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Abstract. In this article we prove the global existence of weak solutions
for a diffuse interface model in a bounded domain (both in 2D and 3D)
involving incompressible magnetic fluids with unmatched densities. The
model couples the incompressible Navier–Stokes equations, gradient flow
of the magnetization vector and the Cahn–Hilliard dynamics describing
the partial mixing of two fluids. The density of the mixture depends on an
order parameter and the modelling (specifically the density dependence)
is inspired from Abels et al. (Models Methods Appl Sci 22(3):1150013,
2011).
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1. Introduction

This article is devoted to the mathematical analysis of a system modeling
the flow of two viscous incompressible fluids with magnetic properties and
unmatched densities undergoing partial mixing in a bounded domain Ω ⊂ R

d,
d = 2, 3. with the boundary ∂Ω of class C2. Let T > 0 and define the space
time cylinder as QT = Ω × (0, T ). Further let ΣT denote ∂Ω × (0, T ).

The mixing of the fluids is described by an order parameter φ : QT →
R, which is the difference of the volume fractions of the fluids involved and
undergoes a smooth and rapid transition in an interfacial region between the
two fluids. We denote by v : QT → R

d the mean fluid velocity, by ρ = ρ(φ) :
QT → R the mean mass density, p : QT → R the pressure, M : QT → R
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the magnetization and μ : QT → R the chemical potential. The system we
consider reads as follows

∂t(ρv) + div(ρv ⊗ v) − div (2ν(φ)D(v)) + div(v ⊗ J) + ∇p

= μ∇φ +
ξ(φ)
α2

((|M |2 − 1)M)∇M − div(ξ(φ)∇M)∇M in QT ,

div v = 0 in QT ,

∂tM + (v · ∇)M = div(ξ(φ)∇M) − ξ(φ)
α2

(|M |2 − 1)M in QT ,

∂tφ + (v · ∇)φ = Δμ in QT ,

μ = −ηΔφ + Ψ′(φ) + ξ′(φ)
|∇M |2

2
+

ξ′(φ)
4α2

(|M |2 − 1)2 in QT ,

v = 0, ∂nM = 0, ∂nφ = ∂nμ = 0 on ΣT ,
(v,M, φ)(·, 0) = (v0,M0, φ0) in Ω.

(1.1)

where J is a relative flux related to the diffusion of the components and is
given by the following expression:

J = − ρ̃2 − ρ̃1

2
∇μ, (1.2)

with ρ̃i (i = 1, 2) denoting the specific density of the i−th fluid. In system (1.1),
α and η are positive constants, ν(φ) is the concentration dependent viscosity
coefficient which is assumed to be non degenerate and D(v) = 1

2

(∇v + (∇v)�)

denotes the symmetric part of the velocity gradient. The factor α penalizes
the saturation condition of the length of the magnetization vector |M | from
1 and η measures the thickness of the region where the two fluids mix. The
function ξ(φ) denotes the exchange parameter, which reflects the tendency
of the magnetization to align in one direction. We assume that ξ(·) is non
degenerate, i.e., that it has a positive lower bound and further both ξ and ξ′

are bounded from above, cf. (1.6). The homogeneous free energy density of
the fluid mixture is denoted by Ψ(φ). We will consider a class of singular free
energies and our consideration (cf. (1.8)) will include the homogeneous free
energy of the form

Ψ(s) =
a

2
((1 + s) ln(1 + s) + (1 − s) ln(1 − s)) − b

2
s2, (1.3)

where s ∈ [−1, 1] and a, b > 0, introduced in [17]. The logarithmic terms in
(1.3) relate to the entropy of the system. We note that the function Ψ in (1.3)
is convex iff a � b and Ψ′ shows singular behavior at s = ±1.

The present article is devoted to prove the existence of a global weak
solution (i.e. without any restriction on time and the size of the initial data) of
the model (1.1). In Sect. 1.1 we will first introduce some notations correspond-
ing to the functional spaces, the Leray projector which will be essential to
deal with our incompressible bi-fluid model and then present our result on the
global well posedness of the system (1.1). In Sect. 1.2 we will comment on the
strategies of the proof and related approaches. After a discussion on the physi-
cal background of the system in Sect. 1.3, we devote Sect. 1.4 to bibliographical
notes.
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1.1. Functional framework and main result

1.1.1. Functional settings. The Lebesgue and Sobolev spaces are denoted by
the notations Lp(Ω) and W s,p(Ω) respectively. The standard notations Ck(Ω)
and Ck,γ(Ω) (γ ∈ (0, 1]) are used to denote respectively the spaces of k–
times continuously differentiable functions and Hölder continuous functions.
The functional spaces with elements having compact support are denoted by

using a subscript c. The hooked arrow notations X ↪→ Y (X
C
↪→ Y ) are used to

write the continuous (compact) embedding of a Banach space X to a Banach
space Y . The duality pairing between a Banach space X and its dual X ′

is written as 〈·, ·〉 . The functional space Cw([0, T ];X) denote a subspace of
L∞(0, T ;X) containing functions f for which the mapping t 	→ 〈φ, f(t)〉 is
continuous on [0, T ] for each φ ∈ X ′. We set

L2
div(Ω) = {v ∈ C∞

c (Ω) : div v = 0 in Ω}‖·‖L2
,

W 1,2
0,div(Ω) = {v ∈ C∞

c (Ω) : div v = 0 in Ω}‖·‖W1,2
,

W 2,2
n (Ω) = {u ∈ W 2,2(Ω) : ∂nu = 0 on ∂Ω},

V (Ω) = W 1,2
0,div(Ω) ∩ W 2,2(Ω).

From now onward we will use C to denote a generic positive constant which
might vary from line to line. For simplicity of notations we will always use ·
to denote both the scalar product of vectors and tensor products.
Let us now introduce the Leray projector Pdiv :L2(Ω)→L2

div(Ω) defined as

Pdiv(f) = f − ∇p for f ∈ L2(Ω)where p ∈ W 1,2(Ω) with
∫

Ω

p = 0 (1.4)

solves the weak Neumann problem

(∇p,∇ϕ)Ω = (f,∇ϕ) for all ϕ ∈ C∞(Ω). (1.5)

1.1.2. Existence of weak solutions. In order to state the precise definition of
a weak solution to (1.1) we summarize the assumptions on the functions ξ, ν,
Ψ and also make the dependence of the mean density ρ(φ) on φ precise.

Assumption 1.1. The function ξ ∈ C1(R) satisfies
0 < c1 � ξ � c2 on R, for some c1, c2 > 0,

ξ′ � c3 on R, for some c3 > 0.
(1.6)

The viscosity coefficient ν ∈ C1(R) satisfies

0 < ν1 � ν � ν2 on R, for some ν1, ν2 > 0. (1.7)

The homogeneous free energy density Ψ ∈ C([−1, 1]) ∩ C2((−1, 1)) solves

lim
s→−1

Ψ′(s) = −∞, lim
s→1

Ψ′(s) = ∞,

Ψ′′(s) � −κ, for some κ ∈ R.
(1.8)

The mean mass density ρ and the phase field φ are related via

ρ(φ) =
1
2
(ρ̃1 + ρ̃2) +

1
2
(ρ̃2 − ρ̃1)φ in QT , (1.9)
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where ρ̃i > 0, i = 1, 2 are specific constant mass densities of the unmixed
fluids.

Remark 1.2. The expression for ρ in (1.9) implies that

0 < min{ρ̃1, ρ̃2} � ρ(φ) � max{ρ̃1, ρ̃2} (1.10)

provided that |φ| � 1.

Remark 1.3. Let ξ1, ξ2 > 0 be the exchange constants for the magnetic fluids
undergoing partial mixing. The function

ξ(φ) = (1 − Hη(φ))ξ1 + Hη(φ)ξ2,

where η > 0 correspond to the thickness of the interface and Hη(x) = 1

1+e
− x

η

is a regularized approximation of the Heaviside step function, provides an
example of a non degenerate function ξ satisfying the assumptions (1.6), cf.
[36,42,50], in which such a regularized Heaviside function is used in a similar
context.

Next we define the notion of weak solution to the system (1.1).

Definition 1.4. (Definition of weak solutions) Let T > 0. For a given triplet

(v0,M0, φ0) ∈ L2
div(Ω) × W 1,2(Ω) × W 1,2(Ω) with |φ0| � 1, (1.11)

we call the quadruple (v,M, φ, μ) possessing the regularity

v ∈ Cw([0, T ];L2
div(Ω)) ∩ L2(0, T ;W 1,2

0,div(Ω)),

M ∈ Cw([0, T ];W 1,2(Ω)) ∩ C([0, T ];L2(Ω)) ∩ W 1,2(0, T ;L
3
2 (Ω)),

φ ∈ Cw([0, T ];W 1,2(Ω)) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 2,1(Ω))

with Ψ′(φ) ∈ L1(QT ),

μ ∈ L2(0, T ;W 1,2(Ω)),

(1.12)

a weak solution to (1.1) if it satisfies
∫

Ω

ρ(t)v(t) · ψ1(t) −
∫

Ω

ρ0v0 · ψ1(0) =
∫ t

0

∫

Ω

(

ρv · ∂tψ1 + (ρv ⊗ v

+ v ⊗ J) · ∇ψ1 − 2ν(φ)Dv · Dψ1 − ∇μφ · ψ1 +
(ξ(φ)

α2

(

(|M |2 − 1)M
)∇M

− div
(

ξ(φ)∇M
)∇M
)

· ψ1

)

,

∫

Ω

M(t) · ψ2(t) −
∫

Ω

M0 · ψ2(0) =
∫ t

0

∫

Ω

(

M · ∂tψ2 − (v · ∇)M · ψ2

− ξ(φ)∇M · ∇ψ2 − 1
α2

(

ξ(φ)(|M |2 − 1)M
) · ψ2

)

,

∫

Ω

φ(t)ψ3(t) −
∫

Ω

φ0ψ3(0) =
∫ t

0

∫

Ω

(φ∂tψ3 − (v · ∇)φψ3 − ∇μ · ∇ψ3) ,

μ − ξ′(φ)
|∇M |2

2
− ξ′(φ)

4α2
(|M |2 − 1)2 = −ηΔφ + Ψ′(φ) a.e. in QT

(1.13)



NoDEA Existence of weak solutions to a diffuse interface model Page 5 of 53 52

for all t ∈ (0, T ), for all ψ1 ∈ C1
c ([0, T );V (Ω)), ψ2 ∈ C1

c ([0, T );W 1,2(Ω)) and
all ψ3 ∈ C1

c

(

[0, T );W 1,2(Ω)
)

. The initial data are attained in the form

lim
t→0+

(‖v(t) − v0‖L2(Ω) + ‖M(t) − M0‖W 1,2(Ω) + ‖φ(t) − φ0‖W 1,2(Ω)

)

= 0.

(1.14)

Now we present the central result of our article that concerns the global
existence of a weak solutions of the model (1.1).

Theorem 1.5. Let T > 0, Ω ⊂ R
d be a bounded domain of class C2 and let

the initial datum (v0,M0, φ0) satisfy (1.11). Then under Assumption 1.1 there
exists a quadruple (v,M, φ, μ) which solves (1.1) in the sense of Definition 1.4.
Moreover there exists a p > 2 such that the triplet (M,φ,Ψ′(φ)) enjoys the
following improved regularity

M ∈ L2(0, T ;W 1,p(Ω)),

φ ∈ L2(0, T ;W 2, 2p
p+2 (Ω)),

Ψ′(φ) ∈ L2(0, T ;L
2p

p+2 (Ω)).

(1.15)

Further the following items hold:
(i) The obtained weak solution (v,M, φ, μ) of (1.1) satisfies the following

energy inequality:

Etot(v(t),M(t), φ(t)) +
∫ t

0

(

‖
√

2ν(φ)Dv‖2
L2(Ω) + ‖∇μ‖2

L2(Ω)

+
∥

∥

∥

∥

div(ξ(φ)∇M) − ξ(φ)
α2

M(|M |2 − 1)
∥

∥

∥

∥

2

L2(Ω)

)

� Etot(v0,M0, φ0)

(1.16)

for all t ∈ (0, T ), where

Etot(v,M, φ) =
1
2

∫

Ω

ρ(φ)|v|2 +
1
2

∫

Ω

ξ(φ)|∇M |2 +
1

4α2

∫

Ω

ξ(φ)(|M |2 − 1)2

+
η

2

∫

Ω

|∇φ|2 +
∫

Ω

Ψ(φ)
(1.17)

with ρ(φ) being defined as in (1.9).
(ii) The magnetization M attains the homogeneous Neumann boundary con-

dition in a weak sense, i.e. for a.e. t ∈ (0, T ) the following holds

γn(ξ(φ)∇M) = 0 in (W
1
2 ,2(∂Ω))′, (1.18)

where γn is the normal trace operator defined on {g ∈ L2(Ω) : div g ∈
L2(Ω)} such that the following Stokes formula holds for a.e. t ∈ (0, T ) :
∫

Ω

div(ξ(φ)∇M) · ψ2 = −
∫

Ω

ξ(φ)∇M · ∇ψ2

+ 〈γn(ξ(φ)∇M), γ0ψ2〉
(W

1
2 ,2(∂Ω))′,W

1
2 ,2(∂Ω)

(1.19)

for all ψ2 ∈ W 1,2(Ω), where γ0 : W 1,2(Ω) → W
1
2 ,2(∂Ω) is the Dirichlet

trace operator.
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(iii) Moreover, if M0 ∈ W 1,2(Ω) ∩ Lr(Ω), r > 6, then M ∈ L∞(0, T ;Lr(Ω))
and

‖M(t)‖Lr(Ω) � ‖M0‖Lr(Ω)e
δt for all t ∈ [0, T ] (1.20)

for some positive constant δ > 0. Additionally, if M0 ∈ L∞(Ω), then

‖M(t)‖L∞(Ω) � ‖M0‖L∞(Ω)e
δt for all t ∈ [0, T ]. (1.21)

We stress on the fact that the improved regularity (1.15), more precisely
the uniform bounds on the suitable approximates of (M,φ,Ψ′(φ)) in the spaces
mentioned in (1.15) play a key role in the passage of limit and recovering the
weak formulations (1.13) (more precisely (1.13)4).

To the best of our knowledge, [36,42,50] are the only articles in the liter-
ature studying diffuse interface models for magnetic fluids. The article [42] de-
velops a simplified model describing the behavior of two-phase ferrofluid flows
using phase field-techniques and present an energy-stable numerical scheme
for the same. The authors of [42] further analyse the stability and the conver-
gence of the numerical scheme developed and as a by-product they prove the
existence of weak solutions of their model. In the article [50] the authors pro-
pose a diffuse interface model and finite element approximation for two-phase
magnetohydrodynamic (MHD) flows with different viscosities and electric con-
ductivities. Their model involves the incompressible Navier-Stokes equations,
the Maxwell equations of electromagnetism and the Cahn–Hilliard equations.
Unlike [42] and [50], in one of our previous articles [36], we studied a diffuse
interface magnetic fluid model where the magnetization vector M is modeled
by a gradient flow dynamics.

As far as we know, our current article is the first mathematical study of
a diffuse interface model for a magnetic fluid with unmatched densities. We
consider the model (1.1) where the mean mass density of the mixture depends
on the order parameter φ via the formula (1.9). We show that the mass density
ρ(φ) is always strictly positive and bounded. In order to do so we prove that
the order parameter φ solves the physically reasonable bound φ(x, t) ∈ [−1, 1]
for a.e. (x, t) ∈ QT .

To this end it is important to use a singular potential Ψ(·), cf. (1.8), as
a homogeneous free energy density of the mixture. Often in the literature this
singular free energy is approximated by a suitable smooth free energy density.
For instance, in [36], we considered a Ginzburg–Landau double-well potential
1
4η (|φ|2−1)2 instead of the singular potential Ψ(·). But using such a polynomial
potential one can not ensure that the order parameter φ stays in the physical
reasonable interval [−1, 1] due to the lack of a comparison principle for fourth
order diffusion equation and hence in particular can not deal with the model
(1.1) comprising of fluids with unmatched densities.

Unlike the model considered in [50], in the present case (and also in the
one considered in [36]) the magnetization M enters into the Cahn–Hilliard
dynamics. Due to the presence of |∇M |2 in the Cahn–Hilliard part, cf. (1.1)5
we can not obtain L2(0, T ;W 2,2(Ω)) regularity of the order parameter φ and
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we only recover φ ∈ L2(0, T ;W 2,q(Ω)) for some q > 1 by a bootstrap argument
using L2(0, T ;W 1,p(Ω)) (p > 2) elliptic regularity for M.

1.2. Ideas of proof and related discussion

The proof of Theorem 1.5 is given in Sect. 3. It relies on an unconditionally
stable time discretization scheme designed in Sect. 2.2. Before going into the
analysis of a time discrete problem we first write the singular potential Ψ as
a perturbation of a convex function. This helps in reformulating the Cahn–
Hilliard equation (1.1)5 as the subdifferential of a convex potential and to
use the monotone operator theory and regularity results for Cahn–Hilliard
equation developed in [1,11]. The reformulation is done in Sect. 2.1. Roughly
speaking the content of Sect. 2.2 is to consider a sequence 0 = t0 < t1 < . . . <
tk < tk+1 < . . ., k ∈ N0 of equidistant nodes and next to construct a solution
(vk+1,Mk+1, φk+1, μk+1) to a stationary problem (cf. (2.12)) at the point tk+1

using (vk,Mk, φk) which corresponds to the solution at the time tk.
There is no common rule to write a time discretization of a nonlinear

PDE model. It is generally done in a way so that the discrete system admits an
energy inequality which is in close proximity with the formal energy balance of
the original unsteady model. Here we follow a strategy devised in our previous

article [36] to suitably discretize the term
ξ(φ)
α2

(|M |2−1)M appearing in (1.1)3.

In order to obtain an energy type inequality for (2.12) one in particular tests
Mk+1 − Mk

h
(which is the discretization of the time derivative ∂tM , with h =

tk+1−tk in the discrete magnetization equation (2.12)3) with an approximation
of (|M |2 − 1)M. Since the map M 	→ (|M |2 − 1)M is not monotone one can
check that

(Mk+1 − Mk)
(|Mk+1|2Mk+1 − Mk+1

)

�
1
4
(|Mk+1|2 − 1)2 − 1

4
(|Mk|2 − 1)2

and hence the discretization
ξ(φ)
α2

(|M |2−1)M ≈ ξ(φk)
α2

(|Mk+1|2Mk+1−Mk+1)
does not lead to an unconditionally stable scheme. Following the convex split-
ting scheme used in our previous article [36] for vector valued functions, which
is itself inspired from the convex splitting used in [50] for scalar functions, we

use the approximation
ξ(φ)
α2

(|M |2 −1)M ≈ ξ(φk)
α2

(|Mk+1|2Mk+1 −Mk), which
along with Lemma 2.5 provides the desired estimate

(Mk+1 − Mk)
(|Mk+1|2Mk+1 − Mk

)

� 1
4
(|Mk+1|2 − 1)2 − 1

4
(|Mk|2 − 1)2.

We then deal with the time discrete system (2.12) by considering it as a per-
turbation of a certain nonlinear operator and solving the operator equation by
employing a fixed point argument.

After the proof of an existence result for the discrete problem (2.12)
in Sect. 2.2, we define piecewise constant interpolants in Sect. 3 which ap-
proximate (v,M, φ, μ), the solution to (1.13). The weak compactness of the
interpolants are obtained from an energy type inequality and the strong com-
pactness properties result by using the classical Aubin-Lions lemma and some
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suitable interpolation estimates. At this point a crucial observation is the ob-
tainment of the strong convergence of {∇MN}N , where MN approximates M .
This convergence plays a key role to pass to the limit in the terms approximat-

ing div(ξ(φ)∇M)∇M (cf. (1.1)1) and ξ′(φ)
|∇M |2

2
(cf. (1.1)5), as was presented

in our previous article [36]. These arguments can be directly adapted to the
current setting. We comment on this at the end of Sect. 3.1.1.

To pass to the limit in the approximate of the nonlinear term ˜Ψ′
0(φ),

where ˜Ψ0(·) corresponds to the convex part of Ψ(·) and is defined on entire
R, cf. (2.2), one first needs to show an apriori estimate of the same in L1(QT )
and next identify the weak limit for a non relabeled subsequence with ˜Ψ′

0(φ).
For the first part the idea roughly is to write the Cahn–Hilliard equation as

−ηΔφN + ˜Ψ′
0(φ

N ) =lower order terms +
|∇MN |2

2
in Ω

∂nφN =0 on ∂Ω
(1.22)

and to use the elliptic structure to obtain a suitable uniform bound for φN and
˜Ψ′

0(φ
N ). In that direction one needs to estimate the right hand side of (1.22)1

in Lq(Ω) with q > 1. The boundedness of Etot (defined in (1.17)) alone does
not provide this information and hence we exploit the dissipative part of the
energy and the equation solved by MN to obtain that

div (ξ(φN )∇MN ) ∈ L2(0, T ;L
3
2 (Ω)). (1.23)

Next one would expect to recover an improved bound on {MN} from (1.23)
but in view of the uniform bound on {φN} in L∞(0, T ;W 1,2(Ω))) one can only
use the fact that {ξ(φN )} is bounded in L∞(QT ) and nondegenerate. With
this setup we can use [32], which deals with the regularity of weak solutions
to elliptic problems with nondegenerate, bounded and measurable coefficients,
to obtain a uniform estimate of MN in L2(0, T ;W 1,p(Ω)) for some p > 2, in
fact p is slightly greater than two and tends to two as the operator in (1.23)
degenerates. At this moment one can recover a uniform estimate of |∇MN |2
in L2(0, T ;L

2p
p+2 (Ω)) since ∇MN ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Lp(Ω)). This

in turn allows us to use (1.22) and to obtain a uniform bound of ˜Ψ′
0(φ

N ) in
L2(0, T ;L

2p
p+2 (Ω)). The details of obtaining these uniform bounds of MN and

˜Ψ′
0(φ

N ) can be found in Sect. 3.1.2. To identify the limit of a subsequence
of {˜Ψ′

0(φ
N )} with ˜Ψ′

0(φ), we adapt the ideas related to the estimate of the
measure of the set {|φ| = 1} developed in [20,25].

After the recovery of the weak formulations (1.13) solved by (v,M, φ, μ)
we prove that the obtained weak solution attains the initial data in a strong
sense (cf. (1.14)).

Items (ii) and (iii) of Theorem 1.5, which correspond to the obtainment
of boundary condition for M in a weak sense and some further regularity
results of M in Lebesgue spaces, are proved in Sect. 3.4.
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1.3. Physical background and comments on the derivation of the model

In this section we comment on the physical background of the model (1.1).
In [36] we already have derived a model for diffuse interface magnetic fluids
but with matched densities and a smooth double well potential for the mix-
ing energy. In the present article the density consideration of the mixture is
inspired from [10]. To deal with the density dependence it is important to con-
sider a singular logarithmic potential for the mixing energy which is also more
physical than a smooth double well potential considered in [36].

We assume that the mean velocity satisfies the homogeneous Dirichlet
boundary condition on ∂Ω. For the derivation of a modified momentum balance
equation solved by a solenoidal mean velocity field v and mean density ρ(φ) (cf.
(1.9)) we refer to [10, Section 2]. The obtained momentum balance equation
with a general stress tensor S is of the form:

ρ∂tv + ((ρv + J) · ∇) v = div S in QT , (1.24)

along with the incompressibility div v = 0 where J is the relative diffusion flux
defined in (1.2). We assume that the stress tensor S is the sum of the standard
viscous Newtonian stress tensor 2ν(φ)D(v)−πI (where I is the identity matrix
and π being the mean pressure) and an extra contribution from the mixing
energy and a simplified micromagnetic energy.

In order to derive the dependence of S on φ, ∇φ, M and ∇M we start
with the expression of Emix (the mixing energy) and Emag (the micromagnetic
energy). The mixing energy reads as follows

Emix =
η

2

∫

Ω

|∇φ|2 +
∫

Ω

Ψ(φ), (1.25)

where φ is the order parameter, η > 0 denotes the thickness of the interface
where the two fluids mix and Ψ(·) is the singular potential satisfying (1.8) (or
one can in particular consider the expression (1.3)).

In the present article the magnetic energy contribution Emag is inspired
from micromagnetics, for details we refer to [21] and the references therein. We
only consider the exchange energy contribution, which reflects the tendency of
the magnetization to orient in one direction. We further consider the depen-
dence of the micromagnetic energy on the order parameter φ which in turn
allows us to study a system involving fluids with different magnetic behavior.
The simplified micromagnetic energy reads as follows

Emag =
∫

Ω

ξ(φ)
|∇M |2

2
+

1
4α2

∫

Ω

ξ(φ)(|M |2 − 1)2,

where α > 0 is a parameter. The first term in the expression of Emag is the
exchange energy contribution and the second one is a penalization term pun-
ishing the derivation of |M | from one (which is a more physical constraint).
The consideration of such a penalization term is standard in the literature,
cf. [37, Section 1.2], [19] or [44]. The magnetic energy in our case is coupled
with the order parameter via a regular, bounded and non degenerate function
ξ (we refer to (1.6) for the assumptions on ξ). In a little different situation, for
the modeling and numerical analysis of liquid crystals, one can find specific
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expressions of degenerate functions ξ(·) in the articles [46] and [51]. For us it
seems important to choose a non degenerate function ξ which in turn plays a
crucial role to obtain the strong compactness of ∇M.

Now exactly as in [51, Section 2.3] one can use the principle of virtual
work to compute that the contribution of Emix and Emag to the stress tensor
S is given by

−∂Emag

∂∇M
� ∇M − ∂Emix

∂∇φ
⊗ ∇φ = −ξ(φ)(∇M � ∇M) − η(∇φ ⊗ ∇φ),

where (∇M � ∇M)ij =
∑3

k=1(∇iMk)(∇jMk) and (∇φ ⊗ ∇φ)ij = ∇iφ∇jφ.
Hence altogether S has the following expression

S = 2ν(φ)D(v) − ξ(φ)(∇M � ∇M) − η(∇φ ⊗ ∇φ). (1.26)

The momentum balance (1.24) along with (1.26) reads as follows:

ρ∂tv + ((ρv + J) · ∇) v − div(2ν(φ)D(v)) + ∇π

= − div
(

ξ(φ)(∇M � ∇M) + η(∇φ ⊗ ∇φ)
)

in QT ,
(1.27)

with div v = 0 and v = 0 on ΣT .
Next we assume physically reasonable boundary conditions ∂nM = ∂nφ =
∂nμ = 0 on ΣT . The derivation of the magnetization equation (1.1)3 is based
on gradient flow dynamics. The obtainment of the Cahn–Hilliard equations
(1.1)4,5 relies on the generalized Fick’s law, i.e., the mass flux be proportional
to the gradient of the chemical potential (we refer to [17,45] for details). The
detailed derivation of (1.1)3,4,5 can be done by following the arguments pre-
sented in [36, p. 8], with modifications since here we use a singular potential
in the mixing energy.

In view of (1.1)4 one at once derives the following mass conservation

∂tρ + div (ρv + J) = 0 in QT . (1.28)

In the spirit of [10], we explain here the dynamics behind (1.28). The equation
(1.28) implies that the flux of the density consists of two parts: ρv, describing
the transport by the mean velocity, and a relative flux J (cf. (1.2)) related to
diffusion of the components. Hence for the unmatched density case, diffusion
of the components leads to the diffusion of the mass density.

The modification of the momentum balance (cf. (1.24) and (1.27)) by
adding the relative diffusion flux J was proposed in [10] to obtain a local
dissipation inequality and global energy estimate for their model. It serves the
same purpose for our case and we recover the following formal energy balance
for the system (1.27)–(1.1)2,3,4,5,6,7 :

d

dt
Etot +

(

‖
√

2ν(φ)Dv‖2
L2(Ω) + ‖∇μ‖2

L2(Ω)

+
∥

∥

∥

∥

div(ξ(φ)∇M) − ξ(φ)
α2

M(|M |2 − 1)
∥

∥

∥

∥

2

L2(Ω)

)

= 0,

where Etot is given by (1.17).
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Finally in view of the mass balance (1.28), the incompressibility of v and
the identities

η div(∇φ ⊗ ∇φ) = ηΔφ∇φ + η∇
( |∇φ|2

2

)

,

div(ξ(φ)(∇M � ∇M)) = div(ξ(φ)∇M)∇M + ξ(φ)∇
( |∇M |2

2

)

,

(1.29)

one can rewrite (1.27) (we refer to [36, p. 8] for the use of the identities (1.29))
in the form (1.1)1, of course with a modified pressure p. We emphasize that
the term μ∇φ has better compactness properties compared to div(∇φ ⊗ ∇φ)
and this will be exploited in the following analysis.

1.4. Bibliographical remarks

Diffuse interface models without magnetization and comprising of fluids with
matched densities date back to the works [12,33,34,47]. The article [33] pro-
vides a unified framework for coupled Navier–Stokes and Cahn–Hilliard equa-
tions using the balance law for microforces with a mechanical version of the
second law of thermodynamics. The mathematical analysis of such a model
first appeared in [47], where the author deals with strong solutions and sta-
bility of stationary solutions (as t → ∞) in the setting Ω = R

2 assuming a
smooth double well potential for the mixing energy. For a detailed review of
the subject we also refer to [12].

A detailed study is then performed in the article [15] where the author
proves the existence of global weak solution of the model both in dimension
two and three in a channel with a smooth double well potential for the mix-
ing energy. The article [15] further proves that the model under consideration
(with non degenerate mobility) admits a strong solution which is global (in
time) in dimension two and local (in time) in dimension three. The case of
degeneracy in the Cahn–Hilliard equation is also considered in [15]. A more
complete mathematical description (existence, uniqueness, regularity of solu-
tions and asymptotic behavior) of a similar model with the physically relevant
logarithmic potential is discussed in [2]. The article [2] proves the existence
of strong solutions for an initial velocity v0 in interpolation spaces between
W 1,2

0 (Ω) and W 2,2(Ω) ∩ W 1,2
0 (Ω) and satisfying div v0 = 0 on Ω. Further the

author shows that any weak solution of the system becomes regular for large
times and the order parameter converges to a solution of the stationary Cahn–
Hilliard system/a critical point of the mixing energy and the mean velocity
tends to zero. We would also like to quote the article [31] where the authors
study the uniqueness and regularity of weak and strong solutions of the model
with the logarithmic potential. The article proves the existence and uniqueness
of a global strong solution in dimension two under the assumption that the
initial velocity v0 ∈ W 1,2

0,div(Ω) and the local in time existence and uniqueness
of strong solution in dimension three. Unlike [2,31] we study the case where the
fluids involved have different density and they show magnetic behavior. The
coupling of the magnetization with the Cahn–Hilliard dynamics do not allow
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us to obtain sufficient regularity of the unknowns to prove the uniqueness of
weak solutions in dimension two.

In the literature there has been several approaches modeling diffuse in-
terface systems (without magnetization) where the density is not constant.
The article [39] derived a quasi-incompressible diffuse interface model where
the velocity field is not divergence free. Analytical results for the model con-
sidered in [39] first appeared in [3,4]. We also refer to [16,22] for other diffuse
interface models involving fluids with unmatched densities. For a slightly non
homogeneous case, i.e., with the assumption that the densities of the fluids
undergoing partial mixing tend to be equal, [16] proved the global existence of
a weak solution and of a unique local strong solution (which is global in two
dimension) for their model. The non homogeneous magnetic fluid dynamics
we consider in the present article is inspired from the model introduced in
[10]. The global existence of weak solutions for the model introduced in [10]
can be found in [6] (the case of non degenerate mobility) and [7] (the case of
degenerate mobility). In the recent article [29] the author proves the local in
time existence of a strong solution in a bounded domain in dimension two of
the model introduced in [10]. The author also shows the global existence in the
space periodic set-up. Other variants of the Abels, Garcke and Grün model [10]
can be found in [23,24,26]. The article [26] considers a general diffuse interface
model for incompressible two-phase flows with unmatched densities describing
the evolution of free interfaces in contact with the solid boundary whereas
[23,24] deal with a non-local version of the model derived in [10]. We would
further like to quote some very recent articles viz. [9,27,30] on the analysis of
the celebrated Abels, Garcke and Grün model. The article [30] deals with the
analysis of strong solutions to the ’AGG’ model in three dimensions whereas
global regularity and asymptotic stabilization is investigated in [9]. The au-
thors of [27] analyze the global well-posedness and convergence to equilibrium
for the ’AGG’ model with nonlocal free energy.

For other analytical results on varying density diffuse interface models
we also refer the readers to [8,18] (compressible fluids), [5] (non Newtonian
fluids), [35] (coupling between Allen–Cahn and Navier–Stokes) and [38] (non-
isothermal diffuse interface model).

Concerning the analysis of single phase magnetic fluids the readers can
consult [13] (magnetization is modeled by LLG dynamics), [44] (gradient flow
of magnetization) and for various models involving diffuse interface magnetic
fluids with matched densities and smooth double well potential we refer to
[36,42,50].

A crucial idea in our article is to recover the hidden L2(0, T ;W 1,p) (p > 2)
regularity of MN , uniform with respect to N (where MN is the approximate
of M defined in Sect. 3) by using the fact that div(ξ(φN )∇MN ) is uniformly
bounded in L2(0, T ;L

3
2 (Ω)) and ∂nMN |∂Ω= 0. In view of the regularity of φN

we can only use that ξ(φN ) is bounded, measurable and non degenerate uni-
formly in N . To the best of our knowledge for such an elliptic boundary value
problem there are two classes of result. One deals with the Hölder regularity
(C0,γ(Ω)) of solutions and the second one proving W 1,p(Ω) (p > 2) regularity.
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None of these results imply one another. For the first type of result we refer
to [28,41] whereas for the second we quote [32,40]. In the present article we
have used in particular the result proved in [32].

2. Existence of weak solutions to a time discrete model

In this section we prove the existence of weak solution to a time discrete prob-
lem corresponding to system (1.1). In that direction we need some regularity
results for the Cahn–Hilliard equations proved in [1]. In order to access the
regularity results from [1] one needs to reformulate the equation (1.1)5 by using
the subdifferential of a convex potential. This will be done in the next section
and the arguments are inspired from [6].

2.1. Reformulation of the problem using subdifferential of a convex potential

First we define a potential ˜Ψ as follows:

˜Ψ : R −→ R, ˜Ψ(s) =

{

Ψ(s) if s ∈ [−1, 1],
+∞ else

(2.1)

where Ψ is introduced in (1.8). Since Ψ′′(s) � −κ, for some κ ∈ R, ˜Ψ is not
necessarily convex. In order to use the theory of subdifferentials we introduce
a convex function
˜Ψ0(r) = ˜Ψ(r) +

κ

2
r2 for r ∈ [−1, 1], ˜Ψ0 ∈ C([−1, 1]) ∩ C2((−1, 1)). (2.2)

With this new function ˜Ψ0, the equation (1.1)5 can be equivalently written as

μ + κφ = ˜Ψ′
0(φ) − ηΔφ + ξ′(φ)

|∇M |2
2

+
ξ′(φ)
4α2

(|M |2 − 1)2 in QT . (2.3)

Inspired by [6], we define the energy ˜E : L2(Ω) −→ R∪{+∞} with the domain

dom ˜E = {φ ∈ W 1,2(Ω) | − 1 � φ � 1 a.e.} (2.4)

as

˜E(φ) =

⎧

⎨

⎩

η

2

∫

Ω

|∇φ|2 +
∫

Ω

˜Ψ0(φ) for φ ∈ dom ˜E,

+∞ else.
(2.5)

Proposition 2.1. [1, Theorem 3.12.8] Let ˜E : L2(Ω) −→ R∪{+∞} be as defined
in (2.4)–(2.5). Then ∂ ˜E(φ) = −ηΔφ + ˜Ψ′

0(φ) and

D(∂ ˜E) = {φ ∈ W 2,2
n (Ω) | ˜Ψ′

0(φ) ∈ L2(Ω), ˜Ψ′′
0(φ)|∇φ|2 ∈ L1(Ω)} (2.6)

is the domain of definition of the subgradient ∂ ˜E. Moreover, there exists a
positive constant C such that

‖φ‖2
W 2,2(Ω) + ‖˜Ψ′

0(φ)‖2
L2(Ω) +

∫

Ω

˜Ψ′′
0(φ(·))|∇φ(·)|2

� C
(

‖∂ ˜E(φ)‖2
L2(Ω) + ‖φ‖2

L2(Ω) + 1
)

.

(2.7)
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Further for every 1 < p � 2, there exists a constant Cp > 0 such that

‖φ‖W 2,p(Ω) + ‖˜Ψ′
0(φ)‖Lp(Ω) � Cp

(

‖∂ ˜E(φ)‖Lp(Ω) + ‖φ‖L2(Ω) + 1
)

. (2.8)

Remark 2.2. It follows from (1.8) and the definitions (2.1) and (2.2) that if
φ ∈ D(∂ ˜E), then |φ| � 1 a.e.

With the help of the subgradient ∂ ˜E the equation (2.3) can be written
as

μ + κφ = ∂ ˜E(φ) + ξ′(φ)
|∇M |2

2
+

ξ′(φ)
4α2

(|M |2 − 1)2 in QT . (2.9)

It is interesting to note that for φ ∈ dom ˜E the free energy corresponding to
the system (1.1) is related to ˜E(φ) via the following relation

Efree =
1
2

∫

Ω

ξ(φ)|∇M |2 +
1

4α2

∫

Ω

ξ(φ)(|M |2 − 1)2 + ˜E(φ) − κ

2
‖φ‖2

L2(Ω).

2.2. Analysis of a time discrete model

To begin with we define a suitable time discretization of the model (1.1) keep-
ing in mind the reformulation (2.3) (or (2.9)) of (1.1)5.

Let h > 0 be a constant,

vk ∈ L2
div(Ω), Mk ∈ W 2,2

n (Ω), φk ∈ D(∂ ˜E) (2.10)

with D(∂ ˜E) as in (2.6) and

ρk = 1
2 (ρ̃1 + ρ̃2) + 1

2 (ρ̃2 − ρ̃1)φk (2.11)

be the information at time step tk, k ∈ N0. The quadruple (vk+1,Mk+1, φk+1,
μk+1), solution at the time step tk+1, is determined as a weak solution to the
following system

ρk+1vk+1 − ρkvk
h

+ div(ρkvk+1 ⊗ vk+1) + ∇pk+1 − μk+1∇φk

+ div(vk+1 ⊗ Jk+1) − div(2ν(φk)Dvk+1)

−ξ(φk)

α2
(|Mk+1|2Mk+1−Mk)∇Mk+1=−div(ξ(φk)∇Mk+1)∇Mk+1 in Ω

div vk+1=0 in Ω

Mk+1 − Mk

h
+ (vk+1 · ∇)Mk+1 = div(ξ(φk)∇Mk+1)

−ξ(φk)

α2
(|Mk+1|2Mk+1−Mk) in Ω

φk+1 − φk

h
+ (vk+1 · ∇)φk =Δμk+1 in Ω

μk+1 + κ
φk+1 + φk

2
+ ηΔφk+1 − ˜Ψ′

0(φk+1)

− 1

4α2
H0(φk+1, φk)(|Mk+1|2 − 1)2 =H0(φk+1, φk)

|∇Mk+1|2
2

in Ω

vk+1 = 0, ∂nMk+1 = 0, ∂nφk+1 =∂nμk+1 = 0 on ∂Ω,

(2.12)
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where

J = Jk+1 = − ρ̃2 − ρ̃1

2
∇μk+1, ρk+1 =

1
2
(ρ̃1 + ρ̃2) +

1
2
(ρ̃2 − ρ̃1)φk+1

(2.13)

and H0 : R × R → R is defined as

H0(a, b) =

{

ξ(a)−ξ(b)
a−b if a �= b,

ξ′(b) if a = b.
(2.14)

Now let us introduce the notion of weak solution to the time discrete sys-

tem (2.12). In the following definition of weak solution, the term
∫

Ω

(div(vk+1⊗
Jk+1)) ˜ψ1 (originated from the fifth term of (2.12)1) is replaced using the iden-
tity

∫

Ω

(div(vk+1 ⊗ Jk+1)) ˜ψ1

=
∫

Ω

(

divJk+1 − ρk+1−ρk

h
−vk+1 · ∇ρk

)

vk+1

2
· ˜ψ1

+
∫

Ω

(Jk+1 · ∇)vk+1 · ˜ψ1

(2.15)

(we refer to (2.17)) and the derivation can be found in [6, Remark 4.1 (i)].
This reformulation helps mainly to obtain later the discrete energy estimate
(2.29).

Definition 2.3. (Weak solution to the problem (2.12)) Let (2.10)–(2.11) hold.
The quadruple

(vk+1,Mk+1, φk+1, μk+1) ∈ W 1,2
0,div(Ω) × W 2,2

n (Ω) × D(∂ ˜E) × W 2,2
n (Ω),

(2.16)

is a weak solution to system (2.12) if the following identities are true
∫

Ω

ρk+1vk+1 − ρkvk

h
· ˜ψ1 +

∫

Ω
div(ρkvk+1 ⊗ vk+1) · ˜ψ1

+

∫

Ω

(

div Jk+1 − ρk+1 − ρk

h
− vk+1 · ∇ρk

)

vk+1

2
· ˜ψ1

+

∫

Ω
(Jk+1 · ∇)vk+1 · ˜ψ1 −

∫

Ω

(

ξ(φk)

α2
(|Mk+1|2Mk+1 − Mk)∇Mk+1

)

· ˜ψ1

+

∫

Ω
(div(ξ(φk)∇Mk+1)∇Mk+1) · ˜ψ1

= −2

∫

Ω
ν(φk)Dvk+1 · D ˜ψ1 −

∫

Ω
∇μk+1φk · ˜ψ1

(2.17)
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for all ˜ψ1 ∈ W 1,2
0,div(Ω),

∫

Ω

Mk+1 − Mk

h
· ˜ψ2 +
∫

Ω

(vk+1 · ∇)Mk+1 · ˜ψ2

=
∫

Ω

(

div (ξ(φk)∇Mk+1) − ξ(φk)
α2

(|Mk+1|2Mk+1 − Mk)
)

· ˜ψ2

(2.18)

for all ˜ψ2 ∈ L2(Ω),

φk+1 − φk

h
+ (vk+1 · ∇)φk = Δμk+1 (2.19)

a.e. in Ω and

μk+1 + κ
φk+1 + φk

2
−H0(φk+1, φk)

|∇Mk+1|2
2

− H0(φk+1, φk)
4α2

(|Mk+1|2−1)2

= −ηΔφk+1 + ˜Ψ′
0(φk+1)

(2.20)

a.e. in Ω, where Jk+1 and ρk+1 are as defined in (2.13) and H0 is defines in
(2.14).

In the next lemma we first prove an estimate of the L1 norm of ˜Ψ
′
0(φk+1)

assuming the existence of a triplet (Mk+1, φk+1, μk+1) solving (2.20). Then
using the obtained estimate of ‖˜Ψ′

0(φk+1)‖L1(Ω) we further prove an estimate

of
∣

∣

∣

∣

∫

Ω

μk+1

∣

∣

∣

∣

. This estimate will be specifically used in Sect. 3 to show (3.13).

We will also use a similar estimate while showing (2.66).

Lemma 2.4. Let φ = φk+1 ∈ D(∂ ˜E) and μ = μk+1 ∈ W 1,2(Ω) solve (2.20)
with φk ∈ W 2,2

n (Ω), |φk| � 1 in Ω such that

1
|Ω|
∫

Ω

φk =
1

|Ω|
∫

Ω

φ ∈ (−1, 1),

and M = Mk+1 ∈ W 2,2
n (Ω). Then there exists a constant C = C

(∫

Ω

φk

)

> 0,

such that

‖˜Ψ′
0(φ)‖L1(Ω) +

∣

∣

∣

∣

∫

Ω

μ

∣

∣

∣

∣

�C

(

‖∇μ‖L2(Ω) + ‖∇φ‖2
L2(Ω)

+ ‖M‖2
W 1,2(Ω) + ‖M‖4

W 1,2(Ω) + 1
)

.

(2.21)

Proof. Without the magnetization vector M a similar result was shown in [6,
Lemma 4.2]. We will suitably adapt the line of arguments used in proving [6,
Lemma 4.2] in our case.
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We test (2.20) by (φ − φ), where φ =
1

|Ω|
∫

Ω

φ and obtain

∫

Ω

μ(φ − φ) + κ

∫

Ω

φ + φk

2
(φ − φ) −

∫

Ω

H0(φ, φk)
|∇M |2

2
(φ − φ)

−
∫

Ω

H0(φ, φk)
4α2

(|M |2 − 1)2(φ − φ) − η

∫

Ω

∇φ · ∇(φ − φ)

=
∫

Ω

˜Ψ′
0(φ)(φ − φ).

(2.22)

One observes that
∫

Ω

μ(φ − φ) =
∫

Ω

(μ − μ)φ, where μ =
1

|Ω|
∫

Ω

μ. Since

φ ∈ (−1 + ε, 1 − ε) for some ε > 0 (note that ε is independent of φ) and
lim

φ→±1

˜Ψ′
0(φ) = ±∞, one has the inequality

˜Ψ
′
0(φ)(φ − φ) � C1|˜Ψ′

0(φ)| − C2, (2.23)

for constants C1 > 0 and C2. The inequality (2.23) can be proved by dividing
[−1, 1] into three intervals [−1,−1 + ε

2 ], [−1 + ε
2 , 1 − ε

2 ], [1 − ε
2 , 1], arguing

by the blow up behavior of ˜Ψ′
0 at the endpoints {−1, 1} and the fact that

˜Ψ′
0 ∈ C([−1 + ε

2 , 1 − ε
2 ]). Hence integrating (2.23) in Ω, we have the estimate
∫

Ω

˜Ψ′
0(φ)(φ − φ) � C1

∫

Ω

|Ψ′
0(φ)| − C3 (2.24)

for constants C1 > 0 and C3. Further using (1.6)2 and the definition (2.14) of
H0(·, ·) one has |H0(φk+1, φk)| � c3. Hence in view of (2.22), (2.24) and the
fact that |φ|, |φk| � 1, we deduce
∫

Ω

|˜Ψ′
0| � C

(

‖μ − μ‖L2(Ω) + ‖∇M‖2
L2(Ω) + ‖M‖4

L4(Ω) + ‖∇φ‖2
L2(Ω) + 1

)

� C
(

‖∇μ‖L2(Ω) + ‖M‖2
W 1,2(Ω) + ‖M‖4

W 1,2(Ω) + ‖∇φ‖2
L2(Ω) + 1

)

,

(2.25)

where we have used Poincaré’s inequality to obtain the final step.

Now we want to use the inequality (2.25) to obtain an estimate of
∣

∣

∣

∣

∫

Ω

μ

∣

∣

∣

∣

.

In that direction we integrate (2.20) to obtain
∣

∣

∣

∣

∫

Ω

μ

∣

∣

∣

∣

� C

(∫

Ω

|˜Ψ′
0| + ‖M‖2

W 1,2(Ω) + ‖M‖4
W 1,2(Ω) + ‖∇φ‖2

L2(Ω) + 1
)

.

(2.26)

Next using (2.25) in (2.26) we furnish
∣

∣

∣

∣

∫

Ω

μ

∣

∣

∣

∣

� C
(

‖∇μ‖L2(Ω) + ‖∇φ‖2
L2(Ω) + ‖M‖2

W 1,2(Ω) + ‖M‖4
W 1,2(Ω) + 1

)

.

(2.27)

Combining (2.25) and (2.27) we conclude the proof of Lemma 2.4. �
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Next we recall the following result from [36, Lemma 4.1], which will be
used to obtain (2.29) (a discrete analogue of energy dissipation) in Theo-
rem 2.6.

Lemma 2.5. [36, Lemma 4.1] Let A,B ∈ R
3. The following relation is true

1
4
(|A|2 − 1

)2 − 1
4
(|B|2 − 1

)2 +
1
4
(|A|2 − |B|2)2 +

1
2
|A · (A − B)|2

+
1
2
|A − B|2 � (A − B) · (|A|2A − B

)

.

(2.28)

Now we state and prove the central result of this section which corre-
sponds to the existence of weak solution to the time discrete system (2.12).

Theorem 2.6. (Existence of weak solution to the problem (2.12)) Let As-
sumption 1.1, (2.10) and (2.11) hold. Then there exists a quadruple (vk+1,
Mk+1, φk+1, μk+1) which satisfies (2.16) and solves the identities (2.17)–(2.20).
Moreover, the following discrete version of the energy estimate holds

Etot(vk+1,Mk+1, φk+1) + 2h
∫

Ω

ν(φk)|Dvk+1|2 + h

∫

Ω

|∇μk+1|2

+h

∫

Ω

∣

∣

∣

∣

div(ξ(φk)∇Mk+1)− ξ(φk)
α2

(|Mk+1|2Mk+1−Mk)
∣

∣

∣

∣

2

� Etot(vk,Mk, φk),

(2.29)

where Etot(v,M, φ) is as defined in (1.17).

Proof. For simplicity in notations we will omit the subscript k + 1 and we
use the notation (v,M, φ, μ, J, ρ) = (vk+1,Mk+1, φk+1, μk+1, Jk+1, ρk+1) in the
rest of the proof. We will perform the proof in two steps (c.f. Sect. 2.3 and 2.4).

2.3. Any weak solution (v, M, φ, μ) of (2.12) in the sense of Definition 2.3
satisfies (2.29)–(1.17)

In the following computations we will need some identities in the spirit of [6].
We gather those identities in the following and refer to the proof of [6, Lemma
4.3] for details.

(i)
∫

Ω

(

(divJ)
v

2
+ (J · ∇) v

)

· v =
∫

Ω

div
(

J
|v|2
2

)

= 0,

(ii)
∫

Ω

(

div(ρkv ⊗ v) − (∇ρk · v)
v

2

)

· v = 0,

(iii) (ρv − ρkvk) · v =
(

ρ
|v|2
2

− ρk
|vk|2

2

)

+ (ρ − ρk)
|v|2
2

+ ρk
|v − vk|2

2
.

(2.30)

First we consider the test function ˜ψ1 = v in (2.17) and use the identities
(2.30) to render
∫

Ω

ρ|v|2 − ρk|vk|2
2h

+
∫

Ω

ρk
|v − vk|2

2h
−
∫

Ω

(

ξ(φk)
α2

(|M |2M − Mk)∇M

)

· v

+
∫

Ω

(div(ξ(φk)∇M)∇M) · v = −2
∫

Ω

ν(φk)|Dv|2 −
∫

Ω

(v · ∇)μφk.

(2.31)
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Next choosing ˜ψ2 = −div(ξ(φk)∇M)+ ξ(φk)
α2 (|M |2M −Mk) in (2.18) we infer

∫

Ω

(M − Mk)
h

·
(

−div(ξ(φk)∇M) +
ξ(φk)
α2

(|M |2M − Mk)
)

+
∫

Ω

(v · ∇)M ·
(

−div(ξ(φk)∇M) +
ξ(φk)
α2

(|M |2M − Mk)
)

+
∫

Ω

∣

∣

∣div(ξ(φk)∇M) − ξ(φk)
α2

(|M |2M − Mk)
∣

∣

∣

2

= 0.

(2.32)

Multiplying (2.19) by μ and integrating over Ω one has

∫

Ω

φ − φk

h
μ −
∫

Ω

(v · ∇)μφk = −
∫

Ω

|∇μ|2. (2.33)

Finally, multiplying (2.20) by −φ − φk

h
and integrating in Ω we have

−
∫

Ω

μ
φ − φk

h
− κ

∫

Ω

φ2 − φ2
k

2h
+
∫

Ω

H0(φ, φk)
|∇M |2

2
(φ − φk)

h

+
∫

Ω

H0(φ, φk)
4α2

(|M |2 − 1)2
(φ − φk)

h
+ η

∫

Ω

∇φ · ∇ (φ − φk)
h

= −
∫

Ω

˜Ψ′
0(φ)

(φ − φk)
h

.

(2.34)

Adding the expressions (2.31)–(2.34) and recalling (2.14), we have

1
2

∫

Ω

(ρ|v|2−ρk|vk|2) +
∫

Ω

ρk
|v − vk|2

2
+ 2h

∫

Ω

ν(φk)|Dv|2

+
∫

Ω

(M − Mk) ·
(

−div(ξ(φk)∇M) +
ξ(φk)
α2

(|M |2M − Mk)
)

+h

∫

Ω

∣

∣

∣div(ξ(φk)∇M)−ξ(φk)
α2

(|M |2M−Mk)
∣

∣

∣

2

+
1
2

∫

Ω

(

ξ(φ)−ξ(φk)
)|∇M |2

+
1

4α2

∫

Ω

(

ξ(φ) − ξ(φk)
)

(|M |2 − 1)2 − κ

2

∫

Ω

(φ2 − φ2
k)

+ η

∫

Ω

∇φ · (∇φ − ∇φk) +
∫

Ω

˜Ψ′
0(φ)(φ − φk) + h

∫

Ω

|∇μ|2 = 0.

(2.35)

Integrating by parts the fourth term of (2.35), using

A · (A − B) =
|A|2
2

− |B|2
2

+
|A − B|2

2
for all A, B ∈ R

m, m ∈ N,

(2.36)



52 Page 20 of 53 M. Kalousek, S. Mitra and A. Schlömerkemper NoDEA

to expand ξ(φk)∇M · (∇M − ∇Mk) and ∇φ · (∇φ − ∇φk) respectively and
using Lemma 2.5 on the term (M − Mk) · ξ(φk)

α2 (|M |2M − Mk), we render

1
2

∫

Ω

(ρ|v|2−ρk|vk|2)+
∫

Ω

ρk
|v − vk|2

2
+2h

∫

Ω

ν(φk)|Dv|2+
1
2

∫

Ω

ξ(φ)|∇M |2

−1
2

∫

Ω

ξ(φk)|∇Mk|2+1
2

∫

Ω

ξ(φk)|∇M−∇Mk|2+ 1
4α2

∫

Ω

ξ(φ)
(|M |2−1

)2

− 1
4α2

∫

Ω

ξ(φk)
(|Mk|2 − 1

)2 +
1

4α2

∫

Ω

ξ(φk)
(|M |2 − |Mk|2)2

+
1

2α2

∫

Ω

ξ(φk)|M · (M − Mk)|2 +
1

2α2

∫

Ω

ξ(φk)|M − Mk|2

+h

∫

Ω

∣

∣

∣div(ξ(φk)∇M)−ξ(φk)
α2

(|M |2M−Mk)
∣

∣

∣

2

+
η

2

∫

Ω

|∇φ|2−η

2

∫

Ω

|∇φk|2

+
η

2

∫

Ω

|∇φ−∇φk|2+
∫

Ω

(

˜Ψ0(φ)− ˜Ψ0(φk)
)

− κ

2

∫

Ω

(φ2−φ2
k)+h

∫

Ω

|∇μ|2

� 0,

(2.37)

where we have used
∫

Ω

˜Ψ′
0(φ)(φ − φk) �

∫

Ω

(

˜Ψ0(φ) − ˜Ψ0(φk)
)

, (2.38)

which follows from the convexity of ˜Ψ0. Dropping some positive terms from
the left hand side of the inequality (2.37) and recalling (2.2), we conclude the
obtainment of the discrete energy estimate (2.29).

2.4. Proof of the existence of weak solutions to (2.12)

We will apply the Leray-Schauder fixed point principle to prove the existence
of a weak solution to the discretized system (2.12). We start by considering
the following spaces

X = W 1,2
0,div(Ω) × W 2,2

n (Ω) × D(∂ ˜E) × W 2,2
n (Ω),

Y =
(

W 1,2
0,div(Ω)

)′ × L2(Ω) × L2(Ω) × L2(Ω),
(2.39)

with the norm defined as the sum of the individual components of the Cartesian
products. We will write (2.12) in operator notation and for that we introduce
Nk,Fk : X → Y . For w = (v,M, φ, μ) ∈ X, the operator Nk is defined as
follows

Nk(w) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Av

−div(ξ(φk)∇M) +
ξ(φk)
α2

(|M |2M − Mk) +
∫

Ω

M

∂ ˜E(φ) + φ

−Δμ +
∫

Ω

μ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.40)
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where A : W 1,2
0,div(Ω) → (W 1,2

0,div(Ω)
)′ is given for all v ∈ W 1,2

0,div(Ω) by

〈Av, ˜ψ1〉 = 2
∫

Ω

ν(φk)Dv · D ˜ψ1 for all ˜ψ1 ∈ W 1,2
0,div(Ω).

For w = (v,M, φ, μ) ∈ X, the operator Fk is defined as

Fk(w)=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−ρv−ρkvk

h
−div(ρkv ⊗ v)−∇μφk+

ξ(φk)
α2

(|M |2M−Mk)∇M

−div(ξ(φk)∇M)∇M− 1
2

(

div J− ρ−ρk

h
−v · ∇ρk

)

v−(J · ∇) v

−M − Mk

h
− (v · ∇)M +

∫

Ω

M

μ + κ
(φ + φk)

2
− H0(φ, φk)

|∇M |2
2

− H0(φ, φk)
4α2

(|M |2 − 1)2 + φ

−φ − φk

h
− (v · ∇)φk +

∫

Ω

μ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(2.41)

One observes that w = wk+1(= (vk+1,Mk+1, φk+1, μk+1) ∈ X) is a weak
solution to the time discrete problem (2.12) iff the following holds

Nk(w) = Fk(w) in Y.

To prove the existence of a solution to this operator equation we next show
some properties of the operators Nk and Fk.

2.4.1. Invertibility and continuity of the inverse of Nk between suitable spaces.
Let us consider the operator Nk component wise. It is well known that A :
W 1,2

0,div(Ω) → (W 1,2
0,div(Ω)

)′ is bounded and invertible, and A−1 :
(

W 1,2
0,div(Ω)

)′ −→
W 1,2

0,div(Ω) is bounded and continuous. For a proof one can adapt the arguments
we are going to use to prove similar issues for the second component of Nk.
We choose to present a detailed argument for the second component since it
is more involved than the first one.

We remark that the second component of Nk defines a bounded operator
from W 2,2

n (Ω) −→ L2(Ω). As a first step towards proving that the second
component of Nk admits of a bounded and continuous inverse from L2(Ω) to
W 2,2

n (Ω), we first claim that the operator

Bk(M) = − divN (ξ(φk)∇M) +
ξ(φk)
α2

(|M |2M − Mk) +
∫

Ω

M

: W 1,2(Ω) −→ (W 1,2(Ω))′,
(2.42)

where divN is interpreted in the following weak sense

〈−divN Φ, ψ2〉 =
∫

Ω

Φ · ∇ψ2 for all ψ2 ∈ W 1,2(Ω) and Φ ∈ L2(Ω),

is invertible and B−1
k : (W 1,2(Ω))′ −→ W 1,2(Ω) is bounded and continuous. In

order to show this, we consider an arbitrary couple M1, M2 ∈ W 1,2(Ω). Then
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we compute the following duality product

〈Bk(M1) − Bk(M2),M1 − M2〉

=
∫

Ω

ξ(φk)|∇(M1 − M2)|2 +
∫

Ω

ξ(φk)
α2

(|M1|2M1 − |M2|2M2

) · (M1 − M2)

+
(∫

Ω

M1 − M2

)2

= I1 + I2 + I3.

(2.43)

One observes I1 � c1‖∇(M1 −M2)‖2
L2(Ω) since ξ is non degenerate (c.f. (1.6)).

The monotonicity of α 	→ |α|2α implies I2 � 0. Employing the lower bound
on ξ again we infer I1 + I3 � c‖M1 − M2‖2

W 1,2(Ω).

Hence

〈Bk(M1) − Bk(M2),M1 − M2〉 � c‖M1 − M2‖2
W 1,2(Ω),

implying Bk : W 1,2(Ω) −→ (W 1,2(Ω))′ is strongly monotone.
Since W 1,2(Ω) ↪→ L6(Ω), one justifies the boundedness of Bk : W 1,2(Ω)

−→ (W 1,2(Ω))′. Now using the Lebesgue dominated convergence theorem one
checks that Bk is radially continuous on W 1,2(Ω), i.e., for each pair M,˜M ∈
W 1,2(Ω) the function t ∈ R 	→ 〈Bk(M + t˜M),˜M〉 is continuous. It is not hard
to check that 〈Bk(M),M〉 � c‖M‖2

W 1,2(Ω) − ck, for any M ∈ W 1,2(Ω) with ck

depending on Mk. The latter inequality implies that Bk is coercive on W 1,2(Ω),
i.e.,

lim
‖M‖W1,2(Ω)→∞

〈Bk(M),M〉
‖M‖W 1,2(Ω)

= ∞.

Using [43, Theorem 2.14] we obtain the existence of the inverse operator B−1
k :

(W 1,2(Ω))′ → W 1,2(Ω) that is bounded and Lipschitz continuous.
We now claim that

B−1
k : L2(Ω) −→ W 2,2

n (Ω) is bounded and continuous. (2.44)

The proof of this claim can be performed by using a boot-strap argument and
using the regularity results for the following set of equations

ΔM =
1

ξ(φk)

(

F − ξ′(φk)∇M∇φk +
ξ(φk)
α2

(|M |2M − Mk

)

)

in Ω,

∂nM =0 on ∂Ω,

for any F ∈ L2(Ω), where we apply the fact that B−1
k : (W 1,2(Ω))′ → W 1,2(Ω)

is bounded and continuous. We refer the readers to [36, Section 4.2.1, p 14-15]
for a concrete proof. This proves our claim that the second component of Nk

has a bounded and continuous inverse from W 2,2
n (Ω) and L2(Ω).

Next we consider the third component of Nk. Recalling the definition of
˜E from (2.4)–(2.5), it can be justified in view of Proposition 2.1 that

∂ ˜E + I : D(∂ ˜E) −→ L2(Ω) is invertible with bounded inverse (2.45)
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(D(∂ ˜E) is identified with a subspace of W 2,2
n (Ω) as in (2.6)), where I : D(∂ ˜E)

−→ L2(Ω) is the inclusion map. Moreover, we can follow arguments from [6,
pp. 466–467] to show that the inverse operator

(∂ ˜E + I)−1 : L2(Ω) −→ W 2−s,2
n (Ω) is continuous for any s ∈ (0, 1

4 ).(2.46)

From now on we fix s = 1
8 for definiteness.

Finally let us consider the last component of Nk. From standard elliptic
theory, the operator

−Δ(·) +
∫

Ω

· : W 2,2
n (Ω) −→ L2(Ω)

is bounded invertible with bounded and continuous inverse.
In summary we have shown that

the map Nk : X −→ Y is bounded, invertible, the inverse is bounded
(2.47)

and the inverse map is continuous from Y to ˜X, where

˜X = W 1,2
0,div(Ω) × W 2,2

n (Ω) × W
15
8 ,2

n (Ω) × W 2,2
n (Ω). (2.48)

Next we show that Fk : ˜X −→ Y is continuous and compact.

2.4.2. The operator Fk : ˜X −→ Y is continuous and compact. For the
operator Fk = (F1

k ,F2
k ,F3

k ,F4
k ), we will verify the continuity and compactness

component wise.
Let us start with F1

k : ˜X −→ (W 1,2
0,div(Ω))′. In this direction we will collect

estimates of terms appearing in the expression of F1
k . The following estimates

are obtained by using Hölder’s inequality and standard Sobolev embeddings.

‖ρv‖
L

3
2 (Ω)

� C‖v‖W 1,2(Ω)

(‖φ‖L2(Ω) + 1
)

,

‖div(ρkv ⊗ v)‖
L

3
2 (Ω)

� Ck‖v‖2
W 1,2(Ω),

‖∇μφk‖
L

3
2 (Ω)

� Ck‖μ‖W 2,2(Ω),

‖ξ(φk)(|M |2M − Mk)∇M‖
L

3
2 (Ω)

� Ck

(

‖M‖4
W 2,2(Ω) + ‖M‖W 2,2(Ω)

)

,

‖div(ξ(φk)∇M)∇M‖
L

3
2 (Ω)

� Ck‖M‖2
W 2,2(Ω),

‖ (divJ) v‖
L

3
2 (Ω)

� C‖v‖W 1,2(Ω)‖μ‖W 2,2(Ω),

‖ (J · ∇) v‖
L

3
2 (Ω)

� C‖v‖W 1,2(Ω)‖μ‖W 2,2(Ω),

‖(v · ∇ρk)v‖
L

3
2 (Ω)

� Ck‖v‖2
W 1,2(Ω).

(2.49)

Hence the estimates above prove the boundedness of F1
k from ˜X to L

3
2 (Ω).

One can use similar estimates to show that F1
k is continuous from ˜X to L

3
2 (Ω).

Next the compact embedding L
3
2 (Ω) −→ (W 1,2

0,div(Ω))′ furnishes the continuity
and compactness of F1

k : ˜X −→ (W 1,2
0,div(Ω))′.
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Now we prove that F2
k : ˜X −→ L2(Ω) is continuous and compact. One

first observes

‖(v · ∇)M‖
W 1, 3

2 (Ω)
� C‖v‖W 1,2(Ω)‖M‖W 2,2(Ω) (2.50)

as in [36, p. 16]. The continuity of F2
k : ˜X −→ W 1, 3

2 (Ω) relies on a similar
estimate and can be concluded without any difficulty. Further in view of the
compactness of the embedding of W 1, 3

2 (Ω) to L2(Ω) the asserted continuity
and compactness follows.

Next we show that F3
k : ˜X −→ L2(Ω) is continuous and compact. For

the proof we take a different route than the ones used for F i
k, i ∈ {1, 2}. First

we introduce

˜Y = L2(Ω) × W
15
8 ,2(Ω) × W

7
4 ,2(Ω) × W

15
8 ,2(Ω).

One observes that the embedding ˜X −→ ˜Y is compact (since in dimension
three the embedding Wm+k,2 ↪→ Wm,2 is compact for any 0 < k < 3

2 ). We
study the boundedness and continuity of the operator G : ˜Y −→ L2(Ω) that
is defined as in the third component of (2.41). Once we verify its boundedness
and continuity we immediately conclude that F3

k : ˜X −→ L2(Ω) is bounded,
continuous and compact as the composition of the embedding ˜X −→ ˜Y and G.
In order to conclude the boundedness of G, we collect the following estimates:

‖H0(φ, φk)|∇M |2‖L2(Ω) � Ck‖M‖2

W
15
8 ,2(Ω)

,

‖H0(φ, φk)(|M |2 − 1)2‖L2(Ω) � Ck

(

‖M‖4

W
15
8 ,2(Ω)

+ 1
)

.
(2.51)

Indeed, since ξ(·) ∈ C1(R), one infers ‖H0(φ, φk)‖L∞(Ω) � Ck by using the
mean value theorem and the upper bound of ξ′(·) (cf. assumption (1.6)). Fur-
ther the fact that ∇M is bounded in W

7
8 ,2(Ω) and the continuous embedding

W
7
8 ,2(Ω) ↪→ L4(Ω) proves (2.51)1. Whereas (2.51)2 is a consequence of the

continuous embedding W
15
8 ,2(Ω) ↪→ L∞(Ω). The boundedness and continuity

of the linear terms in the expression of F3
k are trivially concluded.

In the spirit of the boundedness estimates (2.51), the continuity of the

nonlinear terms in F3
k , i.e.

1
2
H0(φ, φk)|∇M |2 and

1
4α2

H0(φ, φk)(|M |2 − 1)2,

can be proved by the arguments as in [36, p. 16] adjusted to the current set-up.
Hence we have proved that F3

k : ˜X −→ L2(Ω) is continuous and compact.
Next we consider F4

k . In the spirit of (2.50) we derive the following esti-
mate

‖(v · ∇)φk‖
W 1, 3

2 (Ω)
� Ck‖v‖W ,2(Ω), (2.52)

which verifies the boundedness of F4
k : ˜X −→ W 1, 3

2 (Ω). By (2.52) the conti-
nuity of F4

k : ˜X −→ W 1, 3
2 (Ω) can be concluded in a straight forward manner.

Next using the compact embedding W 1, 3
2 (Ω) ↪→ L2(Ω), one at once renders

that F4
k : ˜X −→ L2(Ω) is continuous and compact.
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In view of the arguments above we finally have proved that Fk : ˜X −→ Y
is continuous and compact.

2.4.3. The fixed point argument. We now show the existence of a w ∈ X (we
recall the definition of X from (2.39)1) satisfying

Nk(w) = Fk(w) in Y. (2.53)

For that purpose it is sufficient to prove the existence of a fixed point of
the operator Fk ◦ N −1

k on Y , i.e., the existence of z ∈ Y satisfying

z = (Fk ◦ N −1
k )z in Y, (2.54)

since the invertibility of the operator Nk : X → Y implies the obtainment of
w ∈ X satisfying (2.53) by using w = N −1

k (z).
In order to show the existence of a fixed point of the operator equation

(2.54) we apply the Leray-Schauder fixed point theorem [28, Theorem 10.3]
to the continuous and compact operator Fk ◦ N −1

k : Y −→ Y. To this end we
verify that:

There exists r>0 such that if z ∈ Y solves z=λ(Fk ◦ N −1
k )z with λ∈ [0, 1],

then it holds ‖z‖Y � r.

(2.55)

Let z ∈ Y satisfy z = λ(Fk ◦ N −1
k )z in Y with some λ ∈ [0, 1]. Then

w = (v,M, φ, μ) = N −1
k z,

solves

Nk(w) − λFk(w) = 0 in Y. (2.56)

Let us first prove that

‖w‖
˜X

� Ck, (2.57)

with Ck independent of λ ∈ [0, 1]. Then we will bootstrap the regularity to
have

‖w‖X � Ck, (2.58)

with Ck independent of λ ∈ [0, 1], from which (2.55) follows due to the bound-
edness of Nk : X −→ Y , cf. (2.47). One recalls the definitions of Nk and Fk

from (2.40) and (2.41), tests the first component of (2.56) by v, the second
component by −div(ξ(φk)∇M) + ξ(φk)

α2 (|M |2M − Mk), the third component
by φ−φk

h and the fourth component by μ. The application of (2.36), Lemma 2.5
and identities (2.30) (similar arguments leading to (2.37) from (2.35)) yield the
following after dropping some positive terms from the left hand side (similar
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to the obtainment of (2.29) from (2.37))

λ

h

(

1
2

∫

Ω

ρ|v|2 − 1
2

∫

Ω

ρk|vk|2
)

+ 2
∫

Ω

ν(φk)|Dv|2

+
λ

h

(

1
2

∫

Ω

ξ(φ)|∇M |2 − 1
2

∫

Ω

ξ(φk)|∇Mk|2
)

+
λ

h

(

1
4α2

∫

Ω

ξ(φ)
(|M |2 − 1

)2 − 1
4α2

∫

Ω

ξ(φk)
(|Mk|2 − 1

)2
)

+
∫

Ω

∣

∣

∣

∣

div(ξ(φk)∇M) − ξ(φk)
α2

(|M |2M − Mk)
∣

∣

∣

∣

2

+
1
h

(

η

2

∫

Ω

|∇φ|2 − η

2

∫

Ω

|∇φk|2
)

+
1
h

∫

Ω

(

˜Ψ0(φ) − ˜Ψ0(φk)
)

− λ

h

∫

Ω

κ
(φ2 − φ2

k)
2

+
∫

Ω

|∇μ|2+(1 − λ)
(∫

Ω

μ

)2

+
(1 − λ)

h

∫

Ω

(

φ2

2
− φ2

k

2

)

+ (1 − λ)
∫

Ω

M

∫

Ω

(

−div(ξ(φk)∇M) +
ξ(φk)
α2

(|M |2M − Mk)
)

� 0.

(2.59)

Once again we recall that in obtaining the above inequality one expands
ξ(φk)∇M · (∇M − ∇Mk) and ∇φ · (∇φ − ∇φk) by using (2.36) and uses
Lemma 2.5 to expand the term (M − Mk) · ξ(φk)

α2 (|M |2M − Mk). In order to
obtain the inequality (2.59) we also have used (2.38).

When 0 � λ < 1, we use Young’s and Hölder’s inequality to estimate the
term appearing in the last line of (2.59) to infer:

∣

∣

∣

∣

(1 − λ)

∫

Ω

M

∫

Ω

(

−div(ξ(φk)∇M) +
ξ(φk)

α2
(|M |2M − Mk)

)∣

∣

∣

∣

� (1−λ)ε|Ω|
∫

Ω

∣

∣

∣

∣

div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M−Mk)

∣

∣

∣

∣

2

+c
1 − λ

ε

(∫

Ω

M

)2

(2.60)

for some positive parameter ε > 0.
Since |1 − λ| � 1, for small enough choice of the parameter ε > 0, the

first term on the right hand side (2.60) can be absorbed in the fifth summand
appearing on the left hand side of (2.59). We will now estimate the second
term on the right hand side of (2.60). We will now estimate the second term
on the right hand side of (2.60). In that direction we follow the arguments
used to show [36, p. 18, (4.32)] to obtain

∫

Ω

|∇M |2 +
∫

Ω

|M |4 + (1 − λ)
(∫

Ω

M

)2

� Ck, (2.61)

where Ck > 0 is independent of λ > 0.
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For a small enough choice of the parameter ε > 0, using (2.61) and (2.60)
in (2.59) we obtain in particular

2h

∫

Ω

ν(φk)|Dv|2 +
h

2

∫

Ω

∣

∣

∣

∣

div(ξ(φk)∇M) − ξ(φk)
α2

(|M |2M − Mk)
∣

∣

∣

∣

2

+
η

2

∫

Ω

|∇φ|2 +
∫

Ω

˜Ψ0(φ) + h

∫

Ω

|∇μ|2 + h(1 − λ)
(∫

Ω

μ

)2

− λ

∫

Ω

κ
φ2

2

�
∫

Ω

ρk|vk|2
2

+
1
2

∫

Ω

φ2
k +

η

2

∫

Ω

|∇φk|2 +
∫

Ω

|κ|φ
2
k

2
+
∫

Ω

˜Ψ0(φk)

+
1
2

∫

Ω

ξ(φk)|∇Mk|2 +
1

4α2

∫

Ω

ξ(φk)
(|Mk|2 − 1

)2 + Ck � Ck.

(2.62)

Indeed, we obtain (2.62) from (2.59) by using the positive lower bound on ρ
from (1.10), which follows since w = (v,M, φ, μ) = N −1

k z ∈ X, cf. (2.47),
implying φ ∈ D(∂ ˜E) and hence φ ∈ [−1, 1] a.e. The fact that φ ∈ [−1, 1] a.e.
and λ ∈ [0, 1] alongside ˜Ψ0 ∈ C([−1, 1]) allows us to obtain

∣

∣

∣

∣

∫

Ω

˜Ψ0(φ)
∣

∣

∣

∣

� C and
∣

∣

∣

∣

∫

Ω

κ
φ2

2

∣

∣

∣

∣

� C,

for some positive constant C and hence the term
∫

Ω

˜Ψ0(φ) and −λ

∫

Ω

κ
φ2

2
can

be dropped from the left hand side of (2.62). Hence

2h

∫

Ω

ν(φk)|Dv|2 +
h

2

∫

Ω

∣

∣

∣

∣

div(ξ(φk)∇M) − ξ(φk)
α2

(|M |2M − Mk)
∣

∣

∣

∣

2

+
η

2

∫

Ω

|∇φ|2 + h

∫

Ω

|∇μ|2 + h(1 − λ)
(∫

Ω

μ

)2

� Ck.

(2.63)

One uses (2.63), (1.7), Korn’s and Poincaré’s inequality and the fact that φ ∈
[−1, 1] a.e. to render ‖v‖W 1,2(Ω)+‖φ‖W 1,2(Ω) � Ck. We conclude ‖M‖W 1,2(Ω) �
Ck independently of λ from (2.61). The second term of (2.63)1 provides

∥

∥

∥

∥

div(ξ(φk)∇M) − ξ(φk)
α2

(|M |2M − Mk)
∥

∥

∥

∥

L2(Ω)

� Ck. (2.64)

One can now use elliptic regularity results and a bootstrap argument (exactly
as the one used to prove the claim (2.44), cf. [36, Section 4.2.1, pp. 14–15]) to
furnish that ‖M‖W 2,2(Ω) � Ck from (2.64).

Next one obtains ‖∇μ‖L2(Ω) � Ck from (2.63). In view of Poincaré’s
inequality it is sufficient to show

∣

∣

∣

∣

∫

Ω

μ

∣

∣

∣

∣

� Ck, (2.65)

in order to prove ‖μ‖W 1,2(Ω) � Ck. For λ ∈ [0, 1
2 ), (2.65) follows from the

estimate of the last term which appears in the left hand side of (2.63). For
λ ∈ [ 12 , 1] we follow similar arguments used to show (2.21). Hence (2.65) holds
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independently of the values of λ ∈ [0, 1] and as a consequence ‖μ‖W 1,2(Ω) � Ck

follows.
So far we have obtained the following

‖v‖W 1,2(Ω) + ‖M‖W 2,2(Ω) + ‖φ‖W 1,2(Ω) + ‖μ‖W 1,2(Ω) � Ck. (2.66)

Further one recalls that μ solves the following equation

−Δμ +
∫

Ω

μ = −λ
φ − φk

h
− λ(v · ∇)φk + λ

∫

Ω

μ in Ω,

∂nμ = 0 in ∂Ω.
(2.67)

In view of the fact that λ ∈ [0, 1] and the estimate (2.66) we observe that the
right hand side of (2.67)1 can be estimated in L2(Ω) and hence by standard
elliptic regularity theory

‖μ‖W 2,2(Ω) � Ck.

Further, from the identity

∂ ˜E(φ) + φ =λφ + λμ + λκ
φ + φk

2
− λH0(φ, φk)

|∇M |2
2

− λ
H0(φ, φk)

4α2

(|M |2 − 1
)2

(2.68)

and (2.66) one has

‖∂ ˜E(φ) + φ‖L2(Ω) � Ck. (2.69)

Inequality (2.69) along with the estimate of φ from (2.66) imply that ‖∂ ˜E(φ)
‖L2(Ω) � Ck. Next in view of the inequality (2.7) one in particular concludes
that

‖φ‖
W

15
8 ,2(Ω)

� Ck

and hence altogether we have

‖w‖
˜X

+ ‖∂ ˜E(φ)‖L2(Ω) = ‖(v,M, φ, μ)‖
˜X

+ ‖∂ ˜E(φ)‖L2(Ω) � Ck. (2.70)

Once again using (2.7) and (2.70) one at once concludes (2.58) and conse-
quently proves (2.55). Finally the fact that Nk : X → Y has a bounded
inverse yields the existence of a fixed point to the operator equation (2.53).
This finishes the proof of Theorem 2.6. �

3. Proof of Theorem 1.5

Let T > 0 be fixed. Let 0 = t0 < t1 < . . . < tk < . . ., k ∈ N0 be a strictly
increasing sequence such that for each k ∈ N0 tk+1 − tk = h where h = 1

N
for N ∈ N fixed. Applying Theorem 2.6 successively, we construct a sequence
{(vk+1,Mk+1, φk+1, μk+1)}, k ∈ N0 of solutions to problem (2.12) assuming
(vk,Mk, φk) ∈ L2

div(Ω) × W 2,2
n (Ω) × W 2,2

n (Ω) with −1 � φk � 1. Obviously,
the assumption (M0, φ0) ∈ W 1,2(Ω) × W 1,2(Ω) excludes the possibility of
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application of Theorem 2.6 directly. Instead, we consider sequences {MN
0 } ⊂

W 2,2
n (Ω), {φN

0 } ⊂ W 2,2
n (Ω) with |φN

0 | � 1 such that

MN
0 → M0 in W 1,2(Ω),

φN
0 → φ0 in W 1,2(Ω)

(3.1)

as N → ∞. Such an approximating sequence {φN
0 } can be constructed by

solving a heat equation with initial data φ0, setting φN
0 as the solution to the

heat equation at t = 1
N and using parabolic regularity. The details of this

construction can be found in [6, Section 5.1, p. 471]. Similar arguments apply
in constructing {MN

0 }. Adapting the notation from [36] we introduce two types
of interpolants related to the unknowns. At first we fix N ∈ N. The piecewise
constant interpolants of (v,M, φ) are defined on [−h,∞) and the one of μ on
[0,∞) via

vN (t) = v0, MN (t) = MN
0 , φN (t) = φN

0 for t ∈ [−h, 0) (3.2)

and

fN (t) = fk for t ∈ [(k − 1)h, kh), (3.3)

where fN stands for the interpolants vN , MN , φN , μN and fk represents the
corresponding vk, Mk, φk and μk, k ∈ N. We note that

ρN = 1
2 (ρ̃1 + ρ̃2) + 1

2 (ρ̃2 − ρ̃1)φN . (3.4)

Next, a piecewise affine interpolant ˜fN is defined as

˜fN (t) =
(k + 1)h − t

h
fN (t − h) +

t − kh

h
fN (t) for t ∈ [kh, (k + 1)h), k ∈ N0.

(3.5)

For our purposes it is sufficient to consider only the piecewise affine interpolants
{ρ̃v

N}, {˜MN} and {˜φN}, where the convention (ρv)N = ρNvN is used. We
also introduce the notation for the shift and the difference quotient in time of
a function f as follows

fh(t) =f(t − h),

∂−
t,hf(t) =

1
h

(f − fh)(t).

As immediate consequences of the latter definition and (3.5) one gets

∂t
˜fN (t) = ∂−

t,hfN (t) for all t ∈ [kh, (k + 1)h), k ∈ N0,

‖ ˜fN‖Lp(0,τ ;X) � ‖fN‖Lp(0,τ ;X)+‖fN
h ‖Lp(0,τ ;X) for any p ∈ [1,∞] and τ > 0.

(3.6)

We will next state identities that are satisfied by interpolants. Let τ ∈ (0,∞)
be chosen arbitrarily. We find kτ ∈ N0 such that τ ∈ [kτh, (kτ + 1)h). Further,
we fix an arbitrary ψ1 ∈ L2(0,∞;V (Ω)), set ˜ψ1 =

∫ b

kh
ψ1 in (2.17), where

b =

{

(k + 1)h k < kτ ,

τ k = kτ ,
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and sum the resulting expressions over k ∈ {0, 1, . . . , kτ} to obtain
∫ τ

0

(∫

Ω

∂−
t,h(ρNvN ) · ψ1 −

∫

Ω

(ρN
h vN ⊗ vN ) · ∇ψ1 −

∫

Ω

(vN ⊗ JN ) · ∇ψ1

−
∫

Ω

(

ξ(φN
h )

α2
(|MN |2MN − MN

h )∇MN

)

· ψ1

+
∫

Ω

(

div
(

ξ(φN
h )∇MN

)∇MN
) · ψ1

)

=
∫ τ

0

(

−2
∫

Ω

ν(φN
h )DvN · Dψ1 −

∫

Ω

∇μNφN
h · ψ1

)

(3.7)

for all τ ∈ (0,∞) and ψ1 ∈ L2(0,∞;V (Ω)), where JN = − ρ̃2 − ρ̃1

2
∇μN . In

obtaining (3.7) from (2.17), we once again use identity (2.15). Similarly, we
get
∫ τ

0

(∫

Ω

∂−
t,hMN · ψ2 +

∫

Ω

(vN · ∇)MN · ψ2

)

=
∫ τ

0

∫

Ω

(

div(ξ(φN
h )∇MN ) − ξ(φN

h )
α2

(|MN |2MN − MN
h )
)

· ψ2,

(3.8)

for all τ ∈ (0,∞) and ψ2 ∈ L2(0,∞;W 1,2(Ω)). Moreover, by obvious manipu-
lations we deduce from (2.19) that

∫ τ

0

(∫

Ω

∂−
t,hφNψ3 +

∫

Ω

(vN · ∇)φN
h ψ3

)

= −
∫ τ

0

∫

Ω

∇μN · ∇ψ3 (3.9)

for all τ ∈ (0,∞) and ψ3 ∈ L2(0,∞;W 1,2(Ω)) and from (2.20) it follows that
∫ τ

0

∫

Ω

(

μN + κ
φN + φN

h

2
− H0(φN , φN

h )
|∇MN |2

2

−H0(φN , φN
h )

4α2
(|MN |2 − 1)2

)

ψ4 =
∫ τ

0

∫

Ω

(

−ηΔφN + ˜Ψ′
0(φ

N )
)

ψ4

(3.10)

for all τ ∈ (0,∞) and ψ4 ∈ L∞(0, τ ;L∞(Ω)).

3.1. Compactness of sequences of interpolants

The goal of this section is to collect all the necessary convergences of (sub)-
sequences of interpolants allowing for the passage h → 0 (equivalently N → ∞)
in order to show the existence of a weak solution to the original problem.

3.1.1. Uniform bounds on sequences of interpolants and compactness. In order
to obtain the uniform bounds we begin with the energy inequality for the
interpolants vN , MN , φN and μN . Summing in (2.29) over k ∈ N0 we obtain

Etot(vN (t),MN (t), φN (t)) + 2
∫ t

0

∫

Ω

ν(φN
h )|DvN |2 +

∫ t

0

∫

Ω

|∇μN |2

+
∫ t

0

∫

Ω

∣

∣

∣

∣

div(ξ(φN
h )∇MN ) − ξ(φN

h )
α2

(|MN |2MN − MN
h )
∣

∣

∣

∣

2

� Etot(v0,M
N
0 , φN

0 ) � C (Etot(v0,M0, φ0) + 1)

(3.11)
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first for each t ∈ hN0, where the inequality in the final line of (3.11) follows
from (3.1). As all interpolants involved in the latter inequality are constant
on intervals of the form [kh, (k + 1)h), one concludes that (3.11) holds for all
t ∈ [0,∞). Therefore recalling the definition of Etot in (1.17) and using (1.10)
we conclude from (3.11) that in particular uniform bounds on

{vN} in L∞(0, T + 1;L2(Ω)) ∩ L2(0, T + 1;W 1,2(Ω)),

{vN} in L
10
3 (QT+1),

{MN} in L∞(0, T + 1;W 1,2(Ω)),

{φN} in L∞(0, T + 1;W 1,2(Ω)),

{∇μN} in L2(QT+1),

{div(ξ(φN
h )∇MN )− ξ(φN

h )
α2

(|MN |2MN −MN
h )} in L2(0, T +1;L2(Ω)),

|φN | � 1 a.e. in QT .

(3.12)

The bound (3.12)1 is obtained by using (1.7) and Korn inequality. All the
sequences in (3.12)1-(3.12)6 in the respective norms are bounded by C(Etot(v0,
M0, φ0) + 1)

1
2 as a consequence of (3.11). Since φk+1 ∈ D(∂ ˜E) for all k ∈ N0,

we have |φk+1| � 1; one uses the fact that |φN
0 | � 1 and the definition of

the interpolants (3.2)–(3.3) to conclude (3.12)7. Let us note that (3.12)2 is
a consequence of bounds (3.12)1, the embedding W 1,2(Ω) ↪→ L6(Ω) and the
following interpolation

[L∞(0, T + 1;L2(Ω)), L2(0, T + 1;L6(Ω))]θ= 3
5

= L
10
3 (QT+1).

The boundedness (3.12)3 follows by (3.11), assumption (1.6) and the bound of
{

ξ(φN
h )

α2 (|MN |2 − 1)2
}

in L∞(0, T + 1;L1(Ω)). Applying (2.21) we have

∫ T+1

0

∣

∣

∣

∣

∫

Ω

μN

∣

∣

∣

∣

� G(T + 1)

for a monotone function G : (0,∞) → (0,∞). Combining the latter bound
with (3.12)5 we get

{μN} is bounded in L2(0, T + 1;W 1,2(Ω)). (3.13)

Moreover, by the definition of a time shifted function we get

{vN
h } is bounded in L∞(0, T + 1;L2(Ω)),

{MN
h } is bounded in L∞(0, T + 1;W 1,2(Ω)),

{φN
h } is bounded in L∞(0, T + 1;W 1,2(Ω)).

(3.14)

All the sequences in (3.14) in the respective norms are bounded by C(Etot(v0,
M0, φ0) + 1)

1
2 . We conclude directly from the definition of the interpolants

that

{φN}, {φN
h }, {˜φN} ⊂ [−1, 1]. (3.15)
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Taking into account the definition of ρN (as defined in (3.4)) and ρN
h it follows

that

{ρN}, {ρN
h } are bounded in L∞(0, T + 1;W 1,2(Ω)) and L∞(QT+1).

(3.16)

As a consequence of bounds (3.12)1,2,3,4 and (3.13) one has up to subsequences
that are not explicitly relabeled

vN ⇀ v in L2(0, T ;W 1,2(Ω)),

vN ⇀∗ v in L∞(0, T ;L2(Ω)),

vN ⇀ v in L
10
3 (QT ),

MN ⇀∗ M in L∞(0, T ;W 1,2(Ω)),

φN ⇀∗ φ in L∞(0, T ;W 1,2(Ω)),

μN ⇀ μ in L2(0, T ;W 1,2(Ω)).

(3.17)

Next we will collect some strong convergence results of the interpolants. Some
of these results are already proved in [36]. First following the arguments from
[36, (5.31), (5.32) and (5.33)] we obtain

φN , φN
h , ˜φN → φ in L2(0, T ;L4(Ω)). (3.18)

By [36, (5.39) and (5.40)] we have

MN → M in L8(0, T ;L4(Ω)), MN
h → M in L2(QT ). (3.19)

Moreover, the convergence

div(ξ(φN
h )∇MN ) − ξ(φN

h )
α2

(|MN |2MN − MN
h )

⇀ div(ξ(φ)∇M) − ξ(φ)
α2

(|M |2M − M) in L2(QT )
(3.20)

follows by [36, (5.58)]. Combining (3.15) with (3.18) we get up to a nonrela-
beled subsequence

φN → φ in Lp(QT ) for all p ∈ [1,∞) and a.e. in QT . (3.21)

To prove this claim one uses the strong convergence of φN from (3.18), bound-
edness from (3.15) and the following inequalities

‖φN − φ‖p
Lp(QT ) � C

∫ T

0

‖φN − φ‖(1− 4
p )p

L∞(Ω) ‖φN − φ‖4
L4(Ω)

� C

∫ T

0

‖φN − φ‖(1− 4
p )p

L∞(Ω) ‖φN − φ‖2
L∞(Ω)‖φN − φ‖2

L4(Ω)

� C‖φN − φ‖2+(1− 4
p )p

L∞(QT ) ‖φN − φ‖2
L2(0,T ;L4(Ω))

for p ∈ [4,∞) and ‖·‖Lp(Ω) � C‖·‖L4(Ω) for any p ∈ [1, 4). Taking into account
the definition of ρN (we refer to (3.4)) and ρN

h we obtain

ρN , ρN
h → ρ in Lp(QT ) for all p ∈ [1,∞) and a.e. in QT . (3.22)
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We now focus on the proof of the compactness of interpolants for the veloc-
ity with respect to the topology of a suitable function space. This proof is
not straightforward as no uniform bound is available on a sequence of time
derivatives of piecewise affine interpolants for the velocity. We investigate the
convergence of {ρ̃v

N}. From (3.7) it follows in particular that
∫ T

0

〈∂−
t,h(ρNvN ), ψ1〉

=
∫ T

0

∫

Ω

(

ρN
h vN ⊗ vN + vN ⊗ JN

) · ∇ψ1 − 2ν(φN
h )DvN · Dψ1

+
((

ξ(φN
h )

α2
(|MN |2MN −MN

h )−div(ξ(φN
h )∇MN )

)

∇MN −∇μNφN
h

)

·ψ1

(3.23)

for all ψ1 ∈ L8(0,∞;V (Ω)). We note that
{

ρN
h vN ⊗ vN

}

is bounded in L2(0, T ;
L

3
2 (Ω)) and {vN ⊗ JN} is bounded in L

8
7 (0, T ;L

4
3 (Ω)). The explanation of

achieving these bounds can be found in [6, p. 474]. Further one easily shows
that {∇μNφN

h } is bounded in L2(QT ) by using that {φN
h } is bounded in

L∞(QT ) and {μN} is bounded in L2(0, T ;W 1,2(Ω)). Using (1.7) and (3.12)1,
ν(φN

h )DvN is bounded in L2(QT ). Moreover, by (3.12)3,6 we have the bound on
{(

ξ(φN
h )

α2 (|MN |2 MN − MN
h ) − div(ξ(φN

h )∇MN )
)

∇MN
}

in L2(0, T ;L1(Ω)).

Since ∂tρ̃v
N = ∂−

t,h(ρNvN ), one uses (3.23) and the fact that the Leray pro-
jector Pdiv commutes with the time derivative to infer that

{

∂tPdiv

(

ρ̃v
N
)}

is bounded in L
8
7 (0, T ; (V (Ω))′). (3.24)

Taking into account the uniform bound on
{

Pdiv

(

ρ̃v
N
)}

in L∞(0, T ;L2(Ω)),
which follows from the continuity of Pdiv, (3.12)1 and (3.16), the Aubin-Lions
lemma gives the compactness of

{

Pdiv

(

ρ̃v
N
)}

with respect to the strong

topology of L2(0, T ; (W 1,2
0,div(Ω))′). Moreover, in view of (3.17)1 and the al-

most everywhere convergence (3.22) we can follow line by line the arguments
presented in [49, pp. 90–91, (3.95)] to conclude that

Pdiv

(

ρ̃v
N
)

⇀ Pdiv(ρv) in L2(0, T ;L2
div(Ω)). (3.25)

Consequently, for a nonrelabeled subsequence we obtain

Pdiv

(

ρ̃v
N
)

→ Pdiv(ρv) in L2(0, T ; (W 1,2
0,div(Ω))′). (3.26)

Since

Pdiv

(

ρ̃v
N (t)
)

− Pdiv

(

ρN (t)vN (t)
)

= (t − (k + 1)h)∂tPdiv

(

ρ̃v
N
)

(t)

for all t ∈ [kh, (k + 1)h), k ∈ N0 and |t − (k + 1)h| � h we infer using (3.24)
that

Pdiv

(

ρ̃v
N
)

− Pdiv

(

ρNvN
)→ 0 in L

8
7 (0, T ; (V (Ω))′). (3.27)
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Next we consider the following combination of interpolation and duality

(W 1,2
0,div(Ω))′ =

(

(L2
div(Ω), V (Ω)) 1

2 ,2

)′
=
(

L2
div(Ω), (V (Ω))′)

1
2 ,2

,

where the first equality is a special case of [1, (5.2.17)] and the second one
follows by [14, Theorem 3.7.1]. Employing the inequality that corresponds to
the latter interpolation we obtain

∥

∥

∥Pdiv(ρ̃v
N ) − Pdiv(ρNvN )

∥

∥

∥

L2(0,T ;(W 1,2
0,div(Ω))′)

� C
∥

∥

∥Pdiv(ρ̃v
N ) − Pdiv(ρNvN )

∥

∥

∥

1
2

L∞(0,T ;L2
div(Ω))

×
∥

∥

∥Pdiv(ρ̃v
N ) − Pdiv(ρNvN )

∥

∥

∥

1
2

L1(0,T ;(V (Ω))′)
.

Combining the latter inequality with the bound on
(

Pdiv(ρ̃v
N ) − Pdiv(ρNvN )

)

in L∞(0, T ;L2(Ω)) and the convergence (3.27) we furnish that

Pdiv(ρ̃v
N ) − Pdiv(ρNvN ) → 0 in L2(0, T ; ((W 1,2

0,div(Ω))′). (3.28)

The convergences (3.26) and (3.28) together furnish that

Pdiv(ρNvN ) → Pdiv(ρv) in L2(0, T ; (W 1,2
0,div(Ω))′). (3.29)

Next, by (3.22) and (3.17)3 we conclude (ρN )
1
2 vN ⇀ ρ

1
2 v in L2(QT ). Further-

more, combining (3.29) and (3.17)1 it follows that
∫ T

0

∫

Ω

ρN |vN |2 =
∫ T

0

〈Pdiv(ρNvN ), vN 〉(W 1,2
0,div(Ω))′,W 1,2

0,div(Ω)

→
∫ T

0

〈Pdiv(ρv), v〉(W 1,2
0,div(Ω))′,W 1,2

0,div(Ω) =
∫ T

0

∫

Ω

ρ|v|2
(3.30)

implying ‖(ρN )
1
2 vN‖L2(QT ) → ‖ρ 1

2 v‖L2(QT ). Hence passing to a nonrelabeled
subsequence one has

(ρN )
1
2 vN → ρ

1
2 v in L2(QT ) and a.e. in QT . (3.31)

Moreover, (3.22) and the existence of a positive lower bound on {ρN}, obtained
by a similar argument as in Remark 1.2, imply (ρN )− 1

2 → ρ− 1
2 a.e. in QT . As

(3.12)2 ensures the equiintegrability of the sequence {|vN |q}, q ∈ [1, 10
3 ) we

conclude by the Vitali convergence theorem

vN = (ρN )− 1
2 (ρN )

1
2 vN → v in Lq(QT ), q ∈ [1, 10

3 ). (3.32)

In particular the strong convergence vN → v in L2(QT ) (as a consequence
of (3.32)), the boundedness of (vN − v) in L2(0, T ;L6(Ω)) and the following
interpolation inequality

‖vN − v‖L2(0,T ;L4(Ω)) � C‖vN − v‖ 3
4
L2(0,T ;L6(Ω))‖vN − v‖ 1

4
L2(QT )

provides

vN → v in L2(0, T ;L4(Ω)). (3.33)
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The last important convergence is

MN → M in L2(0, T ;W 1,2(Ω)). (3.34)

The convergence (3.34) is crucial in order to pass to the limit in the term
containing |∇MN |2 in (3.10) and the term comprising of ∇MN in the mo-
mentum equation (3.7). The proof of (3.34) relies on the monotone structure
of div(ξ(φN

h )∇MN ) and can be done by following the arguments used to show
[36, (5.41), Section 5.1.2]. In order to do so, the strong convergence of MN to
M in L8(0, T ;L4(Ω)) and vN to v in L2(0, T ;L4(Ω)) are used. Since these con-
vergences are available in the present scenario (we refer to (3.19) and (3.33)),
we face no particular difficulty to follow line by line the proof of [36, (5.41),
Section 5.1.2].

3.1.2. Some uniform estimates on MN and φN . In this section we will obtain
further uniform estimates that involve the integrability of ∇MN w.r.t. spatial
variables for an exponent greater than 2, the integrability of the second gradi-
ent of φN and of ˜Ψ′

0(φ
N ) w.r.t. spatial variables for an exponent greater than

1 depending only on the energy estimate (3.11) for the interpolants. These im-
proved estimates will aid in recovering the weak formulation of Cahn–Hilliard
equations. In that direction we will make use of an abstract elliptic regularity
result from [32]. The central result of this section is Lemma 3.2 which will be
proved by using the following result.

Lemma 3.1. Let Ω be a bounded domain of class C1 in R
d, d � 2. Let ˜ξ : Ω →

R
+ be a bounded, measurable function satisfying

0 < c1 � ˜ξ(·) � c2 on Ω, for some c1, c2 > 0. (3.35)

Then there is 2 < p < 3 such that any solution M = (M1,M2,M3) ∈ W 1,2(Ω)
of the following elliptic problem with homogeneous Neumann boundary condi-
tion

div(˜ξ∇M) = g in Ω,

∂nM = 0 on ∂Ω,
(3.36)

where g ∈ Ls(Ω) with s � p′d
d(p′−1)+p′ (p′ being the conjugate exponent of p)

satisfies

‖M‖W 1,p(Ω) � C
(‖g‖Ls(Ω) + ‖M‖W 1,2(Ω)

)

. (3.37)

The constant C depends on d, c1 and c2 and the domain Ω.

Proof. The result stated in Lemma 3.1 is a special case of the more general
result in [32, Remark 13]. For the convenience of the readers we present the
proof. First, we rewrite (3.36) component wise in the form

−
d
∑

i=1

∂i(˜ξ∂iMk) + Mk = − gk + Mk in Ω,

∂n Mk =0 on ∂Ω,

(3.38)
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for k ∈ {1, 2, 3}. The operator A : W 1,2(Ω) → (W 1,2(Ω))
′

appearing in the
weak form of the latter problem is defined as

〈Au,w〉 =
∫

Ω

aij∂iu∂jw + uw for u,w ∈ W 1,2(Ω) (3.39)

with the matrix (aij)i,j∈{1,..,d} given by

aij(x) =
{

˜ξ(x) when i = j,
0 when i �= j.

Taking into account (3.35) we infer aij(·) ∈ L∞(Ω) and the ellipticity condi-
tion

d
∑

i,j=1

aij(x)θiθj � c1|θ|2 for any θ = (θ1, . . . , θd) ∈ R
d.

In order to apply [32, Theorem 1], we note that as Ω is of class C1, assumptions
of [32, Theorem 1] are fulfilled, cf. [32, Remark 1 and 7]. Hence we conclude
the existence of some 2 < p < 3 such that the operator A maps W 1,p(Ω) onto
(W 1,p′

(Ω))
′
, indeed p′ is the conjugate exponent of p. The upper bound on p

can be found in [32, Theorem 1], from which one also infers the inequality

‖A−1f‖W 1,p(Ω) � c‖f‖(W 1,p′ (Ω))′ (3.40)

due to the linearity of A−1. We notice that the constant c depends on Ω and
constants from (3.35). In order to conclude (3.37), we employ (3.40) with f be-
ing the right hand side of (3.38)1 and use the embedding Ls(Ω) ↪→ (W 1,p′

(Ω))′

where s � p′d
d(p′−1)+p′ for 2 < p < 3. �

Lemma 3.2. Let (vN ,MN , φN , μN ) be the interpolants defined by (3.2)–(3.3),
satisfying (3.7)–(3.10) and the energy estimate (3.11). Then MN satisfies

‖MN‖L2(0,T ;W 1,p(Ω)) � CE+
tot(v0,M0, φ0)

3
2 , (3.41)

where E+
tot(v0,M0, φ0) = (Etot(v0,M0, φ0) + 1) , for some 2 < p < 3 and the

positive constant C might depend on α, c1, c2, c3, cf. (1.6), Sobolev embedding
constants and the domain Ω.

Further φN and ˜Ψ′
0(φ

N ) satisfy

‖φN‖L2(0,T ;W 2,q(Ω)) + ‖˜Ψ′
0(φ

N )‖L2(0,T ;Lq(Ω)) � CE+
tot(v0,M0, φ0)3. (3.42)

where 1 < q = 2p
p+2 < 2 and the positive constant C in (3.42) depends on α,

c1, c2, c3, Sobolev embedding constants and the domain Ω.

Proof. In order to prove (3.41) we consider (3.8) for a.e. t ∈ (0, T ) as the
elliptic problem

div(ξ(φN
h )∇MN )=∂−

t,hMN +(vN ·∇)MN+
ξ(φN

h )
α2

(|MN |2MN−MN
h ) in Ω,

∂nMN=0 on ∂Ω,

(3.43)
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which is possible since, in view of (3.12), all the terms involved in (3.43) are
defined a.e. We focus on the estimate of the right hand side in (3.43)1. Using
the Hölder inequality, the Sobolev embedding and (3.12) we get

‖(vN · ∇)MN‖
L2(0,T ;L

3
2 (Ω))

� ‖vN‖L2(0,T ;L6(Ω))‖∇MN‖L∞(0,T ;L2(Ω))

� C‖vN‖L2(0,T ;W 1,2(Ω))‖∇MN‖L∞(0,T ;L2(Ω))

� CE+
tot(v0,M0, φ0).

(3.44)

Since L2(0, T ;W 1,2(Ω)) is dense in L2(0, T ;L3(Ω)), one can choose test func-
tions ψ2 ∈ L2(0, T ;L3(Ω)) in (3.8) and use (3.12)1,6 to compute the following

‖∂−
t,hMN‖

L2(0,T ;L
3
2 (Ω))

= sup
{ψ2∈L2(0,T ;L3(Ω)) | ‖ψ2‖L2(0,T ;L3(Ω))�1}

∫ T

0

∫

Ω

∂−
t,hMN · ψ2

� C

(

‖vN‖L2(0,T ;W 1,2(Ω))‖∇MN‖L∞(0,T ;L2(Ω))

+
∥

∥

∥

∥

div(ξ(φN
h )∇MN ) − ξ(φN

h )
α2

(|MN |2MN − MN
h )
∥

∥

∥

∥

L2(QT )

)

� C
(

E+
tot(v0,M0, φ0) + E+

tot(v0,M0, φ0)
1
2

)

.

(3.45)

Moreover, using bounds on ξ in (1.6), the Hölder inequality, the Sobolev em-
bedding and the definition of MN

h we arrive at
∥

∥

∥

∥

ξ(φN
h )

α2
(|MN |2MN − MN

h )
∥

∥

∥

∥

L2(0,T ;L
3
2 (Ω))

� C

(

‖MN‖3

L6(0,T ;L
9
2 (Ω))

+ ‖MN
h ‖

L2(0,T ;L
3
2 (Ω))

)

� C
(

‖MN‖3
L∞(0,T ;W 1,2(Ω)) + ‖MN

h ‖L∞(0,T ;W 1,2(Ω))

)

� C
(

E+
tot(v0,M0, φ0)

3
2 + E+

tot(v0,M0, φ0)
1
2

)

.

(3.46)

Applying Lemma 3.1 with s = 3
2 ( the value s = 3

2 is admissible since p <

3 implying p′ > 3
2 ⇒ 3p′

3(p′−1)+p′ < 3
2 , where the dimension d = 3. Similar

justification holds when d = 2. ) to (3.43) we obtain

‖MN‖W 1,p(Ω) �C

(

‖∂−
t,hMN‖

L
3
2 (Ω)

+ ‖(vN · ∇)MN‖
L

3
2 (Ω)

+
∥

∥

∥

∥

ξ(φN
h )

α2
(|MN |2MN − MN

h )
∥

∥

∥

∥

L
3
2 (Ω)

+ ‖MN‖W 1,2(Ω)

)
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a.e. in (0, T ) with some 2 < p < 3 and the constant C independent of the time
variable. We combine the latter inequality with (3.44), (3.45), (3.46) and the
Young inequality to conclude (3.41).

To show (3.42), we will use (3.10). Using (3.12)4, (3.13) and (3.14)3 one
can bound the first two terms appearing in the left hand side of (3.10) in
L2(0, T ;L6(Ω)) by a constant multiple of Etot(v0,M

N
0 , φN

0 )
1
2 . Further since

‖H0(φN , φN
h )‖L∞(QT ) � c3 and by (3.12)3 along with (3.41), one has

1
2

∥

∥H0(φN , φN
h )|∇MN |2∥∥

L2(0,T ;L
2p

p+2 (Ω))

� C‖∇MN‖L2(0,T ;Lp(Ω))‖∇MN‖L∞(0,T ;L2(Ω))

� CE+
tot(v0,M0, φ0),

(3.47)

and
1

4α2

∥

∥H0(φN , φN
h )(|MN |2 − 1)2

∥

∥

L2(0,T ;L
2p

p+2 (Ω))

� C
(

‖MN‖3
L∞(0,T ;L6(Ω))‖MN‖L2(0,T ;Lp(Ω)) + 1

)

� C
(

E+
tot(v0,M0, φ0)

3
2 E+

tot(v0,M0, φ0)
3
2 + 1
)

� CE+
tot(v0,M0, φ0)3.

(3.48)

In both of (3.47) and (3.48) the positive constant C might depend on α, c1,
c2, c3, Sobolev embedding constants and |Ω|. From the discussion above (in
particular the inequalities (3.47) and (3.48)) one infers from (3.10)

−ηΔφN + ˜Ψ′
0(φ

N ) =f(MN , φN , φN
h , μN ) in Ω,

∂nφN =0 on ∂Ω
(3.49)

a.e. in (0, T ) with
∥

∥f(MN , φN , φN
h , μN )

∥

∥

L2(0,T ;L
2p

p+2 (Ω))
� CE+

tot(v0,M0, φ0)3,

where C might depend on α, c1, c2, c3, Sobolev embedding constants and the
domain Ω.

Finally, applying the inequality (2.8) from Proposition 2.1 to (3.49) and
the Young inequality again we obtain (3.42). �

3.1.3. Additional convergences of {MN }, {φN }, {Ψ′(φN )}. In view of es-
timate (3.41), we immediately obtain that for some p > 2 we have up to a
nonrelabeled subsequence

MN ⇀ M in L2(0, T ;W 1,p(Ω)),

where M comes from (3.17). This concludes (1.15)1. Similarly, by (3.42) we
have up to a nonrelabeled subsequence

φN ⇀ φ in L2(0, T ;W 2, 2p
p+2 (Ω)), (3.50)

proving (1.15)2. The next task is to show that up to a nonrelabeled subse-
quence

˜Ψ′
0(φ

N ) ⇀ ˜Ψ′
0(φ) in L2(0, T ;L

2p
p+2 (Ω)), (3.51)
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from which (1.15)3 follows. We observe that the estimate of ˜Ψ′
0(φ

N ) in (3.42)
implies that

˜Ψ′
0(φ

N ) ⇀ ζ in L2(0, T ;L
2p

p+2 (Ω)).

Hence we have to identify ζ. Let us begin with showing that

˜Ψ′
0(φ

N ) → ˜Ψ′
0(φ) a.e. in QT . (3.52)

To this end we adopt arguments devised in the context of the Cahn–Hillard
equations with a logarithmic free energy, see [20, p. 1510], and developed for
the case of the Navier–Stokes–Cahn–Hilliard system with a singular potential,
see [25, p. 285]. We define for arbitrary but fixed δ ∈ (0, 1) the quantity aδ =
min
{

˜Ψ′
0(1 − δ),−˜Ψ′

0(−1 + δ)
}

. Then we have aδ � |˜Ψ′
0(s)| for 1 > |s| > 1− δ

as ˜Ψ′
0 is nondecreasing. Hence we obtain

aδ

∣

∣

{

(t, x) ∈ QT : 1 > |φN (t, x)| > 1 − δ
}∣

∣ �
∫

QT

|˜Ψ′
0(φ

N )| � c

by (3.42) and Hölder’s inequality. Combining the pointwise convergence φN →
φ from (3.21) and the Fatou Lemma with the latter inequality we conclude

|{(t, x) ∈ QT : 1 � |φ(t, x)| � 1 − δ}|
� lim inf

N→∞
∣

∣

{

(t, x) ∈ QT : 1 > |φN (t, x)| > 1 − δ
}∣

∣ � ca−1
δ

(3.53)

for any δ ∈ (0, 1). Taking into account assumption (1.8)1 it follows that aδ →
∞ as δ → 0+. Hence the limit passage δ → 0+ in (3.53) yields

|{(t, x) ∈ QT : |φ(t, x)| = 1}| = 0,

in other words |φ| < 1 a.e. in QT . This bound, the pointwise convergence φN →
φ from (3.21) and the assumed regularity ˜Ψ′

0 ∈ C1((−1, 1)), cf. Assumption 1.1,
imply (3.52). Having (3.52) and the bound on {˜Ψ′

0(φ
N )} from (3.42) at hand

we apply the Vitali convergence theorem to conclude that ˜Ψ′
0(φ

N ) → ˜Ψ′
0(φ)

in L1(QT ). Hence we have ζ = ˜Ψ′
0(φ) and (3.51) is proved.

The convergence (3.51) along with the fact that φ ∈ [−1, 1] and (2.1)-(2.2)
in particular imply that Ψ′(φ) ∈ L2(0, T ;L

2p
p+2 (Ω)).

3.1.4. The energy inequality for the weak solution. This section is devoted
to the proof of the fact that the quadruple (v,M, φ, μ) obtained as limits of
interpolants (we refer to (3.17)) satisfies (1.16) for all t ∈ (0, T ), where Etot

is as defined in (1.17). To this end we take into account (3.17), (3.18), (3.19),
(3.22), (3.33) and (3.34) and select subsequences that will not be relabeled
such that for a.e. t ∈ (0, T )
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ρN (t) → ρ(t) in L2(Ω),

vN (t) → v(t) in L4(Ω),

∇MN (t) → ∇M(t) in L2(Ω),

MN (t) → M(t) in L4(Ω),

∇φN (t) ⇀ ∇φ(t) in L2(Ω),

φN (t) → φ(t) in L2(Ω) and a.e. in Ω.

(3.54)

We want to show that for a.e. t ∈ (0, T )

Etot(v(t),M(t), φ(t)) � lim inf
N→∞

Etot(vN (t),MN (t), φN (t)). (3.55)

We argue as in [36, Section 5.2, pp. 28–29] and focus only on the terms from
Etot(vN (t),MN (t), φN (t)) that are not treated in [36]. We fix t ∈ (0, T ), in
which convergences from (3.54) are available. By (3.54)1,2 we get

lim
N→∞

1
2

∫

Ω

ρN (t)|vN (t)|2 =
1
2

∫

Ω

ρ(t)|v(t)|2.

Since ˜Ψ0 ∈ C([−1, 1]), we obtain by using (3.54)6 and the Lebesgue dominated
convergence theorem

lim
N→∞

∫

Ω

˜Ψ(φN (t)) = lim
N→∞

∫

Ω

(

˜Ψ0(φN (t)) − κ

2
(φN (t))2

)

=
∫

Ω

(

˜Ψ0(φ(t)) − κ

2
(φ(t))2

)

=
∫

Ω

˜Ψ(φ(t)).

The remaining details for the proof of (3.55) can be found in [36, Section 5.2,
pp. 28–29]. Applying the convergences from (3.1) we conclude Etot(v0,M

N
0 , φN

0 )
→ Etot(v0,M0, φ0) in a straightforward way. Hence to conclude (1.16) it suf-
fices to combine (3.55), the fact that

√

2ν(φN
h )D(vN ) ⇀

√

2ν(φ)D(v) in L2(QT ),

which can be proved as in [36, eq. (5.57)], the weak lower semicontinuity of
norms with (3.17)6 and (3.20).

3.1.5. Continuity with respect to time of v, M, φ. This section aims to show
that some of the limit functions obtained in previous sections are continuous
w.r.t. time variable in a certain sense. Namely, we show

ρv ∈Cw([0, T ];L2(Ω)),

v ∈Cw([0, T ];L2(Ω)),

M ∈Cw([0, T ];W 1,2(Ω)),

M ∈C([0, T ];L2(Ω)),

φ ∈Cw([0, T ];W 1,2(Ω)),

φ ∈C([0, T ];L2(Ω)).

(3.56)
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First, for the proof of (3.56)3,4,5,6 we refer to [36, Section 5.3, p. 29]. Let us
next prove (3.56)1. As ρ ∈ L∞(QT ) and v ∈ L∞(0, T ;L2(Ω)), we have

ρv ∈ L∞(0, T ;L2(Ω)). (3.57)

Next in view of (3.24) one has up to a nonrelabeled subsequence

∂tPdiv(ρ̃v
N ) ⇀ ∂tPdiv(ρv) in L

8
7 (0, T ; (V (Ω))′)

(where the identification of the limit follows from (3.25)). Then the fact that
∂tPdiv(ρv) ∈ L

8
7 (0, T ; (V (Ω))′) implies Pdiv(ρv) ∈ C([0, T ]; (V (Ω))′). This

along with (3.57) renders

Pdiv(ρv) ∈ Cw([0, T ];L2
div(Ω)) (3.58)

by using [48, Ch. III, Lemma 1.4].
Next using the definition (1.4)–(1.5) of the Leray projector Pdiv we write

ρv = Pdiv(ρv) + ∇p, (3.59)

where p(t) ∈ W 1,2(Ω),
∫

Ω

p(t) = 0 and p(t) solves the weak Neumann problem

(1.5). Now one can follow the arguments used in [6, Section 5.2, pp. 475–476] to
show that ∇p ∈ Cw([0, T ];L2(Ω)). This along with (3.58) furnishes the proof
of (3.56)1.

Finally, we wish to show (3.56)2. By definition one needs to prove v(·, tn) ⇀
v(·, t) in L2(Ω) for any sequence {tn} ⊂ [0, T ] such that tn → t. In view of the
non-degeneracy of ρ, one first infers from (3.59)

v(·, t) =
1

ρ(·, t)Pdiv(ρv)(·, t) +
1

ρ(·, t)∇p(·, t),

(with this definition one also defines v in a set of measure zero, so that
v is defined everywhere in [0, T ]) uses (3.56)1, ∇p ∈ Cw([0, T ];L2(Ω)) and
the fact that ρ ∈ C([0, T ];L2(Ω)) (which follows from (3.56)6) to show that
v(·, tn) ⇀ v(·, t) in L1(Ω). Finally, since v(·, tn) is uniformly bounded in L2(Ω),
one concludes that v(·, tn) ⇀ v(·, t) in L2(Ω) and thereby finishing the proof
of (3.56)2.

3.2. Recovering the weak formulations

In this section we verify that the quadruple (v,M, φ, μ) satisfies the formulation
of the problem in the sense of Definition 1.4 by performing the limit passage
N → ∞ in (3.7)–(3.10). We start with the momentum equation. We consider a
fixed ψ1 ∈ C1

c ([0, T );V (Ω)) in (3.7). Since ρ̃v
N is bounded in L∞(0, T ;L2(Ω)),

which follows from (3.12)1 and (3.16), we have

Pdiv(ρ̃v
N (t)) ⇀ Pdiv(ρv(t)) in L2(Ω) for a.e. t ∈ (0, T ), (3.60)

where the weak limit in (3.60) is identified by using (3.25). Fixing τ ∈ (0, T )
such that (3.60) holds we take into consideration that ∂−

t,hρNvN = ∂tρ̃v
N by
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(3.6)1 and integrate by parts with respect to time in (3.7) to obtain
∫

Ω

ρ̃v
N (τ)ψ1(τ) −

∫

Ω

ρ̃v
N (0)ψ1(0) +

∫ τ

0

(∫

Ω

−ρ̃v
N · ∂tψ1

−
∫

Ω

(ρN
h vN ⊗ vN ) · ∇ψ1 −

∫

Ω

vN ⊗ JN · ∇ψ1

+
∫

Ω

(

div(ξ(φN
h )∇MN ) − ξ(φN

h )
α2

(|MN |2MN − MN
h )
)

∇MN · ψ1

)

=
∫ τ

0

(

−2
∫

Ω

ν(φN
h )DvN · Dψ1 −

∫

Ω

∇μNφN
h · ψ1

)

.

Thanks to (3.60) and the definition (1.4)–(1.5) of the Leray projector, we pass
to the limit in the first term on the left hand side of the latter identity. By the
definition of ρ̃v

N (0) we have, employing also (3.1)2,

ρ̃v
N (0) = ρN (−h)vN (−h) = 1

2

(

ρ̃1 + ρ̃2 + (ρ̃2 − ρ̃1)φN
0

)

v0

→ 1
2 (ρ̃1 + ρ̃2 + (ρ̃2 − ρ̃1)φ0) v0 = ρ0v0 in L1(Ω),

which allows us to perform the passage in the second term. To pass to the
limit in the third term we use (3.25) and the definition (1.4)–(1.5) of the Leray
projector. We perform the limit passage in the fourth term with the help of

(3.22) and (3.32). We recall that JN = − ρ̃2 − ρ̃1

2
∇μN . Hence combining the

convergences (3.17)6 and (3.32) ensures the limit passage in the fifth term.
For the limit passage in the last term on the left hand side we use (3.20) and
(3.34). The limit passage on the right hand side is ensured by

ν(φN
h )D(vN ) ⇀ ν(φ)D(v) in L2(QT ),

whose proof can be found in [36, eq. (5.56)] and (3.17)6 combined with (3.18).
We arrive at

∫

Ω

ρv(τ)ψ1(τ) −
∫

Ω

ρv(0)ψ1(0) +
∫ τ

0

(∫

Ω

−ρv · ∂tψ1

−
∫

Ω

(ρv ⊗ v) · ∇ψ1 −
∫

Ω

v ⊗ J · ∇ψ1

+
∫

Ω

(

div(ξ(φ)∇M) − ξ(φ)
α2

(|M |2M − M)
)

∇M · ψ1

)

=
∫ τ

0

(

−2
∫

Ω

ν(φ)Dv · Dψ1 −
∫

Ω

∇μφ · ψ1

)

.

(3.61)

Next we consider t ∈ (0, T ) and a sequence {τk}, s.t. τk → t and the latter
identity holds for τ = τk. Employing (3.56)1 and the fact that all terms under
the integration sign over the time interval are integrable with respect to time
we conclude (1.13)1 by the limit passage k → ∞.

We note that the validity of identities (1.13)2,3 (by the limit passage in
(3.8) and (3.9)) can be proved by following line by line the arguments used
to show [36, (2.4)2 and (2.4)3] in [36, Section 5.4, p. 31]. In order to verify
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that (1.13)4 is fulfilled, we pass to the limit N → ∞ in (3.10). In view of the
convergences (3.17)6, (3.18), (3.34) and (3.19) we conclude

μN +
κ

2
(φN + φN

h ) − H0(φN , φN
h )

|∇MN |2
2

− H0(φN , φN
h )

4α2
(|MN |2 − 1)2

⇀ μ + κφ − ξ′(φ)
|∇M |2

2
− ξ′(φ)

4α2
(|M |2 − 1)2 in L1(QT ).

Indeed, the passage to the limit in the first two terms is straightforward and
the L1 weak convergence of the remaining two terms is explained in detail in
[36, Section 5.4, p. 32]. For the limit passage in the terms on the right hand
side of (3.10) we use the convergence

−ηΔφN + ˜Ψ′
0(φ

N ) ⇀ −ηΔφ + ˜Ψ′
0(φ) in L1(QT ),

which follows by (3.50) and (3.51). Thus we arrive at
∫ T

0

∫

Ω

(

μ + κφ − ξ′(φ)
|∇M |2

2
− ξ′(φ)

4α2
(|M |2 − 1)2

)

ψ4

=
∫ T

0

∫

Ω

(

−ηΔφ + ˜Ψ′
0(φ)
)

ψ4

for all ψ4 ∈ L∞(0, T ;L∞(Ω)). Hence it follows that identity (1.13)4 is fulfilled.

3.3. The attainment of initial data v0, M0, φ0

In this section, we prove (1.14) with the help of (1.13), which we proved in the
previous section. First we show the following identities

v(0) =v0 a.e. in Ω,

M(0) =M0 a.e. in Ω,

φ(0) =φ0 a.e. in Ω.

(3.62)

Setting ψ3(t, x) = θ(t)ϑ(x) in (1.13)3, where θ ∈ C1
c ([0, T )) with θ(0) > 0 and

ϑ ∈ C∞
c (Ω) are arbitrary but fixed, we obtain using (3.56)5

∫

Ω

φ0θ(0)ϑ = lim
t→0+

∫

Ω

φ(t)θ(t)ϑ =
∫

Ω

φ(0)θ(0)ϑ,

which implies (3.62)3. Setting ψ1(t, x) = θ(t)ω(x) in (1.13)1, where θ ∈ C1
c

([0, T )) with θ(0) > 0 and ω ∈ V (Ω) are arbitrary but fixed, yields
∫

Ω

ρ0v0 · θ(0)ω = lim
t→0+

∫

Ω

ρ(t)v(t) · θ(t)ω =
∫

Ω

ρ(0)v(0) · θ(0)ω,

where the second equality follows by (3.56)1 and (3.62)3 implies ρ(0) = ρ0.
Setting in the latter identity ω = v0 −v(0), which is allowed due to the density
of V (Ω) in L2

div(Ω), implies (3.62)1. We note that the fact that ρ0 has a positive
lower bound was also used. Finally, we repeat the above arguments to justify
(3.62)2.

With the help of (3.56) we will show that the energy inequality (1.16)
holds for all t ∈ [0, T ]. We start by considering an arbitrary t ∈ [0, T ] and a
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sequence {tk} such that tk � t, tk → t as k → ∞ and

ρ(tk)v(tk) ⇀ ρ(t)v(t) in L2(Ω),

v(tk) ⇀ v(t) in L2(Ω),

M(tk) ⇀ M(t) in W 1,2(Ω),

M(tk) → M(t) in L2(Ω),

φ(tk) ⇀ φ(t) in W 1,2(Ω),

φ(tk) → φ(t) in L2(Ω) and a.e. in Ω,

ρ(tk) → ρ(t) in L2(Ω) and a.e. in Ω

(3.63)

and (1.16) holds for each tk. The convergence (3.63)7 follows from (3.63)6 by
using the definition (1.9) of ρ. The existence of such a sequence {tk} is ensured
by (3.56). Because of the convexity of | · |2 (i.e. the inequality |A|2 − |B|2 �
2B · (A − B), for all A,B ∈ R

m, m � 1) and convergences (3.63)1,2,7 it follows
that

lim inf
k→∞

1
2

∫

Ω

ρ(tk)|v(tk)|2

� lim inf
k→∞

∫

Ω

(

1
2
ρ(tk)|v(t)|2 + ρ(tk)v(t) · (v(tk) − v(t))

)

=
1
2

∫

Ω

ρ(t)|v(t)|2.

(3.64)

For the passage to the limit k → ∞ in both terms we have used that ρ(tk)v(t)
→ ρ(t)v(t) in L2(Ω) (which follows by using Lebesgue’s dominated convergence
theorem and the fact that ρ is bounded) and also (3.63)2 in the second term.
Due to the weak lower semicontinutiy of convex functionals, the fact that
˜Ψ ∈ C([−1, 1]) and (3.63)5,6, we obtain

lim inf
k→∞

∫

Ω

(η

2
|∇φ(tk)|2 + ˜Ψ(φ(tk))

)

�
∫

Ω

(η

2
|∇φ(t)|2 + ˜Ψ(φ(t)

)

. (3.65)

Moreover, we obtain

lim inf
k→∞

∫

Ω

(

ξ(φ(tk))|∇M(tk)|2 +
ξ(φ(tk))

α2
(|M(tk)|2 − 1)2

)

�
∫

Ω

(

ξ(φ(t))|∇M(t)|2 +
ξ(φ(t))

α2
(|M(t)|2 − 1)2

)

,

(3.66)

by arguing as in [36, (5.77)]. Altogether, (3.64), (3.65), (3.66) and the absolute
continuity of the map

t 	→
∫ t

0

(

‖
√

2νDv‖2
L2(Ω) + ‖∇μ‖2

L2(Ω)

+
∥

∥

∥

∥

div(ξ(φ)∇M) − ξ(φ)
α2

M(|M |2 − 1)
∥

∥

∥

∥

2

L2(Ω)

) (3.67)
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imply that (1.16) holds for all t ∈ [0, T ]. Hence in particular it follows that

lim sup
t→0+

Etot(v(t),M(t), φ(t)) � Etot(v0,M0, φ0). (3.68)

Employing again (3.56) along with (3.62) (similarly as we have obtained (3.64)–
(3.66)) we deduce

lim inf
t→0+

Etot(v(t),M(t), φ(t)) � Etot(v(0),M(0), φ(0)) = Etot(v0,M0, φ0),

which along with (3.68) infers

lim
t→0+

Etot(v(t),M(t), φ(t)) = Etot(v0,M0, φ0). (3.69)

Taking into account the definition of Etot, employing the inequalities |A|2 −
|B|2 � 2B · (A − B) + 2|A − B|2 (which follows from the strong convexity of
| · |2) and |A|4 − |B|4 � 4|B|2B · (A − B) (which follows from the convexity of
| · |4) for all A,B ∈ R

m, one obtains the following for each t ∈ (0, T )

Etot(v(t),M(t), φ(t)) − Etot(v0,M0, φ0)

� 1
2

∫

Ω

(ρ(t) − ρ0)|v0|2 +
∫

Ω

ρ(t)v0 · (v(t) − v0) +
∫

Ω

ρ(t)|v(t) − v0|2

+
∫

Ω

(ξ(φ(t)) − ξ(φ0)) |∇M0|2 +
∫

Ω

2ξ(φ(t))∇M0 · (∇M(t) − ∇M0)

+ 2
∫

Ω

ξ(φ(t))|∇M(t) − ∇M0|2 +
1

4α2

∫

Ω

(ξ(φ(t)) − ξ(φ0)) |M0|4

+
1
α2

∫

Ω

ξ(φ(t))|M0|2M0 · (M(t) − M0)

− 1
2α2

∫

Ω

(

ξ(φ(t))|M(t)|2 − ξ(φ0)|M0|2
)

+
1

4α2

∫

Ω

(ξ(φ(t)) − ξ(φ0))

+η

∫

Ω

∇φ0 · (∇φ(t)−∇φ0)+η

∫

Ω

|∇φ(t)−∇φ0|2+
∫

Ω

(

˜Ψ0(φ) − ˜Ψ0(φ0)
)

− κ

2

∫

Ω

(

φ2(t) − φ2
0

)

=
14
∑

m=1

Im(t).

(3.70)

The task now is to prove (1.14) by taking the limsup t → 0+ on both sides of
the inequality (3.70). To this end we consider an arbitrary sequence {tk} such
that tk → 0+ as k → ∞. The sequence {tk} has a subsequence {tk

′} such that
the following hold

φ(tk
′
) → φ0, a.e. in Ω as k′ → ∞ (3.71)

by (3.56)6 and (3.62)3. Accordingly, we have

ρ(tk
′
) → ρ0, a.e. in Ω as k′ → ∞ (3.72)

by (1.9). For the proof of

lim
k′ →∞

Im(tk
′
) = 0 for m = 4, 5, 7, 8, 9, 10, 11 (3.73)
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we refer to [36, (5.82)-(5.85)]. Next we deal with I1, I2, I13 and I14. Conver-
gence (3.72) and the fact that ρ is a bounded function imply

lim
k′→∞

I1(tk
′
) = 0 (3.74)

by the Lebesgue dominated convergence theorem. Moreover, we have that
ρ(tk

′
)v0 → ρ0v0 in L2(Ω), which along with (3.56)2 and (3.62)1 yields

lim
k′→∞

I2(tk
′
) = 0. (3.75)

Since ˜Ψ0 ∈ C([−1, 1]), the following

lim
k′→∞

I13(tk
′
) = 0 (3.76)

is obtained as an immediate consequence of (3.71) and the Lebesgue dominated
convergence theorem.

Finally, by (3.56)6 and (3.62)3 we obtain

lim
k′→∞

I14(tk
′
) = 0. (3.77)

Hence

lim sup
k′→∞

(

ρ‖v(tk
′
) − v0‖2

L2(Ω) + c1‖∇M(tk
′
) − ∇M0‖2

L2(Ω)

+η‖∇φ(tk
′
) − ∇φ0‖2

L2(Ω)

)

� 0
(3.78)

follows from (3.70) by (3.73)–(3.77) provided that we apply (1.6)2 and take
into consideration that there is a positive lower bound on ρ, which we denote
by ρ.

The inequality (3.78) along with (3.56)4,6 infer

lim
k′→∞

(

‖v(tk
′
) − v0‖L2(Ω) + ‖M(tk

′
) − M0‖W 1,2(Ω)

+‖φ(tk
′
) − φ0‖W 1,2(Ω)

)

= 0.
(3.79)

Since {tk} is an arbitrarily sequence possessing a subsequence satisfying (3.79),
one concludes the proof of (1.14).

3.4. Attainment of the boundary condition and some regularity results for M
in Lebesgue spaces

In this section we discuss the proofs of the items (ii) and (iii) of Theorem 1.5.
For the proof of the item (ii) we refer the readers to [36, Section 6.1]. The item
(iii) was formally commented in [36, Section 6.2] but one needs to suitably
regularize the magnetization equation to make the arguments concrete. Here
we provide the details for the proof of item (iii).

In the direction of proving item (iii) of Theorem 1.5, we first show that
for given v and φ in the functional settings (1.12)1,3−(1.15)2 there is a unique
M satisfying (1.12)2−(1.15)1 and solving the weak formulation (1.13)2 of the
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magnetization equation. Since ∂tM ∈ L2(0, T ;L
3
2 (Ω)), equation (1.13)2 can

be rewritten as:
∫ t

0

∫

Ω

(

∂tM + (v · ∇)M
)

·ψ2 = −
∫ t

0

∫

Ω

ξ(φ)∇M · ∇ψ2

−
∫ t

0

∫

Ω

1
α2

(

ξ(φ)(|M |2 − 1)M
) · ψ2

(3.80)

for t ∈ (0, T ) and ψ2 ∈ C1
c (0, T ;W 1,2(Ω)) or equivalently

∫

Ω

∂tM · ψ2 +
∫

Ω

(v · ∇)M · ψ2 = −
∫

Ω

ξ(φ)∇M · ∇ψ2

−
∫

Ω

1
α2

(

ξ(φ)(|M |2 − 1)M
) · ψ2

(3.81)

for a.e. t ∈ (0, T ) and ψ2 ∈ W 1,2(Ω).
Let M1 and M2 belong to (1.12)2−(1.15)1 and solve (3.80) with v and φ in the
framework (1.12)1,3− (1.15)2. One can now take the difference of the equations
solved by M1 and M2 and consider (M1 − M2) as a test function, which is
possible since C1

c (0, T ;W 1,2(Ω)) is dense in L2(0, T ;W 1,2(Ω)). Consequently
using the incompressibility of v and the inequality

(|M1|2M1 − |M2|2M2

) ·
(M1 − M2) � 0 (since the map α 	→ |α|2α is monotone) one furnishes

1
2
‖(M1 − M2)(t)‖2

L2(Ω) � C

∫ t

0

‖M1 − M2‖2
L2(Ω),

for a.e. t ∈ (0, T ). Hence by the Grönwall inequality one at once renders that
M1 = M2 a.e. in QT .

Now we plan to use test functions of the form |M |r−2M with r > 2
in (3.81). But due to the lack of regularity (particularly one needs for a.e.
t ∈ (0, T ), M ∈ Lr−1(Ω) for arbitrary r > 2) this does not qualify as a test
function. Instead we consider a regularized magnetization equation, i.e. we first
take a sequence {φm}m in L2(0, T ;C∞(Ω)) such that

φm → φ in L2(QT )

(such a sequence can easily be constructed by a suitable argument involving
cut-off and convolution by mollifiers). Now let Mm be the weak solution to
(3.80) or (3.81) corresponding to φm with boundary condition ∂nMm |ΣT

= 0
and initial condition Mm(·, 0) = M0 ∈ W 1,2(Ω). Our idea is to consider
|Mm|r−2Mm as a test function in the equation solved by (φm,Mm) thereby
proving an uniform estimate of Mm in Lr(Ω) and next pass m → ∞ to con-
struct a weak solution M corresponding to φ for (3.80) or equivalently (3.81)
which also solves the desired Lr(Ω) estimate. Of course, because of the unique-
ness of the solution of the magnetization equation corresponding to the fixed
pair (v, φ) and the initial data M0, which we have already proved, this process
will give the same M solving (1.13)2.

With the help of a time discretization scheme one can prove the existence
of a weak solution Mm ∈ L∞(0, T ;W 1,2(Ω)) ∩ W 1,2(0, T ;L

3
2 (Ω)) of (3.80) or
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equivalently (3.81) corresponding to a vector field v (satisfying (1.12)1) and
φm. Moreover we notice that, in a strong form, this Mm solves

ΔMm =
1

ξ(φm)

(

∂tM
m + (v · ∇)Mm − ξ′(φm)∇Mm · ∇φm

+
ξ(φm)

α2

(|Mm|2 − 1
)

Mm
)

in Ω,

∂nMm =0 on ∂Ω.

(3.82)

In view of the fact that Mm ∈ L∞(0, T ;W 1,2(Ω))∩W 1,2(0, T ;L
3
2 (Ω)) the right

hand of (3.82)1 can be estimated in L2(0, T ;L
3
2 (Ω)) and hence by standard

elliptic regularity Mm ∈ L2(0, T ;W 2, 3
2 (Ω)) ↪→ L2(0, T ;Lr(Ω)) for any 0 <

r < ∞. Hence for a.e. t ∈ (0, T ), |Mm|r−1Mm(t), r > 2 can be used as a test
function in (3.81). Consequently

1
r
∂t‖Mm‖r

Lr(Ω) +
∫

Ω

(v · ∇)Mm|Mm|r−2Mm

+
∫

Ω

ξ(φm)(r − 1)|Mm|r−2|∇Mm|2 +
1
α2

∫

Ω

ξ(φm)|Mm|r+2

− 1
α2

∫

Ω

ξ(φm)|Mm|r = 0.

(3.83)

Once again integrating by parts the second term and using that div v = 0 on
Ω one concludes from (3.83) that:

∂t‖Mm‖r
Lr(Ω) � c2r

α2
‖Mm‖r

Lr(Ω), (3.84)

where c2 > 0 is the constant appearing in the assumption (1.6). Now if one
assumes M0 ∈ W 1,2(Ω) ∩ Lr(Ω), r > 6, using Gronwall’s inequality one has
the following from (3.84):

‖Mm(t)‖Lr(Ω) � ‖M0‖Lr(Ω)e
c2
α2 t for all t ∈ [0, T ]. (3.85)

Additionally if M0 ∈ L∞(Ω), one can take the limit r → ∞ in (3.85) to
conclude that:

‖Mm(t)‖L∞(Ω) � ‖M0‖L∞(Ω)e
c2
α2 t for all t ∈ [0, T ]. (3.86)

Now we let m → ∞ in the equation solved by (φm,Mm), i.e. (3.80) with
(φ,M) replaced by (φm,Mm). The limit passage in the equation is obtained
in a standard way (roughly it consists in showing the weak compactness of
Mm in L2(0, T ;W 1,2(Ω)) and next using Aubin-Lions to achieve the strong
compactness in L2(0, T ;L4(Ω))). Finally in view of the estimates (3.85) and
(3.86), which are independent of m, one concludes (1.20) and (1.21).

3.5. Summary of the proof of Theorem 1.5

For the sake of the readers we summarize the proof of Theorem 1.5 with exact
references to the sections.

• For the obtainment of the regularities (1.12) with the exception of M ∈
W 1,2(0, T ;L

3
2 (Ω)), φ ∈ L2(0, T ;W 2,1(Ω)) and Ψ′(φ) ∈ L1(QT ), we refer

the readers to (3.17) and (3.56). One can obtain the W 1,2(0, T ;L
3
2 (Ω))
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regularity of M simply by estimating ∂tM ∈ L2(0, T ;L
3
2 (Ω)) by us-

ing (1.1)3 and the available regularities for v and M. More precisely
(v ·∇)M can be estimated in L2(0, T ;L

3
2 (Ω)) as in (3.44) and the bound-

edness of div(ξ(φ)∇M)− ξ(φ)
α2 (|M |2 −1)M in L2(QT ) follows from (1.16).

The additional p−regularities (1.15) of M, φ and Ψ′(φ) can be found in
Sect. 3.1.3 and they are of course stronger than φ ∈ L2(0, T ;W 2,1(Ω))
and Ψ′(φ) ∈ L1(QT ) (stated as a part of (1.12)).

• The weak formulation (1.13) solved by (v,M, φ, μ) is proved in Sect. 3.2.
• The energy estimate (1.16) is obtained in Sect. 3.1.4.
• The attainment of the initial data in the sense of (1.14) is obtained in

Sect. 3.3.
• The items (ii) and (iii) of Theorem 1.5 corresponding to the attainment

of boundary condition for M and some regularity in Lebesgue spaces are
proved in Sect. 3.4.

In view of the above items we finally conclude the proof of Theorem 1.5. �
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[32] Gröger, K.: A W l,p-estimate for solutions to mixed boundary value problems for
second order elliptic differential equations. Math. Ann. 283, 679–687 (1989)
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