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Abstract. Two main results of fixed point theory in infinite dimensional
space are Schauder’s theorem and the contraction mapping principle.
Krasnoselskii combined them into one fixed point result. In this paper, we
continue the study of extensions of these theorems investigating a convex
modular in a original vector space, not in modular space and without Δ2

condition, to provide certain extensions of Banach contraction principle
and Krasnoselskii fixed point theorem. We applied that theorem to solve
the nonlinear periodic problem of Hill’s equation.
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1. Introduction

The Krasnoselskii theorem on fixed points in Banach spaces concerns the fixed
points of operators which are the sum of two operators one is a contraction
operator and the second one is completely continuous (see [21], compare also
[10]). Generalizing one (or both) of the operator we can obtain generalizations
of Krasnoselskii theorem. In the literature we find many generalizations of fixed
point theorems related to contractions mappings (see e.g. [5,15–17,22,23,30–
32,36–40]). There exist also a huge number of generalizations of Schauder’s
type theorem (see e.g. [11] and the references therein). In most cases, both
generalizations concern the operators themselves and less the norm or topol-
ogy of the space where they operate i.e. the general topological spaces were
given then the generalizations of both operators were produced. These are es-
pecially seen in the case of contraction operators where the assumption of the
linearity of the considered spaces is dropped (see the above mentioned papers).
On extensions of contraction fixed point theorems to modular function spaces
see [18–20]. This is not the case of generalizations of Schauder theorem. In 1950
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Nakano [26] initiated the theory of modular spaces redefined and generalized
by Musielak and Orlicz [25], see also [24]. The modular roughly speaking is
a functional on (real) vector space which assume the value zero only at zero,
is even, (in our case) is convex and not necessary triangle inequality and ho-
mogeneity conditions are satisfied. There exist a number of papers in which it
has been proved fixed points theorems in modular spaces (see e.g. [18–20,33]
and the references therein). They concern contractive and nonexpansive maps.
In all these papers except [18,19] always so called Δ2-condition for modular
functional is imposed. It implies (for convex modular) that the topology de-
fined by modular and corresponding to it Luxemburg norm are equivalent and
then some considerations are simplified. In [13] and then refined in [28] the
authors proved a new version of Krasnoselskii fixed point theorems in modular
spaces. However they also assumed Δ2-condition and hence in the proof they
used Schauder theorem in normed space. The aim of this paper is to introduce
a convex modular, but we do not define modular space and we do not assume
Δ2-condition. We apply this convex modular to define topology for a given vec-
tor space and then in this topological space we consider a contraction (with
respect to that modular) mapping and completely continuous mapping with
respect to that topology. Then we prove for the convex sum of such mappings
a Krasnoselskii type theorem. As we do not have any norm in our space in
the proof of Krasnoselskii theorem we apply our own Schauder type theorem.
The price we pay for lack of Δ2-condition is that we are able to prove the
Krasnoselskii theorem only for convex sum of j-contraction and j-completely
continuous mapping. In the last section we apply that theorem to solve the
nonlinear periodic problem of Hill’s equation.

2. Definitions and notations

We present the concept of convex modular on the set X. Throughout this and
next sections X denotes a vector space over R. We will consider X with a
topology determined just by the convex modular j introduced below.

Definition 2.1. A map j : X → [0,∞], is said to be a convex modular on X
(see [24]) if the following three conditions hold:

(j1) j(0) = 0 ⇔ x = 0;
(j2) j(x) = j(−x), x ∈ X;
(j3) j is convex i.e. j(ηx + (1 − η)y) ≤ ηj(x) + (1 − η)j(y), x, y ∈ X, η ∈
[0, 1].

However we do not use j to define modular space, we work in X. We
observe, that from (j1) and (j3) for each α ∈ (0, 1), we have

j(αx) ≤ αj(x), x ∈ X.

Indeed, if α ∈ (0, 1), then by (j1) and (j3) we calculate

j(αx) = j(αx + (1 − α) · 0) ≤ αj(x) + (1 − α)j(0) = αj(x).
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For each x ∈ X and positive ε > 0, define the set Bj(x, ε) of points
satisfying j(y − x) < ε, i.e.

Bj(x, ε) = {y : j(y − x) < ε } .

As j is convex all Bj(x, ε) are convex and hence for x = 0 they are absorb-
ing and balanced in X and closed under finite intersections. Thus these sets
(Bj(0, ε)) act as a base for the topology (X, j(·)) generated by j, i.e. modular
base (see [24] p. 27). Hence, it follows that (X, j(·)) with the modular base
forms a generalization of modular spaces (see [24] p. 27) and as, in general, it
does not satisfies the (Δ2) condition, i.e. (see [24] p. 26):

for every ε̃ > 0 there is ε > 0 such that 2Bj(0, ε) ⊂ Bj(0, ε̃) (2.1)

the (X, j(·)) is not a locally convex space (see [41] p.113). We should point out
that modular base does not necessarily define a linear topology in X (see [24]
p. 31). A simple example of the modular j which does not satisfies (2.1) is,
for X = R, j(x) = exp(|x|) − 1 + |x|, x ∈ R. However, still immediately from
the definition of the convex modular, we can draw the conclusion that j(·) is
continuous in (X, j(·)) on each open set on which it is bounded. In the further
part of the paper (X, j(·)) will denote a topological space with the topology
generated by the modular j and we will write simply X instead of (X, j(·)).

A subsets T ⊂ X is bounded if

T ⊂ Bj(0, n) for some n ∈ N.

We define a convergent of a sequence in X, a closet set, a compact set
and a completeness of X.

Definition 2.2. (i) If a sequence {um}∞
m=1 in X meets the condition

lim
m→∞ sup

n>m
j(un − um) = 0.

then we call it the j-Cauchy sequence in X.
(ii) Let u ∈ X and let {um}∞

m=1 be a sequence in X. If

lim
m→∞ j(um − u) = 0,

then we say that {um}∞
m=1 is j-convergent to u (denote um

j→ u or limj
n→∞ un

= u).
(iii) We say that a sequence {um}∞

m=1 ⊂ X is j-convergent in X if
{um}∞

m=1 is j-convergent to u for some u ∈ X.
(iv) A subset T of space X is closed, if the limit of each j-convergent

sequence of elements of T belongs to T , i.e. if for sequence {um}∞
m=1 ⊂ T there

exists u ∈ X such that limm→∞ j(um − u) = 0, then u ∈ T .
(v) If each j-Cauchy sequence {um}∞

m=1 in X is j-convergent in X, then
we say that X is j-complete space.

(vi) A set T ⊂ X is compact in X if every sequence of elements {xk} ⊂ T
contains a subsequence, convergence to an element x ∈ T .
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In traditional fixed point theorems, the assumption of continuity and
complete continuity of maps is extremely important. The introduction of mod-
ular j, allows to define a weakened form of continuity and completely continu-
ity. Finally, we may define the j-continuous and completely j-continuous map
in X.

Definition 2.3. Let A : X → X.
(i) We say that a map A is j-continuous in X, if for each sequence

{um}∞
m=1 in X such that um

j→ u we have

lim
m→∞ j(Aum − Au) = 0, i.e. Aum

j→ Au.

(ii) We say that a j-continuous map A is completely j -continuous in X,
if the image by A of each bounded set in X is contained in a compact subset
of X.

(iii) We say that a map A is j-compact in X if A(X) is contained in a
compact subset of X.

Let us note the following obvious fact:
(i) If A : X → X is j-continuous then for each sequence {um}∞

m=1 in X,
such that there exists limit of {um}∞

m=1, we have
A(limj

m→∞ um) = limj
m→∞ A(um).

3. Main results

At the beginning, we recall two fundamental theorems in the fixed point theory,
i.e. Schauder’s theorem and Banach Contraction Principle. Let T be a closed,
bounded, convex subset of a normed space (Y, || · ||) and let A, B be nonlinear
operators on T .

Theorem 3.1. (Schauder Fixed Point Theory [29]) Assume that:
(S1) AT ⊂ T ;
(S2) A is completely continuous on T .
Then there exists a fixed point of A, i.e. there exists u ∈ T such that
Au = u.

Theorem 3.2. (Banach Contraction Principle [4,7]) T is not necessary bounded
and convex. Assume that:

(B1) BT ⊂ T ;
(B2) B satisfies Lipschitz condition on T i.e. ‖Bx − By‖ ≤ λ ‖x − y‖,
x, y ∈ T , λ < 1.
Then there exists a unique fixed point of B, i.e. there exists u ∈ T such
that Bu = u.

It is clear that we can rewrite both theorems in the language of the
modular j. First we give Schauder type theorem for the space X.

Theorem 3.3. (Schauder type) Let T be a closed, bounded and convex subset
of X. Assume that:
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(Sj1) AT ⊂ T ;
(Sj2) A is completely j-continuous on T .
Then there exists a fixed point of A, i.e. there exists u ∈ T such that
Au = u.

Proof. In spite of the fact that the proof of this theorem sounds as the proofs
of most classical Schauder theorems we proceed it in details. Let AT ⊂ Y , Y
compact. Since T is a bounded, so we can assume Y ⊂ T . Choose any ε > 0.
Successively, pick y1, y2, y3, ... in Y so that

j(yi − yk) ≥ ε for 1 ≤ i < k ≤ n. (3.1)

We keep picking new points yn as long as we can. It is clear we stop with some
finite n; for otherwise one could pick an infinite sequence of points y1, y2, y3, ...
that satisfied the inequalities (3.1) and this violates our assumption that Y is
compact. The finite set y1, ...yn is ε-j-dense in Y in j topology i.e. for every
y ∈ Y we have

j(yi − y) < ε for some i = 1, ..., n.

Define the convex set

Tε =

{
η1y1 + · · · + ηnyn :

n∑
i=1

ηi = 1, ηi ≥ 0

}
.

Of course, Tε ⊂ T as T is convex. Recall also that Y ⊂ T . We construct a
j-continuous function pε(y) that approximates y:

j(pε(y) − y) < ε for all y ∈ Y. (3.2)

To do it we define, for i = 1, ..., n, y ∈ Y ,

ϕi(y) =
{

0 if j(yi − y) ≥ ε,
ε − j(yi − y) if j(yi − y) < ε.

(3.3)

Each of these n functions ϕi(y) is j-continuous and (3.1) guarantees ϕi(y) > 0
for some i = 1, ..., n. Next we construct the n j-continuous functions

ηi(y) = ϕi(y)/s(y), i = 1, ..., n, y ∈ Y

where

s(y) = ϕ1(y) + · · · + ϕn(y) > 0.

Notice that ηi(y), i = 1, ..., n satisfy
∑n

i=1 ηi(y) = 1, ηi(y) ≥ 0. Hence we can
define j-continuous function

pε(y) = η1(y)y1 + · · · + ηn(y)yn.

It is clear that pε : Y → Tε, moreover by (3.3) ηi(y) = 0 unless j(yi − y) < ε.
Therefore, pε(y) is a convex combination of just those points yi for which
j(yi − y) < ε and so by (j3) we have

j(pε(y) − y) = j(
n∑

i=1

ηi(y)(yi − y)) ≤
n∑

i=1

ηi(y)j(yi − y) < ε.
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Thus we get (3.2). Put fε(x) = pε(Ax), x ∈ Tε, fε is j-continuous in Tε. The
Brouwer fixed-point theorem guarantees a fixed point xε i.e. fε(xε) = xε. Set
yε = Axε. Now let ε → 0. Take a sequence {εn}∞

n=1 for which yn is j-converging
to a limit in y∗ ∈ Y (since Y is j-compact)

Axεn
= yεn

j→ y∗, as εn → 0. (3.4)

We have

xε = fε(xε) = pε(Axε) = pε(yε), xε = yε + [pε(yε) − yε]. (3.5)

But we have
j(pε(y) − y) < ε for all y ∈ Y (3.6)

so (3.4) and (3.5) imply

j(xεn
− y∗) → 0, as εn → 0.

Really, putting (3.5) in (3.6) we get the needed convergence. Since A is j-
continuous (3.4) yields the fixed point: Ay∗ = y∗. �

The second theorem is a generalization of Banach Contraction Principle
to the space X. In literature there are several extension of Banach Contrac-
tion theorem to modular spaces see e.g. [18–20]. However all these extension
are proved in specified modular function spaces with less or more stronger
assumptions on modular. In [18,19] modular j is also convex with additional
properties and in [20] j satisfies weaken than convexity assumption but in-
stead the (Δ2) condition is required. It is worth to stress that lastly (see [43])
appears new generalization of the fixed points of contractions to f -quasimetric
spaces endowed with f -quasimetric (it does not satisfy the symmetry condi-
tion (like (j2))) satisfying f -triangle inequality. On properties of f -quasimetric
spaces see [1–3]. In [27] was proved that f -triangle inequality is equivalent to
asymptotic triangle inequality: let M be a set consisting of at least two points
and ρ : M × M → R ∪ {0} a function satisfying ρ(x, y) = 0 ⇔ x = 0 then

∀{xi},{yi},{zi}⊂M ρ(xi, yi) → 0, ρ(yi, zi) → 0 ⇒ ρ(xi, zi) → 0. (3.7)

Notice that in case of M = X, X our linear space with modular j satisfying
(j1) − (j3), asymptotic triangle inequality (3.7) implies:

∀{xi}⊂X j(xi) → 0, ⇒ j((1 + α)xi) → 0, α > 0. (3.8)

Really, it is enough to take in (3.7) (replacing ρ by j and our definition of
convergence) yi = 0 and zi = −αxi. But then (3.8) is just the condition B.2
in [25] which is equivalent to (Δ2) from 1.32.(c) in [25]. In case of X linear
for modular j condition B.2. from [25] implies (3.7). Thus if j is modular and
X linear then asymptotic triangle inequality is equivalent to (Δ2) condition.
But then (with (Δ2)) j topology in X is equivalent to norm topology with
Luxemburg norm defined by j (see [24] p. 18). Therefore if our X with modular
j satisfies (Δ2) condition then Theorem 3.4 below is a particular case of the
contraction theorem from [43]. But we do not assume (Δ2) condition. However
in [43] X is not linear and f -quasimetric ρ does not satisfy the symmetry
condition (like (j2)) and it is not convex. We should also mention that in the
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case of (q1, q2)-quasimetric spaces with (q1, q2)-generalized triangle inequality,
where the Banach fixed point theorem was proved (see [12]), q1 and q2 are ≥ 1.
Hence, the theorem below, in some cases, is a new extension of contraction
theorem to the space which is a generalization of modular space.

Theorem 3.4. (Banach type) Let T be a closed and bounded subset of j-complete
space X. Assume that:

(Bj1) BT ⊂ T ;
(Bj2) B satisfies the j-contraction condition on T , i.e. j(Bx − By) ≤
λj(x − y), x, y ∈ T , λ < 1.
Then there exists a unique fixed point of B, i.e. there exists u ∈ T such
that Bu = u.

Proof. Take any x0 ∈ T and compute x1, x2, ... by xn+1 = Bxn, n = 0, 1, 2, ....
The proof will be devided into five steps.

Step 1. We prove that {xn}n∈N is j-Cauchy sequence. Let m,n ∈ N,
m > n.

From, (Bj2) we calculate

j(xn − xm) = j(Bxn−1 − Bxm−1)
≤ λj(xn−1 − xm−1) = λj(Bxn−2 − Bxm−2)
≤ λ2j(xn−2 − xm−2) = λ2j(Bxn−3 − Bxm−3)
≤ λ3j(xn−3 − xm−3) = ... ≤ λnj(x0 − xm−n).

In consequence, for each m > n we obtain

j(xn − xm) ≤ λnj(x0 − xm−n), n = 1, 2, ... .

Since T is bounded, there exists ε̂j > 0 such that T ⊂ Bj(0, ε̂j) and therefore
j(x0 −xm−n) < ε̂j for each m,n ∈ N, m > n. Hence for each m > n we obtain

j(xn − xm) ≤ λnε̂j , n = 1, 2, ... . (3.9)

Of course, since λ < 1, we have

∀ε > 0 ∃n0 ∈ N ∀ n > n0 {ε̂jλ
n < ε}. (3.10)

Let ε > 0. Then, for each m > n > n0, by (3.9) and (3.10) we have

j(xn − xm) ≤ ε̂jλ
n < ε (3.11)

and in consequence

∀m > n > n0 {j(xn − xm) < ε},

which implies that {xn}∞
n=1 is j-Cauchy sequence.

Step 2. There exists u in T such that limn→∞ j(xn − u) = 0. Indeed, by
Step 1, the sequence {xn}∞

n=1 is j-Cauchy. Since X is j-complete, there exists
u in X such that limn→∞ j(xn − u) = 0. Since T is closed, thus u ∈ T .

Step 3. The point u is a fixed point of the map B. Indeed, since {xn}∞
n=1

is j-convergent, by j-continuity of B, we immediately obtain
B(u) = B(limj

n→∞ xn) = limj
n→∞ B(xn) = limj

n→∞ xn+1 = u,
i.e. u is a fixed point of B.
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Step 4. We show the uniqueness of a fixed point. Assume that in T there
exist v and w such that v = Bv and w = Bw. Then by (Bj2) we have

j(v − w) = j(Bv − Bw) ≤ λj(v − w).

Hence (1 − λ)j(v − w) ≤ 0. Since λ < 1, thus j(v − w) ≤ 0 and consequently
j(v − w) = 0. Therefore, by (j1) we obtain v = w. �

Now we formulate and prove a generalization of Krasnoselskii theorem
for the space X, which join the last two theorems in one. In the proof we will
apply the above contraction type and Schauder type theorems for the space
X.

Theorem 3.5. Assume that:
(T1) T is a closed, bounded and convex subset of j-complete space X.
(T2) the operator A : T → T is completely j-continuous;
(T3) the operator B : T → T satisfies the j-contraction condition, i.e.

j(Bx − By) ≤ λj(x − y), x, y ∈ T, λ < 1; (3.12)

Then, for each fixed 0 ≤ β ≤ 1 there exists a point u ∈ T , such that (1 −
β)Au + βBu = u.

Proof. Let x ∈ T and 0 ≤ β ≤ 1 be arbitrary and fixed. By Theorem 3.4, we
have that there exists a point wx ∈ T such that

wx = βBwx + (1 − β)Ax, (3.13)

as if B is the contraction then by the convexity of j, the operator βB is a
contraction too. We define an operator C : T → T by the following formula

Cx = wx.

Hence, by (3.13), we get

Cx = βBCx + (1 − β)Ax. (3.14)

The operator C is defined on all T and as T is convex thus CT ⊂ T . Thus
the assumption (Sj1) in Schauder type theorem holds.

We show that the operator C is completely j-continuous on T . Take
any sequence {xm}∞

n=1 ⊂ T . As A is completely j-continuous thus there is a
subsequent of it which again denote by {xm} such that {Axm} is j-convergent
and so also it is j-Cauchy sequence in T . Then from (3.14),

Cxm = βBCxm + (1 − β)Axm, m ∈ N,
Cxn = βBCxn + (1 − β)Axn, n ∈ N.

Consider identities

Cxn − Cxm = βBCxn − βBCxm + (1 − β)Axn − (1 − β)Axm, for all m,n ∈ N.

Applying first convexity of j and next (3.12), we infer:

j(Cxn − Cxm) ≤ βj(BCxn − BCxm) + (1 − β)j(Axn − Axm)

≤ βλj(Cxn − Cxm) + (1 − β)j(Axn − Axm), m,n ∈ N.
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Therefore

j(Cxn − Cxm) − βλj(Cxn − Cxm) ≤ (1 − β)j(Axn − Axm), m,n ∈ N

and
j(Cxn − Cxm) � 1 − β

1 − βλ
j(Axn − Axm), m,n ∈ N, (3.15)

i.e. {Cxm} is j-Cauchy sequence and so it is j-convergent. Hence, we infer
that the image of the operator C is contained in some compact set. Thus, the
assumption (Sj2) holds. Therefore, by Schauder’s type theorem, we conclude
the assertion of the theorem. �

Note that we do not assume that Ax+Bw ∈ T as is done in Krasnoselskii
proof or that [x = Bx + Ay, y ∈ T ] ⇒ x ∈ T in Burton proof (see [6]).

4. Application of Krasnoselskii theorem to a periodic problem
of ODE

Now, we provide some example to illustrate the above theorem. To this effect
let us consider the semilinear equation

x′′ + a(t)x = f(t, x) + g(t, x), (4.1)

with a ∈ L1[0, T ] and f, g : [0, T ] × R
+ → R are Carathéodory functions.

It is noteworthy that the starting point for considerations of this type of
equation is the well-known Hill differential equation: an ordinary second-order
differential equation

x′′ + a(t)x = 0

with a periodic function a(t), a ∈ L1[0, T ] with period T . The equation is
named after G. Hill [14], who in studying the motion of the moon obtained
the equation

x′′(z) + (θ0 + 2
∞∑

r=1

θ2r cos 2rz)x(z) = 0

with real numbers θ0, θ2, ... where the series
∑∞

r=1 |θ2r| converges and z can
be complex. G. Hill gave a method for solving this equation with the use of
determinants of infinite order. This was a source for the creation of the theory
of such determinants, and later for the creation by E. Fredholm of the theory
of integral equations (cf. Fredholm theorems).

Most important for Hill’s equations are the problems of the stability of
solutions and the presence or absence of periodic solutions. The Hill’s equation
is well studied (see [42]).

The same equation of Hill type was study by P.J. Torres [34]. P. J. Torres
consider the general equation

x′′ + a(t)x = f(t, x) + c(t)

with a, c ∈ L1[0, T ] and f : [0, T ] × R
+ → R a L1-Carathéodory, nonnegative

function, that is, f is continuous in the second variable and for every 0 < r < s
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there exists hr,s ∈ L1(0, T ) such that |f(t, x)| ≤ hr,s(t) for all t ∈ [r, s] and
a.e. t ∈ [0, T ]. The case with f changing sign is investigated in [8]. First we
consider the case from [34] as the attractive case from [8] has very similar
proof to that of [34]. We do not consider the case when f contains a damping
therm. The investigation of such equation require different theorem than that
presented here i.e. Theorem 3.5. (compare [9]).

Following [34] we assume on the linear part of (4.1) the standing hypoth-
esis:

(H1) The Hill’s equation x′′ +a(t)x = 0 is nonresonant and the cor-
responding Green’s function G(t, s) is nonnegative for every (t, s) ∈
[0, T ] × [0, T ].

Remark 4.1. The equation x′′ + a(t)x = 0 is nonresonant when its unique T
-periodic solution is the trivial one. It is well known that G(t, s) is continuous
and thus bounded on [0, T ]×[0, T ] by some constant M . Under the assumption
(H1) the function γ(t) =

∫ T

0
G(t, s)c(s)ds is the unique T -periodic solution of

the linear equation x′′ + a(t)x = c(t) (see [35]). When a(t) ≡ k2, (H1) is
equivalent to 0 < k2 ≤ μ1. For a nonconstant a(t), there is a Lp-criterion (see
e.g. [34]) ensuring that G(t, s) is nonnegative.

On the real axis R define a convex, finite function j satisfying (j1)–(j3).
It is clear that j is continuous and increasing on R

+. We shall consider R with
the modular j. In R we consider the set of continuous, T -periodic functions
and denote it as CT endowed with the modular ‖q(·)‖j = maxt∈[0,T ] j(q(t)),
q ∈ CT . It is clear and very important in the proof of the following theorem that
‖·‖j satisfies in CT the property (j1)–(j3). We make the following assumptions
on f and g:

1. f, g are measurable in t and continuous in x,
2. for every 0 < r < s there exists hr,s ∈ L1(0, T ) such that j(f(t, x)) ≤

hr,s(t) for t ∈ [r, s] and a.e. t ∈ [0, T ],

3. there exists continuous 0 < κ(t)T < 1, such that
∫ T

0

j(2G(t, s)(g(s, x1(s))

−g(s, x2(s))))ds ≤ κ(t)
∫ T

0

j(x1(s)−x2(s))ds for all t ∈ [0, T ] and x1, x2 ∈
CT and x1(t), x2(t) ∈ R

+, t ∈ [0, T ].

Given a ∈ L1(0, T ), we write a � 0 if a ≥ 0 for a.e. t ∈ [0, T ] and it is
positive in a set of positive measure. We prove the following theorem which is
a generalization of Theorem 1 form [34].

Theorem 4.1. Let us assume that there exist b � 0 which is positive on the set
of positive measure on [0, T ] and λ > 0 such that

0 ≤ j(2Mf(t, x)) ≤ const, for all x > 0, for a.e. t. (4.2)
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For r � 0, we define

γ∗ = inf
x≥r,t∈[0,T ]

j

(∫ T

0

G(t, s)g(t, x)ds

)
,

γ∗ = sup
x≥r,t∈[0,T ]

j

(∫ T

0

2G(t, s)g(t, x)ds

)
.

If for some r � 0 we have γ∗ ≥ r and γ∗ < +∞, then there exists a positive
T-periodic solution of (4.1).

Proof. Let us define in CT a map F : CT → CT as

F [x](·) =
∫ T

0

2G(·, s)[f(s, x(s)) + g(s, x(s))]ds = Ax(·) + Bx(·),

where Ax(·) =
∫ T

0

2G(·, s)f(s, x(s))ds and Bx(·) =
∫ T

0

2G(·, s)g(s, x(s))ds.

By Remark 4.1 A,B : CT → CT .
We have to show that for some subset of CT say

K = {x ∈ CT : x ≥ r∗, r∗ ≤ ||x||j ≤ R} ,

where r∗ and R will be defined below, all assumptions of Theorem 3.5 are
satisfied. In order to prove that K is closed it is enough to note that for x ∈ K
0 ≤ j(x(t)) ≤ ||x||j , for all t ∈ [0, T ]. Then any sequence {xn} ⊂ K tending to
x ∈ CT in the sense of || · ||j is such that {xn −x} is obviously bounded in CT .
But because j is locally Lipschitz {xn(t) − x(t)} is also uniformly bounded in
[0, T ] in ordinary sense and equi-continuous for each t ∈ [0, T ]. Even more for
each t ∈ [0, T ] {xn(t) − x(t)} is also convergent to 0. Thus by Arzelà–Ascoli
theorem {xn} is uniformly convergent to x and so x ∈ K. We will check that
for all x, y ∈ K, 1

2Ax + 1
2By ∈ K.

Indeed, given x, y ∈ K, by the nonnegative sign of G, f and increasing
of j for all t ∈ [0, T ] we calculate

j

(
1
2
Ax(t) +

1
2
By(t)

)
= j

(∫ T

0

G(t, s)f(s, x(s))ds +
∫ T

0

G(t, s)g(s, y(s))ds

)

≥ γ∗ := r∗,

and by convexity of j and (4.2)

max
t∈[0,T ]

j

(
1
2
Ax(t) +

1
2
By(t)

)
≤ max

t∈[0,T ]

1
2
j(Ax(t)) + max

t∈[0,T ]

1
2
j(By(t))

≤ T

2
const +

1
2
γ∗ := R.

Thus, really for all x, y ∈ K, 1
2Ax + 1

2By ∈ K with r∗ and R just defined.
Verification of assumption (T2): Similarly as closedness of K we show

that A is ‖·‖j-completely continuous in K.
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Verification of assumption (T3): Let x1, x2 ∈ K. Then

‖Bx1 − Bx2‖j =

∥∥∥∥∥
∫ T

0

2G(·, s)g(s, x1(s))ds −
∫ T

0

2G(·, s)g(s, x2(s))ds

∥∥∥∥∥
j

=

∥∥∥∥∥
∫ T

0

2G(·, s)(g(s, x1(s)) − g(s, x2(s)))ds

∥∥∥∥∥
j

≤ sup
t∈[0,T ]

κ(t)
∫ T

0

j(x1(s) − x2(s))ds

≤ sup
t∈[0,T ]

κ(t)T max
t∈[0,T ]

j(x1(t) − x2(t)).

In consequence B is a ‖·‖j-contraction in CT .
All assumption of Theorem 3.5 hold. Using this theorem we obtain that

the operator (1/2)F has a fixed point in K and the proof is complete. �

Remark 4.2. Note that the above theorem is new even in the case when j(·) =
|·|, i.e. j is standard norm in R (see [34]). In this case the set CT with the
modular j and the standard norm are in fact the same space as if x is con-
tinuous then also j(x) is continuous, i.e. j maps space of periodic continuous
function on [0, T ] onto itself. The advantage here to use the space CT is that
the operator A and B may have different properties related to j.

The next theorem is a simply extension of the former theorem to the case
when f can change sign. The proof is similar to Theorem 4.1 and we omit it.

Theorem 4.2. Assume on f and g as in 1.,2.,3. before Theorem 4.1. Moreover
let us assume that there exist b � 0 which is positive on the set of positive
measure on [0, T ], λ > 0 and positive constants R > r > 0 such that

f(t, x) < 0 for each 0 < x < r and t ∈ [0, T ], (4.3)
f(t, r) = 0 uniformly in t ∈ [0, T ], (4.4)
0 ≤ j(2Mf(t, x)) ≤ const, for all x > r, for a.e. t ∈ [0, T ]. (4.5)

Define

γ∗ = inf
x≥r,t∈[0,T ]

j

(∫ T

0

G(t, s)g(t, x)ds

)
,

γ∗ = sup
x≥r,t∈[0,T ]

j

(∫ T

0

2G(t, s)g(t, x)ds

)
,

β∗ = sup
x≥r,t∈[0,T ]

j

(∫ T

0

2G(t, s)b(t)ds

)

and assume β∗

rλ + γ∗ ≤ R. If γ∗ > r, then there exists a positive T-periodic
solution of (4.1).
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