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Abstract. We investigate the emergence of a collective periodic behavior
in a frustrated network of interacting diffusions. Particles are divided
into two communities depending on their mutual couplings. On the one
hand, both intra-population interactions are positive; each particle wants
to conform to the average position of the particles in its own community.
On the other hand, inter-population interactions have different signs: the
particles of one population want to conform to the average position of the
particles of the other community, while the particles in the latter want to
do the opposite. We show that this system features the phenomenon of
noise-induced periodicity: in the infinite volume limit, in a certain range of
interaction strengths, although the system has no periodic behavior in the
zero-noise limit, a moderate amount of noise may generate an attractive
periodic law.
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1. Introduction

Robust periodic behaviors are frequently encountered in life sciences and are
indeed one of the most commonly observed self-organized dynamics. For in-
stance, spontaneous brain activity exhibits rhythmic oscillations called alpha
and beta waves [14]. From a theoretical standpoint, the mechanism driving the
emergence of periodic behaviors in such systems is poorly understood. For ex-
ample, neurons neither have any tendency to behave periodically on their own,
nor are subject to any periodic forcing; nevertheless, they organize to produce
a regular motion perceived at the macroscopic scale [28]. Various models of
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large families of interacting particles showing self-sustained oscillations have
been proposed; we refer the reader to [1,2,4,5,7,9–11,13,15,16,19,20], where
possible mechanisms leading to a rhythmic behavior are discussed and many
related references are given.

Here we mention two mechanisms—which are of interest to us—capable
to induce or enhance periodic behaviors in stochastic systems with many de-
grees of freedom. The first one is noise. The role of the noise is twofold: on
the one hand, it can lead to oscillatory laws in systems of nonlinear diffusions
whose deterministic counterparts do not display any periodic behavior [24,25];
on the other hand, it can facilitate the transition from an equilibrium solution
to macroscopic self-organized oscillations [6,18,27].

The second mechanism is the topology of the interaction network. It
has been recently pointed out in [8,13,26] that a specific network structure
may favor the emergence of collective rhythms. In particular, in [8,26], the
large volume dynamics of a two-population generalization of the mean field
Ising model is considered. The system is shown to undergo a transition from
a disordered phase, where the magnetizations of both populations fluctuate
around zero, to a phase in which they both display a macroscopic regular
rhythm. Such a transition is driven by inter- and intra-population interactions
of different strengths and signs leading to dynamical frustration.

In the present paper we combine the two mechanisms described above
and we design a toy model of frustratedly interacting diffusions that shows
noise-induced periodicity, in the sense that periodic oscillations appear for
an intermediate amount of noise. The peculiar feature of the model under
consideration is that the structure of the interaction network depends on the
noise in that it is the noise that switches on the interaction terms, thus leading
to periodic dynamics.

2. Description of the model and outline of the results

Let us consider a system of N diffusive particles on R. We divide the N particles
into two disjoint communities of sizes N1 and N2 respectively and we denote
by I1 (resp. I2) the set of sites belonging to the first (resp. second) community.
In this setting, we indicate with

(
x
(N)
j (t)

)
j=1,...,N1

the positions at time t of

the particles of population I1 and with
(
y
(N)
j (t)

)
j=1,...,N2

the positions at time

t of the particles of population I2, so that

z(N)(t) =
( CommunityI1

x
(N)
1 (t), x(N)

2 (t), . . . , x(N)
N1

(t),

Community I2

y
(N)
1 (t), y(N)

2 (t), . . . , y(N)
N2

(t)
)

represents the state of the whole system at time t. The basic feature of our
model is that the strength of the interaction between particles depends on the
community they belong to: θ11 and θ22 tune the interaction between sites of the
same community, whereas θ12 and θ21 control the coupling strength between
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Figure 1. A schematic representation of the interaction net-
work. Particles are divided into two communities, I1 and I2.
Ignoring inter-population interactions, each community taken
alone is a mean field system with interaction strength θ11
(i = 1 or 2). When we couple the two communities, popu-
lation I1 (resp. I2) influences the dynamics of population I2
(resp. I1) through the average position of its particles with
strength θ21 (resp. θ12)

particles of different groups. In fact, we construct the network of interacting
diffusions visualized in Fig. 1.

A crucial feature for the system to show periodic behavior is frustration
of the network, i.e. the inter-community interactions must have opposite signs.
Now we introduce the microscopic dynamics we are interested in. Let

m
(N)
1 (t) :=

1
N1

N1∑
j=1

x
(N)
j (t) and m

(N)
2 (t) :=

1
N2

N2∑
j=1

y
(N)
j (t)

be the empirical means of the positions of the particles in populations I1 and
I2, respectively, at time t. Moreover, denote by α := N1

N the fraction of sites
belonging to the first group. Then, omitting time dependence for notational
convenience, the interacting particle system we are going to study reads as

dx
(N)
j =

(
−
(
x
(N)
j

)3
+ x

(N)
j

)
dt − α θ11

(
x
(N)
j − m

(N)
1

)
dt

− (1 − α) θ12

(
x
(N)
j − m

(N)
2

)
dt + σdwj , for j = 1, . . . , N1,

dy
(N)
j =

(
−
(
y
(N)
j

)3
+ y

(N)
j

)
dt − α θ21

(
y
(N)
j − m

(N)
1

)
dt

− (1 − α) θ22

(
y
(N)
j − m

(N)
2

)
dt + σdwN1+j , for j = 1, . . . , N2,

(2.1)

where (wj(t); t ≥ 0)j=1,...,N are N independent copies of a standard Brownian
motion. Here σ ≥ 0 is the parameter that tunes the amount of noise in the
system, since the diffusion coefficient is the same for each coordinate.
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Remark 2.1. Existence and uniqueness of a strong solution to (2.1) can be es-
tablished via the Khasminskii criterion [17,21]: by taking the norm-like func-
tion

V
(
z(N)
)

=
1

N1

N1∑
i=1

⎡
⎢⎣
(
x
(N)
i

)4

4
+

(
x
(N)
i

)2

2

⎤
⎥⎦+

1
N2

N2∑
i=1

⎡
⎢⎣
(
y
(N)
i

)4

4
+

(
y
(N)
i

)2

2

⎤
⎥⎦ ,

one obtains an inequality of the form LV
(
z(N)
) ≤ k

[
1 + V

(
z(N)
)]

, for some
k > 0, with L the infinitesimal generator of diffusion (2.1).

Notice that in system (2.1) the two groups of particles interact only
through their empirical means. This makes our model mean field and, in par-
ticular, when θ11 = θ22 = θ12 = θ21 = θ > 0, the system of equations (2.1)
reduces to the mean field interacting diffusions considered in [12]. In a gen-
eral setting, all the interaction parameters can be either positive or negative
allowing both cooperative/conformist and uncooperative/anti-conformist in-
teractions. In the present paper, we focus on the case θ11 > 0, θ22 > 0 and
θ12θ21 < 0. Moreover, without loss of generality, we make the specific choice
θ12 > 0 and θ21 < 0, which means that particles in I1 tend to conform to the
average particle position of community I2, whereas particles in I2 prefer to
differ from the average particle position of community I1 (see Eq. (2.1)).

Numerical simulations of system (2.1) with large N show that m
(N)
1 (t)

and m
(N)
2 (t) display an oscillatory behavior in appropriate regions of the pa-

rameter space (see Sect. 3). This led us to investigate the thermodynamic limit
of our system of interacting diffusions, that is, the limit when the number of
particles goes to infinity. It is known that solutions of SDEs like (2.1) cannot
have a time-periodic law, as these solutions are either positive recurrent, null
recurrent or transient; see [24,25] and references therein. However, the mean
field interaction in (2.1) has a peculiar feature. When the interaction is of this
type, at any time t, the empirical average of the particle positions in (2.1) is
expected to converge, as the number of particles goes to infinity, to a limit
given by the solution of a nonlinear SDE. Nonlinear SDEs are SDEs where the
coefficients depend on the law of the solution itself and, in contrast with sys-
tems like (2.1), such nonlinear SDEs might have solutions with periodic law,
see [25]. Therefore, the oscillations in the trajectories of mN

1 (t) and mN
2 (t)

shown by simulations can be theoretically explained via the thermodynamic
limit of the system.

We outline here the main results presented in the sequel. We follow an
approach similar to the one adopted in [6].

1. In Sect. 4.1 we prove that, starting from i.i.d. initial conditions, indepen-
dence propagates in time when taking the infinite volume limit. In par-
ticular, as N grows large, the time evolution of a pair of representative
particles, one for each population, is described by the limiting dynamics

dx =
[−x3 + x − αθ11 (x − E[x]) − (1 − α)θ12 (x − E[y])

]
dt + σdw1

dy =
[−y3 + y − αθ21 (y − E[x]) − (1 − α)θ22 (y − E[y])

]
dt + σdw2, (2.2)
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where notation E stands for the expectation with respect to the probabil-
ity measure Q(t; ·) = Law(x(t), y(t)), for every t ∈ [0, T ], and (w1(t); 0 ≤
t ≤ T ) and (w2(t); 0 ≤ t ≤ T ) are two independent standard Brownian
motions.
In particular, we show that, for all T > 0 and for all t ∈ [0, T ], any ran-
dom vector of the form

(
x
(N)
i1

(t), . . . , x(N)
ik1

(t), y(N)
j1

(t), . . . , y(N)
jk2

(t)
)

con-
verges in distribution, as N goes to infinity, to a vector (x1(t), . . . , xk1(t),
y1(t), . . . , yk2(t)), whose entries are independent random variables such
that xi(t) (i = 1, . . . , k1) are copies of the solution to the first equation
in (2.2) and yi(t) (i = 1, . . . , k2) are copies of the solution to the sec-
ond equation in (2.2). This is usually referred to as the phenomenon of
the propagation of chaos. See [3] for a proof in a general framework of
weakly interacting diffusions with jumps. Notice that our model is a two-
population version of the model in Section 4 in [3], as here there are no
jumps and the drift term in (2.2) satisfies their Assumption 3.

2. Being nonlinear, system (2.2) is a good candidate for having a solution
with periodic law. It is however very hard to gain insight into its long-time
behavior or to find periodic solutions as the problem is infinite dimen-
sional, due to the presence of nonlinearity and noise. As a first step, in
Sect. 4.2 we study the limiting system (2.2) in the absence of noise and,
in particular, we argue that oscillatory behaviors are not observed when
σ = 0. This remains true for small values of σ > 0 in some parameter
regimes. See Sect. 3 for details.

3. In Sects. 4.3 and 4.4 we tackle system (2.2) with noise. We show that, in
the presence of an appropriate amount of noise, the limiting positions of
representative particles of the two populations evolve approximately as
a pair of independent Gaussian processes (small-noise Gaussian approx-
imation). This reduces the problem to a finite dimensional one, since we
provide the explicit (deterministic) equations for the mean and variance
of those processes. The dynamical system describing the time evolution
of means and variances has a Hopf bifurcation and, as a consequence, in
a certain range of the noise intensity, it has a limit cycle as a long-time
attractor, implying that the laws of the previously mentioned Gauss-
ian processes are periodic. Thus, the small-noise Gaussian approximation
gives a good qualitative description of the emergence of the self-sustained
oscillations observed for system (2.1) (see Sect. 3).

Intuitively, the mechanism behind the emergence of periodicity in our
system is similar to the one in [8] and can be described as follows. Imagine
to start with two independent communities, that is, particles evolve according
to system (2.1) with θ12 = θ21 = 0. When the intra-population interaction
strengths θ11 and θ22 are large enough, each population tends to its own rest
state, that one may guess to be (close to) one of the minima of the double well
potential V (x) = x4

4 − x2

2 (see [12]). The key aspect, which we believe makes
the model under consideration interesting, is that linking the two populations
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.

�Fig. 2. Trajectories of
(
m

(N)
1 (t),m(N)

2 (t)
)

obtained with nu-
merical simulations of system (2.1), in the absence of noise
(first column), in the presence of an intermediate amount of
noise (second column) and of a high-intensity noise (third col-
umn). In all cases, we considered 106 iterations with a time-
step dt = 0.005, 1000 particles, α = 0.5, θ11 = θ22 = 8. From
top to bottom: A − 1 < B < A + 2, in particular, A = 2
and B = 2.5; B = A + 2, in particular, A = 2 and B = 4;
B > A + 2, in particular, A = 2 and B = 7.
We see that, during a time interval of the same length (namely,
106 iterations), when the intensity of the noise is below a cer-
tain threshold (first column, σ = 0 in all the three panels) no
periodic behavior arises in any of the three considered cases
and the system ends up in one of the stable equilibria. On the
contrary, when the intensity of the noise is large (third col-
umn, σ = 5 in all the three panels), the zero-mean Brownian
disturbance dominates and the trajectories resemble random
excursions around the origin. Whenever the amount of noise
is intermediate (second column, from top to bottom: σ = 0.5,
σ = 0.1 and σ = 0.6), self-sustained oscillations appear; for
further details about this scenario see Fig. 3
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Figure 3. Analysis of the period of the trajectories of(
m

(N)
1 (t),m(N)

2 (t)
)

obtained via numerical simulations of sys-
tem (2.1), in the presence of an intermediate amount of noise.
In all cases, we considered 106 iterations with a time-step
dt = 0.005, 1000 particles, α = 0.5, θ11 = θ22 = 8. From top
to bottom: A − 1 < B < A + 2, in particular, A = 2 and
B = 2.5, with σ = 0.5; B = A + 2, in particular, A = 2 and
B = 4, with σ = 0.1; B > A + 2, in particular, A = 2 and
B = 7, with σ = 0.6.
In the first column, we plotted the relevant spectral region
of the averaged modulus of the discrete Fourier transform
P (ν) of m

(N)
2 against the frequencies ν. For these figures we

employed the Fourier function of Mathematica applied to a
trajectory of m

(N)
2 over 106 steps and averaged the obtained

spectrum over M = 50 simulations. The average periods in the
three cases were obtained as the reciprocals of the frequencies
highlighted by the red peaks. In the second column, we plotted
the time evolution of m

(N)
2 . The third column shows a trajec-

tory of
(
m

(N)
1 (t),m(N)

2 (t)
)
. There, red dashed horizontal lines

mark the Poincaré sections we employed for the computation
of the average period
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together within an interaction network with θ12θ21 < 0 is not enough for peri-
odic behaviors to appear. Dynamical frustration and, in turn, oscillations arise
only when the noise intensity is large enough, as the interaction terms in sys-
tem (2.1) are switched on by the noise. Indeed, when σ = 0 and all the particles
in a same population share the same initial condition, the system is attracted
to an equilibrium point where x

(N)
j = y

(N)
k = m

(N)
1 = m

(N)
2 (j = 1, . . . , N1;

k = 1, . . . , N2)-see Fig. 2 - and, thus, the interaction terms vanish. It follows
that the zero-noise dynamics does not display any periodic behavior. On the
contrary, if σ is positive and sufficiently large, particles do not get stuck at
equilibrium points, as diffusion is enhanced, and the interaction terms start
playing a role, generating dynamical frustration. The two populations form
now a frustrated pair of systems where the rest state of the first is not com-
patible with the rest position of the second. As a consequence, the dynamics
does not settle down to a fixed equilibrium and keeps oscillating. Therefore,
the noise is responsible for the emergence of a stable rhythm (see Sect. 4). This
feature is the hallmark of the phenomenon of noise-induced periodicity.

3. Noise-induced periodicity: numerical study

In this section, we present numerical simulations of the finite-size system (2.1),
aimed at giving evidences of the phenomenon of noise-induced periodicity.

In the setting introduced in Sect. 2, we ran several simulations of (2.1)
for different choices of σ and several values of the interaction strengths. In all
cases, we performed simulations with 106 iterations with time-step dt = 0.005
for a system of 1000 particles equally divided between the two populations (α =
0.5). All particles in the same population were given the same initial condition.
We fixed θ11 = θ22 = 8 and let A:= (1 − α) θ12 > 0 and B:= − αθ21 > 0 vary.
The results are displayed in Figs. 2, 3 and Table 1, where also the specific values
we employed for A, B and σ are reported. The choices of the parameters are
discussed in more detail in Sect. 4, as they correspond to different regimes
of the limiting noiseless dynamics (i.e., system (2.2) with σ = 0), namely,
A − 1 < B < A + 2, B = A + 2 and B > A + 2.
We observe the following:

1. If σ = 0 the system is attracted to a fixed point (see the first column
of Fig. 2). Numerical evidences support the idea that, in the regimes
A−1 < B < A+2 and B > A+2, this behavior persists for small σ > 0.

2. When the intensity of the noise is tuned to an intermediate range of
values, an oscillatory behavior is observed in the

(
m

(N)
1 ,m

(N)
2

)
plane

throughout the duration of the simulation, suggesting the presence of a
periodic law (see the second column of Fig. 2). Thus, our model seems to
exhibit noise-induced periodicity. This phenomenon, which at the best of
our knowledge lacks a full theoretical comprehension, can be loosely de-
scribed in the following terms: an intermediate amount of noise may cre-
ate/stabilize some attractors and destabilize others. In our case it seems
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that the noise destabilizes (some of the) fixed points and generates a sta-
ble rhythmic behavior of the empirical averages of the particle positions
of the two communities.
We would like to mention that, in the regime A = B + 2, an arbitrarily
small value of σ > 0 seems to be sufficient to induce periodicity.

3. Letting σ � 1 completely alters the dynamics that essentially becomes a
Brownian motion (see the third column of Fig. 2).

In Fig. 3 and Table 1 the oscillatory behavior emerging in system (2.1) is
analyzed further. We computed the average return time of the system to the
Poincaré section

{
m

(N)
2 = 0,m

(N)
1 > 0

}
and its standard deviation, in the var-

ious regimes. These are reported in the third column of Table 1. The Poincaré
section is plotted as a red line in Fig. 3. In addition, we computed the discrete
Fourier transform, averaged over M = 50 simulations, for the average particle
position of the second population, m

(N)
2 . From the peak of the Fourier trans-

form we recovered the period of the trajectory of m
(N)
2 (t). The average period

and its standard deviation are reported in the fourth column of Table 1 for
different values of the parameters.

4. Propagation of chaos and small-noise approximation

In this section we give our main results. We begin with a propagation of chaos
statement, allowing to get the macroscopic description (2.2) of our system.
Then, we analyze the noiseless version of the macroscopic dynamics and we
show the absence of limit cycles as attractors. Finally, in a small-noise regime,
we derive a Gaussian approximation of the infinite volume evolution (2.2) that
displays an oscillatory behavior.

4.1. Propagation of chaos

Propagation of chaos claims that, as N → ∞, the evolution of each particle
remains independent of the evolution of any finite subset of the others. This is
coherent with the fact that individual units interact only through the empirical
means of the two populations, over which the influence of a finite number
of particles becomes negligible when taking the infinite volume limit. In our
case the limiting evolution of a pair of representative particles, one for each
population, is the process ((x(t), y(t)), 0 ≤ t ≤ T ) described by the stochastic
differential equation (2.2).

Under the assumptions E[x(0)] < ∞ and E[y(0)] < ∞, it is easy to prove
that system (2.2) has a unique strong solution (see Theorem A.1 in Appen-
dix A). Moreover, by a coupling argument, we obtain the following theorem.

Theorem 4.1. Fix T > 0. Let
((

x
(N)
1 (t), . . . , x(N)

N1
(t), y(N)

1 (t), . . . , y(N)
N2

(t)
)

,

0 ≤ t ≤ T
)

be the solution to Eq. (2.1) with an initial condition satisfying
the following requirements:
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• the collection
(
x
(N)
1 (0), . . . , x(N)

N1
(0), y(N)

1 (0), . . . , y(N)
N2

(0)
)

is a family of
independent random variables.

• the random variables
(
x
(N)
1 (0), . . . , x(N)

N1
(0)
)
(resp.

(
y
(N)
1 (0), . . . , y(N)

N2
(0)
)
)

are identically distributed with law λx (resp. λy). We assume that λx and
λy have finite second moment.

• the random variables x
(N)
j (0) and y

(N)
k (0) are independent of the Brow-

nian motions (wi(t), 0 ≤ t ≤ T )i=1,...,N for all j = 1, . . . , N1 and k =
1, . . . , N2.

Moreover, let ((x1(t), . . . , xN1(t), y1(t), . . . , yN2(t)) , 0 ≤ t ≤ T ) be the process
whose entries are independent and such that (xj(t), 0 ≤ t ≤ T )j=1,...,N1 (resp.
(yk(t), 0 ≤ t ≤ T )k=1,...,N2) are copies of the solution to the first (resp. second)
equation in (2.2), with the same initial conditions and the same Brownian
motions used to define system (2.1). Here, “the same” means component-wise
equality.
Define the index sets I = {i1, . . . , ik1} ⊆ {1, . . . , N1}, with |I| = k1, and
J = {j1, . . . , jk2} ⊆ {1, . . . , N2}, with |J | = k2. Then, we have

lim
N→+∞

E

[
sup

t∈[0,T ]

∣∣∣z(N)
k1,k2

(t) − zk1,k2(t)
∣∣∣
]

= 0, (4.1)

with |z| the �1-norm of a vector z, z(N)
k1,k2

(t) =
(
x
(N)
i1

(t), . . . , x(N)
ik1

(t), y(N)
j1

(t), . . . ,

y
(N)
jk2

(t)
)
and zk1,k2(t) = (x1(t), . . . , xk1(t), y1(t), . . . , yk2(t)).

The proof of Theorem 4.1 is postponed to Appendix B. Recall that the
convergence in Theorem 4.1 implies, for t ∈ [0, T ], convergence in distribution
of any finite-dimensional vector z(N)

k1,k2
(t) to zk1,k2(t).

4.2. Analysis of the zero-noise dynamics

In this section we consider system (2.2) with σ = 0. Notice that, in the zero-
noise version of (2.2), the terms αθ11 (x − E[x]) and (1 − α)θ22 (y − E[y]) are
both zero. Thus, setting

A:= (1 − α) θ12 > 0 and B:= − αθ21 > 0,

system (2.2) reduces to

ẋ = −x3 + x − A (x − y)

ẏ = −y3 + y − B (x − y) . (4.2)

At this point, we make the following assumption. We will focus on the
case

(H) A > 1 and B > A − 1.
The reason for this choice is that in this parameter regime one can obtain an
analytic characterization of the phase portrait of system (4.2), still displaying
a rich variety of cases. The central concern in the subsequent sections will
be the investigation of the conditions under which noise-induced periodicity
occurs.
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To this end, we studied the location and the nature of the fixed points of
system (4.2) by varying A and B under the regime given by hypothesis (H) and
checked that no local bifurcation generating limit cycles occurs. Unfortunately,
the global analysis of the system turns out to be very involved and we are able
to exclude the existence of limit cycles only by numerical evidences (see Fig. 4).

System (4.2) admits the following equilibria:

• The fixed points (0, 0) and ± (1, 1) are present for any value of A and
B. However, their nature changes depending on the parameters. More
specifically,

• when A − 1 < B < A + 2, (0, 0) is an unstable node and ± (1, 1)
are stable nodes.
• when B = A + 2, (0, 0) is an unstable node and ± (1, 1) have a
neutral and a stable direction.
• for B > A + 2, (0, 0) is an unstable node and ± (1, 1) are saddle
points.

• Depending on the values of A and B, there may be two additional
equilibria. In particular, three situations may arise:

• when A − 1 < B < A + 2, there exists β > 0 such that the points
± (x, βx) are fixed points for (4.2), with 0 < x < 1 and β < 1. That
is, the equilibria are (0, 0), ± (1, 1) and ± (x, βx), symmetrically lo-
cated in the first and the third quadrants. The fixed points ± (x, βx)
are saddle points.
• when B = A + 2, no other fixed points are present apart from
(0, 0) and ± (1, 1).
• when B > A + 2, there exists β > 0 such that ± (x, βx) are fixed
points for (4.2), with x > 1 and β > 1. That is, system (4.2) has
five equilibria: (0, 0), ± (1, 1) and ± (x, βx), symmetrically located
in the first and the third quadrants. The fixed points ± (x, βx) are
stable nodes.

The depicted scenarios are summarized in Table 2. We refer the reader
to Appendix C for a detailed proof. In Fig. 4, we display numerically obtained
phase portraits for specific values of the parameters in the three cases A−1 <
B < A+2, B = A+2 and B > A+2. In all these cases, numerical investigations
strongly corroborate the absence of limit cycles for system (4.2).

We remark that the main results of this paper, given in Sects. 4.1 and
4.4, hold for all A, B > 0, as one can see from the proofs in the Appendices.
Furthermore, qualitatively analogous behaviors were numerically observed in
the case 0 < A ≤ 1, B > 0, when extra fixed points for system (4.2) may exist.

4.3. The Fokker–Planck equation

The long-time behavior of the law of the solution to system (2.2) may be
investigated by considering the corresponding Fokker–Planck equation, that
reads as

∂q1
∂t

=
σ2

2
∂2q1
∂z2

− ∂

∂z

{[
(1 − αθ11 − (1 − α) θ12)z − z3

]
q1
}
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Figure 4. Phase portraits of system (4.2) for diverse values
of A and B. a Case A − 1 < B < A + 2 with A = 2 and
B = 2.5. Fixed points: (0, 0) is an unstable node, ± (1, 1) are
stable nodes and ± (0.78, 0.63) (numerically obtained coordi-
nates) are saddle points. b Case B = A + 2 with A = 2 and
B = 4. Fixed points: (0, 0) is an unstable node and ± (1, 1)
have a negative and a zero eigenvalue. c Case B > A + 2
with A = 2 and B = 7. Fixed points: (0, 0) is an unstable
node, ± (1, 1) are saddle points and ± (1.24, 1.58) (numeri-
cally obtained coordinates) are stable spirals. Red dots mark
the equilibria. Streamline colors correspond to the magnitude
of the vector field scaled to [0, 1] (relative magnitude). A de-
tailed analysis of the nature of the fixed points in the three
regimes can be found in Appendix C

− αθ11〈z, q1〉∂q1
∂z

− (1 − α) θ12〈z, q2〉∂q1
∂z

∂q2
∂t

=
σ2

2
∂2q2
∂z2

− ∂

∂z

{[
(1 − αθ21 − (1 − α)θ22)z − z3

]
q2
}

− αθ21〈z, q1〉∂q2
∂z

− (1 − α)θ22〈z, q2〉∂q2
∂z

, (4.3)

where time and space dependencies have been left implicit for simplicity of
notation. Here 〈z, qi〉 :=

∫
zqi(z; t)dz, with i = 1, 2. The regularizing effect of

the second-order partial derivatives guarantees that, for t ∈ [0, T ], the laws of
x(t) and y(t) have respective densities q1(·; t) and q2(·; t) solving (4.3). By using
the finite element method [23], we performed numerical simulations of system
(4.3) starting from the initial distributions q1(z; 0) = q2(z; 0) = δ0.8(z). These
initial conditions correspond to what we did in Sect. 3, where we initialized
the particles of both groups at z = 0.8 in the simulations of the microscopic
system. We observed that q1 and q2 both assume a bell shape during the
simulation, while the average positions of the two populations, 〈z, qi〉 (i = 1, 2),
computed numerically, display an oscillatory behavior. We show the results of
these simulations in Fig. 5. The above considerations justify the idea of the
Gaussian approximation for system (2.2) that will be analyzed in the following
section.
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Figure 5. Temporal evolution of the average positions 〈z, q1〉
and 〈z, q2〉 of the two populations in the thermodynamic limit.
Parameter values: A = 2 and B = 2.5; the other regimes are
analogous. The insets show the densities q1 (orange) and q2
(blue) at some times during the simulation

4.4. Small-noise approximation

In this section we derive a small-noise approximation of system (2.2). In
particular, motivated by what we observed in Sect. 4.3, we build a pair of
independent Gaussian processes ((x̃(t), ỹ(t)) , 0 ≤ t ≤ T ) that closely follows
((x(t), y(t)), 0 ≤ t ≤ T ), solution to (2.2), when the noise is small. Although
such an approximation holds rigorously true in the limit of vanishing noise,
numerical simulations suggest it remains valid also beyond the assumption
σ � 1 and that it explains the qualitative behavior of system (2.1) shown
in Sect. 3. We give the precise statement of our result below, whereas the
proof is postponed to Appendix D. Here we remark that it is possible to take
(x̃(t), 0 ≤ t ≤ T ) independent of (ỹ(t), 0 ≤ t ≤ T ) because of the specific form
of the equations in (2.2), that do not have mixed terms (i.e. of the type xn ym).

The first step towards the Gaussian approximation of (2.2) is the deriva-
tion of the equations of the moments of x(t) and y(t) in system (2.2). Since
the approximation will be given by a pair of independent processes, we can
avoid computing mixed moments (see Appendix D). By applying Itô’s rule to
system (2.2), we can obtain the SDEs solved by xp(t) and yp(t) for any p ≥ 1.
This yields

dxp = σpxp−1dw1 +
[−pxp+2 + pxp − αθ11p (x − E[x]) xp−1
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− (1 − α) θ12p (x − E[y]) xp−1 + σ2

2 p(p − 1)xp−2
]
dt

dyp = σpyp−1dw2 +
[−pyp+2 + pyp − αθ21p (y − E[x]) yp−1

− (1 − α) θ22p (y − E[y]) yp−1 + σ2

2 p(p − 1)yp−2
]
dt. (4.4)

Let mx
p(t) = E[xp(t)] and my

p(t) = E[yp(t)] be the p-th moments of the variables
x(t) and y(t) solving system (2.2), respectively. Taking the expectation in (4.4),
we obtain

dmx
p

dt
= −pmx

p+2 + pmx
p − αθ11p

(
mx

p − mx
1 mx

p−1

)

− (1 − α) θ12p
(
mx

p − my
1 mx

p−1

)
+ σ2

2 p(p − 1)mx
p−2

dmy
p

dt
= −pmy

p+2 + pmy
p − αθ21p

(
my

p − mx
1 my

p−1

)

− (1 − α)θ22p
(
my

p − my
1 my

p−1

)
+ σ2

2 p(p − 1)my
p−2. (4.5)

Since the p-th moments in (4.5) depend on the (p+2)-th moments, the system
is infinite dimensional-and hence hardly tractable-unless higher-order moments
of x(t) and y(t) are functions of the first moments. The latter would be the case
if x(t) and y(t) were Gaussian processes. In general, the processes x(t) and y(t)
are neither Gaussian nor independent, however we prove in Appendix D that
it is possible to build a Gauss-Markov process ((x̃(t), ỹ(t)) , 0 ≤ t ≤ T ), with
independent components, which stays close to ((x(t), y(t)) , 0 ≤ t ≤ T ) when
the noise size is small. We have the following theorem.

Theorem 4.2. Fix T > 0. Let ((x(t), y(t)) , 0 ≤ t ≤ T ) solve Eq. (2.2) with de-
terministic initial conditions x(0) = x0 and y(0) = y0. There exists a Gaussian
Markov process ((x̃(t), ỹ(t)) , 0 ≤ t ≤ T ) with x̃(0) = x0 and ỹ(0) = y0 satisfy-
ing the properties:

1. The first two moments of x̃(t) and ỹ(t) satisfy the respective equations
in (4.5) for p = 1, 2.

2. For all T > 0, there exists a constant CT > 0 such that, for every σ > 0,
it holds

E

[
sup

t∈[0,T ]

{|x(t) − x̃(t)| + |y(t) − ỹ(t)|}
]

≤ CT σ2.

This means that the processes (x̃(t), 0 ≤ t ≤ T ) and (ỹ(t), 0 ≤ t ≤ T ) are
simultaneously σ-closed to the solutions of (2.2).

Since x̃(t) and ỹ(t) are Gaussian, their higher-order moments are poly-
nomial functions of the first two moments. In particular, the laws of x̃(t) and
ỹ(t) are completely determined by the dynamics of the respective mean and
variance. Thus, rather than studying the infinite dimensional system (4.5), it
suffices to analyze the subsystem describing the time evolution of the mean
and the variance of each approximating process. We will show in Appendix D
that such a system is
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Figure 6. Time evolution of the mean m2 and the variance
v2 according to the dynamical system (4.6). In all cases, we
considered 106 iterations with a time-step dt = 0.005, α = 0.5,
θ11 = θ22 = 8. From top to bottom: A − 1 < B < A + 2, in
particular, A = 2 and B = 2.5, with σ = 0.5; B = A + 2, in
particular, A = 2 and B = 4, with σ = 0.1; B > A + 2, in
particular, A = 2 and B = 7, with σ = 0.6

dm1

dt
= −m3

1 + m1(1 − 3v1) − A(m1 − m2)

dm2

dt
= −m3

2 + m2(1 − 3v2) + B (m2 − m1)

dv1
dt

= −6v2
1 − 6m2

1v1 + 2v1 − 2αθ11v1 − 2Av1 + σ2

dv2
dt

= −6v2
2 − 6m2

2v2 + 2v2 + 2Bv2 − 2 (1 − α) θ22v2 + σ2, (4.6)

where m1(t) (resp. m2(t)) is the expectation of x̃(t) (resp. ỹ(t)) and v1(t) (resp.
v2(t)) is the variance of x̃(t) (resp. ỹ(t)). As before, we have set A:= (1 − α) θ12
and B:= − αθ21.
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Figure 7. Projected dynamics of system (4.6) in the
(m1, m2) plane. In all cases, we considered 106 iterations with
a time-step dt = 0.005, α = 0.5, θ11 = θ22 = 8. From top to
bottom: A−1 < B < A+2, in particular, A = 2 and B = 2.5;
B = A + 2, in particular, A = 2 and B = 4; B > A + 2, in
particular, A = 2 and B = 7. In the first column we plot the
trajectories of the system in the zero-noise case (σ = 0), in
the second column we consider an intermediate intensity for
the noise (σ = 0.5, 0.1 and 0.6 respectively) and in the third
one we set σ = 5
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For the values of θ11, θ22, A and B considered in this paper (i.e., θ11 =
θ22 = 8 and A and B as reported in Table 1), the dynamical system (4.6)
features a subcritical Hopf bifurcation [22] at the equilibrium (m1,m2, v1, v2) =
(0, 0, ṽ1, ṽ2), for a critical value σc = σc(θ11, θ22, A,B) of the noise size, as
reported in Appendix E. In other words, when the noise intensity decreases to
cross the threshold value σc, the fixed point (0, 0, ṽ1, ṽ2) changes its nature from
stable to unstable and, at the same time, a stable limit cycle appears. Thus,
in an intermediate range of noise size, system (4.6) displays stable rhythmic
oscillations that disappear for σ = 0. Indeed, when σ = 0, v1 = v2 = 0 is
a fixed point of the subsystem formed by the third and fourth equations in
(4.6). As a consequence, the zero-noise limit of the first two equations in (4.6)
reduces to the noiseless version of system (2.2), which does not display any
oscillatory behavior.

Simulations of system (4.6), with values of A and B as in Table 1 and
Fig. 2, gave the results shown in Figs. 6 and 7, where rhythmic oscillations for
intermediate values of noise were detected.

Our analysis shows that the behavior of system (2.1) for different noise
sizes is well described, at least qualitatively, by the Gaussian approximation
(4.6).
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within the CRUI-CARE Agreement.

Declarations

Conflict of interest The authors declare no conflicts of interests.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,



34 Page 20 of 35 E. Marini et al. NoDEA

and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendices

Here we detail the proofs of the statements in the main text.

A. Well-posedness of system (2.2)

Theorem A.1. Fix T > 0. For any initial condition (x(0), y(0)) = (ξx, ξy), with
ξx, ξy real random variables having finite first moment and being independent
of the Brownian motions (wi(t), 0 ≤ t ≤ T )i=1,2, system (2.2) has a unique
strong solution.

Proof. We follow the argument in [12], based on a Picard iteration. We de-
fine recursively two sequences of stochastic processes (xn(t), 0 ≤ t ≤ T ) and
(yn(t), 0 ≤ t ≤ T ), indexed by n ≥ 1, via their Itô’s differentials

dxn(t) =
{

−x3
n(t) + xn(t) − αθ11

(
xn(t) − E [xn−1(t)]

)

− (1 − α) θ12

(
xn(t) − E [yn−1(t)]

)}
dt + σdw1(t)

dyn(t) =
{

−y3
n(t) + yn(t) − αθ21

(
yn(t) − E [xn−1(t)]

)

− (1 − α) θ22

(
yn(t) − E [yn−1(t)]

)}
dt + σdw2(t),

all with the same initial condition (xn(0), yn(0)) = (ξx, ξy). By subtracting
two subsequent sets of equations, written in integral form, for every t ∈ [0, T ],
we obtain

xn+1(t)−xn(t)=
∫ t

0

(xn+1(s)−xn(s)) [1−fn(s)−αθ11−(1−α) θ12] ds

+
∫ t

0

(αθ11E [xn(s)−xn−1(s)]+(1−α) θ12E [yn(s)−yn−1(s)]) ds

(A.1)

yn+1(t)−yn(t)=
∫ t

0

(yn+1(s)−yn(s)) [1−αθ21−gn(s)−(1−α) θ22] ds

+
∫ t

0

(αθ21E [xn(s)−xn−1(s)]+(1−α) θ22E [yn(s)−yn−1(s)]) ds,

(A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where we have employed the identity a3 − b3 = (a − b) (a2 + b2 + ab) and we
have set fn(s):=x2

n+1(s)+x2
n(s)+xn+1(s)xn(s) and gn(s):=y2

n+1(s)+ y2
n(s)+

yn+1(s)yn(s). Observe that fn(t), gn(t) ≥ 0 for all t ∈ [0, T ].
Eq. (A.1) and Eq. (A.2) are of the form ϕ(t) =

∫ t

0
ϕ(s)H(s)ds+

∫ t

0
Q(s)ds,

where ϕ(t) is given by xn+1(t) − xn(t) and yn+1(t) − yn(t), respectively. The
solution to an equation of this form can be explicitly written as ϕ(t) = ϕ(0) +∫ t

0
Q(s)e

∫ t
s

H(r)drds. In our case, ϕ(0) = 0 since xn(0) = ξx and yn(0) = ξy for
all n ≥ 1 by assumption. Therefore, for t ∈ [0, T ], the solutions of Eq. (A.1)
and Eq. (A.2) are

xn+1(t) − xn(t) =
∫ t

0

{αθ11E [xn(s) − xn−1(s)] + (1 − α) θ12E [yn(s) − yn−1(s)]}

× e
∫ t
s
(1−fn(r)−αθ11−(1−α)θ12)drds (A.3)

yn+1(t) − yn(t) =
∫ t

0

{αθ21E [xn(s) − xn−1(s)] + (1 − α) θ22E [yn(s) − yn−1(s)]}

× e
∫ t
s
(1−αθ21−gn(r)−(1−α)θ22)drds. (A.4)

We now get into the core of the proof.
Step 1: auxiliary property. We will show that, for every T > 0, the se-

quences (E [xn(t)] , 0 ≤ t ≤ T )n≥1 and (E [yn(t)] , 0 ≤ t ≤ T )n≥1 are Cauchy se-
quences in the space C ([0, T ]), equipped with the supremum norm

d(f, g):= sup
t∈[0,T ]

|f(t) − g(t)| ∀f, g ∈ C ([0, T ]) .

As a consequence, since (C([0, T ]), d) is a complete metric space, we will obtain
convergence to elements (mx(t), 0 ≤ t ≤ T ), (my(t), 0 ≤ t ≤ T ) ∈ C ([0, T ]).

We take the absolute value and the expectation in both Eq. (A.3) and
Eq. (A.4). If we denote by φn(t):= sups∈[0,t] E [|xn+1(s) − xn(s)|] and ψn(t):=
sups∈[0,t] E [|yn+1(s) − yn(s)|], from Eq. (A.3) we obtain

φn(t) ≤ C̃t

∫ t

0

φn−1(r)dr + D̃t

∫ t

0

ψn−1(r)dr, (A.5)

for some positive constants C̃t and D̃t. From Eq. (A.4) we get an analogous
inequality for ψn(t). The inequalities are valid for all t ∈ [0, T ]. Iteratively
employing inequality (A.5) gives

φn(T ) ≤ CT φ1(T )
Tn−1

(n − 1)!
+ DT ψ1(T )

Tn−1

(n − 1)!
,

for suitable positive constants CT and DT . Similarly we bound ψn(T ). Hence,
φn(T ) and ψn(T ) go to zero as n → +∞. Thus, it follows that (E [xn(t)] , 0 ≤ t
≤ T )n≥1 and (E [yn(t)] , 0 ≤ t ≤ T )n≥1 are Cauchy sequences in C ([0, T ]) and
converge to the continuous limits (mx(t), 0 ≤ t ≤ T ) and (my(t), 0 ≤ t ≤ T ),
respectively.

Step 2: existence of the solution to (2.2). Consider the following system
of stochastic differential equations

dx(t) =
[
−x3(t) + x(t) − αθ11

(
x(t) − mx(t)

)
− (1 − α) θ12

(
x(t) − my(t)

)]
dt + σdw1(t)
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dy(t) =
[
−y3(t) + y(t) − αθ21

(
y(t) − mx(t)

)
− (1 − α) θ22

(
y(t) − my(t)

)]
dt + σdw2(t),

(A.6)

with initial condition (x(0), y(0)) = (ξx, ξy). Since the functions mx and my

are bounded for every t ∈ [0, T ], existence and uniqueness of a strong solution
for (A.6) follows from a Khasminskii’s test with norm-like function V (x, y) =
x4

4 + x2

2 + y4

4 + y2

2 . See [17,21].
Let ((x(t), y(t)), 0 ≤ t ≤ T ) be the unique strong solution for (A.6). We

construct the differences

xn+1(t) − x(t) =

∫ t

0

(xn+1(s) − x(s)) [1 − fn(s) − αθ11 − (1 − α) θ12] ds

+

∫ t

0

(αθ11E [xn(s) − mx(s)] + (1 − α) θ12E[yn(s) − my(s)]) ds

yn+1(t) − y(t) =

∫ t

0

(yn+1(s) − y(s)) [1 − αθ21 − gn(s) − (1 − α) θ22] ds

+

∫ t

0

(−αθ21E [xn(s) − mx(s)] − (1 − α) θ22E[yn(s) − my(s)]) ds,

and

(E [yn(t)] , 0 ≤ t ≤ T ) n→∞−−−−−→ (E [y(t)] , 0 ≤ t ≤ T )

in C ([0, T ]). Therefore, since we have already showed that

(E [xn(t)] , 0 ≤ t ≤ T ) n→∞−−−−−→ (mx(t), 0 ≤ t ≤ T )

and

(E [yn(t)] , 0 ≤ t ≤ T ) n→∞−−−−−→ (my(t), 0 ≤ t ≤ T ),

we have that E [x(t)] = mx(t) and E [y(t)] = my(t) for all t ∈ [0, T ]. Hence, sys-
tem (A.6) coincides with system (2.2) and its solution ((x(t), y(t)), 0 ≤ t ≤ T )
provides a solution for (2.2).

Step 3: uniqueness of the solution to (2.2). Let ((u(t), v(t)), 0 ≤ t ≤ T )
be another solution to (2.2). We write the integral equations for x(t) − u(t)
and y(t) − v(t) and we use them to get estimates for φ(t) = |E[x(t) − u(t)]|
and ψ(t) = |E[y(t) − v(t)]|. By mimicking the computations above, we obtain

φ(t) ≤ ĈT

∫ t

0

(φ(s) + ψ(s)) ds and ψ(t) ≤ D̂T

∫ t

0

(φ(s) + ψ(s)) ds,

for suitable positive constants ĈT and D̂T . Summing up the two previous
inequalities and using Gronwall’s lemma yields φ(t)+ψ(t) ≤ 0 for all t ∈ [0, T ].
This shows that E[x(t)] = E[u(t)] and E[y(t)] = E[v(t)] for all t ∈ [0, T ]. Thus,
((x(t), y(t)), 0 ≤ t ≤ T ) and ((u(t), v(t)), 0 ≤ t ≤ T ) are both solutions to
(A.6) with the same pair (mx,my) and the same initial condition. It follows
that (x(t), y(t)) = (u(t), v(t)) for all t ∈ [0, T ]. �
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B. Proof of Theorem 4.1

The proof of Theorem 4.1 is standard and it relies on a coupling method [3,6].
We want to prove (4.1). Without loss of generality, we take I = {1, . . . , k1}
and J = {1, . . . , k2}. Since

E

[
sup

t∈[0,T ]

∣∣∣z(N)
k1,k2

(t) − zk1,k2(t)
∣∣∣
]

≤
k1∑

j=1

E

[
sup

t∈[0,T ]

∣∣∣x(N)
j (t) − xj(t)

∣∣∣
]

+
k2∑

j=1

E

[
sup

t∈[0,T ]

∣∣∣y(N)
j (t) − yj(t)

∣∣∣
]

,

to conclude it suffices to show that each of the k1 + k2 terms goes to zero in
the limit N → ∞. In the sequel we will consider only the term
E

[
supt∈[0,T ]

∣∣∣x(N)
1 (t) − x1(t)

∣∣∣
]
; the other terms can be dealt with similarly. We

only sketch our computations as they use the very same tricks as in the proof
of Theorem A.1 in Appendix A. Since the processes

(
x
(N)
1 (t), 0 ≤ t ≤ T

)
and

(x1(t), 0 ≤ t ≤ T ) are initiated at the same position, we obtain

x
(N)
1 (t) − x1(t)

=

∫ t

0

[(
x
(N)
1 (s) − x1(s)

)
(1 − f(s) − αθ11 − (1 − α)θ12) + μ(s)

]
ds, (B.1)

where we have employed the identity a3 − b3 = (a − b)(a2 + b2 + ab) and we

have set f(s):=
(
x
(N)
1 (s)

)2
+ x2

1(s) + x
(N)
1 (s)x1(s), and where

μ(s):=αθ11

(
m

(N)
1 (s) − E[x1(s)]

)
+ (1 − α)θ12

(
m

(N)
2 (s) − E[y1(s)]

)
.

Observe that Eq. (B.1) is of the form ϕ(t) =
∫ t

0
ϕ(s)H(s)ds +

∫ t

0
Q(s)ds, with

ϕ(t) = x
(N)
1 (t)−x1(t). Therefore, as the solution of the latter equation is ϕ(t) =

ϕ(0) +
∫ t

0
Q(s)e

∫ t
s

H(r)drds and, in our case, x
(N)
1 (0) = x1(0) by assumption,

for every t ∈ [0, T ], we can estimate

∣∣∣x(N)
1 (t) − x1(t)

∣∣∣ ≤
∫ t

0

|μ(s)| e
∫ t
s
(1−f(r)−αθ11−(1−α)θ12)drds ≤ CT

∫ t

0

|μ(s)| ds,

for some positive constant CT . At this point, taking the supremum and the
expectation of both sides of the previous inequality, for t̃ ∈ [0, T ], we obtain

E

[
sup

t∈[0,t̃]

∣∣∣x(N)
1 (t) − x1(t)

∣∣∣
]

≤ CT

∫ t̃

0

E [|μ(s)|] ds. (B.2)

We need an upper bound for E [|μ(s)|]. We have

E [|μ(s)|] ≤ E

[
αθ11

∣∣∣m(N)
1 (s) − E[x1(s)]

∣∣∣+ (1 − α)θ12

∣∣∣m(N)
2 (s) − E[y1(s)]

∣∣∣
]
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and, by adding and subtracting 1
N1

∑N1
i=1 xi(s) (resp. 1

N2

∑N2
i=1 yi(s)) inside the

first (resp. second) absolute value, we get

E [|μ(s)|] ≤ αθ11

{
1

N1

N1∑
i=1

E

[∣∣∣x(N)
i (s) − xi(s)

∣∣∣
]

+E

[∣∣∣∣∣
1

N1

N1∑
i=1

xi(s) − E[x1(s)]

∣∣∣∣∣

]}

+ (1 − α)θ12

{
1

N2

N2∑
i=1

E

[∣∣∣y(N)
i (s) − yi(s)

∣∣∣
]

+E

[∣∣∣∣∣
1

N2

N2∑
i=1

yi(s) − E[y1(s)]

∣∣∣∣∣

]}
.

Since the limiting variables (xi(t))i=1,...,N1 and (yi(t))i=1,dots,N2 are i.i.d. fam-
ilies and have uniformly bounded second moments for all t ∈ [0, T ] (due to the
well-posedness of system (2.2)), the standard CLT assures that there exists a
positive constant KT such that, uniformly for all s ∈ [0, T ], it holds

E

[∣∣∣∣∣
1

N1

N1∑
i=1

xi(s) − E[x1(s)]

∣∣∣∣∣

]
≤ KT√

N1

and E

[∣∣∣∣∣
1

N2

N2∑
i=1

yi(s) − E[y1(s)]

∣∣∣∣∣

]
≤ KT√

N2

.

Moreover we have

E

[∣∣∣x(N)
i (s) − xi(s)

∣∣∣
]

≤ E

[
sup

r∈[0,s]

∣∣∣x(N)
i (s) − xi(s)

∣∣∣
]

and

E

[∣∣∣y(N)
i (s) − yi(s)

∣∣∣
]

≤ E

[
sup

r∈[0,s]

∣∣∣y(N)
i (s) − yi(s)

∣∣∣
]

.

These last terms are in fact independent of the index i due to the symmetry
of the system which, in turn, is due to the choice of the initial conditions and
the mean field assumption. Thus, recalling that α = N1

N , we obtain

E [|μ(s)|] ≤ αθ11E

[
sup

r∈[0,s]

∣∣∣x(N)
1 (r) − x1(r)

∣∣∣
]

+
√

α θ11KT√
N

+(1 − α)θ12E

[
sup

r∈[0,s]

∣∣∣y(N)
1 (r) − y1(r)

∣∣∣
]

+
√

1 − α θ12KT√
N

.

(B.3)

By employing Eq. (B.3) in Eq. (B.2), it is easily seen that there exists a
constant D, depending on T and on the parameters α, θ11, θ22, θ12, and θ21,
such that

E

[
sup

t∈[0,t̃]

∣∣∣x(N)
1 (t) − x1(t)

∣∣∣
]

≤ D

∫ t̃

0

E

[
sup

r∈[0,s]

∣∣∣x(N)
1 (r) − x1(r)

∣∣∣
]

ds
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+D

∫ t̃

0

E

[
sup

r∈[0,s]

∣∣∣y(N)
1 (r) − y1(r)

∣∣∣
]

ds

+
D√
N

, (B.4)

Similarly, we obtain also

E

[
sup

t∈[0,t̃]

∣∣∣y(N)
1 (t) − y1(t)

∣∣∣
]

≤ D

∫ t̃

0

E

[
sup

r∈[0,s]

∣∣∣x(N)
1 (r) − x1(r)

∣∣∣
]

ds

+ D

∫ t̃

0

E

[
sup

r∈[0,s]

∣∣∣y(N)
1 (r) − y1(r)

∣∣∣
]

ds

+
D√
N

. (B.5)

If we define

g
(
t̃
)
:=E

[
sup

t∈[0,t̃]

∣∣∣x(N)
1 (t) − x1(t)

∣∣∣
]

+ E

[
sup

t∈[0,t̃]

∣∣∣y(N)
1 (t) − y1(t)

∣∣∣
]

,

by summing up the inequalities (B.4) and (B.5), we obtain

g
(
t̃
) ≤ 2 D

∫ t̃

0

g(s)ds + 2
D√
N

.

An application of Gronwall’s lemma leads to the conclusion. Indeed, we get the
inequality g(T ) ≤ 2De2DT√

N
, whose right-hand side goes to zero as N → +∞.

C. Equilibria of the noiseless dynamics

We consider system (4.2) and study the nature of its fixed points, depending
on the values of the parameters A and B. Throughout this analysis, we use
the basic theory of dynamical systems as it can be found for instance in [22].
Moreover, unless otherwise specified, we assume for the moment A > 1 and
B > 0.

1. The fixed points (0, 0) and ± (1, 1) are present for any values of A and
B.
(a) The linearized system around the origin has the eigenvalues

λ1 = 1 and λ2 = 1 − A + B = 1 − γ,

where γ:=A − B. Thus (0, 0) is a saddle when γ > 1, it has an
unstable and a neutral direction for γ = 1 and it is an unstable
node otherwise.

(b) Eigenvalues of the linearized system around ± (1, 1) are

λ1 = −2 and λ2 = −2 − A + B = −2 − γ.

As a consequence, ± (1, 1) are stable nodes for γ > −2. They have
a neutral and a stable direction when γ = −2 and they are saddle
points otherwise.



34 Page 26 of 35 E. Marini et al. NoDEA

In conclusion: i) for γ < −2, (0, 0) is unstable and ± (1, 1) are saddle
points; ii) when −2 < γ < 1, (0, 0) is unstable and ± (1, 1) are stable
nodes; iii) for γ > 1, (0, 0) is a saddle point and ± (1, 1) are stable nodes.

2. Depending on the values of the parameters A and B, there might be two
additional equilibria. We search for equilibria of the form (x, βx) with
β �= 0, x �= 0. Notice that all the possible equilibria except for (0, 0) have
such a form.
Substituting y = βx in the first equation of (4.2), we get

x̄β = ±
(√

1 − A (1 − β), β
√

1 − A (1 − β)
)

, (C.1)

subject to the condition

β >
A − 1

A
. (C.2)

Notice that no β < 0 fulfills (C.2), since we have assumed A > 1. There-
fore, system (4.2) can possibly have extra fixed points of the form (x, βx)
only if they lie in the first and the third quadrant.
The second equation in (4.2) leads to the fixed point equation

β = f (β) with f (β) :=

√
1 − B 1−β

β

1 − A (1 − β)
. (C.3)

Observe that, for β = 1, we recover the equilibria ± (1, 1). Therefore,
fixed points of the type x̄β may exist if condition (C.2) is satisfied and
Eq. (C.3) has real solutions, that is if

β > max
{

A − 1
A

,
B

1 + B

}
, (C.4)

which is equivalent to⎧
⎪⎨
⎪⎩

β > A−1
A = B

1+B , if B = A − 1
β > A−1

A , if B < A − 1
β > B

1+B , if B > A − 1.

Therefore, we have the following.
• If B = A − 1, Eq. (C.3) becomes β = 1√

β
, whose unique solution

is β = 1. In this case, γ = 1, so ± (1, 1) are stable nodes and (0, 0)
has a zero eigenvalue, thus it is not a hyperbolic fixed point and the
linearization cannot give information about the phase portrait close
to it. The dynamical system (4.2) can be rewritten as

ẋ = −x3 − x (A − 1) + Ay

ẏ = −y3 + x − A (x − y) . (C.5)

Observe that the linear terms in both the components of the vector
field in Eq. (C.5) are positive above the line y = A−1

A x and negative
below it. Thus, the third-order terms can be neglected close to the
equilibrium and the linearization gives an accurate sketch of the
phase portrait of the system locally. Along the line y = A−1

A x, that
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is the eigendirection of the zero eigenvalue, only the third-order
terms count and we get ẋ < 0, ẏ < 0 in the first quadrant and
ẋ > 0, ẏ > 0 in the third one. Overall, the eigendirection of the zero
eigenvalue is locally stable.

• If B < A − 1, due to condition (C.4), we expect to find solutions
to Eq. (C.3) only for β > A−1

A . Observe that f (β) has a verti-
cal asymptote to positive infinity as β approaches A−1

A and it has
a horizontal asymptote to zero as β grows to infinity. Moreover,
∂f
∂β (β) = 0 when

β± =
AB ±√AB (B − (A − 1))

A (1 + B)
, (C.6)

which are complex for B < A − 1. Therefore, f (β) is strictly de-
creasing. Thus, its graph cannot have more than one intersection
with the line y = β and this unique intersection must be at β = 1.
Overall, when B < A − 1, no fixed points of the type (x, βx) are
present, except for ± (1, 1). In this setting, we already established
that (0, 0) is a saddle point and ± (1, 1) are stable nodes.

• If B > A − 1, we have already pointed out that (0, 0) is unstable,
while the nature of ± (1, 1) can change according to γ being less
than or greater than −2. From condition (C.4), it follows that we
have to look for solutions to Eq. (C.3) for β > B

B+1 .

Observe that f
(

B
1+B

)
= 0 and limβ→+∞ f (β) = 0. The points β±,

given in (C.6), where ∂f
∂β (β) = 0, are real and distinct in this case.

Moreover, β− < B
1+B . Hence, the function f (β) has only a critical

point (maximum) at β = β+ > B
1+B , so it may cross the line y = β

once, twice or never. In particular, since we know the solution β = 1
to be always present, the intersections might coincide (β = 1 itself)
or be distinct (β = 1 and a second intersection, for β greater or less
than 1).
We distinguish three subcases.

• The intersection at β = 1 is the unique solution to Eq. (C.3)
if the graphs of y = β and y = f (β) are tangent at that point,
i.e., if ∂f

∂β (1) = 1. This holds only if B = A + 2. In this case,
the analysis of the linearized system tells us that ± (1, 1) have
a negative and a zero eigenvalue and to check stability one has
to take into account higher-order terms.
We study only the point (1, 1), the analysis of −(1, 1) being
similar. To make our computations easier, we translate the
vector field so that the fixed point (1, 1) is shifted to (0, 0). We
make the change of variables x̂ = x − 1 and ŷ = y − 1. In the
new coordinates (x̂, ŷ), system (4.2) becomes

˙̂x = − (A + 2) x̂ + Aŷ − 3x̂2 − x̂3
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˙̂y = − (A + 2) x̂ + Aŷ − 3ŷ2 − ŷ3. (C.7)

The line ŷ = A+2
A x̂, along which the first-order terms in (C.7)

vanish, that is the eigendirection of the zero eigenvalue, always
lies above the line ŷ = x̂, that is the eigendirection of the non-
zero eigenvalue. The first-order terms in Eq. (C.7) are positive
above the line ŷ = A+2

A x̂ and negative below it. So, out of this
line, higher-order terms can be neglected close to the origin,
whereas the second-order terms become non-negligible as soon
as we are along that line, where it is immediate to see that the
vector field points downward-left.
• If 0 < ∂f

∂β (1) < 1, i.e., if B < A + 2, two intersections
are present, one at β = 1 and one at β = β×(A,B) < 1.
The smallest solution to Eq. (C.3) gives rise to two extra fixed
points of the type (C.1), with both coordinates smaller than 1
in absolute value.
• If ∂f

∂β (1) > 1, i.e., B > A+2, in addition to the intersection at
β = 1, we have a second intersection at β = β×(A,B) > 1 and
we get two fixed points of the type (C.1), with both coordinates
greater than 1 in absolute value.

In what follows we restrict to the case B > A − 1 and we examine in
more detail what happens in the three cases that we considered in the main
text and that are shown in Fig. 4. The point (0, 0) is an unstable fixed point
in all the scenarios. We will give information on the other equilibria.
Case 1. If A = 2, B = 2.5, Eq. (C.3) has the solutions β = 1 and β =
β×(A,B) < 1, numerically obtained. From Eq. (C.1), we obtain respectively
the fixed points ±x̄1 = ± (1, 1) and ±x̄β× = ± (0.78, 0.63). The eigenvalues of
the linearized system around ±x̄1 are both real and negative, implying that the
points are stable nodes. The fixed points ±x̄β× turn out to be saddle points.
The phase portrait numerically obtained for this first case is shown in Fig. 4a.
Case 2. If A = 2, B = 4, Eq. (C.3) has the unique solution β = 1, so the only
fixed points, apart from (0, 0), are ±x̄1. We refer the reader to the analysis
above, which holds for any A > 1, B = A + 2, and to Fig. 4b.
Case 3. If A = 2, B = 7, Eq. (C.3) has two solutions: β = 1 and β =
β×(A,B) > 1. The fixed points ±x̄1 can be easily seen to be saddle points,
while the fixed points ±x̄β× = ± (1.24, 1.58) have complex conjugate eigenval-
ues with negative real part, thus they are stable spirals. The phase portrait in
this case is shown in Fig. 4c.

D. Proof of Theorem 4.2

The proof of Theorem 4.2 follows the strategy used in [6], where an analogous
result for a one population system of mean field interacting particles with
dissipation is given.

Recall that ((x(t), y(t)), 0 ≤ t ≤ T ) is the unique solution to system (2.2).
If Z ∼ N(μ, v) is a Gaussian random variable with mean μ and variance v, we
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have that E(Z3) = μ3+3μv and E(Z4) = μ4+6μ2v+3v2. Therefore, plugging
these identities into Eq. (4.5), we get differential equations for the mean and
variance of two processes having the same first and second moments as x(t) and
y(t), but with Gaussian-like higher-order moments. This is how we obtained
system (4.6). Therefore, part 1 of Theorem 4.2 is true by construction.

We turn to the second part of the statement. Notice that system (4.6) has
a unique global solution, since the four-dimensional vector field is continuous
in each variable and has continuous partial derivatives at each point.

Let ((m1(t),m2(t), v1(t), v2(t)), t ≥ 0) be the unique solution to (4.6),
with initial conditions m1(0) = x(0), m2(0) = y(0), v1(0) = v2(0) = 0, and
set Vi(t):=σ−2 vi(t) (i = 1, 2). The first step of the proof is to define two
centered Gaussian processes, (ξ1(t), 0 ≤ t ≤ T ) and (ξ2(t), 0 ≤ t ≤ T ), so
that E[ξ2i (t)] = Vi(t) for all t ∈ [0, T ] (i = 1, 2). We consider the process
(ξ1(t), 0 ≤ t ≤ T ) first. If we write its differential as that of a generic Itô’s
process, i.e. dξ1(t) = ψ(t)dt + φ(t) dw1(t), with φ, ψ suitable functions and
(w1(t), 0 ≤ t ≤ T ) a standard Brownian motion, by Itô’s formula we get

dξ21(t) =
(
2ξ1(t)ψ(t) + φ2(t)

)
dt + 2ξ1(t)φ(t) dw1(t).

In turn, we obtain

dE[ξ21(t)]
dt

= 2E[ξ1(t)ψ(t)] + E[φ2(t)]

and we can impose φ(t) = 1 and ξ1(t)ψ(t) = ξ21(t)ψ̃(t), where ψ̃(t) is a de-
terministic factor such that E[ξ21(t)] satisfies the equation for V1(t), obtained
from Eq. (4.6). Namely, we must require that ψ̃(t) = −3σ2V1(t)−3 (m1(t))

2 +
1 − αθ11 − A. With straightforward modifications, we also obtain a differen-
tial characterization for the process (ξ2(t), 0 ≤ t ≤ T ). Putting everything
together, we get the following system of SDEs

dξ1(t) =
(−3σ2V1(t) − 3m2

1(t) + 1 − αθ11 − A
)
ξ1(t) dt + dw1(t)

dξ2(t) =
(−3σ2V2(t) − 3m2

2(t) + 1 + B − (1 − α) θ22
)
ξ2(t) dt + dw2(t)

ξ1(0) = ξ2(0) = 0. (D.1)

The processes (ξi(t), 0 ≤ t ≤ T )i=1,2 are both Gaussian Markov processes,
with zero mean and such that Var [ξi(t)] = Vi(t) for all t ∈ [0, T ] (i = 1, 2).
Moreover, they are well-defined, since we have uniqueness of the solution for
system (4.6).

Now we define two new processes:

x̃(t):=m1(t) + σ ξ1(t) and ỹ(t):=m2(t) + σ ξ2(t), (D.2)

which can be easily seen to be Markovian and Gaussian. Moreover, their re-
spective means m1(t), m2(t) and their respective variances v1(t) = σ2 V1(t),
v2(t) = σ2 V2(t) satisfy Eq. (4.6) by construction. As a consequence, the pro-
cesses (x̃(t), 0 ≤ t ≤ T ) and (ỹ(t), 0 ≤ t ≤ T ) have first and second moments
satisfying Eq. (4.5).
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To conclude the proof we need to upper bound the right-hand side of the
following inequality

E

[
sup

t∈[0,T ]

{|x(t) − x̃(t)| + |y(t) − ỹ(t)|}
]

≤ E

[
sup

t∈[0,T ]

|x(t) − x̃(t)|
]

+ E

[
sup

t∈[0,T ]

|y(t) − ỹ(t)|
]

. (D.3)

By using together Eq. (D.1), Eq. (D.2) and Eq. (4.6), we obtain

dx̃(t) = dm1(t) + σ dξ1(t)

=
[−m3

1(t) − 3σ2m1(t)V1(t) + m1(t) − A (m1(t) − m2(t))
]
dt

+ σξ1(t)
[−3σ2V1(t) − 3m2

1(t) + 1 − αθ11 − A
]
dt + σ dw1(t)

=
[−x̃3(t) + σ3ξ31(t) + 3σ2m1(t)ξ

2
1(t) +

(
1 − 3σ2V1(t) − A

)
x̃(t)
]
dt

+ [Am2(t) − αθ11σξ1(t)] dt + σ dw1(t)

and, analogously,

dỹ(t) =
[−ỹ3(t) + σ3ξ32(t) + 3σ2m2(t)ξ22(t) +

(
1 + B − 3σ2V2(t)

)
ỹ(t)
]
dt

+ [−Bm1(t) − (1 − α) θ22σξ2(t)] dt + σ dw2(t).

At this point we follow the very same steps we used before in Appendices A
and B. We have

x(t) − x̃(t) =
∫ t

0

(x(s) − x̃(s)) [1 − f1(s) − αθ11 − A] ds

− σ2

∫ t

0

(
σξ31(s) + 3m1(s)ξ21(s) − 3m1(s)V1(s) − 3σV1(s)ξ1(s)

)
ds,

(D.4)

with f1(s) = x2(s) + x̃2(s) + x(s)x̃(s). Equation (D.4) is of the form ϕ(t) =∫ t

0
ϕ(s)H(s)ds +

∫ t

0
Q(s)ds, with ϕ(t) = x(t) − x̃(t). As ϕ(0) = 0, the solution

to Eq. (D.4) is given by ϕ(t) =
∫ t

0
Q(s)e

∫ t
s

H(r)drds, where

H(s) = 1 − f1(s) − αθ11 − A

and

Q(s) = −σ2
(
σξ31(s) + 3m1(s)ξ21(s) − 3m1(s)V1(s) − 3σV1(s)ξ1(s)

)
.

Hence, we have

|x(t) − x̃(t)| ≤
∫ t

0

|Q(s)| e
∫ t
s
(1−f1(r)−αθ11−A)drds

and, therefore,

E

[
sup

t∈[0,T ]

|x(t) − x̃(t)|
]

≤ E

[
sup

t∈[0,T ]

∫ t

0

|Q(s)| e
∫ t
s
(1−f1(r)−αθ11−A)drds

]

≤ E

[∫ T

0

|Q(s)| sup
t∈[0,T ]

e
∫ t
s
(1−f1(r)−αθ11−A)drds

]
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≤ CT

∫ T

0

E [|Q(s)|] ds

≤ C̃T σ2, (D.5)

for some C̃T > 0. The last inequality follows from the fact that we have
introduced Q̃(s) = σ−2Q(s), that, being a polynomial function of a Gauss-
Markov process, has a time-locally bounded L1-norm.
An analogous estimate holds for the second term in the right-hand side of
(D.3), so that

E

[
sup

t∈[0,T ]

|y(t) − ỹ(t)|
]

≤ D̃T σ2, (D.6)

for a suitable positive constant D̃T . Putting together Eq. (D.3), Eq. (D.5) and
Eq. (D.6) yields the conclusion of the proof of part 2 in Theorem 4.2.

E. Subcritical Hopf bifurcation

We consider the dynamical system (4.6) with θ11 = θ22 = 8 and A and B
chosen in the regime given by assumption (H). We study the nature of the
equilibrium point (m1,m2, v1, v2) = (0, 0, ṽ1, ṽ2), where

ṽ1 =
1
6

(
−3 − A +

√
(−3 − A)2 + 6σ2

)

ṽ2 =
1
6

(
−3 + B +

√
(−3 + B)2 + 6σ2

)
,

as the noise intensity σ > 0 varies. The following analysis reveals the presence
of a subcritical Hopf bifurcation at the point (m1,m2, v1, v2) = (0, 0, ṽ1, ṽ2),
in all the three parameter regimes examined in the main text (see Table 1
and Fig. 4). Recall that a Hopf bifurcation occurs when a stable periodic orbit
arises from an equilibrium point as, at some critical value of the parameter, it
loses stability. Subcritical means that-as in the present case-such a transition
happens when moving the parameter from larger to smaller values. A Hopf
bifurcation can be detected by checking whether a pair of complex eigenvalues
of the linearized system around the equilibrium crosses the imaginary axis as
the parameter changes. See Theorem 2, Chapter 4.4 in [22]. We briefly analyze
our case.

The Jacobian matrix relative to system (4.6) at (0, 0, ṽ1, ṽ2) reads

J(σ) =

⎡
⎢⎢⎣

1 − A − 3ṽ1 A 0 0
−B 1 + B − 3ṽ2 0 0
0 0 −6 − 2A − 12ṽ1 0
0 0 0 −6 + 2B − 12ṽ2

⎤
⎥⎥⎦



34 Page 32 of 35 E. Marini et al. NoDEA

Figure 8. Real parts (blue) and absolute values of the imag-
inary parts (orange) of the eigenvalues λ1, λ2 of the Jacobian
matrix J(σ) as functions of σ with: a A = 2, B = 2.5, σ rang-
ing from 1.4 to 1.9 with step 0.05; b A = 2, B = 4, σ ranging
from 1.75 to 2.25 with step 0.05; c A = 2, B = 7, σ ranging
from 2.2 to 2.7 with step 0.05

and its eigenvalues are

λ1 =
1
4

(
10 − A + B −

√
(A + 3)2 + 6σ2 −

√
(B − 3)2 + 6σ2

−
√

2
[
A2 + A

(√
(A + 3)2 + 6σ2 −

√
(B − 3)2 + 6σ2 − 7B + 3

)

−
(√

(B − 3)2+6σ2−B

)(√
(A + 3)2+6σ2 + B

)
− 3B+6σ2+9

] 1
2
)

λ2 =
1
4

(
10 − A + B −

√
(A + 3)2 + 6σ2 −

√
(B − 3)2 + 6σ2

+
√

2
[
A2 + A

(√
(A + 3)2 + 6σ2 −

√
(B − 3)2 + 6σ2 − 7B + 3

)

−
(√

(B − 3)2+6σ2 − B

)(√
(A + 3)2+6σ2 + B

)
− 3B+6σ2 + 9

] 1
2
)

λ3 = − 6 − 2A − 12ṽ1

λ4 = − 6 + 2B − 12ṽ2.

The eigenvalues λ3 and λ4 are negative for all σ > 0. The eigenvalues
λ1 and λ2 are complex conjugate when (a) A = 2 and B = 2.5, (b) A = 2
and B = 4, (c) A = 2 and B = 7, and we checked numerically they cross
the imaginary axis with negative derivative at the respective critical values
(a) σc � 1.65, (b) σc � 2, (c) σc � 2.45 (see Fig. 8). These evidences confirm
the presence of a subcritical Hopf bifurcation for the regimes examined in the
main text.
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