ = 1,

⎧
⎨

⎩

1 < k < min
{
2, N

2

}
, μ > 0, for N ≥ 3,

k = 2, μ ∈ (
0, N−4

N

)
, for N ≥ 5.

The value k = 2 is critical in the four and higher dimensions.
Recently the case f depending on the gradient of v (flux limitation term)

received considerable attention in the biomathematical literature.
The most relevant results on flux limitation concern the case g(u) = 0.
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In particular
� If f(|∇v|2) = |∇v|p−2, χ > 0, Ω ⊂ R

N ,

p ∈ (1,∞) for N = 1; p ∈
(
1,

N

N − 1

)
for N ≥ 2,

Negreanu and Tello [17] obtained uniform bounds in L∞(Ω) and the existence
of global in time solutions; for the one-dimensional case there exist infinitely
many non-constant steady-states for p ∈ (1, 2).

� If f(|∇v|2) = 1√
1+|∇v|2 and Δu is replaced by ∇·( u∇u√

u2+|∇u|2
)
, Bellomo

and Winkler [2] obtained the global existence of bounded classical solutions
for arbitrary positive radial initial data u0 ∈ C3(Ω) when

∫

Ω

u0 <
1

√
(χ2 − 1)+

, if N = 1; χ < 1, N ≥ 2.

In Bellomo and Winkler [3], the authors shows that the above conditions are
essentially optimal in the sense that if χ > 1 and

m >
1

√
χ2 − 1

, if N = 1; m > 0 arbitrary, if N ≥ 2

there exists u0 ∈ C3(Ω) with
∫

Ω
u0 = m, such that there exists a a unique

blowing up classical solution.
� If f(|∇v|2) ≥ Kf

(
1 + |∇v|2)−α

, Kf > 0, χ = 1, 0 < α < N−2
2(N−1) , Ω

a ball in R
N , with N ≥ 3, for a considerably large set of radially symmetric

initial data, the problem admits solutions blowing up in finite time in L∞-norm
for the first component. Otherwise, if f(|∇v|2) ≤ Kf

(
1+ |∇v|2)−α, χ = 1 and

α satisfies
⎧
⎨

⎩

α > N−2
2(N−1) , for N ≥ 2,

α ∈ R, for N = 1,

in general (not symmetric setting), a global bounded solution exists [22].
The case α = N−2

2(N−1) plays the role of a critical exponent and it is still
an open problem.

� If f(|∇v|2) = Kf

(
1 + |∇v|2)−α

, Kf > 0, χ = 1, 0 < α < N−2
2(N−1) ,

Ω = BR(0) ⊂ R
N , with N ≥ 3, Marras, Vernier-Piro and Yokota [14], for

suitable initial data, proved that a solution which blows up in L∞-norm blows
up also in Lp-norm for some p > N

2 . Moreover, a safe time interval of existence
of the solution [0, T ] is obtained, with T a lower bound of the blow-up time.

Less attention was payed to the case with f depending on the gradient
of v in presence of a source term g(u).

It is the purpose of the present paper to address the above question for
a class of functions g(u) modeling sources of logistic type: g(u) = λu − μuk,
λ > 0, μ > 0, and k > 1.

Main results The present work is addressed to study the behavior in time
of the solutions of problem (1.1) with χ = 1 in presence of the flux limitation
term and the source term g(u) = λu − μuk to varying k ∈ (1, 2]. In particular
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in Sect. 3 we construct an initial data such that the solution of problem (1.1)
blows up in L∞-norm in the following sense.

Theorem 1.1. (Finite-time blow-up in L∞-norm) Let Ω = BR(0) ⊂ R
N , R >

0, N ≥ 3. Suppose that

0 < α <
N − 2

2(N − 1)
. (1.4)

Then for all m0 > 0 there exist radially symmetric as well as radially decreasing
initial data

u0 ∈ C0(Ω̄), u0 
≡ 0 (1.5)

with
1

|Ω|
∫

Ω

u0 dx = m0

and some positive constant μ0 such that if

N ≥ 3, k ∈
(
1, min

{
2, 1 +

(N − 2)2

4

})
and μ > 0

or N ≥ 5, k = 2 and 0 < μ ≤ μ0,

then (1.1) possesses a unique classical solution (u, v) in Ω×(0, Tmax), for some
Tmax ∈ (0,∞), which blows up at Tmax in the sense that

lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (1.6)

The second purpose of this paper is to prove that the solutions of (1.1)
blow up at finite time in Lp-norm, for some p > 1, if they blow up in L∞-norm
(Sect. 4).

Theorem 1.2. (Finite-time blow-up in Lp-norm) Let Ω = BR(0) ⊂ R
N , N ≥ 3

and R > 0. Then, a classical solution (u, v) of (1.1) for t ∈ (0, Tmax), provided
by Theorem 1.1, is such that for all p > N

2 ,

lim sup
t↗Tmax

‖u(·, t)‖Lp(Ω) = ∞.

The investigation on blow-up solutions of system (1.1) goes on with the
study of the behavior near the blow-up time Tmax (Sect. 5). The goal is to
obtain a safe time interval (0, T ), (T < Tmax), of existence of the solutions of
(1.1); to this end, we define, for all p > 1, the auxiliary function

Ψ(t) :=
1
p
‖u(·, t)‖p

Lp(Ω) with Ψ0 := Ψ(0) =
1
p
‖u0‖p

Lp(Ω), (1.7)

and we determine a lower estimate of the blow-up time Tmax.

Theorem 1.3. (Lower bound of blow-up time) Let Ω = BR(0) ⊂ R
N , N ≥ 3,

R > 0 and let Ψ be defined in (1.7). Then, for all p > N
2 and some pos-

itive constants B1, B2, B3, B4, the blow-up time Tmax for (1.1), provided by
Theorem 1.1, satisfies the estimate

Tmax ≥ T :=
∫ ∞

Ψ0

dη

B1η + B2ηγ1 + B3ηγ2 + B4ηγ
, (1.8)
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with γ1 := p+1
p , γ2 := 2(p+1)−N

2p−N , γ :=
2(p+1)− N(p+1)(1+ε)

p+1+ε

2p− N(1+ε)(p+1)
p+1+ε

, 0 < ε <

2p
N − 1.

Corollary 1.4. Under the assumptions of Theorem 1.2, let (u, v) be a solution
of (1.1) and Ψ(t) and Ψ0 defined in (1.7). Then there exists a safe interval of
existence of (u, v) say [0, T ] with

T :=
1

A(γ − 1)Ψγ−1
0

≤ Tmax.

We remark that 1

A(γ−1)Ψγ−1
0

is explicitly computable.

We observe that the blow-up phenomena can be avoided for different
choises of the data. Moreover, we will prove that the results in Theorem 1.1
with f(|∇v|2) = kf (1 + |∇v|2)−α fulfilling 0 < α < N−2

2(N−1) and κ ≤ 2 cannot
be improved. In fact if α > N−2

2(N−1) or κ > 2 we obtain that the global solution
is bounded (Sect. 6).

Theorem 1.5. (Global existence and boundedness) Let Ω = BR(0) ⊂ R
N ,

N ≥ 3, R > 0. Assume that either one of the following two conditions is
satisfied:

1. α >
N − 2

2(N − 1)
and k > 1,

2. α > 0 and k > 2.
Then for all radially symmetric nonnegative initial data u0 ∈ C0(Ω̄), system
(1.1) possesses a unique global classical solution (u, v) in Ω × (0,∞), which is
bounded in the sense that

sup
t∈(0,∞)

‖u(·, t)‖L∞(Ω) < ∞.

2. Preliminaries

In this section, we present some preliminary lemmata which we shall use in
the proof of our main results.

Lemma 2.1. Let N ≥ 1, and assume that Ω = BR(0) ⊂ R
N for some R > 0,

f , g satisfy (1.2), (1.3) and that u0 ∈ C0(Ω̄) is nonnegative and radially
symmetric with respect to x = 0. Then there exist Tmax ∈ (0,∞] and a unique
pair

(u, v) ∈
(
(C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax))

)2

which solves (1.1) in the classical sense in Ω × (0, Tmax). Moreover, we have
u > 0 in Ω × (0, Tmax), and both u(·, t) and v(·, t) are radially symmetric with
respect to x = 0 for all t ≥ 0. Finally,

if Tmax < ∞, then lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞.
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We next give some properties of the Neumann heat semigroup which will
be used later. For the proof, see [4, Lemma 2.1] and [19, Lemma 1.3].

Lemma 2.2. Let (etΔ)t≥0 be the Neumann heat semigroup in Ω, and let μ1 > 0
denote the first non zero eigenvalue of −Δ in Ω under Neumann boundary
conditions. Then there exist k1, k2 > 0 which depend only on Ω and have the
following properties:

1. if 1 ≤ q ≤ p ≤ ∞, then

‖etΔz‖Lp(Ω) ≤ k1

(
1 + t−

N
2 ( 1

q − 1
p )

)
e−μ1t‖z‖Lq(Ω), ∀ t > 0 (2.1)

holds for all z ∈ Lq(Ω) satisfying
∫

Ω
z = 0.

2. If 1 < q ≤ p ≤ ∞, then

‖etΔ∇ · z‖Lp(Ω) ≤ k2

(
1 + t−

1
2− N

2 ( 1
q − 1

p )
)
e−μ1t‖z‖Lq(Ω), ∀ t > 0 (2.2)

is valid for any z ∈ (Lq(Ω))N , where etΔ∇ · is the extension of the
operator etΔ∇ · on (C∞

0 (Ω))N to (Lq(Ω))N .

We observe that since constants are invariant under etΔ we can use (2.1)
writing z̄ = 1

|Ω|
∫

Ω
z dx so that we have

∫

Ω
(z − z̄) dx = 0 (see [19]).

We now derive an upper bound of the total mass functional
∫

Ω
u(x, t)dx

in short time intervals.

Lemma 2.3. Let Ω ⊂ R
N , N ≥ 1, be a bounded and smooth domain, and

λ > 0, μ > 0, k > 1. Then for a solution (u, v) of (1.1) we have
∫

Ω

u dx ≤ m̄, for all t ∈ (0, T̄ ), (2.3)

with

m̄ = eλ

∫

Ω

u0 dx, T̄ = min(1, Tmax). (2.4)

Proof. From the first equation in (1.1) we obtain

d

dt

∫

Ω

u dx = λ

∫

Ω

u dx − μ

∫

Ω

ukdx ≤ λ

∫

Ω

u dx. (2.5)

From (2.5) we infer that z =
∫

Ω
udx, with z(0) = z0 =

∫

Ω
u0(x)dx, satisfies

{
z′(t) ≤ λz(t), for all t ∈ [0, Tmax),

z(0) = z0.

From which we have

z(t) ≤ eλtz0, for all t ∈ (0, Tmax).

This clearly proves the lemma. �

In Sect. 5 we will use the Gagliardo–Nirenberg inequality in the following
form.
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Lemma 2.4. Let Ω be a bounded and smooth domain of RN with N ≥ 1. Let
r ≥ 1, 1 ≤ q < p ≤ ∞, s > 0. Then there exists a constant CGN > 0 such that

‖f‖pLp(Ω) ≤ CGN

(
‖∇f‖pa

Lr(Ω)‖f‖p(1−a)
Lq(Ω) + ‖f‖pLs(Ω)

)
(2.6)

for all f ∈ Lq(Ω) with ∇f ∈ (Lr(Ω))N and a :=
1
q − 1

p
1
q + 1

N − 1
r

∈ (0, 1).

Proof. Following from the Gagliardo–Nirenberg inequality (see [18] for more
details):

‖f‖pLp(Ω) ≤
[
cGN

(
‖∇f‖a

Lr(Ω)‖f‖1−a
Lq(Ω) + ‖f‖Ls(Ω)

)]p
,

with some cGN > 0, and then from the inequality

(a + b)p ≤ 2p(ap + bp) for any a, b ≥ 0, p > 0,

we arrive to (2.6) with CGN = 2pcpGN. �

Lemma 2.5. Let β > 0, δ > 0, γ > 0 and suppose that for some T > 0,
y ∈ C0([0, T ]) is a nonnegative function satisfying

y(t) ≥ β + δ

∫ t

0

y1+γ(τ) dτ ∀ t ∈ (0, T ).

Then T ≤ 1
γδβγ .

For the proof see [20, Lemma 2.4].

3. Blow-up in L∞-norm

Transformation in nonlocal scalar parabolic equation:
Assume Ω = BR(0), R > 0 and u0 ∈ C0(Ω̄) is radially symmetric with

respect to x = 0. If (u, v) is the corresponding radial solution in Ω × (0, Tmax)
asserted by Lemma 2.1, we write u = u(r, t) and v = v(r, t) with r = |x| ∈
[0, R].

Following Jäger–Luckhaus [10] we introduce the mass accumulation func-
tion

w(s, t) :=
∫ s

1
N

0

ρN−1u(ρ, t) dρ, s = rN ∈ [0, RN ], t ∈ [0, Tmax). (3.1)

We have

ws(s, t) =
1
N

u(s
1
N , t) ≥ 0, wss(s, t) =

1
N2

s
1
N −1ur(s

1
N , t).

From the second equation in (1.1) we deduce
1

rN−1

(
rN−1vr(r, t)

)

r
= m(t) − u

and

rN−1vr(r, t) = m(t)
∫ r

0

ρN−1 dρ −
∫ r

0

ρN−1u(ρ, t) dρ
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=
m(t)rN

N
−

∫ r

0

ρN−1u(ρ, t) dρ.

Using (1.1) we obtain

wt(s, t) =
∫ s

1
N

0

ρN−1ut(ρ, t) dρ

=
∫ s

1
N

0

(
ρN−1ur

)

r
(ρ, t) dρ −

∫ s
1
N

0

(
ρN−1u(ρ, t)vrf(v2

r)
)

r
dρ

+ λ

∫ s
1
N

0

ρN−1u(ρ, t) dρ − μ

∫ s
1
N

0

ρN−1uk(ρ, t) dρ

= s1− 1
N ur(s

1
N , t) − s1− 1

N uvrf(v2
r(s

1
N , t))

+ λ

∫ s
1
N

0

ρN−1u(ρ, t) dρ − μ

∫ s
1
N

0

ρN−1uk(ρ, t) dρ

=N2s2− 2
N wss + Nws

(
w − m(t)

N
s
)
f
(
s

2
N −2(w − m(t)

N
s)2

)

+ λw − μNk−1

∫ s

0

wk
s (σ, t) dσ

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt = N2s2− 2
N wss + N(w − m(t)

N s)wsf
(
s

2
N −2(w − m(t)

N s)2
)

+λw − μNk−1
∫ s

0
wk

s (σ, t) dσ, s ∈ (0, RN ), t ∈ (0, Tmax),
w(0, t) = 0, w(RN , t) = μRN

N , t ∈ (0, Tmax),
w(s, 0) = w0(s), s ∈ (0, RN )

(3.2)

with w0(s) =
∫ s

1
N

0
ρN−1u0(ρ)dρ, s ∈ [0, RN ].

Our aim is to prove that the functional
∫ RN

0
s−awb(s, t) ds, for suitable

a > 0 and b ∈ (0, 1) blows up in finite time. To this end, we use the estimate
ws ≤ w

s proved by Fuest ( [8, Lemma 3.3]):

Lemma 3.1. Assume that u0 satisfies (1.5).
For all s ∈ [0, RN ] and t ∈ (0, Tmax),

ws(s, t) ≤ w(s, t)
s

≤ ws(0, t) (3.3)

holds.

Proof. By a similar way as in [2, Lemma 2.3] where α = 1
2 and as in [7, Lemma

3.7], we can show that ur ≤ 0 in (0, R) × (0, Tmax) and following the steps in
[8] we arrive to (3.3). �

The next step is to prove that the functional
∫ RN

0
s−awb(s, t) ds satisfies

a differential inequality. First we obtain the following estimate.
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Lemma 3.2. Assume Lemma 2.3 and Ω = BR(0) ⊂ R
N with some R > 0 and

N ≥ 2. Let u0 ∈ C0(Ω̄) be radial, and let (u, v) denote the solution of (1.1)
in Ω × (0, Tmax). Then for all a > 0 and b ∈ (0, 1), the function w defined in
(3.1) satisfies

1
b

∫ RN

0

s−awb(s, t) ds ≥ 1
b

∫ RN

0

s−awb
0(s) ds

− kfm̄|Ω|−1

∫ t

0

∫ RN

0

s1−awb−1ws dsdτ

+
aNkf

2(b + 1)
C̄

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ

+
1
2
Nkf C̄

∫ t

0

∫ RN

0

s−awbws dsdτ

+ N2(1 − b)
∫ t

0

∫ RN

0

s2− 2
N −awb−2w2

s dsdτ

− 2N(N − 1)
∫ t

0

∫ RN

0

s1− 2
N −awb−1ws dsdτ

− μNk−1

∫ t

0

∫ RN

0

s−awb−1
(∫ s

0

wk
s dσ

)
dsdτ, (3.4)

with

C̄ :=
[ N2

N2 + 2|Ω|−2m̄2R2

]α

, (3.5)

and m̄ in (2.4).

Proof. Following the steps in [20, Lemma 2.1] we multiply the first equation in
(3.2) by (s + ε)−awb−1(s, τ), ε > 0, and integrate over s ∈ (0, RN ). We obtain

1
b

d

dt

∫ RN

0

(s + ε)−awb(s, t) ds

≥ N2

∫ RN

0

s2− 2
N (s + ε)−awb−1wss ds

+ N

∫ RN

0

(s + ε)−awb−1ws

(
w − m(t)

N
s
)
f
(
s

2
N −2

(
w − m(t)

N
s
)2)

ds

− μNk−1

∫ RN

0

(s + ε)−awb−1
(∫ s

0

wk
s dσ

)
ds = I1 + I2 + I3. (3.6)

Integrating by part we have

I1 = N2

∫ RN

0

s2− 2
N (s + ε)−awb−1wss ds

= N2s2− 2
N (s + ε)−awb−1ws

∣
∣R

N

0
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− N2(b − 1)
∫ RN

0

s2− 2
N (s + ε)−awb−2w2

s ds

− N2

∫ RN

0

d

ds

(
s2− 2

N (s + ε)−a
)
wb−1ws ds

≥ N2(1 − b)
∫ RN

0

s2− 2
N (s + ε)−awb−2w2

s ds

− 2N(N − 1)
∫ RN

0

s1− 2
N (s + ε)−awb−1ws ds (3.7)

where in the last step we used d
ds

(
s2− 2

N (s + ε)−a
)

= (2 − 2
N )s1− 2

N (s + ε)−a −
as2− 2

N (s + ε)−a−1 ≤ (2 − 2
N )s1− 2

N (s + ε)−a.
In I2 we have

I2 = N

∫ RN

0

(s + ε)−awb−1ws

(
w − m(t)

N
s
)
f
(
s

2
N −2

(
w − m(t)

N
s
)2)

ds

= N

∫ RN

0

(s + ε)−awbwsf
(
s

2
N −2(w − m(t)

N
s)2

)
ds

−
∫ RN

0

s(s + ε)−awb−1wsm(t)f
(
s

2
N −2

(
w − m(t)

N
s
)2)

ds = I21 + I22.

Taking into account that u ≥ 0 we have ws ≥ 0 in (0, RN )×(0, Tmax) and from
the boundary condition at s = RN we have w(s, t) ≤ m(t)RN

N for all s ∈ [0, RN ]
and t ∈ [0, Tmax).

By using w ≤ m(t)RN

N and s ≤ RN , using (2.3) we arrive at

(m(t)
N

s − w
)2

≤ m2(t)
N2

s2 + w2 ≤ 2
m2(t)
N2

R2N ≤ 2
|Ω|−2m̄2

N2
R2N

so that

f
(
s

2
N −2

(
w − m(t)

N
s
)2)

= kf
1

[
1 + s

2
N −2(m(t)

N s − w)2
]α

≥ kf
1

[
1 + 2 |Ω|−2m̄2

N2 R2
]α = kf C̄,

where C̄ is a constant defined in (3.5).
We now split I21 = I21

2 + I21
2 . Computing

I21

2
=

1
2
Nkf

∫ RN

0

(s + ε)−awbwsf
(
s

2
N −2

(
w − m(t)

N
s
)2)

ds

≥ 1
2
Nkf C̄

∫ RN

0

(s + ε)−awbws ds

and integrating by parts we get
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1
2
Nkf C̄

∫ RN

0

(s + ε)−awbws ds

=
Nkf

2(b + 1)
C̄(s + ε)−awb+1

∣
∣
∣
RN

0

− Nkf

2(b + 1)
C̄

∫ RN

0

d

ds

[
(s + ε)−a

]
wb+1 ds

≥ − Nkf

2(b + 1)
C̄

∫ RN

0

d

ds

[
(s + ε)−a

]
wb+1 ds

=
aNkf

2(b + 1)
C̄

∫ RN

0

(s + ε)−a−1wb+1 ds.

This leads to

I21

2
≥ aNkf

2(b + 1)
C̄

∫ RN

0

(s + ε)−a−1wb+1 ds. (3.8)

Now, since 1[
1+s

2
N

−2( m(t)
N s−w)2

]α ≤ 1, we obtain

I22 = −
∫ RN

0

s(s + ε)−awb−1wsm(t)f
(
s

2
N −2

(
w − m(t)

N
s
)2)

ds

= −kf

∫ RN

0

s(s + ε)−awb−1wsm(t)
1

[
1 + s

2
N −2(m(t)

N s − w)2
]α ds

≥ −kf

∫ RN

0

s(s + ε)−awb−1wsm(t) ds

≥ −kfm̄|Ω|−1

∫ RN

0

s(s + ε)−awb−1ws ds, (3.9)

where in the last inequality we used (2.3).
Replacing (3.7), (3.8) and (3.9) in (3.6) and integrating from 0 to t ∈

(0, Tmax) we arrive to

1
b

∫ RN

0

(s + ε)−awb(s, t) ds ≥ 1
b

∫ RN

0

(s + ε)−awb
0(s) ds

− kfm̄|Ω|−1

∫ t

0

∫ RN

0

s(s + ε)−awb−1ws dsdτ

+
aNkf

2(b + 1)
C̄

∫ t

0

∫ RN

0

(s + ε)−a−1wb+1 dsdτ

+
1
2
Nkf C̄

∫ t

0

∫ RN

0

(s + ε)−awbws dsdτ
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+ N2(1 − b)
∫ t

0

∫ RN

0

s2− 2
N (s + ε)−awb−2w2

s dsdτ

− 2N(N − 1)
∫ t

0

∫ RN

0

s1− 2
N (s + ε)−awb−1ws dsdτ

− μNk−1

∫ t

0

∫ RN

0

(s + ε)−awb−1
(∫ s

0

wk
s dσ

)
dsdτ. (3.10)

Now, from the monotone convergence theorem, taking ε ↘ 0 arrive at (3.4)
�

Our aim is to construct an integral inequality for y(t) =
∫ RN

0
s−awb(s, t) ds,

t ∈ (0, Tmax) which ensure that y(t) blows up in finite time inducing the chemo-
tactic collapse of the solution of (1.1).

To this end, we estimate each term in (3.4).
In (3.4) we assume

c1 := min
{

N2(1 − b),
aNkf

2(b + 1)
C̄

}

(3.11)

to obtain

1
b

∫ RN

0

s−awb(s, t) ds ≥ 1
b

∫ RN

0

s−awb
0(s) ds

+ c1

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ +
1
2
Nkf C̄

∫ t

0

∫ RN

0

s−awbws dsdτ

+ c1

∫ t

0

∫ RN

0

s2− 2
N −awb−2w2

s dsdτ − kfm̄|Ω|−1

∫ t

0

∫ RN

0

s1−awb−1ws dsdτ

− 2N(N − 1)
∫ t

0

∫ RN

0

s1− 2
N −awb−1ws dsdτ

− μNk−1

∫ t

0

∫ RN

0

s−awb−1
(∫ s

0

wk
s dσ

)
dsdτ

= H1 + H2 + H3 + H4 − H5 − H6 − H7, for all t ∈ (0, Tmax). (3.12)

Lemma 3.3. Let H5 and H6 defined as in (3.12). If

0 < a <
N − 2

N
(b + 1), (3.13)

then

H5 ≤ 1
2
H4 +

1
4
H2 + c4t (3.14)

H6 ≤ 1
2
H4 +

1
4
H2 + c6t, for all t ∈ (0, Tmax), (3.15)

with c4, c6 > 0 and H2, H4 defined in (3.12).
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Proof. Using Young’s inequality we obtain

H5 = kfm̄|Ω|−1

∫ t

0

∫ RN

0

s1−awb−1ws dsdτ

≤ c1

2

∫ t

0

∫ RN

0

s2− 2
N −awb−2w2

s dsdτ + c2

∫ t

0

∫ RN

0

s
2
N −awb dsdτ

≤ c1

2

∫ t

0

∫ RN

0

s2− 2
N −awb−2w2

s dsdτ

+
c1

4

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ + c3

∫ t

0

∫ RN

0

s
2
N −a+ N+2

N b dsdτ.

Since (3.13) holds we have 2
N −a+ N+2

N b > −1, and for some c4 > 0 we obtain

H5 ≤ 1
2
H4 +

1
4
H2 + c4t.

To estimate H6 we apply Young’s inequality:

H6 = 2N(N − 1)
∫ t

0

∫ RN

0

s1− 2
N −awb−1ws dsdτ

≤ c1

2

∫ t

0

∫ RN

0

s2− 2
N −awb−2w2

s dsdτ + c5

∫ t

0

∫ RN

0

s− 2
N −awb dsdτ

≤ c1

2

∫ t

0

∫ RN

0

s2− 2
N −awb−2w2

s dsdτ +
c1

4

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ

+ c̄5

∫ t

0

∫ RN

0

s− 2
N −a+ N−2

N b dsdτ

≤ 1
2
H4 +

1
4
H2 + c6t, for all t ∈ (0, Tmax),

with c5, c̄5, c6 > 0 and by (3.13): − 2
N − a + N−2

N b > −1. �

In order to estimate the term H7 in (3.12) we prove the following lemma.

Lemma 3.4. Let N ≥ 3, R > 0 and H7 be as in (3.12).
� If k = 2 and u0 satisfies (1.5), then there exists a constant μ0 > 0 such

that for all μ ∈ (0, μ0] one can find a > 1 and b ∈ (0, 1) fulfilling (3.13) and

H7 ≤ 1
4
H2. (3.16)

� If k ∈ (
1, min

{
2, 1 + (N−2)2

4

})
, then for all μ > 0 one can find a, b ∈ (0, 1)

fulfilling (3.13) and

H7 ≤ 1
4
H2 + c̄2t, c̄2 > 0, for all t ∈ (0, Tmax). (3.17)

Proof. By Fubini’s theorem we obtain
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H7 = μNk−1

∫ t

0

∫ RN

0

s−awb−1
(∫ s

0

wk
s dσ

)
dsdτ

= μNk−1

∫ t

0

∫ RN

0

(∫ RN

σ

s−awb−1ds
)
wk

s (σ) dσdτ.

Since b ∈ (0, 1) and ws ≥ 0, then wb−1(s) decreases in s, we can write

H7 ≤ μNk−1

∫ t

0

∫ RN

0

(∫ RN

σ

s−ads
)
wb−1(σ)wk

s (σ) dσdτ

=
1

1 − a
μNk−1

∫ t

0

∫ RN

0

(
RN(1−a) − σ1−a

)
wb−1(σ)wk

s (σ) dσdτ.

In the case k = 2, a > 1 we neglect the negative term − RN

a−1 and use (3.3) to
obtain

H7 ≤ μN

a − 1

∫ t

0

∫ RN

0

s1−awb−1(s)w2
s(s) dsdτ

≤ μN

a − 1

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ.

Now, if 0 < μ ≤ μ0 with μ0 ≤ a−1
4N c1, and c1 defined in (3.11), we note that

one can find a > 1 and b ∈ (0, 1) fulfilling (3.13) such that (3.16) holds.
If k ∈ (

1, min
{
2, 1 + (N−2)2

4

})
, a ∈ (0, 1) we neglect the negative term

− 1
1−aσ1−a and arrive to

H7 ≤ μNk−1

1 − a
RN(1−a)

∫ t

0

∫ RN

0

wb−1(s)wk
s (s) dsdτ.

We now fix b = a ∈ (√
k − 1, min

{
1, N−2

2

})
fulfilling (3.13). This is possible

in view of the choice of k, because (3.13) with b = a is equivalent to a < N−2
2 .

Thus we see that (a−1)a+1
2−k > −1, and then (3.3) and Young’s inequality lead

to

H7 ≤ μNk−1

1 − a
RN(1−a)

∫ t

0

∫ RN

0

s−kwk+a−1dsdτ

≤
∫ t

0

[( ∫ RN

0

s−a−1wa+1ds
) k+a−1

a+1
( ∫ RN

0

s(a−1) a+1
2−k ds

) 2−k
a+1

]
dτ

≤ c1

4

∫ t

0

∫ RN

0

s−a−1wa+1 dsdτ + c̄1

∫ t

0

∫ RN

0

s(a−1) a+1
2−k dsdτ

=
c1

4

∫ t

0

∫ RN

0

s−a−1wa+1 dsdτ + c̄2t, for all t ∈ (0, Tmax),

with some c̄2 > 0. Thus we obtain (3.17) with b = a. �

Taking into account of Lemmata 3.2, 3.3 and 3.4, we derive an integral
inequality for the functional y(t) =

∫ RN

0
s−awb(s)ds.
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Lemma 3.5. Suppose Lemma 3.3 and Lemma 3.4 hold. Let N ≥ 3, R > 0,
m0 > 0, μ > 0 and k ∈ (1, 2]. Then there exist a > 0, b ∈ (0, 1), δ > 0 and
C > 0 such that if u0(r) is nonnegative in BR(0) ⊂ R

N with 1
|Ω|

∫

Ω
u0 = m0,

for the corresponding solution (u, v) of (1.1) in Ω × (0, Tmax) and w defined
in (3.1), it holds

∫ RN

0

s−awb(s, t) ds ≥
∫ RN

0

s−awb
0(s) ds

+ δ

∫ t

0

( ∫ RN

0

s−awb(s, τ) ds
) b+1

b

dτ − Ct (3.18)

for all t ∈ (0, Tmax).

Proof. We analyse the following two cases separately.
Case (i) Assume k = 2, 1 < a < N−2

N (b + 1), N ≥ 5, 0 < μ ≤ μ0. Thus
b ∈ ( 2

N−2 , 1).
Substituting (3.14), (3.15) and (3.16) in (3.12) and neglecting the positive

term H3, we see that

∫ RN

0

s−awb(s, t) ds ≥
∫ RN

0

s−awb
0(s) ds

+
bc1

4

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ − Ct, ∀ t ∈ (0, Tmax).

Case (ii) Assume k ∈ (
1, min

{
2, 1 + (N−2)2

4

})
, b = a ∈ (√

k − 1, min
{
1, N−2

2

})
, N ≥ 3, μ > 0.

Substituting (3.14), (3.15) and (3.17) in (3.12) we obtain (with b = a)

∫ RN

0

s−awb(s, t) ds ≥
∫ RN

0

s−awb
0(s) ds +

bc1

4

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ

+ bc1

∫ t

0

∫ RN

0

s−awbws dsdτ − Ct

≥
∫ RN

0

s−awb
0(s) ds +

bc1

4

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ − Ct ∀ t ∈ (0, Tmax).

In both cases (i) and (ii) we arrive at the following type inequality:

∫ RN

0

s−awb(s, t) ds ≥
∫ RN

0

s−awb
0(s) ds

+
bc1

4

∫ t

0

∫ RN

0

s−a−1wb+1 dsdτ − Ct, ∀ t ∈ (0, Tmax). (3.19)

Now, by the Hölder inequality, we observe that
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∫ RN

0

s−awb ds =
∫ RN

0

s−a+ b(a+1)
b+1

(
s−a−1wb+1

) b
b+1 ds

≤
( ∫ RN

0

s−a+b ds
) 1

b+1
( ∫ RN

0

s−a−1wb+1 ds
) b

b+1

from which we have
∫ RN

0

s−a−1wb+1 ds ≥ c̄4

(∫ RN

0

s−awb ds
) b+1

b

(3.20)

with c̄4 =
(

b+1−a
RN(b+1−a)

) 1
b

and −a + b > −1.

Replacing (3.20) into (3.19) we arrive at (3.18) with δ = 1
4bc1c̄4. �

Proof of theorem 1.1. By Lemma 3.5 with the aid of the Lemma 2.5 and fol-
lowing the steps in the proof of Theorem 0.1 in [20], we can conclude that

y(t) =
∫ RN

0
s−awb(s, t)ds blows up in finite time Tmax ≤ b

δβ
1
b
. �

4. Blow-up in Lp-norm

The aim of this section is to prove Theorem 1.2. To this end, first we prove
the following lemma.

Lemma 4.1. Let Ω ⊂ R
N , N ≥ 3 be a bounded and smooth domain. Let (u, v)

be a classical solution of system (1.1). If α satisfies (1.4) and if for some
p > N

2 there exists C > 0 such that

‖u(·, t)‖Lp(Ω) ≤ C, for any t ∈ (0, Tmax),

then, for some Ĉ > 0,

‖u(·, t)‖L∞(Ω) ≤ Ĉ, for any t ∈ (0, Tmax). (4.1)

Proof. For any t ∈ (0, Tmax), we set t0 := max{0, t − 1} and we consider the
representation formula for u:

u(·, t) = e(t−t0)Δu(·, t0) − kf

∫ t

t0

e(t−s)Δ∇ ·
(
u(·, s) ∇v(·, s)

(1 + |∇v(·, t)|2)α

)
ds

+
∫ t

t0

e(t−s)Δ
(
λu(·, s) − μuk(·, s)) ds =: u1(·, t) + u2(·, t) + u3(·, t)

and

0 ≤ u(·, t) ≤ ‖u1(·, t)‖L∞(Ω) + ‖u2(·, t)‖L∞(Ω) + u3(·, t). (4.2)

We have

‖u1(·, t)‖L∞(Ω) ≤ max{‖u0‖L∞(Ω), 2e−λm̄k1} =: C̃1, (4.3)

with k1 > 0 introduced in (2.1) and m̄ defined in (2.4). In fact, if t ≤ 1, then
t0 = 0 and hence the maximum principle yields u1(·, t) ≤ ‖u0‖L∞(Ω). If t > 1,
then t − t0 = 1 and from (2.4) and (2.1) with p = ∞ and q = 1, we deduce
that ‖u1(·, t)‖L∞(Ω) ≤ k1[1 + (t − t0)− N

2 ]e−μ1(t−t0)‖u(·, t0)‖L1(Ω) = 2e−λm̄k1.
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We next use (2.2) with p = ∞, which leads to

‖u2(·, t)‖L∞(Ω)

≤ k2kf

∫ t

t0

(1 + (t − s)− 1
2− N

2q )e−μ1(t−s)

∥
∥
∥
∥u(·, s) ∇v(·, s)

(1 + |∇v|2)α

∥
∥
∥
∥

Lq(Ω)

ds

≤ k2kf

∫ t

t0

(1 + (t − s)− 1
2− N

2q )e−μ1(t−s)‖u(·, s)|∇v|1−2α‖Lq(Ω) ds, (4.4)

because |∇v|
(1+|∇v|2)α ≤ |∇v|1−2α.

Here, we may assume that N
2 < p < N , and then we can fix N < q <

Np
N−p = p∗. Since 2α < 1, by Hölder’s inequality, we can estimate the last term
in (4.4) as

‖u(·, s)|∇v(·, s)|1−2α‖Lq(Ω)

≤ ‖u(·, s)‖
L

q
2α (Ω)

‖∇v(·, s)‖1−2α
Lq(Ω)

≤ C2‖u(·, s)‖
L

q
2α (Ω)

‖∇v(·, s)‖1−2α
Lp∗ (Ω)

for all s ∈ (0, Tmax),

for some C2 > 0. The Sobolev embedding theorem and elliptic regularity theory
for the second equation in (1.1) tell us that ‖v(·, s)‖W 1,p∗ (Ω) ≤ C3‖v(·, s)‖W 2,p(Ω)

≤ C4 with some C3, C4 > 0. Thus again by Hölder’s inequality, the definition
of m̄ and interpolation’s inequality, we obtain

‖u(·, s)|∇v(·, s)|1−2α‖Lq(Ω) ≤ C5‖u(·, s)‖
L

q
2α (Ω)

≤ C5‖u(·, s)‖θ
L∞(Ω)‖u(·, s)‖1−θ

L1(Ω)

≤ C6‖u(·, s)‖θ
L∞(Ω) for all s ∈ (0, Tmax),

with θ := 1 − 2α
q ∈ (0, 1), C5 := C2C4 and C6 := C5m̄

1−θ. Hence, combining
this estimate and (4.4), we infer

‖u2(·, t)‖L∞(Ω) ≤ C6k2

∫ t

t0

(1 + (t − s)− 1
2− N

2q )e−μ1(t−s)‖u(·, s)‖θ
L∞(Ω) ds.

Now fix any T ∈ (0, Tmax). Then, since t − t0 ≤ 1, we have

‖u2(·, t)‖L∞(Ω) ≤ C6k2

∫ t

t0

(1 + (t − s)− 1
2− N

2q e−μ1(t−s)) ds sup
t∈[0,T ]

‖u(·, t)‖θ
L∞(Ω)

≤ C7 sup
t∈[0,T ]

‖u(·, t)‖θ
L∞(Ω), (4.5)

where C7 := C6k2

(
1+μ

N
2q − 1

2
1

∫ ∞
0

r− 1
2− N

2q e−r dr
)

> 0 is finite, because 1
2 + N

2q <

1 (i.e., q > N).
Now we prove that there exists a constant c8 ≥ 0 such that u3(·, t) ≤ c8.

In fact we observe that g(u) = λu − μuk ≤ g(ũ) := c8, with ũ =
(

λ
μ

) 1
k−1

u3(·, t) =
∫ t

t0

e(t−s)Δ
[
λu(·, s) − μuk(·, s)] ds ≤ c8

∫ t

t0

ds ≤ c8. (4.6)
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Plugging (4.3), (4.5) and (4.6) into (4.2), we see that

0 ≤ u(·, t) ≤ C1 + C7 sup
t∈[0,T ]

‖u(·, t)‖θ
L∞(Ω), (4.7)

with C1 = C̃1 + c8.
The inequality (4.7) implies

sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω) ≤C1 + C7

(
sup

t∈[0,T ]

‖u(·, t)‖L∞(Ω)

)θ

for all T ∈ (0, Tmax).

From this inequality with θ ∈ (0, 1), we arrive at (4.1). �

Proof of Theorem 1.2. Since Theorem 1.1 holds, the unique local classical so-
lution of (1.1) blows up at t = Tmax in the sense of (1.6), that is,

lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞.

We prove that it blows up also in Lp-norm by contradiction.
In fact, if one supposes that there exist p > N

2 and C > 0 such that

‖u(·, t)‖Lp(Ω) ≤ C, for all t ∈ (0, Tmax),

then, from Lemma 4.1, it would exist Ĉ > 0 such that

‖u(·, t)‖L∞(Ω) ≤ Ĉ, for all t ∈ (0, Tmax),

which contradics (1.6). Thus, if u blows up in L∞-norm, then u blows up also
in Lp-norm for all p > N

2 . �

5. Lower bound of the blow-up time Tmax

Throughout this section we assume that Theorem 1.2 holds.
We want to obtain a safe interval of existence of the solution of (1.1)

[0, T ], with T a lower bound of the blow-up time Tmax. To this end, first we
construct a first order differential inequality for Ψ defined in (1.7) and by
integration we get the lower bound.

Proof of Theorem 1.2. By differentiating (1.7) we have

Ψ′(t) =
∫

Ω

up−1Δu dx −
∫

Ω

up−1∇ · (u∇vf(|∇v|2) dx

+ λ

∫

Ω

up dx − μ

∫

Ω

up+k−1 dx

=: J1 + J2 + J3 + J4 (5.1)

with

J1 =
∫

Ω

up−1Δu dx

=
∫

Ω

∇ · (
up−1∇u

)
dx − (p − 1)

∫

Ω

up−2|∇u|2 dx

= −4(p − 1)
p2

∫

Ω

|∇u
p
2 |2 dx. (5.2)
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In the second term of (5.1), integrating by parts and using the boundary
conditions in (1.1), for all t ∈ [0, Tmax) we obtain

J2 = −
∫

Ω

up−1∇ · (u∇vf(|∇v|2) dx

= (p − 1)
∫

Ω

f(|∇v|2)up−1∇u · ∇v dx

=
p − 1

p

∫

Ω

∇up · ∇vf(|∇v|2) dx

= −p − 1
p

∫

Ω

up∇ · [∇vf(|∇v|2)] dx

= −p − 1
p

∫

Ω

up[Δvf(|∇v|2)] dx

− p − 1
p

∫

Ω

upf ′(|∇v|2)∇v · ∇(|∇v|2) dx. (5.3)

Using the second equation of (1.1) and taking into account that f(ξ) = kf (1+
ξ)−α, f ′(ξ) = −αkf (1 + ξ)−α−1 in (5.3), we have

J2 = −kf
p − 1

p

∫

Ω

up m(t) − u

(1 + |∇v|2)α
dx

+ αkf
p − 1

p

∫

Ω

up ∇v · ∇(|∇v|2)
(1 + |∇v|2)α+1

dx

≤ kf
p − 1

p

∫

Ω

up+1 dx + αkf
p − 1

p

∫

Ω

up ∇v · ∇(|∇v|2)
(1 + |∇v|2)α+1

dx, (5.4)

where we dropped the negative term −kf
p−1

p

∫

Ω
up m(t)

(1+|∇v|2)α dx and used the
inequality 1

(1+|∇v|2)α ≤ 1 as α > 0.
In order to estimate the second term of (5.4) we recall the radially sym-

metric setting to obtain (with ωN the surface area of the unit sphere in N
dimension)

∫

Ω

up ∇v · ∇(|∇v|2)
(1 + |∇v|2)α+1

dx = ωN

∫ R

0

up Nvr(v2
r)r

(1 + v2
r)α+1

rN−1 dr

= 2NωN

∫ R

0

up v2
rvrr

(1 + v2
r)α+1

rN−1 dr,

which together with vrr = m(t)
N − u + N−1

rN

∫ r

0
ρN−1u dρ implies

∫

Ω

up ∇v · ∇(|∇v|2)
(1 + |∇v|2)α+1

dx

= 2m(t)ωN

∫ R

0

up v2
r

(1 + v2
r)α+1

rN−1 dr

− 2NωN

∫ R

0

up+1 v2
r

(1 + v2
r)α+1

rN−1 dr
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+ 2N(N − 1)ωN

∫ R

0

up v2
r

(1 + v2
r)α+1

1
r

( ∫ r

0

ρN−1u dρ
)

dr

≤ 2
m̄

|Ω|ωN

∫ R

0

uprN−1 dr

+ 2N(N − 1)ωN

∫ R

0

up 1
r

(∫ r

0

ρN−1u dρ
)

dr, (5.5)

where we used (2.3), we dropped the negative term −2NωN

∫ R

0
up+1

v2
r

(1+v2
r)α+1 rN−1 dr and finally we used the inequality v2

r

(1+v2
r)α+1 ≤ 1.

In the second term of (5.5), Hölder’s inequality yelds that for all ε > 0
there exists c = c(ε,N, p) such that

ωN

∫ R

0

up 1

r

( ∫ r

0

ρN−1u dρ
)
dr

≤ ωN

∫ R

0

up 1

r

( ∫ r

0

ρN−1 dρ
) p

p+1
( ∫ r

0

up+1ρN−1 dρ
) 1

p+1
dr

≤
( 1

N

) p
p+1

( ∫

Ω

up+1 dx
) 1

p+1
ω

p
p+1
N

∫ R

0

upr
Np
p+1 −1

dr

≤
( 1

N

) p
p+1

(∫

Ω

up+1 dx
) 1

p+1
ω

p
p+1
N

(∫ R

0

up+1+εrN−1 dr
) p

p+1+ε
(∫ R

0

r
εNp
p+1 −1

dr
) 1+ε

p+1+ε

= c
( ∫

Ω

up+1 dx
) 1

p+1
( ∫

Ω

up+1+ε dx
) p

p+1+ε
. (5.6)

Combining (5.6) and (5.5) with (5.4) we obtain

J2 ≤ 2α
m̄

|Ω|kf
p − 1

p

∫

Ω

up dx + kf
p − 1

p

∫

Ω

up+1 dx

+ 2αN(N − 1)ckf
p − 1

p

( ∫

Ω

up+ 1 dx
) 1

p+1
( ∫

Ω

up+1+ε dx
) p

p+1+ε

≤ c̃1

p

∫

Ω

up dx + c̃2

∫

Ω

up+1 dx + c̃3

( ∫

Ω

up+1+ε dx
) p+1

p+1+ε

(5.7)

where, in the last term, we used Young’s inequality with c̃1 = 2α m̄
|Ω|kf (p −

1), c̃2 = kf
p−1

p + 2αN(N − 1)ckf
p−1

p(p+1) , c̃3 = 2αN(N − 1)ckf
p−1
p+1 .

Thanks to the Gagliardo–Nirenberg inequality (2.6), with p = 2p+1
p , r =

q = s = 2, a = θ0 := N
2(p+1) ∈ (0, 1) for all p > N

2 , we see that
∫

Ω

up+1 dx = ‖u
p
2 ‖2 p+1

p

L
2 p+1

p (Ω)

≤ CGN‖∇u
p
2 ‖2 p+1

p θ0

L2(Ω) ‖u
p
2 ‖2 p+1

p (1−θ0)

L2(Ω) + CGN‖u
p
2 ‖2 p+1

p

L2(Ω)

= CGN

(∫

Ω

|∇u
p
2 |2 dx

) N
2p

(∫

Ω

up dx
) 2(p+1)−N

2p

+ CGN

( ∫

Ω

up dx
) p+1

p

.

(5.8)
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Applying Young’s inequality at the first term of (5.8) we have
∫

Ω

up+1 dx ≤ N

2p
ε1CGN

∫

Ω

|∇u
p
2 |2 dx

+ CGN
2p − N

2pε
N

2p−N

1

( ∫

Ω

up dx
) 2(p+1)−N

2p−N

+ CGN

(∫

Ω

up dx
) p+1

p

(5.9)

with ε1 > 0 to be choose later on, and also
( ∫

Ω

up+1+ε dx
) p+1

p+1+ε

= ‖u
p
2 ‖2 p+1

p

L2 p+1+ε
p (Ω)

≤ CGN‖∇u
p
2 ‖2 p+1

p θε

L2(Ω) ‖u
p
2 ‖2 p+1

p (1−θε)

L2(Ω) + CGN‖u
p
2 ‖2 p+1

p

L2(Ω)

= CGN

(∫

Ω

|∇u
p
2 |2 dx

) p+1
p θε

( ∫

Ω

up dx
) p+1

p (1−θε)

+ CGN

(∫

Ω

up dx
) p+1

p

, (5.10)

with p = 2p+1
p , r = q = s = 2, a = θε := N(1+ε)

2(p+1+ε) ∈ (0, 1) for all p > N
2

and sufficiently small ε > 0.
Now, in the first term of (5.10), we apply Young’s inequality to obtain
(∫

Ω

up+1+ε dx
) p+1

p+1+ε

≤ c̃4

∫

Ω

|∇u
p
2 |2 dx + c̃5

(∫

Ω

up dx
)γ

+ CGN

(∫

Ω

up dx
) p+1

p

, (5.11)

with

c̃4 :=
N(1 + ε)(p + 1)
2p(p + 1 + ε)

ε2CGN ,

c̃5 := CGN

(2p(p + 1 + ε) − N(p + 1)(1 + ε)
2p(p + 1 + ε)

)
ε

N(1+ε)
2(p+1+ε)−N(1+ε)
2 ,

γ :=
2(p + 1) − N(p+1)(1+ε)

p+1+ε

2p − N(1+ε)(p+1)
p+1+ε

, ε2 > 0.

Note that we can fix ε > 0 such that 2p − N(1 + ε) > 0.
Plugging (5.9) and (5.11) into (5.7) leads to

J2 ≤ C

∫

Ω

|∇u
p
2 |2 dx +

c̃1

p

∫

Ω

up dx + CGN

(∫

Ω

up dx
) p+1

p

+ ĉ1

(∫

Ω

updx
) 2(p+1)−N

2p−N

+ c̃5

( ∫

Ω

up dx
)γ

(5.12)

with C := c̃3 · c̃4, ĉ1 := CGN
2p−N

2pε
N

2p−N
1

c̃2, ε1 > 0.

Also we note that

J3 = λ

∫

Ω

up dx = B1Ψ, B1 = λp. (5.13)
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Finally, combining (5.12) with (5.1) and (5.2), (5.13), neglecting the neg-
ative term J4 and choosing ε2 such that the term containing

∫

Ω
|∇u

p
2 |2dx

vanishes, we have

Ψ′ ≤ B1Ψ + B2Ψ
p+1

p + B3Ψ
2(p+1)−N

2p−N + B4Ψγ , (5.14)

with B2 := p
1
p [pCGN + c̃1], B3 := ĉ1p

2(p+1)−N
2p−N and B4 := c̃5p

γ .
Integrating (5.14) from 0 to Tmax, we arrive at the desired lower bound

(1.8) with γ1 := p+1
p , γ2 := 2(p+1)−N

2p−N . �

Proof of Corollary 1.4. We reduce (5.14) so as to have an explicit expression
of the lower bound T of Tmax. In fact, since Ψ(t) blows up at time Tmax, there
exists a time t1 ∈ (0, Tmax) such that Ψ(t) ≥ Ψ0 for all t ∈ (t1, Tmax). Thus,
taking into account that

1 < γ1 < γ2 < γ

we have
{

Ψ ≤ ΨγΨ1−γ
0 ,

Ψγi ≤ ΨγΨγi−γ
0 , i = 1, 2.

(5.15)

From (5.14) and (5.15) we arrive at

Ψ′ ≤ AΨγ , ∀ t ∈ (t1, Tmax), (5.16)

with A := B1Ψ
1−γ
0 + B2Ψ

γ1−γ
0 + B3Ψ

γ2−γ
0 + B4, and Ψ0 in (1.7).

Integrating (5.16) from t = 0 to t = Tmax, we obtain

1
(γ − 1)Ψγ−1

0

=
∫ ∞

Ψ0

dη

ηγ
≤ A

∫ Tmax

t1

dτ ≤ A
∫ Tmax

0

dτ = ATmax. (5.17)

We conclude, by (5.17), that the solution of (1.1) is bounded in [0, T ] with
T := 1

A(γ−1)Ψγ−1
0

. �

6. Global existence and boundedness

The aim of this section is to prove Theorem 1.5. The proof is divided into two
cases.

6.1. Case 1. α > N −2
2(N −1)

and k > 1

As in the proof of Lemma 4.1, for any t ∈ (0, Tmax), we set t0 := max{0, t−1}.
From the representation formula for u we can write

u(·, t) = e(t−t0)Δu(·, t0) −
∫ t

t0

e(t−s)Δ∇ · [
u(·, s)f(|∇v(·, s)|2)∇v(·, s)] ds

+
∫ t

t0

e(t−s)Δg(u) ds =: u1(·, t) + u2(·, t) + u3(·, t).
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In view of (4.2) and (4.3) as well as (4.6) we have

‖u(·, t)‖L∞(Ω) ≤ c1 + ‖u2(·, t)‖L∞(Ω) . (6.1)

Since the condition α > N−2
2(N−1) implies that (1 − 2α)N < N

N−1 , we can take

q ∈
[
1, N

N−1

)
such that q > (1 − 2α)N , and hence we pick r > N satisfying

q > (1 − 2α)r. Then we see from the second equation in (1.1) with mass
estimate (2.3) that

sup
t∈(0,Tmax)

‖∇v(·, t)‖Lq(Ω) ≤ c2.

Using (2.2) with p = ∞ and q = r as in (4.4), we deduce from the Hölder
inequality that

‖u2(·, t)‖L∞(Ω)

≤ c3

∫ t

t0

(1 + (t − s)− 1
2− N

2r )e−μ1(t−s)‖u(·, s)|∇v(·, s)|1−2α‖Lr(Ω) ds

≤ c3

∫ t

t0

(1 + (t − s)− 1
2− N

2r )e−μ1(t−s)‖u(·, s)‖
L

qr
q−(1−2α)r (Ω)

‖∇v(·, s)‖1−2α
Lq(Ω) ds.

Putting a := 1 − q−(1−2α)r
qr ∈ (0, 1) and recalling (2.3) again, we note that

‖u(·, s)‖
L

qr
q−(1−2α)r (Ω)

≤ ‖u(·, s)‖a
L∞(Ω) ‖u(·, s)‖1−a

L1(Ω) ≤ c4 ‖u(·, s)‖a
L∞(Ω) ,

and hence,

‖u2(·, t)‖L∞(Ω) ≤ c2c3c4

∫ t

t0

(1 + (t − s)− 1
2− N

2r )e−μ1(t−s)‖u(·, s)‖a
L∞(Ω) ds.

This together with (6.1) implies that for any T ∈ (0, Tmax),

sup
t∈(0,T )

‖u2(·, t)‖L∞(Ω)

≤ c1 + c2c3c4 sup
t∈(0,T )

‖u(·, t)‖a
L∞(Ω)

∫ t

t0

(1 + (t − s)− 1
2− N

2r )e−μ1(t−s) ds

≤ c1 + c5
(

sup
t∈(0,T )

‖u(·, t)‖L∞(Ω)

)a

and thereby we conclude that Tmax = ∞ and ‖u(·, t)‖L∞(Ω) ≤ c6 for all t > 0.
�

6.2. Case 2. α > 0 and k > 2 in the radial setting

We will derive a uniform estimate for Ψ(t) := 1
p‖u(·, t)‖p

Lp(Ω) defined in (1.7).
As in the proof of Theorem 1.3 in Sect. 5, we have

Ψ′(t) =
∫

Ω

up−1Δu dx −
∫

Ω

up−1∇ · (uf(|∇v|2∇v)) dx + λ

∫

Ω

up dx

− μ

∫

Ω

up+k−1 dx =: J1 + J2 + J3 + J4.
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In view of (5.2), (5.12) and (5.13) we see that

J1 = −4(p − 1)
p2

∫

Ω

|∇u
p
2 |2 dx,

J2 ≤ c̄1ε2

∫

Ω

|∇u
p
2 |2 dx + c̄2Ψ(t) + c̄3Ψ

p+1
p (t) + c̄4Ψ

2(p+1)−N
2p−N (t) + c̄5Ψγ(t),

J3 = λpΨ(t)

and the Hölder inequality yields

J4 ≤ −c̄6Ψ
p+k−1

p (t).

Choosing ε2 such that the term containing
∫

Ω
|∇u

p
2 |2 dx vanishes and noting

that k > 2 implies p+1
p ∈ (1, p+k−1

p ) and

2(p + 1) − N

2p − N
, γ ∈

(
1,

p + k − 1
p

)

for sufficiently large p because limp↗∞
2(p+1)−N

2p−N · p
p+1 = 1 and limp↗∞ γ · p

p+1 =
1, we can derive from Young’s inequality that

Ψ′(t) ≤ c̄7Ψ(t) − c̄8Ψ
p+k−1

p (t)

and therefore ODI comparison yields uniform bound for Ψ(t) with sufficiently
large p > N

2 . Consequently, Lemma 4.1 proves that Tmax = ∞ and ‖u(·, t)‖L∞(Ω)

≤ c̄9 for all t > 0. �
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