
Nonlinear Differ. Equ. Appl. (2023) 30:18
c© 2022 The Author(s)
1021-9722/23/020001-32
published online December 24, 2022
https://doi.org/10.1007/s00030-022-00826-8

Nonlinear Differential Equations
and Applications NoDEA

Existence results for nonlocal problems
governed by the regional fractional
Laplacian

Mouhamed Moustapha Fall and Remi Yvant Temgoua

Abstract. The aim of the present paper is to study existence results of
minimizers of the critical fractional Sobolev constant on bounded do-
mains. Under some values of the fractional parameter we show that the
best constant is achieved. If moreover the underlying domain is a ball, we
obtain positive radial minimizers for all possible values of the fractional
parameter in higher dimension, while we impose a positive mass condition
in low dimension.
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1. introduction and main results

Let Ω be a Lipschitz open set of RN , s ∈ (1/2, 1) and N > 2s. The purpose of
this paper is to study the existence of minimizers to the best Sobolev critical
constant

SN,s(Ω) = inf
u∈Hs

0 (Ω)
u�=0

QN,s,Ω(u)
‖u‖2

L2∗
s (Ω)

, (1.1)

where Hs
0(Ω) is the completion of C∞

c (Ω) with respect to the Hs(Ω)-norm,
2∗

s := 2N
N−2s is the so-called fractional critical Sobolev exponent and QN,s,Ω(·)

is a nonnegative quadratic form defined on Hs
0(Ω) by

QN,s,Ω(u) :=
cN,s

2

∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
dxdy.

We notice that for s ∈ (0, 1/2] and Ω bounded, the constant function 1 belongs
to Hs

0(Ω), and thus, the above Sobolev constant is zero in this case. We refer
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the reader to Appendix A below for more details and the definition of Lipschitz
domains in this paper.

We recall that nonnegative minimizers of the constant SN,s(Ω) are weak
solutions to nonlinear Dirichlet problem{

(−Δ)s
Ωu = u2∗

s−1 in Ω
u = 0 on ∂Ω,

(1.2)

where (−Δ)s
Ω is the regional fractional Laplacian defined as

(−Δ)s
Ωu(x) = cN,sP.V.

∫
Ω

u(x) − u(y)
|x − y|N+2s

dy, x ∈ Ω.

Here, cN,s is the usual positive normalization constant of (−Δ)s and P.V.
stands for the principal value of the integral.

In the theory of partial differential equations, the existence of solutions
of nonlinear equations appears as a natural question. This strongly depends
on the type of nonlinearities that are considered. For instance, nonlinear equa-
tions involving subcritical power nonlinearities, say f(t) = |t|p−1 with p < 2∗

s,
are quite well-understood and due to compactness, the existence of solutions
can be easily established by using for example the Mountain Pass theorem.
One can also study the corresponding minimization problem and prove that a
minimizer exists. Besides, at the critical exponent p = 2∗

s we lose compactness
and therefore standard argument of calculus of variation cannot be applied to
derive the existence of solutions. As a typical example, when Ω is a star-shaped
bounded domain, it has been proved that the Dirichlet problem

(−Δ)su = u2∗
s−1, u > 0 in Ω, u = 0 in R

N \ Ω (1.3)

does not admit a solution. Such a nonexistrence result was first proved in [11]
and later in [17,18] by means of a fractional Pohozaev type identity. However,
(1.2) can have a solution even if Ω is star-shaped and smooth. It is therefore
interesting to understand the type of domains and exponents for which (1.2)
does not admit a solution.

In the case where Ω = R
N or Ω = R

N
+ , the infinimum SN,s(Ω) > 0 for all

s ∈ (0, 1). Moreover, see e.g. [2,16] all minimizers of SN,s(RN ) are of the form

u(x) = a
( 1

b2 + |x − x0|2
)N−2s

2
, x ∈ R

N (1.4)

where a, b are positive constants and x0 ∈ R
N .

Problem of type (1.2) is less understood in contrast with (1.3). The only
paper investigating it is [12]. Precisely, the authors in [12] considered the equiv-
alent minimization problem and obtain existence of minimizers under some
assumptions on Ω and the range of the parameter s. In particular, it is proved
in [12] that if a portion of ∂Ω lies on a hyperplane and N ≥ 4s, then SN,s(Ω)
is achieved.
Our first main result removes this assumption on Ω provided s is close to 1/2.
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Theorem 1.1. Let N ≥ 2 and Ω ⊂ R
N be a bounded C1 open set. Then there

exists s0 ∈ (1/2, 1) such that for all s ∈ (1/2, s0), the infimum SN,s(Ω) is
achieved by a positive function u ∈ Hs

0(Ω) satisfying (1.2).

The main ingredient to prove Theorem 1.1 is to show that SN,s(Ω) <
SN,s(RN

+ ) for s closed to 1/2. In fact, this strict inequality allows for a sort of
compactness. We achieve this by showing that SN,1/2(Ω) = 0 provided Ω is a
bounded Lipschitz open set. We notice here that our notion of Lipschitz open
set is that ∂Ω is locally given by the restriction of a bi-Lipschitz map. This
is strictly weaker than the strongly Lipschitz property, meaning that ∂Ω is
locally given by a graph of a Lipschitz function, see Definiton A.2 and Remark
A.3 below.

Next, let B denote the unit centered ball in R
N . We consider the mini-

mization problem (1.1) on the space Hs
0,rad(B), the completion of the space of

radial functions belonging to C∞
c (B) with respect to the norm Hs

0(B). More
precisely, we consider the infinimum problem, for h ∈ L∞(B) being radial,

SN,s,rad(B, h) = inf
u∈Hs

0,rad(B)
u�=0

QN,s,B(u) +
∫

B hu2dx

‖u‖2
L2∗

s (B)

. (1.5)

Our next result is related to the existence of minimizers for the infimum
SN,s,rad(B, 0) in high dimension N ≥ 4s. Our second main result is the follow-
ing.

Theorem 1.2. Let s ∈ (1/2, 1) and N ≥ 4s. Then the infinimum

SN,s,rad(B, 0) = inf
u∈Hs

0,rad(B)
u�=0

QN,s,B(u)
‖u‖2

L2∗
s (B)

(1.6)

is achieved by a positive function u ∈ Hs
0,rad(B), satisfying

(−Δ)s
Bu = u2∗

s−1 in B, u = 0 on ∂B.

We now turn our attention to the minimization problem SN,s,rad(B, h)
in low dimension N < 4s. This Sobolev constant is related to the Schrödinger
operator (−Δ)s

B + h. As a necessary condition for the existence of positive
minimizers, it is important to assume that (−Δ)s

B+h defines a coercive bilinear
form on Hs

0,rad(B).
Before stating our next result, we need to introduce the mass of B at 0

associated to the Schrödinger operator (−Δ)s+h, where (−Δ)s is the standard
fractional Laplacian. Indeed, let G(x, y) be the Green function of the operator
(−Δ)s + h on B and R be the fundamental solution of (−Δ)s on R

N . Then
the function x �→ k(x) = G(x, 0) − R(x) is continuous in B. The mass of
the operator (−Δ)s + h at 0 is given by k(0). Our next existence result is a
consequence of the fact that the mass is positive, see [13,19].

Theorem 1.3. Let s ∈ (1/2, 1), 2 ≤ N < 4s, h ∈ L∞
rad(B) and suppose that

SN,s,rad(B, h) > 0. Assume that k(0) > 0. Then SN,s,rad(B, h) is achieved by
a positive function u ∈ Hs

0,rad(B), satisfying

(−Δ)s
Bu + hu = u2∗

s−1 in B, u = 0 on ∂B.
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The role of the mass in proving the existence of minimizers (for Sobolev
constant) in low dimensions is very crucial. As we will see later, it helps us to
restore the compactness. Indeed, the strict positivity k(0) > 0 implies that the
Sobolev constant in B is strictly less than that of RN , and thereby produces
the existence of minimizers.

An interesting question that arises is whether symmetry breaking occurs?
More generally, for p ≥ 1, is every positive solution to u ∈ Hs

0(B) to

(−Δ)s
Bu = up in B, u = 0 on ∂B,

is radial? We conjecture that the answer to this question is no.
In Proposition 2.3 we obtain a priori L∞-bounds of minimizers. Hence, by

the ineterior regularity theory and standard boostrap arguments, they belong
to C∞(Ω), provided h ∈ C∞(Ω). In addition, the boundary regularity result
in [4,10] implies that minimizers are actually C2s−1(Ω).

The rest of the paper is organized as follows. in Sect. 2 we give some
preliminaries that will be useful throughout this paper. In Sect. 3 we prove
Theorems 1.1. In Sect. 4 we collect some useful results needed to prove Theo-
rems 1.2 and 1.3 whereas in Sect. 5 we establish Theorems 1.2 and 1.3. Finally
in the Appendix A we prove that the constant function 1 belongs to Hs

0(Ω)
for s ∈ (0, 1/2].

2. Preliminary

In this section, we introduce some preliminary properties which will be useful
in this work. For all s ∈ (0, 1), the fractional Sobolev space Hs(Ω) is defined
as the set of all measurable functions u such that

[u]2Hs(Ω) :=
cN,s

2

∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
dxdy

is finite. It is a Hilbert space endowed with the norm

‖u‖2
Hs(Ω) = ‖u‖2

L2(Ω) + [u]2Hs(Ω).

We refer to [7] for more details on this fractional Sobolev spaces. Next, we
denote by Hs

0(Ω) the completion of C∞
c (Ω) under the norm ‖·‖Hs(Ω). Moreover,

for s ∈ (1/2, 1), Hs
0(Ω) is a Hilbert space equipped with the norm

‖u‖2
Hs

0 (Ω) =
cN,s

2

∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
dxdy

which is equivalent to the usual one in Hs(Ω) thanks to Poincaré inequality.
We define the Hilbert space

Hs
0(Ω) = {u ∈ Hs(RN ) : u = 0 in R

N \ Ω}
endowed with the norm ‖ · ‖Hs(RN ), which is the completion of C∞

c (Ω) with
respect to the norm ‖ · ‖Hs(RN ). In the sequel, Hs

0,rad(Ω) and Hs
0,rad(Ω) are

respectively the space of radially symmetric functions of Hs
0(Ω) and Hs

0(Ω).
We denote by L∞

rad(Ω) the space of radial functions u belonging to L∞(Ω).
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Given x ∈ Ω and r > 0, we denote by Br(x) the open ball centered at x
with radius r. When the center is not specified, we will understand that it’s the
origin, e.g. B2(0) = B2. The upper half-ball centered at x with radius r is de-
noted by B+

r (x). We will always use δΩ(x) = dist(x, ∂Ω) for the distance from
x to the boundary. For every set A ⊂ R

N , we denote by 1A its characteristic
function.

Proposition 2.1. (see [5,7]) The embedding Hs
0(Ω) ↪→ Lp(Ω) is continuous for

any p ∈ [2, 2∗
s ], and compact for any p ∈ [2, 2∗

s).

The next proposition gives an elementary result regarding the role of
convex functions applied to (−Δ)s

Ω.

Proposition 2.2. Assume that φ : R → R is a Lipschitz convex function such
that φ(0) = 0. Then if u ∈ Hs

0(Ω) we have

(−Δ)s
Ωφ(u) ≤ φ′(u)(−Δ)s

Ωu weakly in Ω. (2.1)

Proof. The proof of the above lemma is standard. In fact, using that every
convex φ satisfies φ(a) − φ(b) ≤ φ′(a)(a − b) for all a, b ∈ R, the proof follows.

�

We conclude this section showing in proposition below, the boundedness
of any nonnegative solution of (1.2). The argument uses Moser’s iteration
method. A similar result has been established in [1] for the case of fractional
Laplacian.

Proposition 2.3. Let u ∈ Hs
0(Ω) be a nonnegative solution to problem (1.2).

Then u ∈ L∞(Ω).

Proof. For β ≥ 1 and T > 0 large, we define the following convex function

φT,β(t) =

⎧⎪⎨
⎪⎩

0, if t ≤ 0

tβ , if 0 < t < T

βT β−1(t − T ) + T β , if t ≥ T.

Throughout the proof, we will use φT,β =: φ for the sake of simplicity. Since
φ is Lipschitz, with constant Λφ = βT β−1, and φ(0) = 0, then φ(u) ∈ Hs

0(Ω)
and by the convexity of φ, we have, according to Proposition 2.2 that

(−Δ)s
Ωφ(u) ≤ φ′(u)(−Δ)s

Ωu. (2.2)

By Proposition 2.1 and inequality (2.2) we have that

‖φ(u)‖2
L2∗

s (Ω)
≤ C‖φ(u)‖2

Hs
0 (Ω) = C

∫
Ω

φ(u)(−Δ)s
Ωφ(u) dx

≤ C

∫
Ω

φ(u)φ′(u)(−Δ)s
Ωu dx

= C

∫
Ω

φ(u)φ′(u)u2∗
s−1 dx.
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Moreover, since uφ′(u) ≤ βφ(u), we have that

‖φ(u)‖2
L2∗

s (Ω)
≤ Cβ

∫
Ω

(φ(u))2u2∗
s−2 dx. (2.3)

We point out that the integral on the right-hand side of the above inequality
is finite. Indeed, using that β ≥ 1 and φ(u) is linear when u ≥ T , we have from
a quick computation that∫

Ω

(φ(u))2u2∗
s−2 dx =

∫
{u≤T}

(φ(u))2u2∗
s−2 dx +

∫
{u>T}

(φ(u))2u2∗
s−2 dx

≤ T 2β−2

∫
Ω

u2∗
s dx + C

∫
Ω

u2∗
s dx < ∞.

We now choose β in (2.3) so that 2β − 1 = 2∗
s. Denoting by β1 such a value,

then we can equivalently write

β1 :=
2∗

s + 1
2

. (2.4)

Let K > 0 be a positive number whose value will be fixed later on. Then
applying Hölder’s inequality with exponents q := 2∗

s/2 and q′ := 2∗
s/(2∗

s − 2)
in the integral on the right-hand side of inequality (2.3), we find that∫

Ω

(φ(u))2u2∗
s−2 dx =

∫
{u≤K}

(φ(u))2u2∗
s−2 dx +

∫
{u>K}

(φ(u))2u2∗
s−2 dx

≤
∫

{u≤K}

(φ(u))2

u
K2∗

s−1 dx +

( ∫
Ω

(φ(u))2
∗
s dx

)2/2∗
s
( ∫

{u>K}
u2∗

s dx

) 2∗
s −2
2∗

s

.

(2.5)

Now, thanks to Monotone Convergence Theorem, we can choose K as big as
we wish so that

(∫
{u>K}

u2∗
s dx

) 2∗
s−2
2∗

s

≤ 1
2Cβ1

, (2.6)

where C is the positive constant appearing in (2.3). Therefore, by taking into
account (2.6) in (2.5) and by using also (2.4), we deduce from (2.3) that

‖φ(u)‖2
L2∗

s (Ω)
≤ 2Cβ1

(
K2∗

s−1

∫
Ω

(φ(u))2

u
dx

)
.

Since φ(u) ≤ uβ1 and recalling (2.4), and by letting T → ∞, we get that
( ∫

Ω

u2∗
sβ1 dx

)2/2∗
s

≤ 2Cβ1

(
K2∗

s−1

∫
Ω

u2∗
s dx

)
< ∞,

and therefore

u ∈ L2∗
sβ1(Ω). (2.7)
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Suppose now that β > β1. Thus, using that φ(u) ≤ uβ in the right hand side
of (2.3) and letting T → ∞ we get

(∫
Ω

u2∗
sβ dx

)2/2∗
s

≤ Cβ

( ∫
Ω

u2β+2∗
s−2 dx

)
. (2.8)

Therefore,
( ∫

Ω

u2∗
sβ dx

) 1
2∗

s (β−1)

≤ (Cβ)
1

2(β−1)

( ∫
Ω

u2β+2∗
s−2 dx

) 1
2(β−1)

. (2.9)

We are now in position to use an iterative argument as in [1, Proposition 2.2].
For that, we define inductively the sequence βm+1, m ≥ 1 by

2βm+1 + 2∗
s − 2 = 2∗

sβm,

from which we deduce that,

βm+1 − 1 =
(2∗

s

2

)m

(β1 − 1).

Now by using βm+1 in place of β, in (2.9), it follows that
( ∫

Ω

u2∗
sβm+1 dx

) 1
2∗

s (βm+1−1)

≤ (Cβm+1)
1

2(βm+1−1)

(∫
Ω

u2∗
sβm dx

) 1
2∗

s (βm−1)

.

For the sake of clarity, we set

Cm+1 := (Cβm+1)
1

2(βm+1−1) and Am :=

(∫
Ω

u2∗
sβm dx

) 1
2∗

s (βm−1)

so that

Am+1 ≤ Cm+1Am, m ≥ 1. (2.10)

Then iterating the above inequality, we find that

Am+1 ≤
m+1∏
i=2

CiA1,

which implies that

log Am+1 ≤
m+1∑
i=2

log Ci + log A1

≤
∞∑

i=2

log Ci + log A1.

Since βm+1 = (β1 − 1/2)m(β1 − 1) + 1 then the serie
∑∞

i=2 log Ci converges.
Also, since u ∈ L2∗

sβ1(Ω) (see (2.7)), then A1 ≤ C. From this, we find that

log Am+1 ≤ C0 (2.11)
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with being C0 > 0 a positive constant independent of m. By letting m → ∞,
it follows that

‖u‖L∞(Ω) ≤ C ′
0 < ∞.

This completes the proof. �

3. Existence of minimizers for s close to 1/2

We aim to study the existence of nontrivial solutions of (1.2). As pointed point
out in the introduction the embedding Hs

0(Ω) ↪→ L2∗
s (Ω) fails to be compact

and due to this, the functional energy associated to (1.2) does not satisfy
the Palais-Smale compactness condition. Hence finding the critical points by
standard variational methods become a very tough task. Therefore, a natural
question arises:

(Q) Does problem (1.2) admits a nontrivial solution?

In other words, we are looking at whether the quantity

SN,s(Ω) = inf
u∈Hs

0 (Ω)
u�=0

QN,s,Ω(u)
‖u‖2

L2∗
s (Ω)

(3.1)

is attained or not. Here QN,s,Ω(·) is a nonnegative quadratic form define on
Hs

0(Ω) by

QN,s,Ω(u) :=
cN,s

2

∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
dxdy.

As a quick comment on the above question, Frank et al. [12, Theorem 4] gave
a positive answer in the special case of a class of C1 open sets whose boundary
has a flat part, that is C1 domains Ω with the shape B+

r (z) ⊂ Ω ⊂ R
N
+ for

some r > 0 and z ∈ ∂RN
+ , and such that R

N
+ \ Ω has nonempty interior. This

flatness assumption on the boundary of Ω allows the authors in [12] to obtain
the strict inequality SN,s(Ω) < SN,s(RN

+ ), which is the crucial ingredient for
the proof of Theorem 4 in there. Notice that in [12], the question remains open
for a larger class of sets.

In the sequel, we give a positive affirmation to the above question in the
case of arbitrary open sets with C1 boundary, provided that s is close to 1/2.
As a consequence, one has in contrast with the fractional Laplacian that the
above question has a positive answer even if Ω is convex and of class C∞.

For the reader’s convenience, we restate our main result in the following.

Theorem 3.1. Let N ≥ 2 and Ω ⊂ R
N be a bounded Lipschitz open set. There

exists s0 ∈ (1/2, 1) such that for all s ∈ (1/2, s0), any minimizing sequence for
SN,s(Ω), normalized in Hs

0(Ω) is relatively compact in Hs
0(Ω). In particular,

the infimum is achieved.
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The proof of the above main theorem is a direct consequence of the key
proposition below (see Proposition 3.2), in which we examine the asymptotic
behavior of the Sobolev critical constant SN,s(Ω) as s tends to 1/2+, by show-
ing that the latter goes to zero. The proof of this only requires the domain to
be Lipschitz. Our key proposition is stated as follows.

Proposition 3.2. Let Ω ⊂ R
N be a bounded Lipschitz open set. Then

lim
s↘1/2

SN,s(Ω) = 0. (3.2)

We now collect some interesting results that are needed to complete the
proof of Proposition 3.2 above. Let us start with the following upper semicon-
tinuous lemma.

Lemma 3.3. Let Ω ⊂ R
N be a bounded Lipschitz open set. Fix s0 ∈ [1/2, 1).

Then

lim sup
s↘s0

SN,s(Ω) ≤ SN,s0(Ω). (3.3)

Proof. For t ∈ R, we recall the elementary inequality

|et − 1| ≤
+∞∑
k=1

|t|k
k!

≤
+∞∑
k=1

|t|k
(k − 1)!

≤ |t|e|t|. (3.4)

For all r, γ > 0, we also recall the following growth regarding the logarithmic
function:

| log |z|| ≤ 1
eγ

|z|−γ if |z| ≤ r and | log |z|| ≤ 1
eγ

|z|γ if |z| ≥ r. (3.5)

Let ε > 0 and let uε ∈ C∞
c (Ω) such that ‖uε‖L2∗

s (Ω) = 1 and QN,s0,Ω(uε) ≤
SN,s0(Ω) + ε. Then SN,s(Ω) ≤ QN,s,Ω(uε). From this, we obtain that

SN,s(Ω) − SN,s0(Ω) ≤ QN,s,Ω(uε) − QN,s0,Ω(uε) + ε. (3.6)

On the other hand,

|QN,s,Ω(uε) − QN,s0,Ω(uε)|

≤ 1
2
|cN,s − cN,s0 |

∫
Ω

∫
Ω

(uε(x) − uε(y))2

|x − y|N+2s0
dxdy

+
cN,s

2

∫
Ω

∫
Ω

(uε(x) − uε(y))2

|x − y|N+2s0
||x − y|2(s0−s) − 1| dxdy

≤ 1
cN,s0

(SN,s0(Ω) + ε)|cN,s − cN,s0 |

+
cN,s

2

∫
Ω

∫
Ω

(uε(x) − uε(y))2

|x − y|N+2s0
||x − y|2(s0−s) − 1| dxdy.

Next, from (3.4) we have that

||x − y|2(s0−s) − 1| = |e2(s0−s) log |x−y| − 1|
≤ 2|s0 − s|| log |x − y||e2|s0−s|| log |x−y||

= 2|s0 − s|| log |x − y|||x − y|2|s0−s|.
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Taking this into account and using the regularity of uε and the property (3.5)
(with γ < 2(1 − s0)), we have, with

AΩ := {(x, y) ∈ Ω × Ω : |x − y| ≤ 1} and
BΩ := {(x, y) ∈ Ω × Ω : |x − y| > 1},

the estimate∫
Ω

∫
Ω

(uε(x) − uε(y))2

|x − y|N+2s0
||x − y|2(s0−s) − 1| dxdy

= 2|s0 − s|
∫

Ω

∫
Ω

(uε(x) − uε(y))2

|x − y|N+2s0
| log |x − y|||x − y|2|s0−s| dxdy

≤ 2|s0 − s|diam(Ω)2|s0−s|
∫

Ω

∫
Ω

(uε(x) − uε(y))2

|x − y|N+2s0
| log |x − y|| dxdy

= 2|s0 − s|diam(Ω)2|s0−s|
( ∫∫

AΩ

· · · +
∫∫

BΩ

· · ·
)

(uε(x) − uε(y))2

|x − y|N+2s0
| log |x − y|| dxdy

≤ 2(eγ)−1|s0 − s|diam(Ω)2|s0−s|
( ∫∫

AΩ

(uε(x) − uε(y))2

|x − y|N+2s0+γ

+ diam(Ω)γ

∫∫
BΩ

(uε(x) − uε(y))2
)

dxdy

≤ 2(eγ)−1|s0 − s|diam(Ω)2|s0−s|
(

‖uε‖2
C1(Ω)

∫∫
AΩ

|x − y|2−N−2s0−γ dxdy

+ 4|Ω|diam(Ω)γ

)

= Cdiam(Ω)2|s0−s||s0 − s|
where diam(Ω) = sup{|x − y| : x, y ∈ Ω} is the diameter of Ω and C =
C(N, s0, γ,Ω, uε) > 0 is a positive constant.

From the above estimate, we find that

|QN,s,Ω(uε) − QN,s0,Ω(uε)|

≤ 1
cN,s0

(SN,s0(Ω) + ε)|cN,s − cN,s0 |+
CcN,s

2
diam(Ω)2|s0−s||s0 − s| (3.7)

and from this, we deduce from (3.6) that

lim sup
s↘s0

SN,s(Ω) ≤ SN,s0(Ω) + ε. (3.8)

Since ε can be chosen arbitrarily small, (3.3) follows. This finishes the proof.
�

We have the following proposition. While this result is known (see e.g.
[14]) and since we could not find a detailed proof, we include its proof in
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Appendix A. The idea of proof is to construct a sequence of functions with
compact support in Ω and approximate the constant function 1. This allows
us to deduce that 1 ∈ H

1/2
0 (Ω) and thus SN,1/2(Ω) = 0.

Proposition 3.4. Let Ω be a bounded Lipschitz open set of RN . Then

SN,1/2(Ω) = 0. (3.9)

We can now give the proof of our key proposition.

Proof of Proposition 3.2. Since SN,s(Ω) > 0 then if follows that

lim inf
s↘1/2

SN,s(Ω) ≥ 0. (3.10)

On the other hand, applying Lemma 3.3 together with Proposition 3.4, we
have that

lim sup
s↘1/2

SN,s(Ω) ≤ SN,1/2(Ω) = 0, (3.11)

Now, from (3.10) and (3.11) we deduce (3.2), and this ends the proof of Propo-
sition 3.2. �

Having the above key tools in mind, we can now give the proof of Theorem
3.1.

Proof of Theorem 3.1. Let s ∈ (1/2, 1) with s close to 1/2. Then by Proposi-
tion 3.2, we have that SN,s(Ω) → 0 as s ↘ 1/2. Consequently, for s close to
1/2, and since SN,s(RN

+ ) > 0 for all s ∈ (0, 1) (see e.g. [9, Lemma 2.1]), we
deduce that

0 < SN,s(Ω) < SN,s(RN
+ ) for all s ∈ (1/2, s0) (3.12)

for some s0 ∈ (1/2, 1). With the above key inequality, we complete the proof
by following closely the argument developed by Frank et al. [12] for the proof
of Theorem 4 in there. �

4. The radial problem

In the present section, we consider the existence of minimizers to quotient

SN,s,rad(B, h) := inf
u∈C∞

c,rad(B)

[u]2Hs(B) +
∫

B hu2dx

‖u‖2
L2∗

s (B)

. (4.1)

Here and in the following, we consider the class of radial potentials h ∈ L∞(B)
such that

SN,s,rad(B, h) > 0. (4.2)

We observe that if h(x) ≡ −λ with λ < λ1(B), the first eigenvalue of (−Δ)s
B,

then (4.2) holds. The aim of this section is to provide situations in which
SN,s,rad(B, h) < SN,s(RN ).
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Remark 4.1. We observe that if h satisfies (4.2), then if u ∈ Hs
0(B) satisfies,

weakly, (−Δ)s
Bu + hu = f in B with f ∈ Lp(B), for some p > N

2s , then
u ∈ C(B)∩L∞(B). This follows from the argument of Proposition 2.3 and the
interior regularity.

We start recalling the following result from [12].

Proposition 4.2. ([12, Proposition 7]) Let s ∈ (1/2, 1) and N ≥ 4s. Then

SN,s,rad(B, 0) < SN,s(RN ). (4.3)

The following result plays a crucial role for the existence theorems.

Proposition 4.3. Let 1/2 < s < 1 and N ≥ 2. Then there is a constant C =
C(N, s) > 0 such that for all u ∈ Hs

0,rad(B),

QN,s,B(u) ≥ SN,s(RN )‖u‖2
L2∗

s (B)
− CB‖u‖2

L2(B). (4.4)

For this, we need the following two lemmas.

Lemma 4.4. For every ρ ∈ (0, 1), there exists Kρ > 0 with the property that

QN,s,B(u) ≥ SN,s(RN )‖u‖2
L2∗

s (B)
− Kρ‖u‖2

L2(B)

for every u ∈ Hs
0,rad(B) with supp u ⊂ Bρ.

Proof. Let u ∈ Hs
0,rad(B) with supp u ⊂ Bρ. We have

QN,s,B(u) = QN,s,RN (u) −
∫

B
κB(x)u(x)2 dx ≥ SN,s(RN )‖u‖2

L2∗
s (B)

−
∫

B
κB(x)u(x)2 dx,

with being κB the killing measure for B defined as κB(x) =
cN,s

∫
RN \B

1
|x−y|N+2s dy, x ∈ B. On the other hand, since suppu ⊂ Bρ, then

∫
B

κB(x)u(x)2 dx =
∫

Bρ

κB(x)u(x)2 dx

and for every x ∈ Bρ,

κB(x) = cN,s

∫
RN \B

dy

|x − y|N+2s
≤ cN,s

∫
|z|≥1−ρ

|z|−N−2s dz = aN,s(1 − ρ)−2s.

Taking this into account, we find that∫
B

κB(x)u(x)2 dx≤aN,s(1 − ρ)−2s

∫
Bρ

u(x)2 dx≤Kρ‖u‖2
L2(Bρ) ≤Kρ‖u‖2

L2(B),

with Kρ = aN,s(1 − ρ)−2s. From this, we get that

QN,s,B(u) ≥ SN,s(RN )‖u‖2
L2∗

s (B)
− Kρ‖u‖2

L2(B),

concluding the proof. �
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Lemma 4.5. For every M,ρ > 0 there exists Cρ,M > 0 with

QN,s,B(u) ≥ M‖u‖2
L2∗

s (B)
− Cρ,M‖u‖2

L2(B) for every u ∈ Hs
0,rad(B)

with u ≡ 0 in Bρ.

Proof. We first recall that for s ∈ (1/2, 1), Hs
0(B) = Hs

0(B). Therefore, for
every u ∈ Hs

0,rad(B) ⊂ Hs
0(B) = Hs

0(B), we have u ∈ Hs
0,rad(B). Thus, com-

bining the fractional version of the Strauss radial lemma (see [6, Lemma 2.5])
and the Hardy inequality (see [8]) we get that

|u(x)|2 ≤ γN,s|x|−(N−2s)QN,s,RN (u)

= γN,s|x|−(N−2s)

(
QN,s,B(u) +

∫
B

κB(x)u(x)2 dx

)

≤ γN,s|x|−(N−2s)

(
QN,s,B(u) + γN,s,B

∫
B

δB(x)−2su(x)2 dx

)

≤ dN,s,B|x|−(N−2s)QN,s,B(u), (4.5)

which implies that

‖u‖2
L∞(B\Bρ) ≤ dN,s,Bρ−(N−2s)QN,s,B(u)

for every u ∈ Hs
0,rad(B) with u ≡ 0 in Bρ. (4.6)

Consequently, using interpolation and Young’s inequality with exponents p =
2/α and p′ = 2/(2 − α), we find that, for all M > 0,

‖u‖2
L2∗

s (B\Bρ)
≤ C‖u‖α

L2(B\Bρ)‖u‖2−α
L∞(B\Bρ)

≤ 1
MdN,s,Bρ−(N−2s)

‖u‖2
L∞(B\Bρ) +

Cρ,M

M
‖u‖2

L2(B\Bρ)

with suitable constants α ∈ (0, 2) and Cρ,M > 0, and hence

M‖u‖2
L2∗

s (B\Bρ)
≤ 1

dN,s,Bρ−(N−2s)
‖u‖2

L∞(B\Bρ) + Cρ,M‖u‖2
L2(B\Bρ)

≤ QN,s,B(u) + Cρ,M‖u‖2
L2(B)

for every u ∈ Hs
0,rad(B) with u ≡ 0 in Bρ. The claim follows. �

In the following, we give the

Proof of Proposition 4.3. We choose 0 < ρ2 < ρ1 < 1. Moreover, let χ1, χ2 ∈
C∞

c (RN ) with 0 ≤ χi ≤ 1, χ2
1 + χ2

2 ≡ 1 in B and supp χ1 ⊂ Bρ1 , supp χ2 ⊂
R

N \ Bρ2 . Then we can write u = χ2
1u + χ2

2u in B.
Applying QN,s,B(·) to u =

∑2
i=1 χ2

i u, we easily find that

QN,s,B(u) =
2∑

i=1

QN,s,B(χiu)

−cN,s

2

2∑
i=1

∫
B

∫
B

(χi(x) − χi(y))2

|x − y|N+2s
u(x)u(y) dxdy. (4.7)
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By the regularity of χi, we observe that there is no singularity in the double
integral and therefore it follows from the Schur test that there exists a positive
constant C > 0 such that

2∑
i=1

∫
B

∫
B

(χi(x) − χi(y))2

|x − y|N+2s
u(x)u(y) dxdy ≤ C

∫
B

u2 dx. (4.8)

In fact, we can write
∫

B

∫
B

(χi(x) − χi(y))2

|x − y|N+2s
u(x)u(y) dxdy ≤ C

∫
B

∫
B

K(x, y)u(x)u(y) dxdy (4.9)

= C

∫
B

Tu(x)u(x) dx (4.10)

where

Tu(x) =
∫

B
K(x, y)u(y) dy with K(x, y) = |x − y|2−N−2s.

Moreover, by Hölder inequality,∫
B

Tu(x)u(x) dx ≤ ‖Tu‖L2(B)‖u‖L2(B). (4.11)

Now, the Schur test implies that there is C > 0 such that

‖Tu‖L2(B) ≤ C‖u‖L2(B). (4.12)

Therefore, inequality (4.8) follows by combining (4.9), (4.11) and (4.12).
On the other hand, by Lemmas 4.4 and 4.5, there exists a positive constant
C > 0, depending on ρ1 and ρ2 with the property that

QN,s,B(χiu) ≥ SN,s(RN )‖χiu‖2
L2∗

s (B)
− C‖χiu‖2

L2(B). (4.13)

Plugging (4.8) and (4.13) into (4.7), we find that

QN,s,B(u) ≥ SN,s(RN )
2∑

i=1

‖χiu‖2
L2∗

s (B)
− C

2∑
i=1

‖χiu‖2
L2(B). (4.14)

Next, since
∑2

i=1 χ2
i = 1, we have

2∑
i=1

‖χiu‖2
L2∗

s (B)
=

2∑
i=1

∥∥∥χ2
i u

2
∥∥∥

L
N

N−2s (B)
≥

∥∥∥∥∥
2∑

i=1

χ2
i u

2

∥∥∥∥∥
L

N
N−2s (B)

= ‖u2‖
L

N
N−2s (B)

= ‖u‖2
L2∗

s (B)
.

Using this in (4.13), it follows that

QN,s,B(u) ≥ SN,s(RN )‖u‖2
L2∗

s (B)
− C‖u‖2

L2(B),

completing the proof. �
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4.1. The case 2s < N < 4s

We now let G(x, y) be the Green function of (−Δ)s + h, with zero exterior
Dirichlet boundary data. Letting G(x) = G(x, 0), we have that

{
(−Δ)sG(x) + h(x)G(x) = δ0(x) in B
G(x) = 0 in R

N \ B,
(4.15)

where δ0 is the Dirac mass at 0 and h ∈ L∞(B) a radial function. We recall
that G is a radial function. In fact this follows from the construction and
uniqueness of Green function. We let R(x) = tN,s|x|2s−N be the fundamental
solution of (−Δ)s on R

N . It satisfies

(−Δ)sR(x) = δ0(x), (4.16)

where tN,s := π− N
2 2−s Γ((N−s)/2)

Γ(s/2) . We now define k ∈ L1(B), by

k(x) := G(x) − R(x). (4.17)

It then follows, from (4.15), that

(−Δ)sk(x) + h(x)k(x) = −h(x)R(x). (4.18)

Since N < 4s, we have that k ∈ L2(B) and hR ∈ Lp(B) ∩ L2(B), for some
p > N

2s . Therefore, by regularity theory, k ∈ C(B). Recall that k(y) is the
mass of B associated to the operator LRN := (−Δ)s + h(x). We remark that
if χ ∈ C∞

c (B), with χ = 1 in a neighborhood of 0, then letting

k(x) := G(x) − χ(x)R(x),

then, by continuity, k(y) = k(y), for all y ∈ B. This follows from the fact that
(−Δ)sk + hk ∈ Lp(B), for some p > N

2s and thus k ∈ C(B).

Remark 4.6. It would be interesting to find potential h for which k(0) > 0.

First, for ε > 0 we set

uε(x) = γ0

( ε

ε2 + |x|2
)N−2s

2
,

where γ0 is a positive constant (independent of ε) such that ‖uε‖L2∗
s (RN ) = 1.

It is known that uε satisfies the Euler-Lagrange equation

(−Δ)suε = SN,su
2∗

s−1
ε in R

N . (4.19)

Our next result shows that in low dimension N < 4s, the positive mass
implies existence of minimizers.

Lemma 4.7. Suppose that 2s < N < 4s. Suppose that k(0) > 0. Then

SN,s,rad(B, h) < SN,s := SN,s(RN ). (4.20)
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Proof. For r ∈ (0, 1/4), we let η ∈ C∞
c (B2r) be radial, with η = 1 on Br. We

define the test function vε ∈ Hs
0,rad(B) given by

vε(x) = η(x)uε(x) + ε
N−2s

2
γ0

tN,s
(G(x) − η(x)R(x))

= η(x)uε(x) + ε
N−2s

2
γ0

tN,s
k(x). (4.21)

We define Wε := ηuε − ε
N−2s

2
γ0

tN,s
ηR and as := γ0

tN,s
.

Note that ε− N−2s
2 Wε → 0 ∈ Cloc(RN \{0})∩L1(B) and |ε− N−2s

2 uε(x)| ≤
γ0|x|2s−N . Hence, since N < 4s, we deduce that |x|2(2s−N) ∈ L1

loc(R
N ) and

thus by the dominated convergence theorem,

∫
B

uε(x)h(x)Wε(x) dx = o(εN−2s). (4.22)

We then have

[vε]2Hs(B) +
∫

B
hv2

ε dx ≤ [vε]2Hs(RN ) +
∫

B
hv2

ε dx =
∫

B
vε(x)LRN vε(x) dx

≤ ε
N−2s

2 as

∫
B

vε(x)LRN G(x) dx +
∫

B
vε(x)LRN Wε(x) dx

≤ ε
N−2s

2 asuε(0) + εN−2sa2
sk(0) +

∫
B

ηuε(x)(−Δ)sWε(x) dx

+ ε
N−2s

2 as

∫
B
k(x)LRN Wε(x) dx + o(εN−2s)

≤ ε
N−2s

2 asuε(0) + εN−2sa2
sk(0) +

∫
B

ηuε(x)(−Δ)s(ηuε)(x) dx

− ε
N−2s

2 as

∫
B

ηuε(x)(−Δ)s(ηR)(x) dx

+ ε
N−2s

2 as

∫
B
k(x)LRN Wε(x) dx + o(εN−2s)

≤ ε
N−2s

2 asuε(0) + εN−2sa2
sk(0)

+
∫
RN

ηuε(x)(−Δ)s(ηuε)(x) dx − ε
N−2s

2 as

∫
RN

ηuε(x)(−Δ)s(ηR)(x) dx

+ ε
N−2s

2 as

∫
RN

k(x)LRN Wε(x) dx + o(εN−2s).

Letting W ε = uε − ε
N−2s

2 asR(x), since N < 4s, we have that

ε− N−2s
2 W ε → 0 in C1

loc(R
N \ {0}) ∩ L1

s ∩ L2
loc(R

N ). (4.23)
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Therefore, using that (−Δ)sR = δ0 and (−Δ)suε = SN,su
2∗

s−1
ε , we get

ε
N−2s

2 asuε(0) +
∫
RN

ηuε(x)(−Δ)s(ηuε)(x) dx

− ε
N−2s

2 as

∫
RN

ηuε(x)(−Δ)s(ηR)(x) dx

= ε
N−2s

2 asuε(0) +
∫
RN

η2uε(x)(−Δ)suε(x) dx

− ε
N−2s

2 as

∫
RN

ηuε(x)(−Δ)sR(x) dx

+
∫
RN

ηuε(x)W ε(x)(−Δ)sη(x) dx −
∫

B2r

ηuε(x)Jε(x)dx

= SN,s

∫
RN

η2u
2∗

s
ε +

∫
RN

ηuε(x)W ε(x)(−Δ)sη(x) dx −
∫

B2r

ηuε(x)Jε(x)dx

= SN,s

∫
RN

η2u
2∗

s
ε + o(εN−2s) −

∫
B2r

ηuε(x)Jε(x)dx,

where Jε(x) := cN,s

∫
RN

(W ε(x)−W ε(y))(η(x)−η(y))
|x−y|N+2s dy. To estimate Jε, we con-

sider first x ∈ Br/2 and thus

Jε(x) = cN,s

∫
|y|>r

(W ε(x) − W ε(y))(η(x) − η(y))
|x − y|N+2s

dy = o(ε
N−2s

2 )O(|x|N−2s
2 ).

If now |x| ≥ r/2, we estimate

|Jε(x)| ≤ cN,s

∫
|y|<r/4

|(W ε(x) − W ε(y))(η(x) − η(y))|
|x − y|N+2s

dy

+ cN,s

∫
|y|>r/4

|(W ε(x) − W ε(y))(η(x) − η(y))|
|x − y|N+2s

dy

≤ o(ε
N−2s

2 ) + ‖∇η‖L∞(RN )

∫
4r>|y|>r/4

supt∈[0,1] |∇W ε(γx,y(t))||γ′
x,y(t)|

|x − y|N+2s−1
dy

= o(ε
N−2s

2 )

where γx,y : [0, 1] → Br/2\Br/4 is the C1 shortest curve satisfying γx,y(0) = x,
γx,y(1) = y and supt∈[0,1] |γ′

x,y(t)| ≤ C|x − y|.
Since N < 4s, by (4.18) and (4.23), we have∣∣∣∣
∫
RN

k(x)LRN Wε(x) dx

∣∣∣∣ ≤
∣∣∣∣
∫

B2r

|LRNk(x)||Wε(x)| dx

∣∣∣∣ = o(ε
N−2s

2 ).

We thus conclude that

[vε]2Hs(B) +
∫

B
hv2

ε dx ≤ SN,s

∫
RN

η2u
2∗

s
ε

+ εN−2sa2
sk(0) + o(εN−2s) + O(εN−2s)or(1)

≤ SN,s + εN−2sa2
sk(0) + o(εN−2s) + O(r4s−NεN−2s).

(4.24)
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Since 2∗
s > 2, there exists a positive constant C(N, s) such that

||a + b|2∗
s − |a|2∗

s − 2∗
sab|a|2∗

s−2| ≤ C(N, s)
(
|a|2∗

s−2b2 + |b|2∗
s

)
for all a, b ∈ R.

As a consequence, with a = η(x)uε(x) and b = ε
N−2s

2 ask(x), we obtain

∫
B

v
2∗

s
ε −

∫
RN

(ηuε)2
∗
s = 2∗

sε
N−2s

2 as

∫
B
(ηuε)2

∗
s−1k(x) dx

+ o(εN−2s) + O

(
εN−2s

∫
RN

|η(x)uε(x)|2∗
s−2k2(x)dx

)

= 2∗
sε

N−2s
2

as

SN,s

∫
B

η2∗
s−1k(x)(−Δ)suε dx + o(εN−2s)

+ εN−2sO
(
‖ηuε‖2∗

s−2

L2∗
s (B2r)

‖k‖2
L2∗

s (B2r)

)
.

= 2∗
sε

N−2s
2

as

SN,s

∫
B
k(x)(−Δ)sW ε dx

+ 2∗
sε

N−2s
2

as

SN,s

∫
B
(η2∗

s−1 − 1)k(x)(−Δ)sW ε dx

+ 2∗
sε

N−2s a2
s

SN,s
k(0) + o(εN−2s) + O(εN−2srN−2s)

= 2∗
sε

N−2s
2

as

SN,s

∫
B

W ε(x)LRNk(x) dx

+ 2∗
sε

N−2s
2

as

SN,s

∫
B
(η2∗

s−1 − 1)k(x)(−Δ)sW ε dx

+ 2∗
sε

N−2s a2
s

SN,s
k(0) + o(εN−2s) + O(εN−2srN−2s)

= 2∗
sε

N−2s a2
s

SN,s
O

(∫
|x|<2r

|x|2s−N

(
1

(ε2 + |x|2)N−2s
2

− 1
|x|N−2s

)
dx

)

+ 2∗
sε

N−2s
2

as

SN,s

∫
B
(η2∗

s−1 − 1)k(x)(−Δ)sW ε dx

+ 2∗
sε

N−2s a2
s

SN,s
k(0) + o(εN−2s) + O(εN−2s)or(1).

We estimate

∫
B

(η2∗
s
−1 − 1)k(x)(−Δ)sW ε dx =

∫
B

(η2∗
s
−1 − 1)k(x)(−Δ)s(ηr/4W ε) dx + o(ε

N−2s

2 )

= cN,s

∫
|x|≥r

(1 − η2∗
s
−1(x))k(x)

∫
|y|<r/2

ηr/4(y)W ε(y) dy

|x − y|N+2s
dy+o(ε

N−2s

2 )=o(ε
N−2s

2 ).
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Here, from the definition of η, we define ηr/4 ∈ C∞
c (Br/2) with ηr/4 = 1 on

Br/4. From the above estimates, we then obtain
∫

B
v
2∗

s
ε =

∫
RN

(ηuε)2
∗
s + 2∗

sε
N−2s a2

s

SN,s
k(0) + o(εN−2s) + O(εN−2s)or(1)

= 1 + 2∗
sε

N−2s a2
s

SN,s
k(0) + o(εN−2s) + O(εN−2s)or(1).

Combining this with (4.24), we finally get

[vε]2Hs(B) +
∫

B hv2
ε dx

‖vε‖2
L2∗

s (B)

≤ SN,s − εN−2sa2
sk(0) + o(εN−2s) + O(εN−2s)or(1).

This finishes the proof. �

5. Existence of radial minimizers

The goal of this section is to investigate the existence of a radial solution of
problem (1.2) in the case when Ω = B is the unit ball of RN , N > 2s. More
precisely, we aim to analyze the attainability of the following radial critical
level

SN,s,rad(B, h) = inf
u∈Hs

0,rad(B)
u�=0

QN,s,B(u) +
∫

B hu2 dx

‖u‖2
L2∗

s (B)

. (5.1)

To this end, we make use of the method of missing mass as in [12]. The idea is
to prove that a minimizing sequence for SN,s,rad(B, h) does not concentrate at
the origin. For that, we will exploit inequalities (4.3) and (4.20) respectively
for high (N ≥ 4s) and low (2s < N < 4s) dimensions.

For the reader’s convenience, we restate the main result of this subsection
in the following.

Theorem 5.1. Let s ∈ (1/2, 1), N > 2s and h ∈ L∞(B) be a radial function.
Suppose that 0 < SN,s,rad(B, h) < SN,s(RN ). Then any minimizing sequence
for SN,s,rad(B, h), normalized in Hs

0,rad(B) is relatively compact in Hs
0,rad(B).

In particular, the infimum is achieved.

To prove the above theorem, we first collect some useful results. Let’s
introduce

S∗
N,s,rad(B) := inf

{
lim inf
k→∞

‖uk‖−2

L2∗
s (B)

: QN,s,B(uk)

= 1, uk ⇀ 0 in Hs
0,rad(B)

}
. (5.2)

As we will see in the sequel, the infimum S∗
N,s,rad(B) is crucial in showing that

normalized minimizing sequences that weakly converge to zero in Hs
0,rad(B)

move away from the origin in such a way that the concentration at the origin
is excluded.

We have the following interesting one-sided inequality.
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Proposition 5.2. Let 1/2 < s < 1 and N ≥ 2. Then

S∗
N,s,rad(B) ≥ SN,s(RN ). (5.3)

Proof. Let (uk) ⊂ Hs
0,rad(B) with QN,s,B(uk) = 1 and uk ⇀ 0 in Hs

0,rad(B).
Then by Proposition 4.3 there is CB > 0 such that

QN,s,B(uk) ≥ SN,s(RN )‖uk‖2
L2∗

s (B)
− CB‖uk‖2

L2(B).

By the compact embedding Hs
0,rad(B) ↪→ L2(B), we have uk → 0 in L2(B).

Using this and by passing to the limit in the above inequality, we find that

1 ≥ SN,s(RN ) lim sup
k→∞

‖uk‖2
L2∗

s (B)
,

that is,

lim inf
k→∞

‖uk‖−2

L2∗
s (B)

≥ SN,s(RN ).

From the above inequality, we conclude the proof. �

Having collected the above results, we are ready to prove our main result.

Proof of Theorem 5.1. Let (uk) be a minimizing sequence for SN,s,rad(B, h),
which is normalized in Hs

0,rad(B). Then after passing to a subsequence, there
is u ∈ Hs

0,rad(B) such that

uk ⇀ u weakly in Hs
0,rad(B)

uk → u strongly in L2(B)
uk → u a.e. in B.

(5.4)

Now, by setting wk = uk − u, it follows that wk ⇀ 0 weakly in Hs
0,rad(B).

Using this, we have that

1 = QN,s,B,h(uk) := QN,s,B(uk) +
∫

B
hu2

k dx

= QN,s,B,h(u) + QN,s,B(wk) + o(1), (5.5)

where QN,s,B,h(u) := QN,s,B(u)+
∫

B hu2 dx. From the above identities, we see
that QN,s,B(wk) converges, say, to R1, which satisfies according to the above
equality,

1 = QN,s,B,h(u) + R1. (5.6)

Moreover, using that uk → u a.e. in B and the Brezis-Lieb lemma [3], we get
that

SN,s,rad(B, h)− N
N−2s + o(1) = ‖uk‖

2N
N−2s

L2∗
s (B)

= ‖u‖
2N

N−2s

L2∗
s (B)

+ ‖wk‖
2N

N−2s

L2∗
s (B)

+ o(1), (5.7)

from which we deduce that
∫

B |wk| 2N
N−2s dx converges, say, to R2 satisfying

SN,s,rad(B, h)− N
N−2s = ‖u‖

2N
N−2s

L2∗
s (B)

+ R2. (5.8)
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Now by Proposition 5.2 we easily see that

R1 ≥ SN,s(RN )R
N−2s

N
2 . (5.9)

Indeed, (5.9) follows immediately if R2 = 0. Otherwise, if R2 > 0, then it
suffices to use w̃k := wk/QN,s,B(wk)1/2 in the definition of S∗

N,s,rad(B) since
w̃k ⇀ 0 weakly in Hs

0,rad(B) and QN,s,B(w̃k) = 1 as well.
From (5.6), (5.8), (5.9) and by using the elementary inequality 1

(a − b)α ≥ aα − bα for 0 ≤ α ≤ 1, a ≥ b ≥ 0 (5.10)

with α = (N − 2s)/N , we find that

1 = QN,s,B,h(u) + R1

≥ QN,s,B,h(u) + SN,s(RN )R
N−2s

N
2

= QN,s,B,h(u) + (SN,s(RN ) − SN,s,rad(B, h))R
N−2s

N
2

+ SN,s,rad(B)
(
SN,s,rad(B, h)− N

N−2s − ‖u‖
2N

N−2s

L2∗
s (B)

)N−2s
N

≥ QN,s,B,h(u) + (SN,s(RN ) − SN,s,rad(B, h))R
N−2s

N
2

+ SN,s,rad(B, h)
(
SN,s,rad(B, h)−1 − ‖u‖2

L2∗
s (B)

)

= QN,s,B,h(u) + (SN,s(RN ) − SN,s,rad(B, h))R
N−2s

N
2

+ 1 − SN,s,rad(B, h)‖u‖2
L2∗

s (B)
.

Thus,

QN,s,B,h(u) − SN,s,rad(B, h)‖u‖2
L2∗

s (B)
+ (SN,s(RN )

− SN,s,rad(B, h))R
N−2s

N
2 ≤ 0. (5.11)

Since QN,s,B,h(u) ≥ SN,s,rad(B, h)‖u‖2
L2∗

s (B)
and SN,s(RN ) > SN,s,rad(B, h)

by assumption, it follows from (5.11) that R2 = 0 which implies that u 
≡ 0
thanks to (5.8). Therefore,

QN,s,B,h(u) ≤ SN,s,rad(B, h)‖u‖2
L2∗

s (B)
,

which implies that u is an optimizer. Therefore, instead of the inequality (5.9),
we have equality, yielding R1 = 0. This implies that QN,s,B,h(u) = 1 and
from this, we conclude that (uk) converges strongly in Hs

0,rad(B). The proof is
therefore finished. �
Proof of Theorem 1.2 and Theorem 1.3 (completed). The proof of Theorem 1.2
and Theorem 1.3 are immediate consequences of Theorem 5.1, Lemma 4.7 and
Proposition 4.2. �

10 ≤ b ≤ a ⇒ 0 ≤ b/a ≤ 1 and then 0 ≤ b/a ≤ (b/a)α ≤ 1 for all 0 ≤ α ≤ 1. Hence,

aα − bα

(a − b)α
=

1 − (b/a)α

(1 − (b/a))α
≤ 1 − (b/a)

(1 − (b/a))α
≤ 1.
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A. Appendix

In this section, we prove that the constant function 1 belongs to Hs
0(Ω) for

s ∈ (0, 1/2]. By Sobolev embedding, it is enough to treat the case s = 1/2.
For every k ∈ N, we define χk ∈ C0,1(R+) by

χk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t ≤ 1
k2

,

log k2t

| log 1/k| if
1
k2

≤ t ≤ 1
k

,

1 if t ≥ 1
k

.

(A.1)

We wish now to approximate the constant function 1 with respect to the
H1/2(Ω)-norm. The general strategy is to build an approximation sequence
with χk together with a partition of unity. Before going further in our analysis,
we need first of all a one-dimensional approximation argument.

Lemma A.1. We have

χk → 1 in H1/2(R+) as k → ∞. (A.2)

Proof. Clearly, by definition χk → 1 a.e. in R+. The goal is to show that

‖χk − 1‖H1/2(R+) → 0 as k → ∞. (A.3)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We start by proving that

‖χk − 1‖L2(R+) → 0 as k → ∞. (A.4)

We have

‖χk − 1‖2
L2(R+) =

∫ ∞

0

(χk − 1)2 dt =
∫ 1/k2

0

(χk − 1)2 dt +
∫ 1/k

1/k2
(χk − 1)2 dt

=
1
k2

+
∫ 1/k

1/k2

( log k2t

log k
− 1

)2

dt =
1
k2

+
1
k2

∫ k

1

( log t

log k
− 1

)2

dt

=
1
k2

+
1

k log2 k

∫ 1

1/k

log2 t dt

=
1
k2

+
1

k2 log2 k

(
2 − log2 k

k
− 2 log k

k
− 2

k

)
.

From the estimate above, (A.4) follows.
Next, we also prove that

[χk − 1]H1/2(R+) → 0 as k → ∞. (A.5)

We have

[χk − 1]2H1/2(R+) =
c1,1/2

2

∫ ∞

0

∫ ∞

0

(χk(x) − χk(y))2

(x − y)2
dxdy

= c

(∫ 1/k

0

∫ 1/k

0

· · · + 2
∫ 1/k

0

∫ ∞

1/k

· · · +
∫ ∞

1/k

∫ ∞

1/k

· · ·
)

× (χk(x) − χk(y))2

(x − y)2
dxdy.

Since χk(x) = χk(y) = 1 for (x, y) ∈ (1/k,∞) × (1/k,∞) then the third
integral in the above equality vanishes. Therefore,

[χk − 1]2H1/2(R+) = c

∫ ∞

0

∫ ∞

0

(χk(x) − χk(y))2

(x − y)2
dxdy = c(Ik + Jk)

where

Ik :=
∫ 1/k

0

∫ 1/k

0

(χk(x) − χk(y))2

(x − y)2
dxdy and Jk

:= 2
∫ 1/k

0

∫ ∞

1/k

(χk(x) − χk(y))2

(x − y)2
dxdy.

Estimate of Jk. We have∫ 1/k

0

∫ ∞

1/k

(χk(x) − χk(y))2

(x − y)2
dxdy

=

( ∫ 1/k2

0

∫ ∞

1/k

· · · +
∫ 1/k

1/k2

∫ ∞

1/k

· · ·
)

(χk(x) − χk(y))2

(x − y)2
dxdy

= J1
k + J2

k
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where

J1
k :=

∫ 1/k2

0

∫ ∞

1/k

(χk(x) − χk(y))2

(x − y)2
dxdy and

J2
k :=

∫ 1/k

1/k2

∫ ∞

1/k

(χk(x) − χk(y))2

(x − y)2
dxdy.

Regarding J1
k , we have from the definition of χk that

J1
k =

∫ 1/k2

0

∫ ∞

1/k

1
(x − y)2

dxdy
τ= x

y=
∫ 1/k2

0

1
y

∫ ∞

1/ky

1
(τ − 1)2

dτdy

=
∫ 1/k2

0

k

1 − ky
dy = − log

(
1 − 1

k

)
. (A.6)

For J2
k , we also use the definition of χk to see that

J2
k =

∫ 1/k

1/k2

∫ ∞

1/k

(
1 − log k2x

log k

)2

(x − y)2
dxdy =

1

log2 k

∫ 1/k

1/k2

∫ ∞

1/k

(log k − log k2x)2

(x − y)
dxdy

=
1

log2 k

∫ 1/k

1/k2

∫ ∞

1/k

(log kx)2

(x − y)2
dxdy

τ=kx
t=ky
=

1

log2 k

∫ 1

1/k

∫ ∞

1

log2 τ

(τ − t)2
dτdt

=
1

log2 k

∫ ∞

1

( 1

(τ − 1
k )

− 1

(τ − 1)

)
log2 τ dτ

=
1

log2 k

∫ ∞

1

1
k − 1

(τ − 1
k )(τ − 1)

log2 τ dτ. (A.7)

Using that log τ ∼ τ − 1 as τ → 1 and log2 τ
(τ− 1

k )(τ−1)
∼ log2 τ

τ2 ≤ c
τ2−ε as τ → ∞,

for every ε > 0, then the above integral is convergence for k sufficiently large.
This implies that

J2
k = o(1) as k → ∞. (A.8)

Combining (A.6) and (A.7), and by using (A.8), we find that

Jk = 2

(
− log

(
1 − 1

k

)
+

1
log2 k

∫ ∞

1

1
k − 1

(τ − 1
k )(τ − 1)

log2 τ dτ

)

→ 0 as k → ∞. (A.9)

Estimate of Ik. We have

Ik =

( ∫ 1/k2

0

∫ 2/k2

0

· · · +
∫ 1/k2

0

∫ 1/k

2/k2
· · ·

+
∫ 1/k

1/k2

∫ 2/k2

0

· · · +
∫ 1/k

1/k2

∫ 1/k

2/k2
· · ·

)
(χk(x) − χk(y))2

(x − y)2
dxdy

= I1
k + I2

k + I3
k
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where

I1
k :=

∫ 1/k2

0

∫ 2/k2

0

(χk(x) − χk(y))2

(x − y)2
dxdy,

I2
k :=

∫ 1/k

1/k2

∫ 1/k

2/k2

(χk(x) − χk(y))2

(x − y)2
dxdy

and

I3
k :=

( ∫ 1/k2

0

∫ 1/k

2/k2
· · · +

∫ 1/k

1/k2

∫ 2/k2

0

· · ·
)

(χk(x) − χk(y))2

(x − y)2
dxdy.

It now suffices to estimate I1
k , I2

k and I3
k .

Concerning I1
k , we have

I1
k =

∫ 1/k2

0

∫ 2/k2

1/k2

χk(x)2

(x − y)2
dxdy =

1
log2 k

∫ 1/k2

0

∫ 2/k2

1/k2

(log k2x)2

(x − y)2
dxdy

τ=k2x
t=k2y

=
1

log2 k

∫ 1

0

∫ 2

1

log2 τ

(τ − t)2
dτdt =

1
log2 k

∫ 1

0

∫ 2

1

(log τ − log 1)2

(τ − t)2
dτdt

≤ c

log2 k

∫ 1

0

∫ 2

1

(τ − 1)2

(τ − t)2
dτdt =

c

log2 k

∫ 2

1

∫ 1

0

(τ − 1)2

(τ − t)2
dtdτ

=
c

log2 k

∫ 2

1

(τ − 1)2
( 1

τ − 1
− 1

τ

)
=

c′

log2 k
. (A.10)

Next, as regards I2
k , the change of variables τ = k2x and t = k2y gives

I2
k =

∫ 1/k

1/k2

∫ 1/k

2/k2

(log k2x − log k2y)2

(x − y)2
dxdy =

1

log2 k

∫ k

1

∫ k

2

(log τ − log t)2

(τ − t)2
dτdt

=
1

log2 k

∫ k

1

∫ k

2

(log(τ/t))2

(τ − t)2
dτdt

r=τ/t
=

1

log2 k

∫ k

1

1

t

∫ k/t

2/t

log2 r

(r − 1)2
drdt

≤ 1

log2 k

∫ k

1

dt

t

∫ ∞

0

log2 r

(r − 1)2
dr =

c

log k
. (A.11)

For I3
k , we have

I3
k ≤ 2

∫ 2/k2

0

∫ 1/k

1/k2

(χk(x) − χk(y))2

(x − y)2
dxdy

= 2
∫ 2/k2

0

∫ 1/k

1/k2

(χk(x) − χk(y))2

(x − y)2
dxdy

= 2
∫ 1/k2

0

∫ 1/k

1/k2

(χk(x) − χk(y))2

(x − y)2
dxdy

+ 2
∫ 2/k2

1/k2

∫ 1/k

1/k2

(χk(x) − χk(y))2

(x − y)2
dxdy.
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Now,
∫ 1/k2

0

∫ 1/k

1/k2

(χk(x) − χk(y))2

(x − y)2
dxdy =

1
log2 k

∫ 1/k2

0

∫ 1/k

1/k2

(log k2x)2

(x − y)2
dxdy

τ=k2x
t=k2y

=
1

log2 k

∫ 1

0

∫ k

1

log2 τ

(τ − t)2
dτdt =

1
log2 k

∫ k

1

( 1
(τ − 1)2

− 1
τ2

)
log2 τ dτ

≤ 1
log2 k

∫ ∞

1

( 1
(τ − 1)2

− 1
τ2

)
log2 τ dτ =

c

log2 k
. (A.12)

Arguing as in the case of I2
k , we have that

∫ 2/k2

1/k2

∫ 1/k

1/k2

(χk(x) − χk(y))2

(x − y)2
dxdy =

1
log2 k

∫ k

1

∫ 2

1

(log t − log τ)2

(t − τ)2
dtdτ

r=t/τ
=

1
log2 k

∫ k

1

dτ

τ

∫ 2/τ

1/τ

log2 r

(r − 1)2
dr ≤ 1

log2 k

∫ k

1

dτ

τ

∫ ∞

1

log2 r

(r − 1)2
dr

=
c

log k
. (A.13)

Putting together (A.10), (A.11), (A.12) and (A.13), we find that

Ik ≤ c

log2 k
+

c

log k
→ 0 as k → ∞. (A.14)

From (A.9) and (A.14), we conclude that

[χk − 1]H1/2(R+) → 0 as k → ∞. (A.15)

Now, (A.3) follows by combining (A.4) and (A.15). As wanted. �

Definition A.2. We say that an open subset Ω of RN is Lipschitz if for each
q ∈ ∂Ω, there exist a tangent hyperplane Hq, a normal Nq of Hq, rq > 0, open
rq-balls Brq

⊂ Hq and a function Φq : Brq
× I → R

N such that

(i) Φq(Brq
∩ H+

q ) ⊂ Ω
(ii) Φq(Brq

∩ ∂H+
q ) ⊂ ∂Ω

(iii) C−1|x − y| ≤ |Φq(x) − Φq(y)| ≤ C|x − y|, C > 1, x, y ∈ Brq
× I, I ⊂ R.

Here, H+
q is the upper half-tangent hyperplane containing Nq. Put Qq :=

Brq
× (−rq, rq) and we recall that Brq

is a (N − 1)-ball.

Remark A.3. We would like to make the following observation. It is well-known
that a domain Ω is said to be strongly Lipschitz if its boundary can be seen as
a local graph of a Lipschitz function φ : RN−1 → R. Moreover, by mean of a
vectorfield η (with |η| = 1 on ∂Ω) which is globally transversal 2 to ∂Ω, one can
construct a bi-Lipschitz mapping via φ. In particular, Ω fulfills properties (i)-
(iii). However, every Lipschitz domain in the sense of definition (i)-(iii) is not
necessarily a local graph of a Lipschitz function, see [15] for a counterexample.

2η is said to be globally tranversal to ∂Ω if there is κ > 0 such that η · ν ≥ κ a.e. on ∂Ω.
Here ν is the unit normal vector to ∂Ω.
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Clearly, there exists β > 0 such that

Ωβ := {0 ≤ δΩ(x) ≤ β} ⊂ ∪q∈∂ΩΦq(Qq). (A.16)

We recall that Ωβ is the so-called inner tubular neighbourhood of Ω. By com-
pactness, there exists m ∈ N such that

Ωβ := {0 ≤ δΩ(x) ≤ β} ⊂ ∪m
j=1Φqj

(Qqj
). (A.17)

We will write j in the place of qj provided there is no ambiguity. For j =
1, . . . , m, let uj

k be a sequence define by

uj
k(Φj(x)) = χk(xN ), ∀x ∈ Qj ,

where χk is defined in (A.1). Equivalently, uj
k can be defined as

uj
k(x) = χk(Φ−1

j (x) · Nj), ∀x ∈ Ω. (A.18)

Define Oj := Φj(Qj) and Om+1 = Ω \ Ωβ . We also write Q+
j := Brj

× (0, rj).
We have the following.

Lemma A.4. For all j = 1, . . . ,m there exists a positive constant C > 0 de-
pending only on j,m,Ω and N such that

‖uj
k − 1Ω‖H1/2(Oj∩Ω) ≤ C‖χk − 1‖H1/2(0,rj). (A.19)

Proof. For j = 1, . . . ,m, by using the change of variables x = Φj(z) and
y = Φj(z), we get

∫
Oj∩Ω

∫
Oj∩Ω

(uk(x) − uk(y))2

|x − y|N+1
dxdy

=
∫

Q+
j

∫
Q+

j

(uk(Φj(z)) − uk(Φj(z)))2

|Φj(z) − Φj(z)|N+1
dzdz

=
∫

Q+
j

∫
Q+

j

(χk(zN ) − χk(zN ))2

|Φj(z) − Φj(z)|N+1
dzdz

≤ C

∫
Q+

j

∫
Q+

j

(χk(zN ) − χk(zN ))2

|z − z|N+1
dzdz

≤ C

∫
Brj

∫
Brj

∫ rj

0

∫ rj

0

(χk(zN ) − χk(zN ))2

|z − z|N+1
dzdz

≤ C

∫
Brj

dz′
∫

Hj

dz′
∫ rj

0

∫ rj

0

(χk(zN ) − χk(zN ))2

(|z′ − z′|2 + |zN − zN |2)N+1
2

dzNdzN .

(A.20)
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By translation and rotation, we have∫
Brj

dz′
∫

Hj

dz′
∫ rj

0

∫ rj

0

(χk(zN ) − χk(zN ))2

(|z′ − z′|2 + |zN − zN |2)N+1
2

dzNdzN

=
∫

Brj

dz′
∫
RN−1

dz′
∫ rj

0

∫ rj

0

(χk(zN ) − χk(zN ))2

(|z′ − z′|2 + |zN − zN |2)N+1
2

dzNdzN

≤ CA

∫ rj

0

∫ rj

0

(χk(zN ) − χk(zN ))2

|zN − zN |2 dzNdzN ,

where A =
∫
RN−1

dl
(1+|l|2)(N+1)/2 ≤ C and Brj

is a bounded open subset of
R

N−1. Therefore, since the estimate of the L2 norm follows easily, this and
(A.20) give (A.19), concluding the proof. �

Consider 0 ≤ ψj ∈ C∞
c (Oj) a partitioning of unity subordinated to

{Oj}j=1,...,m+1. Define

uk :=
m+1∑
j=1

ψju
j
k ∈ C0,1

c (Ω), (A.21)

where um+1
k ≡ 1 on Ω. We have the following approximation.

Lemma A.5. There holds

‖uk − 1Ω‖H1/2(Ω) → 0 as k → ∞. (A.22)

Proof. We estimate

[uk − 1Ω]2H1/2(Ω) ≤
⎛
⎝m+1∑

j=1

[ψju
j
k − ψj ]H1/2(Ω)

⎞
⎠

2

≤ m

m∑
j=1

[ψju
j
k − ψj ]2H1/2(Ω)

≤ C

m∑
j=1

∫
Oj∩Ω×Oj∩Ω

. . . dxdy + C

m∑
j=1

∫
Ω\Oj×Ω∩Oj

. . . dxdy

=: CI1(k) + CI2(k).

We now estimate I1(k) and I2(k). Let us start with I2(k).

We have

I2(k) =
m∑

j=1

∫
Ω\Oj×Ω∩Oj

[(ψju
j
k − ψj)(x) − (ψju

j
k − ψj)(y)]2

|x − y|N+1
dxdy

=
m∑

j=1

∫
Ω\Oj

dx

|x − y|N+1

∫
Ω∩Suppψj

(ψju
j
k − ψj)(y)2dy

≤ C

m∑
j=1

dist(Suppψj , ∂Oj)−N−1

∫
Ω∩Oj

ψ2
j |uj

k(y) − 1|2dy

≤ C(N) max
1≤j≤m

dist(Suppψj , ∂Oj)−N−1
m∑

j=1

‖uj
k − 1Ω‖2

L2(Ω∩Oj)
. (A.23)
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Now regarding I1(k), we have

I1(k) =
m∑

j=1

∫
Oj∩Ω

∫
Oj∩Ω

[ψj(x)(uj
k(x) − 1) − ψj(y)(uj

k(y) − 1)]2

|x − y|N+1
dxdy

=
m∑

j=1

∫
Oj∩Ω

∫
Oj∩Ω

[ψj(x)((uj
k(x) − 1) − (uj

k(y) − 1)) + (ψj(x) − ψj(y))(uj
k(y) − 1)]2

|x − y|N+1
dxdy

≤ 2
m∑

j=1

∫
Oj∩Ω

∫
Oj∩Ω

ψj(x)2[(uj
k(x) − 1) − (uj

k(y) − 1)]2

|x − y|N+1
dxdy

+ 2
m∑

j=1

∫
Oj∩Ω

∫
Oj∩Ω

(ψj(x) − ψj(y))2(uj
k(y) − 1)2

|x − y|N+1
dxdy

= I1
1 (k) + I2

1 (k),

where

I1
1 (k) = 2

m∑
j=1

∫
Oj∩Ω

∫
Oj∩Ω

ψj(x)2[(uj
k(x) − 1) − (uj

k(y) − 1)]2

|x − y|N+1
dxdy

≤ 2
m∑

j=1

∫
Oj∩Ω

∫
Oj∩Ω

[(uj
k(x) − 1) − (uj

k(y) − 1)]2

|x − y|N+1
dxdy

(since 0 ≤ ψj ≤ 1)

= c
m∑

j=1

[uj − 1Ω]2H1/2(Oj∩Ω) (A.24)

and

I2
1 (k) = 2

m∑
j=1

∫
Oj∩Ω

∫
Oj∩Ω

(ψj(x) − ψj(y))2(uj
k(y) − 1)2

|x − y|N+1
dxdy.

Using that ψj is Lipschitz, we get

2

∫
Oj∩Ω

∫
Oj∩Ω

(ψj(x) − ψj(y))2(uj
k(y) − 1)2

|x − y|N+1
dxdy

≤ c(j)2
∫∫

|x−y|<1

(uj
k(y) − 1)2|x − y|2

|x − y|N+1
dxdy + 8

∫∫
|x−y|≥1

(uj
k(y) − 1)2

|x − y|N+1
dxdy

≤ c̃(j)‖uj
k − 1Ω‖2

L2(Oj∩Ω)

which implies that

I2
1 (k) ≤ max

1≤j≤m
c̃(j)

m∑
j=1

‖uj
k − 1Ω‖2

L2(Oj∩Ω). (A.25)



18 Page 30 of 32 M.M. Fall and R.Y. Temgoua NoDEA

Finally, (A.23), (A.24) and (A.25) yield

‖uk − 1Ω‖2
H1/2(Ω) = ‖uk − 1Ω‖2

L2(Ω) + [uk − 1Ω]2H1/2(Ω)

≤ c

m∑
j=1

‖uj
k − 1Ω‖2

L2(Oj∩Ω) + CI1(k) + CI2(k)

= c̃

m∑
j=1

‖uj
k − 1Ω‖2

H1/2(Oj∩Ω)

≤ C(N,m)
m∑

j=1

‖χk − 1‖2
H1/2(0,rj)

. (A.26)

In the latter inequality, we used Lemma A.4. Now, since from Lemma A.1
there holds ‖χk −1‖2

H1/2(0,rj)
→ 0 as k → ∞, we complete the proof by letting

k → ∞ in the inequality (A.26). �
As a direct consequence of the above approximation results, we have the

following.

Proposition A.6. Let N ≥ 2, s ∈ (0, 1/2] and let Ω ⊂ R
N be a bounded

Lipschitz domain. Then

SN,s(Ω) = 0. (A.27)

Before proving the proposition above, we mention that our result extends
to s = 1/2 the one obtained in [12, Lemma 16]. Below, we give the

Proof of Proposition A.6. By definition

SN,s(Ω) = inf
u∈Hs

0 (Ω)
u�=0

QN,s,Ω(u)
‖u‖2

L2∗
s (Ω)

= inf
u∈C0,1

c (Ω)
u�=0

QN,s,Ω(u)
‖u‖2

L2∗
s (Ω)

, (A.28)

where C0,1
c (Ω) is the space of Lipschitz functions with compact support. Now

by Lemma A.5, we get

0 ≤ SN,s(Ω) ≤ QN,s,Ω(uk)
‖uk‖2

L2∗
s (Ω)

≤ C(N, s)
QN,1/2,Ω(uk)
‖uk‖2

L2∗
s (Ω)

= C(N, s)
[uk − 1Ω]H1/2(Ω)

‖uk‖2
L2∗

s (Ω)

→ 0 as k → ∞, (A.29)

where uk is defined by (A.21), which satisfies lim infk→∞ ‖uk‖2
L2∗

s (Ω)
> 0. �
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