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Travelling waves for Maxwell’s equations in
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Abstract. We look for travelling wave fields

E(x, y, z, t) = U(x, y) cos(kz + ωt) + ˜U(x, y) sin(kz + ωt),

(x, y, z) ∈ R
3, t ∈ R

satisfying Maxwell’s equations in a nonlinear medium which is not nec-
essarily cylindrically symmetric. The nonlinearity of the medium en-
ters Maxwell’s equations by postulating a nonlinear material law D =
εE + χ(x, y, 〈|E|2〉)E between the electric field E, its time averaged in-
tensity 〈|E|2〉 and the electric displacement field D. We derive a new

semilinear elliptic problem for the profiles U, ˜U : R2 → R
3

Lu − V (x, y)u = f(x, y, u) with u =

(

U
˜U

)

, for (x, y) ∈ R
2,

where f(x, y, u) = ω2χ(x, y, |u|2)u. Solving this equation we can obtain
exact travelling wave solutions of the underlying nonlinear Maxwell equa-
tions. We are able to deal with super quadratic and subcritical focusing
effects, e.g. in the Kerr-like materials with the nonlinear susceptibility
of the form χ(x, y, 〈|E2|〉E) = χ(3)(x, y)〈|E|2〉E. A variational approach
is presented for the semilinear problem. The energy functional associ-
ated with the equation is strongly indefinite, since L contains an infinite
dimensional kernel. The methods developed in this paper may be appli-
cable to other strongly indefinite elliptic problems and other nonlinear
phenomena.
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1. Introduction

We are looking for travelling wave fields

E(x, y, z, t) = U(x, y) cos(kz + ωt) + ˜U(x, y) sin(kz + ωt) (1.1)

solving in the absence of charges and currents the Maxwell system ∇ × E +
∂tB = 0 (Faraday’s law), ∇×H = ∂tD (Ampére’s law) together with div D =
0 and div B = 0. We require the linear magnetic material law B = μ(x, y)H
and the nonlinear electric material law D = ε(x, y)E + χ(x, y, 〈|E|2〉)E
where 〈|E(x, y, z)|2〉 = 1

T

∫ T

0
|E(x, y, z, t)|2 dt is the average intensity of a

time-harmonic electric field over one period T = 2π/ω. Taking the curl of
Faraday’s law and inserting the material laws for B and D together with
Ampére’s law we find that E has to satisfy the nonlinear electromagnetic wave
equation

∇ ×
( 1

μ(x, y)
∇ × E

)

+ ∂tt

(

ε(x, y)E + χ(x, y, 〈|E|2〉)E
)

= 0

for (x, y, z, t) ∈ R
3 × R. (1.2)

Here U, ˜U : R
2 → R

3 are the profiles of the travelling waves, ω > 0 is the
temporal frequency and k ∈ R \ {0} the spatial wave number in the direction
of propagation, ε = ε(x, y) is the permittivity of the medium, μ = μ(x, y) is
the magnetic permeability, and χ is the scalar nonlinear susceptibility which
depends on (x, y) and on the time averaged intensity of E only.

Note that having solved the nonlinear electromagnetic wave equation,
one obtains the electric displacement field D directly from the constitutive
relation

D = ε(x, y)E + χ(x, y, 〈|E|2〉)E. (1.3)

Moreover the magnetic induction B may be obtained by time integrating Fara-
day’s law with divergence free initial conditions, which are then preserved in
time. Finally the magnetic field H is given by H = μ−1B. From (1.2) we get
div (∂ttD) = 0 and the Gauss law div (D) = 0 is satisfied due to the travel-
ling wave ansatz of the form (1.1). Altogether, we find exact propagation of
the electromagnetic field in the nonlinear medium according to the Maxwell
equations with the time-averaged material law (1.3), see also [23,25,26].

In physics and mathematical literature there are several simplifications
relying on approximations of the nonlinear electromagnetic wave equation. The
most prominent one is the scalar or vector nonlinear Schrödinger equation. For
instance, one assumes that the term ∇(div E) in ∇×(∇×E) = ∇(div E)−ΔE
is negligible and can be dropped, or one can use the so-called slowly varying
envelope approximation. However, this approach may produce non-physical
solutions; see e.g. [1,11] and references therein. Therefore, in this paper, we
are interested in exact travelling wave solutions of the Maxwell equations.

We would like to mention that exact propagation of travelling waves of the
nonlinear electromagnetic wave problem (1.2) have been studied analytically
so far only in cylindrically symmetric media. Namely, if E is an axisymmetric
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TE-mode of the form

E(x, y, z, t) = U(x, y) cos(kz + ωt)

with

U(x, y) := u(r)(−y/r, x/r, 0), where r =
√

x2 + y2 (1.4)

and the scalar function u only depends on r, then solutions of (1.2) have been
considered in a series of papers by Stuart and Zhou [25,27–32] for asymp-
totically constant susceptibilities and by McLeod, Stuart and Troy [14] for a
cubic nonlinear polarization. Clearly, E has the form of (1.1) with Ũ = 0. The
search for these solutions reduces to a one-dimensional variational problem or
an ODE for u(r), which simplifies the problem considerably. However, if the
medium is not necessarily cylindrically symmetric, then it is not clear how to
find travelling waves (1.1) with Ũ = 0 analytically and whether any variational
approach can be provided with this constraint.

The aim of this work is to provide an analysis of the travelling waves of the
general form (1.1) propagating in media, which are not necessarily cylindrically
symmetric. To the best of our knowledge it is the first analytical study of
travelling waves of (1.2), i.e., the Maxwell system with material law (1.3),
where the medium is not supposed to be cylindrically symmetric. We present
a variational approach which allows to treat (1.2) and to find ground state
solutions of the problem with the least possible energy as well as infinitely
many geometrically distinct bound states.

Let us briefly comment on the problem of finding time-harmonic standing
wave solutions of (1.2) of the form

E(x, y, z, t) = U(x, y, z) cos(ωt).

This leads to the so-called nonlinear curl–curl problem and has been recently
studied e.g. in [4,5] on a bounded domain and in [7,15,18] on R

3, see also
the survey [6] and references therein. In the curl-curl problem, however, U is
required to be localized in all space directions, i.e., it is supposed to lie in
some Lebesgue space over R

3. Since travelling waves of the form (1.1) are not
localized, they have not been taken into account in these works. We would
like to also mention that the study of time-harmonic standing waves in R

3 in
the nonsymmetric case has been presented only in [15,18]. The methods used
there required assumptions about the vanishing properties of the permittivity
ε, or even ε = 0, and the double power behaviour of the nonlinear effect,
e.g. χ(x, y, z, E) = Γ(x)min{|〈E〉|p−2, |〈E〉|q−2} with 2 < p < 6 < q. Note
that p = 4 corresponds to the Kerr-type effect, but only for sufficiently strong
fields |〈E〉| > 1. In this work, however, we are able to treat the probably most
common type of nonlinearity in the physics and engineering literature, the
Kerr nonlinearity

χ(x, y, 〈|E2|〉)E = χ(3)(x, y)〈|E|2〉E
and we no longer require that the permittivity vanishes at infinity.

The search for travelling waves of the form (1.1) leads to a new nonlinear
elliptic problem. Namely, in order to solve the nonlinear electromagnetic wave
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equation, we observe that the profiles U, ˜U of the travelling wave satisfy the
elliptic problem

L

(

U
˜U

)

− ω2ε(x, y)
(

U
˜U

)

= ω2χ

(

x, y,
1
2
(|U |2 + |˜U |2)

)(

U
˜U

)

, (1.5)

where

L=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−∂yy + k2 ∂xy 0 0 0 k∂x

∂xy −∂xx + k2 0 0 0 k∂y

0 0 −∂xx − ∂yy k∂x k∂y 0

0 0 −k∂x −∂yy + k2 ∂xy 0

0 0 −k∂y ∂xy −∂xx + k2 0

−k∂x −k∂y 0 0 0 −∂xx − ∂yy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For simplicity we have assumed that the magnetic permeability is a constant
given by μ = 1. Let us define

dom(L) :=
{(

U
˜U

)

∈ L2(R2)6 : L

(

U
˜U

)

∈ L2(R2)6
}

where L((U, ˜U)T ) is defined in the sense of distributions. One verifies that the
second-order differential operator

L : dom(L) ⊂ L2(R2)6 → L2(R2)6 (1.6)

is elliptic and self-adjoint, see Sect. 2 for details.
Our aim is to find solutions u : R2 → R

6 to the following slight general-
ization of (1.5) given by

Lu − V (x)u = f(x, u) for x ∈ R
2 (1.7)

involving the operator L, where we assume f(x, u) = ∂uF (x, u). From now on
the space variable in R

2 will be denoted by x instead of (x, y).
Observe that, if

V (x) = ω2ε(x), F (x, u) = ω2χ
(

x,
1
2
|u|2
)

, x ∈ R
2, u ∈ R

6 (1.8)

then (1.7) leads to (1.5) and we obtain the exact propagation of the travelling
electromagnetic waves (E,B), where E is given by (1.1) and B is provided by
Faraday’s law and a subsequent time integration. On the other hand, (1.7) is
more general, since the nonlinear potential F may depend on the direction of
u and not necessarily on |u| =

√

U2 + ˜U2 as in anisotropic media.
Before we describe our results in more detail, let us comment on the main

difference of the current work and previous works [25–30] in cylindrically sym-
metric media. In these previous works the reduction of the curl-curl-operator
to the Laplacian when acting on E(x, y, z, t) = U(x, y) cos(kz + ωt) was pos-
sible by building-in the constraint div (U) = 0 into the ansatz as in (1.4). In
our work we admit two profiles U, Ũ in the ansatz (1.1) and thus reduce the
curl-curl-operator to the operator L above. If we would obtain a one-profile
solution (U, 0) of (1.5) with k �= 0 then automatically div (U) = 0 follows.
However, finding such a one-profile solution might be restricted to cylindri-
cally symmetric media. Two-profile solutions like in our ansatz (1.1) allow us
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to treat more general non-cylindrically symmetric media and a large class of
nonlinearities.

The model nonlinearity which we have in mind is

F (x, u) =
1
p
Γ(x)|u|p (1.9)

with Γ ∈ L∞(R2) positive, bounded away from 0 and p > 2. In particular if
p = 4 we deal with the Kerr nonlinearity.

We want to find weak solutions of (1.7) which correspond to critical points
of the following functional

J(u) :=
1
2
bL(u, u) − 1

2

∫

R2
V (x)|u|2 dx −

∫

R2
F (x, u) dx (1.10)

defined on a Banach space X ⊂ L2(R2)6 ∩ Lp(R2)6 given later. Here bL(·, ·) is
the bilinear form associated with L such that bL(u, ϕ) =

∫

R2〈Lu,ϕ〉 dx for all
u ∈ dom(L) and all ϕ ∈ C∞

0 (R2)6.
Now let us enlist several difficulties underlying the problem. For α, α̃ ∈

C∞
0 (R2) and for β, ˜β ∈ C∞

0 (R2)3 let us denote

◦
∇
(

α
α̃

)

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂xα
∂yα
kα̃
∂xα̃
∂yα̃
−kα

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: R2 → R
6,

◦
∇ ×

(

β
˜β

)

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂yβ3 − k˜β2

k˜β1 − ∂xβ3

∂xβ2 − ∂yβ1

∂y
˜β3 + kβ2

−kβ1 − ∂x
˜β3

∂x
˜β2 − ∂y

˜β1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: R2 → R
6

and observe that L =
◦
∇ ×

◦
∇×,

◦
∇ ×

◦
∇ = 0 and thus w :=

◦
∇
(

α
α̃

)

∈ ker(L).

Moreover J may be unbounded from above and from below and its critical
points may have infinite Morse index. This is due to the infinite-dimensional
kernel of L. In addition to these problems related to the strongly indefinite
geometry of J ′, we also have to deal with the lack of compactness issues.
Namely, the functional J is not (sequentially) weak-to-weak∗ continuous, i.e.
the weak convergence un ⇀ u in X does not imply that J ′(un) ⇀ J ′(u) in
X∗. In particular, if J ′(un) → 0, we do not know whether u is a critical point
of J and solves (1.7).

In Theorem 2.3 we show that the spectrum σ(L) = {0} ∪ [k2,∞), where
0 is an eigenvalue of infinite multiplicity and [k2,∞) consists of absolutely
continuous spectrum. This allows us to consider the following general assump-
tions.
(V) V ∈ L∞(R2) and 0 < ess inf V ≤ ess sup V < k2. Moreover there is

V0 ∈ R such that V − V0 ∈ L
p

p−2 (R2) for some p > 2.
(F1) F : R2 ×R

2 → [0,∞) is differentiable with respect to the second variable
u ∈ R

2, and f = ∂uF : R2×R
2 → R

2 is measurable in x ∈ R
2, continuous

in u ∈ R
2 for a.e. x ∈ R

2. Moreover f is Z
2-periodic in x i.e. f(x, u) =

f(x + y, u) for x, u ∈ R
2, y ∈ Z

2.
(F2) |f(x, u)| = o(1) as u → 0 uniformly in x ∈ R

2.
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(F3) There are p > 2 and c1 > 0 such that

|f(x, u)| ≤ c1(1 + |u|p−1) for all u ∈ R
2 and a.e. x ∈ R

2.

(F4) There is c2 > 0 such that

lim inf
|u|→∞

F (x, u)/|u|p ≥ c2 for a.e. x ∈ R
2.

Assumptions (V), (F1)–(F3) are sufficient to show that J is of class C1.
(F4) provides a lower bound estimate for large |u|, however we will need also
its stronger variant:

(F4’) There is c2 > 0 such that

F (x, u) ≥ c2|u|p for all u ∈ R
2 and a.e. x ∈ R

2.

In order to deal with ground states one has to assume the following
assumption:
(F5) If 〈f(x, u), v〉 = 〈f(x, v), u〉 > 0, then F (x, u) − F (x, v) ≤
〈f(x, u), u〉2 − 〈f(x, u), v〉2

2〈f(x, u), u〉 . Moreover 〈f(x, u), u〉 ≥ 2F (x, u) for every x ∈ R
2

and u ∈ R
2.

Condition (F5) was introduced in [4,16]. Conditions (F4) and (F5) imply
in particular the convexity of F in u, cf. Remark 6.2. Observe that if F is
isotropic in u, i.e. F (x, u) = χ(x, 1

2 |u|2), χ(x, s) ≥ 0, ∂sχ(x, s) is nonde-
creasing and χ(x, 0) = 0, then (F5) is satisfied. In general, (F5) does not
imply the Ambrosetti-Rabinowitz condition (F6) given below, cf. [2]. For in-
stance, if we take 0 < a < b then we may find a function χ of class C1 such
that ∂sχ(s) = s

p−2
2 for 0 ≤ s < a, ∂sχ(s) is constant for s ∈ [a, b], and

∂sχ(s) = cs
p−2
2 for s > b and a suitable c > 0. Then (F1)–(F5) are satisfied,

but the Ambrosetti-Rabinowitz condition (F6) does not hold. Note also that if
f and ˜f satisfy (F1)–(F4), then also αf + β ˜f satisfies (F1)–(F4) for α, β > 0.
It is not clear if (F5) considered alone has this positive additivity property,
however similarly as in [16, Remark 3.3 (b)] we check that if f and ˜f satisfy
(F1)–(F5) simultaneously, then αf + β ˜f satisfies the same assumptions.

The main result reads as follows and note that all our assumptions are
satisfied for the model nonlinearity given by (1.9).

Theorem 1.1. Suppose that (V) and (F1)–(F5) hold. If V = V0, or V (x) > V0

for a.e. x ∈ R
3 and (F4’) holds, then there is a nontrivial solution to (1.7) of

the form u0 = v + w with v ∈ H1(R2)6 \ {0} and w ∈ L2(R2)6 ∩ Lp(R2)6 such
that Lw = 0. Moreover u0 is a ground state solution, i.e., J(u0) = infN J > 0,
where

N :=
{

u ∈ X\{0} : J ′(u)(u) = 0 and J ′(u)
( ◦
∇
(

α
α̃

)

)

=0 for any α, α̃∈C∞
0 (R2)

}

.

If, in addition, f is odd in u and V = V0, then there is an infinite sequence
(un) of Z2-distinct solutions, i.e., (Z2 ∗ un) ∩ (Z2 ∗ um) = ∅ for n �= m, where
Z

2 ∗ u := {u(· + z) : z ∈ Z
2} for u ∈ X.
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Observe that for our model (1.8), condition (V) provides the relation
between the wave number k and the frequency ω.

Note that N contains all nontrivial critical points and N is contained
in the classical Nehari manifold {u ∈ X \ {0} : J ′(u)(u) = 0}, see [20] and
Sect. 3 for further properties. Condition (F5) is important to obtain a bounded
Palais-Smale sequence for J at level infN J . However it is not clear how to ob-
tain a bounded Palais-Smale sequence for J under (F1)–(F4) and the classical
Ambrosetti-Rabinowitz condition
(F6) There is γ > 2 such that for every u ∈ R

2 and a.e. x ∈ R
2

〈f(x, u), u〉 ≥ γF (x, u).

Instead, we need to consider (F4’) together with (F6) in order to prove the
boundedness of Palais-Smale sequences, see Lemmas 6.3 and 6.4.

Theorem 1.2. Suppose that F is convex in u ∈ R
2, (F1)–(F3), (F4’), (F6) and

that (V) holds for a constant function V , i.e., V (x) = V0 with 0 < V0 < k2.
Then there is a nontrivial solution to (1.7) of the form u0 = v + w with
v ∈ H1(R2)6 \ {0} and w ∈ L2(R2)6 ∩ Lp(R2)6 such that Lw = 0. Moreover
u0 is a least energy solution, i.e., J(u0) = c0, where

c0 := inf
{

J(u) : J ′(u) = 0 and u ∈ X \ {0}
}

> 0.

If, in addition, f is odd in u, then there is an infinite sequence (un) of Z
2-

distinct solutions.

We show that if u ∈ X solves (1.7), then the total electromagnetic energy
per unit interval in x3-direction given by

L(t) :=
1
2

∫

R2

∫ a+1

a

〈E,D〉 + 〈B,H〉 dx3 d(x1, x2) (1.11)

is finite; see Corollary 2.4. We do not know, however, whether the fields E, D,
B and H are localized, i.e. decay to zero as |(x1, x2)| → ∞, however X lies
in L2(R2)6 ∩ Lp(R2)6. Therefore E has a weaker decay property and cannot
travel in the (x1, x2)-plane. The finiteness of the total electromagnetic energy
and the localization problem attract a strong attention in the study of self-
guided beams of light in nonlinear media; see e.g. [25,26]. The question of the
regularity of the fields remains open.

The first crucial step in our approach is to build the functional and vari-
ational setting for the new operator L and the problem (1.7), which will be
demonstrated in the next Sect. 2. Next we recognize the strongly indefinite
nature of (1.10) and show that it is of the form of the critical point theory
presented in [4,5,18] and built for curl-curl problems. However, we work in a
different functional setting and under a different set of assumptions, so that
we have to slightly refine the results, in particular we do not always assume
condition (I8) given in Sect. 3. In Sect. 4 we deal with the lack of compactness
issue, in particular with the lack of weak-to-weak∗ continuity of J ′. By means
of a profile decomposition result (Theorem 5.1), we are able to prove this reg-
ularity in some weakly closed topological constraint M ⊂ X, so that a weak
limit point of a bounded Palais-Smale sequence of M is a critical point of J .
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In the last Sect. 6 we show that a variant of Cerami’s condition holds [10]. In
particular we show that any Cerami sequence is bounded, and we emphasize
that the proof the boundedness is considerably nonstandard and not straight-
forward, even if (F6) holds. Some technical inequalities have to be worked out,
see details in Lemmas 6.3, 6.4. Finally we complete the proof of Theorems 1.1
and 1.2.

2. Variational setting

We introduce the following notation. If u =
(

U

Ũ

)

∈ R
6, then |u| :=

(

|U |2 +

|Ũ |2
)1/2 and 〈·, ·〉 denotes the Euclidean inner product in R

N , N ≥ 1. In
the sequel 〈·, ·〉2 denotes the inner product in L2(R2)6 and | · |q denotes the
usual Lq-norm for q ∈ [1,+∞]. Furthermore we denote by C a generic positive
constant which may vary from one inequality to the next. We always assume
that k �= 0.

Let us introduce the following space

V :=
{

u =
(

U
˜U

)

∈ H1(R2)6 :
〈

u,
◦
∇
(

α
α̃

)

〉

2
= 0 for any α, α̃ ∈ C∞

0 (R2)
}

=
{

u =
(

U
˜U

)

∈ H1(R2)6 : ∂x1u1 + ∂x2u2 + kũ3 = 0,

∂x1 ũ1 + ∂x2 ũ2 − ku3 = 0 a.e. in R
2
}

and note that it is a closed subspace of H1(R2)6. Let us consider the following
norm in V

‖u‖ :=
(

3
∑

i=1

|∇ui|22 + k2|ui|22 + |∇ũi|22 + k2|ũi|22
)1/2

which is equivalent to the standard H1-norm. Let W be the completion of

vector fields w =
◦
∇
(

Φ
˜Φ

)

, Φ, ˜Φ ∈ C∞
0 (R2)3 with respect to the following norm

‖w‖ :=
(

|w|22 + |w|2p
)1/2

so that W ⊂ L2(R2)6 ∩ Lp(R2)6. Note that V ∩ W = {0} and we may define a
norm on V ⊕ W as follows

‖v + w‖ = ‖v‖ + ‖w‖, v ∈ V, w ∈ W.

Theorem 2.1. The spaces V and W are closed subspaces of L2(R2)6 and or-
thogonal with respect to 〈·, ·〉2 and X := V ⊕ W is the completion of C∞

0 (R2)6

with respect to the norm ‖ · ‖.

Proof. It is clear that V and W are closed subspaces of L2(R2)6 and orthogonal

with respect to 〈·, ·〉2. Let ϕ =
(

Φ
˜Φ

)

∈ C∞
0 (R2)6 and let α, α̃ ∈ H1(R2) ∩
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C∞(R2) be the unique solutions to

−Δα + k2α = −
(

∂x1Φ1 + ∂x2Φ2 + k˜Φ3

)

and

−Δα̃ + k2α̃ = −
(

∂x1
˜Φ1 + ∂x2

˜Φ2 − kΦ3

)

respectively. Since α is the Bessel potential of the C∞
0 -function −(∂x1Φ1 +

∂x2Φ2 + k˜Φ3) we find that α ∈ W l,s(R2) for any l ∈ N and 1 < s < ∞, cf.
[24, Chapter V Sect. 3]. Arguing similarly we see that the same also holds
for α̃. Taking standard mollifiers and applying a cutoff argument, we find
αn, α̃n ∈ C∞

0 (R2) such that αn → α and α̃n → α̃ in W l,s(R2) for any l ∈ N

and 1 < s < ∞. In particular this implies

ϕW :=
◦
∇
(

α
α̃

)

= lim
n→∞

◦
∇
(

αn

α̃n

)

∈ W

and ϕW ∈ W l,s(R2) for all l ∈ N and 1 < s < ∞. Moreover, W is clearly
contained in the completion of C∞

0 (R2)6 with respect to the norm ‖ · ‖. Since
in particular ϕW ∈ H1(R2)6 we obtain by integration by parts
〈

ϕ,
◦
∇
(

β
˜β

)

〉

= −
∫

R2
(∂x1Φ1 + ∂x2Φ2 + k˜Φ3)β + (∂x1

˜Φ1 + ∂x2
˜Φ2 − kΦ3)˜β dx

=
∫

R2
(−Δα + k2α)β + (−Δα̃ + k2α̃)˜β dx

=
〈

ϕW ,
◦
∇
(

β
˜β

)

〉

for every β, ˜β ∈ C∞
0 (R2). Therefore ϕV := ϕ − ϕW ∈ V and we obtain the

following Helmholtz-type decomposition

ϕ = ϕV + ϕW with ϕV ∈ V and ϕW ∈ W

and moreover we have shown that ϕ ∈ X. It remains to show that also V
is contained in the completion of C∞

0 (R2)6 with respect to ‖ · ‖. To see this,
let v ∈ V and take (ϕn) ⊂ C∞

0 (R2)6 such that ϕn → v in H1(R2)6. Let us
decompose ϕn = ϕn

V + ϕn
W ∈ V ⊕ W and let cl L2∩LpV denote the closure of V

in L2(R2)6 ∩ Lp(R2)6. Observe that
(

cl L2∩LpV
)

∩ W = {0}, so that there is
a continuous L2(R2)6 ∩ Lp(R2)6-projection of

(

cl L2∩LpV
)

⊕ W onto W. Since
ϕn → v in L2(R2)6 ∩ Lp(R2)6, we infer that ϕn

W → 0 in W. Similarly, arguing
with the closure of W in H1(R2)6 we get ϕn

V → v in V. Therefore

‖v − ϕn‖ = ‖v − ϕn
V‖ + ‖ϕn

W‖ → 0

as n → ∞ and we conclude that V ⊕ W is the completion of C∞
0 (R2)6 with

respect to the norm ‖ · ‖. �

Now we investigate the differential operator L and its spectrum in the
following two results.
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Proposition 2.2. The second-order differential operator (1.6) is elliptic and
self-adjoint on the domain dom(L). Its associated bilinear form bL : dom(bL)×
dom(bL) → R is given by

bL(u, v) =
∫

R2
〈

◦
∇ × u,

◦
∇ × v〉 dx

with dom(bL) = {u ∈ L2(R2)6 s.t.
◦
∇ × u ∈ L2(R2)6}.

Proof. Let us show that dom(bL) is closed in L2(R2)6. First note the symmetry

property 〈
◦
∇ × u, v〉 = 〈u,

◦
∇ × v〉 for all u, v ∈ dom(bL). If (un)n∈N ∈ dom(bL)

is a sequence such un → u in L2(R2)6 and
◦
∇ × un → ψ in L2(R2)6 for some

ψ ∈ L2(R2)6 then the symmetry property implies 〈
◦
∇×un, φ〉 = 〈un,

◦
∇×φ〉 →

〈u,
◦
∇ × φ〉 for all φ ∈ dom(bL). Thus ψ =

◦
∇ × u and therefore bL is a closed

symmetric bilinear form. It is therefore the associated bilinear form of a unique
selfadjoint operator, cf. [22, Theorem VIII.15]. For all u, v ∈ C∞

0 (R2)6 we see
that

〈Lu,ϕ〉 =
∫

R2
(

◦
∇ ×

◦
∇ × u) · ϕ dx =

∫

R2
(

◦
∇ × u) · (

◦
∇ × ϕ) dx = bL(u, ϕ).

Hence bL is the bilinear form of the operator L : dom(L) → L2(R2)6 with
dom(L) = {u ∈ L2(R2)6 s.t. Lu ∈ L2(R2)6}. �

Theorem 2.3. The operator L : dom(L) ⊂ L2(R2)6 → L2(R3)6 has spectrum
σ(L) = {0} ∪ [k2,∞), where 0 is an eigenvalue of infinite multiplicity and
[k2,∞) consists of absolutely continuous spectrum.

Proof. Let us consider the symbol L̂(ξ) which is a complex hermitian 6 × 6
matrix for ξ ∈ R

2. Let us denote by σ(L̂(ξ)) the matrix eigenvalues of L̂(ξ).
We will verify σ(L) =

⋃

ξ∈R2 σ(L̂(ξ)) by two steps:

(i) λ is a matrix eigenvalue of L̂(ξ) for some ξ ∈ R
2 ⇒ λ ∈ σ(L)

(ii) dist(λ,
⋃

ξ∈R2 σ(L̂(ξ))) > 0 ⇒ λ lies in the resolvent set of L

Since the spectrum of L is closed, (i) and (ii) imply the claimed representation
of σ(L).
Proof of (i): Let a ∈ R

6 be a unit vector with L̂(ξ0)a = λa. If ρ ∈ C∞
0 (R2) is

a function with ‖ρ‖L2(R2) = 1 then let ûk(ξ) = kρ(k(ξ − ξ0))a. One finds that
‖ûk‖L2(R2)6 = 1 and

‖(L̂ − λ Id)ûk‖2
L2(R2)6 =

∫

R2
|
(

L̂(ξ) − L̂(ξ0)
)

a|2k2ρ2(k(ξ − ξ0)) dξ

=
∫

R2
|
(

L̂(ξ0 + k−1η) − L̂(ξ0)
)

a|2ρ2(η) dη

→ 0 as k → ∞
by continuity of the symbol and dominated convergence. By Plancherel’s the-
orem we have that (L − λ)uk → 0 as k → ∞ in L2(R2)6 with ‖uk‖L2(R2)6 = 1
so that λ ∈ σ(L) by Weyl’s criterion.
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Proof of (ii): Let |λ − λj(ξ)| ≥ δ > 0 for all ξ ∈ R
2, all eigenvalues λ1(ξ), . . . ,

λ6(ξ) of the matrix L̂(ξ) and let us denote the corresponding orthonormal
basis of eigenvectors by v1(ξ), . . . , v6(ξ) ∈ C

6. Then, for given f ∈ L2(R2)6,
solving the problem (L − λ Id)u = f is equivalent to computing the inverse
Fourier transform of

û(ξ) =
6
∑

j=1

〈f̂(ξ), vj(ξ)〉C6

λj(ξ) − λ
vλ(ξ).

By Plancherel’s theorem this amounts to

‖u‖2
L2(R2)6 = ‖û‖2

L2(R2)6 =
∫

R

6
∑

j=1

|〈f̂(ξ), vj(ξ)〉C6 |2
|λj(ξ) − λ|2 ≤ 6

δ2
‖f‖2

L2(R2)6 .

This shows that λ belongs to the resvolent set of L.

The remaining part of the proof is dedicated to the computation of the
matrix eigenvalus λ1(ξ), . . . , λ6(ξ). It turns out that the characteristic polyno-
mial of L̂(ξ) is given by λ2(|ξ|2 + k2 − λ)4 and hence σ(L) = {0} ∪ [k2,∞).
Indeed, taking the Fourier-transform we find the symbol of L, whose charac-
teristic polynomial is given by
det(L̂(ξ) − λ Id)

= det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ξ2
2 + k2 − λ −ξ1ξ2 0 0 0 ikξ1

−ξ1ξ2 ξ2
1 + k2 − λ 0 0 0 ikξ2

0 0 |ξ|2 − λ ikξ1 ikξ2 0

0 0 −ikξ1 ξ2
2 + k2 − λ −ξ1ξ2 0

0 0 −ikξ2 −ξ1ξ2 ξ2
1 + k2 − λ 0

−ikξ1 −ikξ2 0 0 0 |ξ|2 − λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Interchanging column 3 and 6 as well as line 3 and 6 we get a block structure
which leads to

det(L̂(ξ) − λ Id) = det

⎛

⎝

ξ2
2 + k2 − λ −ξ1ξ2 ikξ1

−ξ1ξ2 ξ2
1 + k2 − λ ikξ2

−ikξ1 −ikξ2 |ξ|2 − λ

⎞

⎠

×det

⎛

⎝

|ξ|2 − λ ikξ1 ikξ2

−ikξ1 ξ2
2 + k2 − λ −ξ1ξ2

−ikξ2 −ξ1ξ2 ξ2
1 + k2 − λ

⎞

⎠

= λ2(|ξ|2 + k2 − λ)4

since both matrices have the same determinant −λ(|ξ|2 + k2 − λ)2. Thus the
matrix eigenvalues are given by σ(L̂(ξ)) = {0, |ξ|2 + k2}. The zero eigenvalue

of infinite multiplicity if generated by all vector fields
◦
∇
(

α
α̃

)

with α, α̃ ∈

C∞
c (R2). �

Let pV : X → V, pW : X → W denote the projections of X onto V, W,
respectively. Usually we just write u = v + w ∈ V ⊕ W, where v = pV(u) ∈ V
and w = u − v = pW(u) ∈ W. Observe that V and W are both subspaces of
dom(bL) and that for v + w ∈ X = V ⊕ W we have

bL(v + w, v + w) = bL(v, v) = ‖v‖2.



22 Page 12 of 38 J. Mederski and W. Reichel NoDEA

For u ∈ dom(bL) using the duality pairing between dom(bL)′ and dom(bL)
we can define Lu by setting 〈Lu, φ〉dom(bL)′×dom(bL) := bL(u, φ) for all φ ∈
dom(bL). In this way L : X → dom(bL)′ is well-defined and has the kernel
W. Note that L restricted to V coincides with the vector Schrödinger operator
−Δ + k2 acting diagonally on elements of V.

We say that u ∈
(

U
˜U

)

∈ X is a weak solution to (1.7) provided that

bL(u, ϕ) −
∫

R2
V (x)〈u, ϕ〉 dx −

∫

R2
〈f(x, u), ϕ〉 dx = 0 (2.1)

for any ϕ ∈ C∞
0 (R2)6. From now on we assume that (F1)–(F4) and (V) are

satisfied. Observe that for u = v + w ∈ V ⊕ W we get

J(u) :=
1
2
‖v‖2 − 1

2

∫

R2
V (x)|u|2 dx −

∫

R2
F (x, u) dx.

Corollary 2.4. J : X → R is of class C1 and u ∈ X is a critical point of J
if and only if u is a weak solution to (1.7). Moreover, if (1.8) holds and E

of the form (1.1) is a travelling wave field with the profiles U and Ũ , where

u =
(

U
˜U

)

∈ X is a critical point of J , then the total electromagnetic energy

per unit interval on the x3-axis is finite, i.e.

L(t) =
1
2

∫

R2

∫ a+1

a

〈E,D〉 + 〈B,H〉 dx3 d(x1, x2) < ∞.

Proof. The first statement is a consequence of Theorem 2.1. According to the
material laws

〈E,D〉 = −ε(x1, x2)ω2|E|2 + χ(x1, x2, 〈|E|2〉)|E|2

=
(

− V (x1, x2) + χ(x1, x2,
1
2
|u|2)
)(

|U |2 cos2(kx3 + ωt)

+|˜U |2 sin2(kx3 + ωt)
)

and by the Faraday’s law

〈B,H〉 = |B|2

=
1
ω2

∣

∣∇ ×
(

U(x1, x2) sin(kx3 + ωt) − ˜U(x1, x2) cos(kx3 + ωt)
)∣

∣

2

≤ 1
ω2

|
◦
∇ × u|2.

Therefore

L(t) ≤ 1
2ω2

bL(u, u) +
1
2

∫

R2

(

−V (x1, x2) + χ

(

x1, x2,
1
2
|u|2
))

·
∫ a+1

a

(

|U |2 cos2(kx3 + ωt) + |˜U |2 sin2(kx3 + ωt)
)

dx3d(x1, x2)

≤1
2

(

1 +
1
ω2

)

bL(u, u) < ∞.

�
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3. Abstract variational approach

Our approach is based on the critical point theory from [4,5,18], however
sometimes we do not assume the monotonicity assumption (I8) given below
and we present results with emphasis on where this condition is crucial.

Let J : X → R be a functional of the form

J(u) :=
1
2
‖u+‖2 − I(u) for u = u+ + u− ∈ X+ ⊕ X−, (3.1)

such that X is a reflexive Banach space with the norm ‖ · ‖ and a topological
direct sum decomposition X = X+ ⊕ X−, where X+ is a Hilbert space with
a scalar product 〈·, ·〉. For u ∈ X we denote by u+ ∈ X+ and u− ∈ X− the
corresponding summands so that u = u+ + u−. We may assume 〈u, u〉 = ‖u‖2

for any u ∈ X+ and ‖u‖2 = ‖u+‖2 + ‖u−‖2. We define the topology T on X
as the product of the norm topology in X+ and the weak topology in X−.
Hence un

T−→ u if and only if u+
n → u+ and u−

n ⇀ u−. Let us define the set

M := {u ∈ X : J ′(u)|X− = 0} = {u ∈ X : I ′(u)|X− = 0}. (3.2)

Clearly M contains all critical points of J and we assume the following con-
ditions introduced in [4,5]:
(I1) I ∈ C1(X,R) and I(u) ≥ I(0) = 0 for any u ∈ X.
(I2) I is T -sequentially lower semicontinuous: if un

T−→ u then lim inf I(un)
≥ I(u).

(I3) If un
T−→ u and I(un) → I(u) then un → u.

(I4) ‖u+‖ + I(u) → ∞ as ‖u‖ → ∞.
(I5) If u ∈ M then I(u) < I(u + v) for every v ∈ X− \ {0}.
(I6) There exists r > 0 such that a := inf

u∈X+,‖u‖=r
J(u) > 0.

(I7) I(tnun)/t2n → ∞ if tn → ∞ and u+
n → u+ �= 0 as n → ∞.

Observe that if I is strictly convex, continuous and satisfies (I4), then (I2) and
(I5) are clearly satisfied. Moreover, for any u ∈ X+ we find m(u) ∈ M which
is the unique global maximizer of J |u+X− . From now on we assume (I1)–(I7).
Note that m needs not be C1, and M needs not be a differentiable manifold
since I ′ is only continuous, however from [5, Proof of Theorem 4.4] we observe
m : X+ → M is a homeomorphism and ˜J := J ◦ m : X+ → R is of class C1.

We introduce the following min-max level

c := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)), (3.3)

where

Γ :=
{

γ ∈ C([0, 1],M) : γ(0) = 0, ‖γ(1)+‖ > r, and J(γ(1)+) < 0
}

.(3.4)

If we look for ground state solutions with the least possible energy, we consider
a Nehari-type constraint N and the following condition

(I8) t2−1
2 I ′(u)[u]+I(u)−I(tu+v) = t2−1

2 I ′(u)[u]+tI ′(u)[v]+I(u)−I(tu+v) ≤
0 for every u ∈ N , t ≥ 0, v ∈ X−, where

N := {u ∈ X \ X− : J ′(u)|Ru⊕X− = 0} = {u ∈ M \ X− : J ′(u)[u] = 0} ⊂ M.
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The constraint N is a generalized Nehari-type manifold inspired by a con-
strained considered in [21] for the Schrödinger problem. We state the following
result obtained in [18, Theorem 3.3] under assumptions (I1)–(I8).

Theorem 3.1. Suppose J of the form (3.1) satisfies (I1)–(I7). Then J has a
sequence (un) ⊂ M such that J(un) → c ≥ a > 0 and J ′(un)(1 + ‖u+

n ‖) → 0
as n → ∞. If, in addition, (I8) holds, then c = infN J .

Proof. For the reader’s convenience, we shortly sketch the proof. Recall that
by (I5)–(I7), ˜J(u) ≥ J(u) ≥ a for u ∈ X+ and ‖u‖ = r, and ˜J(tu)/t2 → −∞
as t → ∞. Thus ˜J has the mountain pass geometry and similarly as in [5,
Theorem 4.4] we may define the mountain pass level

cM := inf
σ∈˜Γ

sup
t∈[0,1]

˜J(σ(t)) = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) ≥ a, (3.5)

where
˜Γ := {σ ∈ C([0, 1],X+) : σ(0) = 0, ‖σ(1)‖ > r, and ˜J(σ(1)) < 0}.

By the mountain pass theorem there exists a Cerami sequence (vn) for ˜J at
the level cM, see [3,10]. Since ˜J ′(vn) = J ′(m(vn)) (see [5,18]), then setting
un := m(vn) we obtain

J ′(un)(1 + ‖u+
n ‖) = ˜J ′(vn)(1 + ‖vn‖) → 0.

If (I8) holds, then by [18, Theorem 3.3 (b)], c = infM J . �

Now we present a multiplicity result. Recall that for a topological group
acting on X, the orbit of u ∈ X is often denoted by G ∗ u, i.e.,

G ∗ u := {gu : g ∈ G}.

A set A ⊂ X is called G-invariant if gA ⊂ A for all g ∈ G. A functional
J : X → R is called G-invariant and a map T : X → X∗ is called G-
equivariant if J(gu) = J(u) and T (gu) = gT (u) for all g ∈ G, u ∈ X. In our
application we use the action given by Z

2-translations.
Assume that G is a topological group such that

(G) G acts on X by isometries and discretely in the sense that for each u �= 0,
(G ∗ u) \ {u} is bounded away from u. Moreover, J is G-invariant and
X+,X− are G-invariant.

Observe that M is G-invariant and m : X+ → M is G-equivariant.
We shall use the notation
˜Jβ := {u ∈ X+ : ˜J(u) ≤ β}, ˜Jα := {u ∈ X+ : ˜J(u) ≥ α},

˜Jβ
α := ˜Jα ∩ ˜Jβ , K :=

{

u ∈ X+ : ˜J ′(u) = 0
}

and call G ∗ u a critical orbit whenever u ∈ K. Moreover the following variant
of the Cerami condition between the levels α, β ∈ R has been introduced in
[18]:
(M)β

α (a) Let α ≤ β. There exists Mβ
α such that lim supn→∞ ‖un‖ ≤ Mβ

α for
every (un) ⊂ X+ satisfying α ≤ lim infn→∞ ˜J(un) ≤
lim supn→∞ ˜J(un) ≤ β and (1 + ‖un‖) ˜J ′(un) → 0.
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(b) Suppose in addition that the number of critical orbits in ˜Jβ
α is

finite. Then there exists mβ
α > 0 such that if (un), (vn) are two

sequences as above and ‖un − vn‖ < mβ
α for all n large, then

lim infn→∞ ‖un − vn‖ = 0.

Note that if J is even, then m is odd and M is symmetric, i.e. M = −M.
Note also that (M)β

α is a condition on ˜J . We slightly generalize [18, Theorem
3.5 (b)].

Theorem 3.2. Suppose J of the form (3.1) satisfies (I1)–(I7), J is even and
dim (X+) = ∞. If (M)β

0 holds for every β > 0, then J has infinitely many
distinct critical orbits.

In fact, in [18, Theorem 3.5 (b)] condition (I8) has been assumed as well,
which is redundant for this part of the result. Indeed, by the inspection of the
proof of [18, Theorem 3.5 (b)], the following min-max values

βk := inf
A∈Σ,i∗(A)≥k

sup
u∈A

˜J (u), k = 1, 2, . . . ,

are well-defined and finite, where Σ := {A ⊂ X+ : A = −A and A is compact},
and for A ∈ Σ, we define a variant of Benci’s pseudoindex [3,18].

i∗(A) := min
h∈H

γ(h(A) ∩ S(0, r))

where r is as in (I6), S(0, r) := {u ∈ X+ : ‖u‖ = r}, γ is Krasnoselskii’s genus
and

H := {h : X+ → X+ is a homeomorphism, h(−u) = −h(u) and
˜J (h(u)) ≤ ˜J (u) for all u}.

We observe also that βk ≥ a. Clearly (I6) implies that

sup
u∈A

˜J (u) ≥ sup
u∈A∩S(0,r)

˜J (u) ≥ inf
u∈S(0,r)

˜J (u) ≥ a

for any A ∈ Σ such that i∗(A) ≥ k. Hence, if we assume for contradiction that
there is a finite number of distinct orbits {G ∗ u : u ∈ K}, then arguing as in
the proof of [18, Theorem 3.5 (b)], βk are critical values and a ≤ β1 < β2 < . . .,
which is impossible by the assumption. Therefore Theorem 3.2 holds true.

4. Application of the abstract variational approach

Recall that we assume (F1)–(F4) and (V). We assume, in addition, that F is
convex in u ∈ R

2. Let X+ := V and X− := W. Let us define I : X → R such
that

I(u) =
1
2

∫

R2
V (x)|u|2 dx +

∫

R2
F (x, u) dx,

hence J(v + w) = 1
2‖v‖2 − I(v + w) for v ∈ V and w ∈ W so that J is of the

form (3.1). In this section we check that (I1)–(I7) are satisfied.
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Let us define the following map

H1(R2)6 � u �→ IF (u) :=
∫

R2
F (x, u) dx,

which is continuous and convex.

Lemma 4.1. Conditions (I1)–(I4) are satisfied.

Proof. In view of (F1), (F2), (F3) and (V) we easily get (I1) and by the
convexity assumption on F also (I2). To see that (I3) holds let us suppose
that un

T−→ u and I(un) → I(u). Then by the fact that F ≥ 0 and weak lower
semicontinuity

∫

R2
V (x)|un|2 dx →

∫

R2
V (x)|u|2 dx, IF (un) → IF (u) (4.1)

and passing to a subsequence
(

V (x)1/2un

)

⇀
(

V (x)1/2u
)

in L2(R2)6. Thus
un → u in L2(R2)6 and un(x) → u(x) for a.e. x ∈ R

2. Then, by Vitali’s
convergence theorem

IF (un) − IF (un − u) =
∫

RN

∫ 1

0

− d

ds
F (x, un − su) ds dx

=
∫

RN

∫ 1

0

f(x, un − su)u ds dx

→
∫ 1

0

∫

RN

f(x, u − su)u dx ds

=
∫

RN

∫ 1

0

− d

ds
F (x, u − su) ds dx

=
∫

RN

F (x, u) dx = IF (u)

as n → ∞. From (4.1) we infer that IF (un − u) → 0. Observe that, by (F4)
and F ≥ 0, for any ε > 0 we find a constant c̃ε > 0 such that

F (x, u) + ε|u|2 ≥ c̃ε|u|p for x, u ∈ R
2. (4.2)

Therefore
∫

R2
F (x, un − u) dx + |un − u|22 ≥ c̃1|un − u|pp

and we get un → u in Lp(R2)6, which completes the proof of (I3). Now note
that if I(vn + wn) is bounded with (vn) ⊂ V and wn ⊂ W such that vn

is bounded, then wn is bounded in L2(R2)6 and by (4.2), wn is bounded in
Lp(R2)6. Thus (I4) holds. �

Let v ∈ V. Since W � w �→ I(v + w) ∈ R is strictly convex and coercive,
I(u) ≥ I(0) = 0, then I(v + ·) attains a unique global minimum at some
w(v) ∈ W. Hence the set

M := {u ∈ X : J ′(u)|W = 0} = {u ∈ X : I ′(u)|W = 0}
=
{

u ∈ X : u = pV(u) + w
(

pV(u)
)}

,
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obviously contains all critical points of J and there holds:

(I5) If u ∈ M then I(u) < I(u + w) for every w ∈ W \ {0}.

Since I(v + w(v)) ≤ I(v) for v ∈ V, we see that w maps bounded sets into
bounded sets and in view of (I2) and (I3) one can easily show the continuity
of w.

Now we show the following properties which imply the linking geometry
in the spirit of Benci and Rabinowitz [8].

Lemma 4.2. The following conditions are satisfied.
(I6) There exists r > 0 such that a := inf

v∈V,‖v‖=r
J(v) > 0.

(I7) I(tnun)/t2n → ∞ if tn → ∞ and pV(un) → v �= 0 as n → ∞.

Proof. Observe that (F2) and (F3) imply that for any ε > 0 there is cε > 0
such that

|f(x, u)| ≤ ε|u| + cε|u|p−1 and F (x, u) ≤ ε|u|2 + cε|u|p for x, u ∈ R
2.

(4.3)

Then, taking 0 < ε < k2 − ess sup V , by (V) we get

J(v) ≥ 1
2

∫

R2
|∇v|2 + (k2 − ess sup V − ε)|v|2 dx − Cε|v|pp

for v ∈ V, and we obtain (I6) by the Sobolev embedding of H1(R2)6 into
Lp(R2)6 and by choosing r > 0 sufficiently small. Now suppose that I(tnun)/t2n
is bounded, tn → ∞ and pV(un) → v �= 0 as n → ∞. Note that if un = vn+wn

with vn = pV(un) ∈ V and wn ∈ W, then by (4.2)

I(tnun)/t2n ≥ 1
2

∫

R2

(

ess inf V − ε
)

|vn + wn|2 dx + tp−2
n cε|vn + wn|pp.
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Since I(tnun)/t2n is bounded and taking 0 < ε < ess inf V we obtain that
vn + wn → 0 in Lp(R2)6. Since vn + wn is also bounded in L2(R2)6 it has a
weakly convergent subsequence and the weak L2-limit of this subsequence has
to coincide with the the strong Lp-limit. Thus, dropping subsequence indices,
we get in total that wn ⇀ −v �= 0 in W and obtain a contradiction. �

In view of Theorem 3.1, there is a sequence un = vn + wn ∈ M such
that J ′(un) → c ≥ a > 0 and J ′(un)(1 + ‖vn‖) → 0 as n → ∞. We will
show that (un) is bounded if, in addition, (F5) or (F6) holds, see Lemma 6.4
in Sect. 6. The next section however is devoted to profile decompositions of
bounded sequences in M, which will be important to show that there is a
nontrivial weak limit point of the sequence (un) up to translations, which is a
critical point.

5. Profile decompositions in M
In addition to (F1)–(F4) and (V) we assume also that V = V0 or V (x) > V0

for a.e. x ∈ R
3. Let us define I0 : X → R such that

I0(u) =
1
2

∫

R2
V0|u|2 dx +

∫

R2
F (x, u) dx.

Clearly I0 satisfies analogous conditions (I1)–(I4) and for v ∈ V, I0(v + ·)
attains a unique global minimum at some w0(v) ∈ W. Thus, similarly as in
(3.2), we define

M0 := {u ∈ X : I ′
0(u)|W = 0}.

Recall that profile decompositions of bounded sequences in H1(RN ) have been
obtained for instance by Nawa [19], Hmidi and Keraani [13], and by Gérard
[12] in Ḣs(RN ). A similar result cannot be obtained in X = V ⊕ W, since W
is not locally compactly embedded into Lp(R2) for p ≥ 1. However we prove
the following decomposition result in the topological constraints M,M0 ⊂ X.

Theorem 5.1. If (un) is bounded in M, then, passing to a subsequence, there is
K ∈ N∪{∞} and there are ũ0 ∈ M and sequences (ũi)i≥1 ⊂ M0, (yi

n)n≥i ⊂ Z
2

such that y0
n = 0, |yi

n − yj
n| → ∞ as n → ∞ for i �= j, and the following con-

ditions hold:

(a) If K < ∞, then ũi �= 0 for 1 ≤ i ≤ K and ũi = 0 for i > K. If K = ∞,
then ũi �= 0 for all i ≥ 1.

(b) un(· + yi
n) ⇀ ũi in X for any 0 ≤ i < K + 1 (1).

(c) un(· + yi
n) → ũi in Lp

loc(R
2)6 and a.e. in R

2 for any 0 ≤ i < K + 1.

1If K = ∞, then K + 1 = ∞ as well.
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(d) There holds

lim
n→∞

‖pV(un)‖2 ≥
∞
∑

i=0

‖pV(ũi)‖2, (5.1)

lim
n→∞

I(un) ≥ I(ũ0) +
∞
∑

i=1

I0(ũi), (5.2)

lim
n→∞

IF (un) =
∞
∑

i=0

IF (ũi), (5.3)

lim
k→∞

lim
n→∞

IF

(

un −
k
∑

i=0

ũi

(

· − yi
n

)

)

= 0. (5.4)

Proof. For a measurable set A ⊂ R
2 we use the notation χA to denote the

characteristic function of A. Let un = vn + w(vn) ∈ M, where vn = pV(un) ∈
V. Passing to a subsequence limn→∞ ‖vn‖, limn→∞ I(un) and limn→∞ IF (un)
exist and are finite.

Part 1. Profile decomposition for (vn). Take r >
√

2. Since (vn) ⊂ H1(R2)
is bounded, we claim that, passing to a subsequence, there is K ∈ N ∪ {∞}
and there is a sequence (ṽi)K

i=0 ⊂ H1(R2), for 0 ≤ i < K + 1 there are a
sequence (yi

n) ⊂ Z
2 and positive numbers (ci)K

i=1 such that y0
n = 0 and for any

0 ≤ i < K + 1 one has

vn(· + yi
n) ⇀ ṽi in H1(R2) and

vn(· + yi
n)χB(0,n) → ṽi in L2(R2)6 ∩ Lp(R2)6, (5.5)

ṽi �= 0 if i ≥ 1, (5.6)

|yi
n − yj

n| ≥ n − 2r for j �= i, 0 ≤ i, j < K + 1
and sufficiently large n, (5.7)

∫

B(yi
n,r)

|φi−1
n |2 dx ≥ ci ≥ 1

2
sup

y∈RN

∫

B(y,r)

|φi−1
n |2 dx > 0 for i ≥ 1

and sufficiently large n, (5.8)

where

φi
n := vn −

i
∑

j=0

ṽj(· − yj
n) for i ≥ 0, n ≥ 1.

Indeed, passing to a subsequence we may assume that

vn ⇀ ṽ0 in H1(R2)6

vnχB(0,n) → ṽ0 in L2(R2)6 ∩ Lp(R2)6.

The latter convergence follows from the fact that for any n, H1(B(0, n)) is
compactly embedded into Lp(B(0, n)) and we find sufficiently large kn such
that

|(vkn
− ṽ0)χB(0,n)|2 + |(vkn

− ṽ0)χB(0,n)|p <
1
n

.



22 Page 20 of 38 J. Mederski and W. Reichel NoDEA

The subsequence (ukn
) is then relabelled by (un).

Take φ0
n := vn − ṽ0 and if

lim
n→∞

sup
y∈RN

∫

B(y,r)

|φ0
n|2 dx = 0,

then we finish the proof of our claim with K = 0. Otherwise, passing to a
subsequence, we find (y1

n) ⊂ Z
2 and a constant c1 > 0 such that

∫

B(y1
n,r)

|φ0
n|2 dx ≥ c1 ≥ 1

2
sup

y∈RN

∫

B(y,r)

|φ0
n|2 dx > 0. (5.9)

Note that (y1
n) is unbounded and we may assume that |y1

n| ≥ n − r. Since
(vn(· + y1

n)) is bounded in H1(R2), we find ṽ1 ∈ H1(R2) such that up to
a subsequence vn(· + y1

n) ⇀ ṽ1. In view of (5.9), we get ṽ1 �= 0, and again
we may assume that vn(· + y1

n)χB(0,n) → ṽ1 in L2(R2)6 ∩ Lp(R2)6. We set
φ1

n := φ0
n − ṽ1(· − y1

n) = vn − ṽ0 − ṽ1(· − y1
n) and observe that if

lim
n→∞

sup
y∈R2

∫

B(y,r)

|φ1
n|2 dx = 0,

then we finish the proof of our claim with K = 1. Otherwise, passing to a
subsequence, we find (y2

n) ⊂ Z
2 and a constant c2 > 0 such that

∫

B(y2
n,r)

|φ1
n|2 dx ≥ c2 ≥ 1

2
sup
y∈R2

∫

B(y,r)

|φ1
n|2 dx > 0 (5.10)

and |y2
n| ≥ n − r. Moreover |y2

n − y1
n| ≥ n − 2r. Otherwise B(y2

n, r) ⊂ B(y1
n, n)

and the convergence ṽ0χB(y2
n,r) → 0 and vn(· + y1

n)χB(0,n) → ṽ1 in L2(R2)6

contradict (5.10). Then we find ṽ2 �= 0 such that passing to a subsequence

φ1
n(· + y2

n), vn(· + y2
n) ⇀ ṽ2 in H1(R2) and

vn(· + y2
n)χB(0,n) → ṽ2 in L2(R2)6 ∩ Lp(R2)6.

Again, if

lim
n→∞

sup
y∈R2

∫

B(y,r)

|φ2
n|2 dx = 0,

where v2
n := φ1

n − ṽ2(· − y2
n), then we finish proof with K = 2. Continuing the

above procedure we finally find K ∈ N ∪ {∞} such that for 0 ≤ i < K + 1,
(5.5)–(5.8) hold. In view of the Brezis-Lieb Lemma [9],

lim sup
n→∞

|vn|p = |ṽ0|p + lim sup
n→∞

|φ0
n|p = |ṽ0|p + |ṽ1|p + lim sup

n→∞
|φ1

n|p

= |ṽ0|p + ... + |ṽi|p + lim sup
n→∞

|φi
n|p

for i ≥ 0. If there is i ≥ 0 such that

lim
n→∞

sup
y∈R2

∫

B(y,r)

|φi
n|2 dx = 0,

then K = i and setting ṽk = 0 for k > i we get by Lions’ Lemma [33, Lemma
1.21]

lim
n→∞

|φi
n|p = 0.



NoDEA Travelling waves for Maxwell’s equations Page 21 of 38 22

Since φk
n = φi

n for k ≥ i, we find in particular

lim
k→∞

lim sup
n→∞

|φk
n|p = 0. (5.11)

In the case K = ∞ we want to show that (5.11) is still satisfied. We argue
as in [17, Proof of Theorem 1.4]. Suppose, for a contradiction, that lim supk→∞
lim supn→∞ |φk

n|p > 0. Then we find δ > 0 and increasing sequences (ik), (nk) ⊂
N such that

∫

R2
|φik

nk
|p dx > δ

and

sup
y∈R2

∫

B(y,r)

|φik
nk

|2 dx ≤ lim sup
n→∞

(

sup
y∈R2

∫

B(y,r)

|φik
n |2 dx

)

+
1
ik

. (5.12)

Note that by (5.8) we have

ck+1 ≤
∫

B(yk+1
n ,r)

|φk
n|2 dx

≤ 2
∫

B(yk+1
n ,r)

|φi
n|2 dx + 2

∫

B(yk+1
n ,r)

∣

∣

∣

∣

∣

∣

k
∑

j=i+1

ṽj(· − yj
n)

∣

∣

∣

∣

∣

∣

2

dx

≤ 4ci+1 + 2(k − i)
k
∑

j=i+1

∫

B(yk+1
n −yj

n,r)

|ṽj |2 dx

for any 0 ≤ i < k. Taking into account (5.7) and letting n → ∞ we get
ck+1 ≤ 4ci+1. Take k ≥ 1 and n > 4r. Again by (5.8) and (5.7) we obtain

1
16

sup
y∈RN

∫

B(y,r)

|φk
n|2 dx ≤ 1

8
ck+1 ≤ 1

2k

k−1
∑

i=0

ci+1 ≤ 1
2k

k−1
∑

i=0

∫

B(yi+1
n ,r)

|φi
n|2 dx

≤ 1
k

k−1
∑

i=0

∫

B(yi+1
n ,r)

|vn|2 +

∣

∣

∣

∣

∣

∣

i
∑

j=0

ṽj(· − yj
n)

∣

∣

∣

∣

∣

∣

2

dx

=
1
k

∫

⋃k−1
i=0 B(yi+1

n ,r)

|vn|2 dx

+
1
k

∫

RN

∣

∣

∣

∣

∣

∣

k−1
∑

i=0

i
∑

j=0

ṽj(· − yj
n)χB(yi+1

n ,r)

∣

∣

∣

∣

∣

∣

2

dx

≤ 1
k

|vn|22 +
1
k

∣

∣

∣

k−1
∑

i=0

i
∑

j=0

ṽj(· − yj
n)χB(yi+1

n ,r)

∣

∣

∣

2

2
.

Observe that by (5.7) and since n > 4r we have

B(yi+1
n − yj

n, r) ⊂ R
2 \ B(0, n − 3r) for 0 ≤ j ≤ i < k
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and
∣

∣

∣

∣

∣

∣

k−1
∑

i=0

i
∑

j=0

v̄j(· − yj
n)χB(yi+1

n ,r)

∣

∣

∣

∣

∣

∣

2

≤
k−1
∑

i=0

i
∑

j=0

∣

∣v̄jχB(yi+1
n −yj

n,r)

∣

∣

2
≤

k−1
∑

i=0

i
∑

j=0

∣

∣v̄jχR2\B(0,n−3r)

∣

∣

2

≤ k

k−1
∑

j=0

∣

∣v̄jχR2\B(0,n−3r)

∣

∣

2
→ 0

as n → ∞. Hence

lim sup
n→∞

(

sup
y∈R2

∫

B(y,r)

|φk
n|2 dx

)

≤ 32
k

lim sup
n→∞

|vn|22. (5.13)

Therefore we obtain from (5.12)

lim
k→∞

(

sup
y∈RN

∫

B(y,r)

|φik
nk

|2 dx
)

= 0,

and in view of [33, Lemma 1.21] we obtain that φik
nk

→ 0 in Lp(R2)6 as k → ∞,
which is a contradiction. Therefore passing to a subsequence (5.11) holds.

Part 2. Profile decomposition for (un). Note that (w(vn))n∈N and
(w0(vn))n∈N are bounded and we may assume

w(vn)(· + yi
n) ⇀ w̃i in L2(R2)6 ∩ Lp(R2)6 for i ≥ 0 (5.14)

for some w̃i ∈ W, i ≥ 0. Let us define ũ0 := ṽ0 + w(ṽ0) and ũi := ṽi + w0(ṽi)
if i ≥ 1.

Part 2. Claim 1. There holds
∞
∑

i=1

IF (ũi) ≤
∞
∑

i=1

I0(ũi) < +∞. (5.15)

Indeed, observe that for i ≥ 1

(vn + w(vn))(· + yi
n)χB(0,n−2r

2 ) ⇀ ṽi + w̃i weakly in L2(R2)6 ∩ Lp(R2)6

so that the weak lower semicontinuity of I0 implies

k
∑

i=1

I0(ũi) ≤
k
∑

i=1

I0(ṽi + w̃i) ≤
k
∑

i=1

lim inf
n→∞

I0

(

(vn + w(vn))(· + yi
n)χB(0,n−2r

2 )

)

≤ lim inf
n→∞

k
∑

i=1

I0

(

(vn + w(vn))χB(yi
n,n−2r

2 )

)

≤ lim inf
n→∞

I0(vn + w(vn)) = lim inf
n→∞

I0(un)

for any k ≥ 0. Since (un) and hence (I0(un)) is bounded, (5.15) holds.
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Part 2. Claim 2. Up to a subsequence, there holds

sup
k≥0

lim sup
n→∞

IF

(
k
∑

i=0

ũi(· − yi
n)
)

≤
∞
∑

i=0

IF (ũi). (5.16)

Observe that for given k ≥ 0

IF

(

k
∑

i=0

ũi

(

· − yi
n

)

)

= IF

(

k
∑

i=0

ũi

(

· − yi
n

)

χ⋃k
j=0 B(yj

n,n−2r
2 )

)

+ IF

(

k
∑

i=0

ũi

(

· − yi
n

)

χ
R2\
⋃k

j=0 B(yj
n,n−2r

2 )

)

.

(5.17)

Concerning the first sum on the right hand side of (5.17) note that, for given
0 ≤ j ≤ k
∣

∣

∣

∣

∣

∣

∑

0≤i≤k,i 
=j

ũi(· − (yi
n − yj

n))χB(0,n−2r
2 )

∣

∣

∣

∣

∣

∣

p

≤
∑

0≤i≤k,i 
=j

∣

∣

∣ũiχB(yj
n−yi

n,n−2r
2 )

∣

∣

∣

p

→ 0 (5.18)

as n → ∞, since

B
(

yi
n − yj

n,
n − 2r

2

)

⊂ R
2 \ B

(

0,
n − 2r

2

)

for i �= j. The convergence in (5.18) also holds for p = 2. Taking into account
the uniform continuity of IF on bounded sets we obtain

IF

(

k
∑

i=0

ũi(· − yi
n)χ⋃k

j=0 B(yj
n,n−2r

2 )

)

= IF

⎛

⎝

k
∑

i=0

k
∑

j=0

ũi(· − yi
n)χB(yj

n,n−2r
2 )

⎞

⎠

= IF

⎛

⎝

k
∑

i=0

ũi(· − yi
n)χB(yi

n,n−2r
2 ) +

∑

0≤i
=j≤k

ũi(· − yi
n)χB(yj

n,n−2r
2 )

⎞

⎠

→
k
∑

i=0

IF (ũi)

as n → ∞. Finally, concerning the second sum on the right hand side of (5.17)
observe that for any i ≥ 0

∣

∣ũi(· − yi
n)χ

R2\
⋃k

j=0 B(yj
n,n−2r

2 )

∣

∣

p
≤
∣

∣ũi(· − yi
n)χ

R2\B(yi
n,n−2r

2 )

∣

∣

p

=
∣

∣ũiχR2\B(0,n−2r
2 )

∣

∣

p
→ 0

as n → ∞. The same convergence also holds for p = 2. Taking the lim supn→∞
and the supk≥0 in (5.17) we conclude the proof of (5.16).
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Part 2. Claim 3. For any k ≥ 0

lim inf
n→∞

∫

R2
|vn + w(vn)|2 dx −

k
∑

i=0

∫

R2
|ṽi + w̃i|2 dx

≥ lim inf
n→∞

∫

R2
|vn + w(ṽ0) +

k
∑

i=1

w0(ṽi)(· − yi
n)|2 dx −

k
∑

i=0

∫

R2
|ũi|2 dx

(5.19)

as n → ∞. Indeed, observe that
∫

R2
|vn + w(vn)|2 dx −

k
∑

i=0

∫

R2
|ṽi + w̃i|2 dx

−
∫

R2
|vn + w(ṽ0) −

k
∑

i=1

w0(ṽi)(· − yi
n)|2 dx +

k
∑

i=0

∫

R2
|ũi|2 dx

=
∫

R2
|w(vn)|2 dx −

k
∑

i=0

∫

R2
|w̃i|2 dx −

∫

R2
|w(ṽ0) −

k
∑

i=1

w0(ṽi)(· − yi
n)|2 dx

+
∫

R2
|w(ṽ0)|2 dx +

k
∑

i=1

∫

R2
|w0(ṽi)|2 dx

≥
k
∑

i=0

∫

B(yi
n,n−2r

2 )

|w(vn)|2 dx −
k
∑

i=0

∫

R2
|w̃i|2 dx

+2
k
∑

i=1

∫

R2
〈w(ṽ0), w0(ṽi)(· − yi

n)〉 dx

−2
∑

1≤i<j≤k

∫

R2
〈w0(ṽi)(· − yi

n), w0(ṽj)(· − yj
n)〉 dx.

Note that for any i ≥ 1 and R > 0
∫

R2
|〈w(ṽ0), w0(ṽi)(· − yi

n)〉| dx

≤
∫

B(0,R)

|〈w(ṽ0), w0(ṽi)(· − yi
n)〉| dx + |w(ṽ0)χR2\B(0,R)|2|w0(ṽi)|2

≤ |w(ṽ0)|2|w0(ṽi)χB(−yi
n,R)|2 + |w(ṽ0)χR2\B(0,R)|2|w0(ṽi)|2

= |w(ṽ0)χR2\B(0,R)|2|w0(ṽi)|2 + o(1)

as n → ∞. Letting R → ∞ we obtain
∫

R2 |〈w(ṽ0), w0(ṽi)(· − yi
n)〉| dx = o(1)

and we conclude the claim, since w(vn)(· + yi
n)χB(0,n−2r

2 ) ⇀ w̃i in L2(R2)6.
Part 2. Claim 4. For any k ≥ 0

lim
n→∞

∫

R2
(V (x) − V0)

∣

∣

∣

k
∑

i=0

ũi(· − yi
n)
∣

∣

∣

2

dx =
∫

R2
(V (x) − V0)|ũ0|2 dx.

(5.20)
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Note that if i ≥ j and i ≥ 1, then for any R > 0 we have
∫

R2
|V (x) − V0|

∣

∣〈ũi(· − yi
n), ũj(· − yj

n)〉
∣

∣ dx

≤
∫

B(−yi
n,R)

|V (x + yi
n) − V0|

∣

∣〈ũi, ũj(· − (yj
n − yi

n))〉
∣

∣ dx

+|(V (x) − V0)χR2\B(0,R)| p
p−2

|ũi|p|ũj |p
= |(V (x) − V0)χR2\B(0,R)| p

p−2
|ũi|p|ũj |p + o(1)

as n → ∞. Letting R → ∞ we conclude the claim.
Part 2. Claim 5. Up to a subsequence we have

w(vn)χB(0,n−2r
2 ) → w(ṽ0) in L2(R2)6 ∩ Lp(R2)6, (5.21)

w(vn)(· + yi
n)χB(0,n−2r

2 ) → w0(ṽi) in L2(R2)6 ∩ Lp(R2)6, (5.22)

as n → ∞. Let us denote νk
n := vn + w(ṽ0) +

∑k
i=1 w0(ṽi)(· − yi

n). Since the
map

Lp(R2)6 � u �→ 1
2

∫

R2
(V (x) − V0)|u|2 dx + IF (u)

is uniformly continuous on bounded sets, then in view of (5.11) for every ε > 0
there is k0 ≥ 0 such that for any k ≥ k0 there is n0 = n0(k) such that for
n ≥ n0 one obtains

ε +
1
2

∫

R2
(V (x) − V0)

∣

∣

∣

k
∑

i=0

ũi(· − yi
n)
∣

∣

∣

2

dx + IF

(
k
∑

i=0

ũi(· − yi
n)
)

+
1
2

∫

R2
V0|νk

n|2 dx

≥ 1
2

∫

R2
(V (x) − V0)|νk

n|2 dx + IF (νk
n) +

1
2

∫

R2
V0|νk

n|2 dx = I(νk
n)

≥ I(un) =
1
2

∫

R2
(V (x) − V0)|un|2 dx + IF (un) +

1
2

∫

R2
V0|un|2 dx. (5.23)

Moreover

lim inf
n→∞

∫

R2
(V (x) − V0)|un|2 dx ≥

∫

R2
(V (x) − V0)|ṽ0 + w̃0|2 dx,

and

lim inf
n→∞

IF (un) ≥ lim inf
n→∞

k
∑

i=0

IF

(

(vn + w(vn))χB(yi
n,n−2r

2 )

)

≥
k
∑

i=0

lim inf
n→∞

IF

(

(vn + w(vn))χB(yi
n,n−2r

2 )

)

≥
k
∑

i=0

IF (ṽi + w̃i) (5.24)
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for any k ≥ 0. Then

lim inf
n→∞

I(un) ≥ 1
2

∫

R2
(V (x) − V0)|ṽ0 + w̃0|2 dx +

k
∑

i=0

IF (ṽi + w̃i)

+ lim inf
n→∞

1
2

∫

R2
V0|vn + w(vn)|2 dx

= I(ṽ0 + w̃0) +
k
∑

i=1

I0(ṽi + w̃i) −
k
∑

i=0

1
2

∫

R2
V0|ṽi + w̃i|2 dx

+ lim inf
n→∞

1
2

∫

R2
V0|vn + w(vn)|2 dx

≥ I(ũ0) +
k
∑

i=1

I0(ũi) −
k
∑

i=0

1
2

∫

R2
V0|ṽi + w̃i|2 dx

+ lim inf
n→∞

1
2

∫

R2
V0|vn + w(vn)|2 dx

≥ 1
2

∫

R2
(V (x) − V0)|ũ0|2 dx +

k
∑

i=0

IF (ũi)

+ lim inf
n→∞

1
2

∫

R2
V0|νk

n|2 dx,

where the last inequality follows from (5.19).
On the other hand, taking into account (5.23) and then (5.20), (5.16) we

get

lim inf
n→∞

I(un) ≤ ε +
1
2

∫

R2
(V (x) − V0)|ũ0|2 dx +

∞
∑

i=0

IF (ũi)

+ sup
k≥0

lim inf
n→∞

1
2

∫

R2
V0|νk

n|2 dx,

hence

lim inf
n→∞

I(un) =
1
2

∫

R2
(V (x) − V0)|ũ0|2 dx +

∞
∑

i=0

IF (ũi)

+ sup
k≥0

lim inf
n→∞

1
2

∫

R2
V0|νk

n|2 dx. (5.25)

Therefore we get equalities in the above considerations, in particular ũi =
ṽi + w̃i for i ≥ 0 and in (5.19) equality holds for k = ∞, so that |w(vn)(· +
yi

n)χB(0,n−2r
2 )|2 → |w̃i|2 passing to a subsequence, and then w(vn)(· + yi

n)
χB(0,n−2r

2 ) → w̃i in L2(R2)6 for i ≥ 0. Moreover from equality in (5.24) we
get

lim inf
n→∞

IF

(

unχB(0,n−2r
2 )) = IF (ṽ0 + w(ũ0)),

lim inf
n→∞

IF

(

un(· + yi
n)χB(0,n−2r

2 )) = IF (ṽi + w0(ũi))
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for i ≥ 1. Taking into account (5.5) and arguing as in the proof of (I3) from
Lemma 4.1, passing to a subsequence, we obtain

unχB(0,n−2r
2 ) → ṽ0 + w(ṽ0) in Lp(R2)6,

un(· + yi
n)χB(0,n−2r

2 ) → ṽi + w0(ṽi) in Lp(R2)6.

Therefore (5.21) and (5.22) are satisfied.
Part 3. Proof of (d). Now we complete the proof. Note that we have

already proved (a)–(c). Since vn(· + yi
n)χB(0,n−2r

2 ) ⇀ ṽi and arguing similarly
as in (5.24) we obtain (5.1). Taking into account (5.25) we find (5.2) and using
the fact that the equality holds in (5.24) for k = ∞ we conclude (5.3).

In order to show (5.4), note that un(· + yi
n) → ũi for a.e. in R

2 and for
every 0 ≤ i < K + 1. Starting with i = 0 and arguing similarly as in proof of
Lemma 4.1 we get

lim
n→∞

(

IF (un) − IF (un − ũ0)
)

= IF (ũ0).

Since we know from the beginning of the proof that limn→∞ IF (un) exists and
is finite, we therefore can rearrange and find

lim
n→∞

IF (un) = IF (ũ0) + lim
n→∞

IF (un − ũ0). (5.26)

Next we define for 0 ≤ j < K

rj
n := un −

j
∑

i=0

ũi(· − yi
n)

and observe that rj
n(·+yj+1

n ) → ũj+1 and rj
n(·+yj+1

n )−rj+1
n (·+yj+1

n ) = ũj+1.
Starting with j = 0 we obtain again, similarly as in proof of Lemma 4.1, that

lim
n→∞

(

IF (r0
n(· + y1

n)) − IF (r1
n(· + y1

n))
)

= IF (ũ1)

and since r0
n = un − ũ0 and by the shift-invariance of IF this implies

lim
n→∞

IF (un − ũ0) = lim
n→∞

IF (r0
n) = IF (ũ1) + lim

n→∞
IF (r1

n). (5.27)

Now, for any 0 ≤ j < K

lim
n→∞

(

IF (rj
n(· + yj+1

n )) − IF (rj+1
n (· + yj+1

n ))
)

= IF (ũj+1)

and hence

lim
n→∞

IF (rj
n) = IF (ũj+1) + lim

n→∞
IF (rj+1

n ). (5.28)

Collecting (5.26), (5.27) and (5.28) for 0 ≤ j < K we obtain

lim
n→∞

IF (un) =
j+1
∑

i=0

IF (ũi) + lim
n→∞

IF (rj+1
n ).

Then by (5.3)

lim
k→∞

lim
n→∞

IF (rk
n) = 0

and we finally obtain (5.4). �
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Corollary 5.2. The map J ′ is weak-to-weak∗ continuous on M, i.e., if (un) ⊂
M and un ⇀ u for some u ∈ X, then J ′(un)(ϕ) → J ′(u)(ϕ) for any ϕ ∈ X.
Similarly, J ′

0 is weak-to-weak∗ continuous on M0 where J0(u) = 1
2‖pV(u)‖2 −

I0(u) .

Proof. Since (un) is bounded, in view of Theorem 5.1(c) for i = 0, up to a
subsequence un(x) → u(x) for a.e. x ∈ R

2. By Vitaly’s convergence theorem
we infer that J ′(un)(ϕ) → J ′(u)(ϕ) and J ′

0(un)(ϕ) → J ′
0(u)(ϕ) for any ϕ ∈ X.

�

6. Proof of Theorem 1.1 and Theorem 1.2

Lemma 6.1. Suppose that (F5) holds. If u ∈ X, ψ ∈ W and t ≥ 0, then

J(u) ≥ J(t(u + ψ)) + J ′(u)
(

1 − t2

2
u − t2ψ

)

.

In particular (I8) holds.

Proof. We define a map ϕ : [0,+∞) × R
2 → R such that

ϕ(t, x) :=
〈

f(x, u),
t2 − 1

2
u(x) + t2ψ(x)

〉

+ F (x, u(x)) − F (x, t(u(x) + ψ(x)).

(6.1)

If u(x) �= 0, then (F5) implies that ϕ(0, x) ≤ 0 and if u(x) = 0 then also
ϕ(0, x) = 0. Next, (F4) implies that ϕ(t, x) → −∞ as t → ∞. Then, for every
fixed x ∈ R

2, there is a global maximum point t0 = t0(x) ≥ 0 of ϕ(x, ·). Thus
ϕ′(t0, x) = 0 and by (F5) we obtain that ϕ(t0, x) ≤ 0; see similar arguments
in proof of [15][Proposition 4.1]. Therefore

J(t(u + ψ)) + J ′(u)
(

1 − t2

2
u − t2ψ

)

− J(u)

= − t2

2

∫

R2
V (x)|ψ|2 dx +

∫

R2
ϕ(t, x) dx ≤ 0

and we conclude. �

Remark 6.2. Observe that the inequality ϕ(1, x) ≤ 0 implies the convexity of
F in u. Therefore this assumption is not explicitly stated in Theorem 1.1.

Lemma 6.3. Suppose that (F6) holds. For any ε > 0 there is a constant cε > 0
such that if u = v + w ∈ V ⊕ W, then

J(u) ≥ J(tv) + J ′(u)
(1 − t2

2
u + t2w

)

− εt2|u|2|w|2 − t2cε|u|p−1
p |w|p

for any 0 ≤ t ≤
√

1 − 2
γ .
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Proof. Observe that by (F6)

ϕ(t, x) =
〈

f(x, u),
t2 − 1

2
u
〉

− t2〈f(x, u), w〉 + F (x, u) − F (x, tv),

≤ −t2〈f(x, u), w〉 − F (x, tv) ≤ −t2〈f(x, u), w〉

Then we obtain

J(tv) + J ′(u)
(1 − t2

2
u + t2w

)

− J(u) = − t2

2

∫

R2
V (x)|w|2 dx +

∫

R2
ϕ(t, x) dx

≤ −t2
∫

R2
〈f(x, u), w〉 dx

≤ εt2|u|2|w|2 + t2cε|u|p−1
p |w|p,

where the last inequality follows from (4.3) and we conclude. �

Lemma 6.4. If (F5), or (F4’) and (F6) hold, then (M)β
0 is satisfied for every

β > 0.

Proof. (a) Take β > 0 and suppose that un = vn + wn ∈ M is such that

0 ≤ lim inf
n→∞

J(un) ≤ lim sup
n→∞

J(un) ≤ β and J ′(un)(1 + ‖vn‖) → 0

as n → ∞. Observe that by (4.2)

1
2
‖vn‖2 −

(1
2

ess inf V − ε
)

|vn|22 ≥ J(un) +
(1

2
ess inf V − ε

)

|wn|22 + c̃ε|un|pp

and if we take ε = 1
4 ess inf V then

‖vn‖2 − 1
2

ess inf V |vn|22 ≥ J(un) +
1
2
‖vn‖2

−1
4

ess inf V |vn|22 +
1
4

ess inf V |wn|22 + c̃ε|un|pp. (6.2)

Let sn :=
(

1
2‖vn‖2− 1

4 ess inf V |vn|22+ 1
4 ess inf V |wn|22+c̃ε|un|pp

)1/2

and suppose
by a contradiction that (un) is unbounded, that is, passing to a subsequence
sn → ∞. Let ṽn := vn/sn and we may assume that ṽn ⇀ ṽ in X for some
ṽ ∈ V, and ṽn(x) → ṽ(x) a.e. in R

2.
Let us show that infn∈N |ṽn|p > 0 by a contradiction argument both in

the case where (F5) and (F4’), (F6) holds. Therefore assume (passing to a
subsequence) that ṽn → 0 in Lp(R2)6. By (4.3) we obtain

∫

R2
F (x, sṽn) dx → 0 for any s > 0. (6.3)
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First assume that (F5) is satisfied. Take γ ∈ (0, 1) such that

ess sup V ≤ 1
2
γ ess inf V + (1 − γ)k2 (6.4)

and s = 2
√

β/γ. In view of Lemma 6.1, the fact that J ′(un)(1 + ‖vn‖) → 0
and (6.3) we obtain the following estimate

β ≥ lim inf
n→∞

J(un)

≥ lim inf
n→∞

J(sṽn) + lim inf
n→∞

J ′(un)
(1 − (s/sn)2

2
un + (s/sn)2wn

)

= lim inf
n→∞

J(sṽn) ≥ s2

2
lim inf
n→∞

(

‖ṽn‖2 − ess sup V |ṽn|22
)

.

Using ‖ṽn‖2 − 1
2 ess inf V |ṽn|22 ≥ 1 by (6.2) and (6.4) we obtain the contradic-

tion

β ≥ s2

2
γ lim inf

n→∞

(

‖ṽn‖2 − 1
2

ess inf V |ṽn|22
)

≥ s2

2
γ = 2β.

Next, assume that (F4’) and (F6) are satisfied. Then

J(un) − 1
2
J ′(un)(un) ≥ γ − 2

2

∫

R2
F (x, un) dx

and (un) is bounded in Lp(R3)6. Hence (wn) is bounded in Lp(R3)6. Note
that sn ≥ δ|un|2 for some constant δ > 0. Hence also sn ≥ δ|wn|2 and taking
γ ∈ (0, 1) as in (6.4), s = 2

√

β/γ and ε = 1
8γδ2, in view of Lemma 6.3, the

fact that J ′(un)(1 + ‖vn‖ → 0 and (6.3) we obtain the following estimate

β ≥ lim inf
n→∞

J(un)

≥ lim inf
n→∞

J(sṽn) + lim inf
n→∞

J ′(un)
(1 − (s/sn)2

2
un + (s/sn)2wn

)

+ lim inf
n→∞

(

− ε(s/sn)2|un|2|wn|2 − (s/sn)2cε|un|p−1
p |wn|p

)

≥ lim inf
n→∞

J(sṽn) − εs2δ−2 =
s2

2
lim inf
n→∞

(

‖ṽn‖2 − ess sup V |ṽn|22
)

− εs2δ−2.

Using as before ‖ṽn‖ − 1
2 ess inf V |ṽn|2 ≥ 1, the definition (6.4) of γ and the

definition of ε we obtain the contradiction

β ≥ s2

2
γ lim inf

n→∞

(

‖ṽn‖2 − 1
2

ess inf V |ṽn|22
)

− εs2δ−2 ≥ s2
(γ

2
− εδ−2

)

=
3
2
β.
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In both cases we have led the assumption that ṽn → 0 in Lp(R2)6 to
a contradiction. Hence, we continue by having infn∈N |ṽn|p > 0. Let cl LpV
denote the closure of V in Lp(R2)6. Observe that cl LpV ∩W = {0}. Indeed let
w ∈ cl LpV ∩ W, (ϕn) ⊂ V and ϕn → w in Lp(R2)6, Then

∫

R2

〈

w,
◦
∇
(

α
α̃

)

〉

dx = lim
n→∞

∫

R2

〈

w − ϕn,
◦
∇
(

α
α̃

)

〉

dx = 0

for any α, α̃ ∈ C∞
0 (R2). By the density argument we infer that w = 0. Hence

using the continuity of the projection cl LpV ⊕ W → cl LpV there is a constant
c′ > 0 such that

|un|pp ≥ c′|vn|pp. (6.5)

Then by (4.2) we get
∫

R2
F (x, un) dx ≥ −ε|un|22 + c̃ε|un|pp ≥ −ε|un|22 + c̃εc

′|vn|pp.

Therefore taking ε = 1
2 ess inf V we see that

J(un)/s2
n ≤ 1

2
‖ṽn‖2 − 1

2s2
n

ess inf V |un|22 −
∫

R2

F (x, un(x))
s2

n

dx

≤ 1
2
‖ṽn‖2 − c̃εc

′sp−2
n |ṽn|pp ≤ 1

2
‖ṽn‖2 − c̃εc

′sp−2
n inf

n∈N

|ṽn|pp
→ −∞.

Thus we get a contradiction, and therefore (un) must be bounded so that part
(a) of (M)β

0 holds.
Now let us show part (b) of (M)β

0 . This part only applies in the case
where V (x) ≡ V0. So let us take another sequence u′

n = v′
n + w′

n ∈ M is such
that

0 ≤ lim inf
n→∞

J(u′
n) ≤ lim sup

n→∞
J(u′

n) ≤ β and J ′(u′
n)(1 + ‖v′

n‖) → 0

as n → ∞. Suppose in addition that the number of critical orbits in Jβ
0 is

finite. Let

m := inf
{

‖v − v′‖ : J ′(m(v)) = J ′(m(v′)) = 0, v �= v′}

and since G = Z
2 is discrete (i.e., condition (G) holds), m > 0. Now we split

the proof into two cases.

Case 1 |vn − v′
n|p → 0. Then

‖vn − v′
n‖2 − ess sup V |vn − v′

n|22 ≤
(

J ′(un) − J ′(u′
n)
)

(un − u′
n)

+
∫

R2
〈f(x, un) − f(x, u′

n), vn − v′
n〉 dx.

Since (un), (u′
n) are bounded Palais-Smale sequences the first term on the right

hand side converges to 0 and by (4.3) the last integral on the right hand side
tends to 0. Hence, using ess sup V < k2 we see that ‖vn − v′

n‖2 → 0 as n → ∞
and the proof is finished.
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Case 2 lim sup |vn − v′
n|p > 0. Then by Lion’s Lemma [33, Lemma 1.21],

up to a Z
2 translation, vn ⇀ v and v′

n ⇀ v′ for some v, v′ ∈ V such that
v �= v′. We may assume that wn ⇀ w and w′

n ⇀ w′ for some w,w′ ∈ W. In
view of Corollary 5.2, J ′(v + w) = J ′(v′ + w′) = 0 and thus ‖v − v′‖ ≥ m. In
other words: if ‖v − v′‖ < m then we are in the previous Case 1 and the proof
is completed. �

Proof of Theorem 1.1. Suppose that (un) ⊂ M sequence obtained in Theo-
rem 3.1. By Lemma 6.4 it is a bounded Palais-Smale sequence for the functional
J . Passing to a subsequence, we find ũ0 ∈ M and sequences (ũi)i≥0 ⊂ M0,
(yi

n)n≥i ⊂ Z
2 such that the statements of Theorem 5.1 hold. Observe that

by Corollary 5.2, ũ0 is a critical point of J . Similarly we show that ũi is a
critical point of J0 for i ≥ 1. Indeed, take any ϕ ∈ X and since |yi

n| → ∞ and
V − V0 ∈ L

p
p−2 (R2) we obtain |V (· + yi

n) − V0| p
p−2

→ 0 as n → ∞ and

J ′
0(un(· + yi

n))(ϕ) = J ′
0(un)(ϕ(· − yi

n)) = J ′(un)(ϕ(· − yi
n))

+
∫

R2
(V − V0)〈un, ϕ(· − yi

n)〉 dx

= J ′(un)(ϕ(· − yi
n))

+
∫

R2
(V (· + yi

n) − V0)〈un(· + yi
n), ϕ〉 dx = o(1).

Since un(x + yi
n) → ũi(x) for a.e. x ∈ R

2 by Vitaly’s convergence theorem we
infer that J ′

0(ũi)(ϕ) = 0. We may assume that limn→∞ IF (un) exists and is
positive, since otherwise (for a subsequence) un → 0 in Lp(R2)6 and

J(un) = J(un) − 1
2
J ′(un)(un) + o(1)

=
∫

R2

1
2
〈f(x, un), un〉 − F (x, un) dx + o(1) = o(1)

we get a contradiction. Therefore, having limn→∞ IF (un) > 0, we know that
ũ0 �= 0 or ũ1 �= 0.

We first treat the case where V = V0, hence J = J0. Due to shift-
invariance in this case, we may assume w.l.o.g. that ũ0 �= 0. Clearly, by Fatou’s
lemma

inf
N0

J0 = lim
n→∞

J0(un) = lim
n→∞

(

J0(un) − 1
2
J ′

0(un)(un)
)

≥ J0(ũ0) − 1
2
J ′

0(ũ0)(ũ0) = J0(ũ0),

thus J0(ũ0) = infN0 J0 and ũ0 ∈ N0 is a ground state solution. If, in addition,
f is odd in u, then in view of Lemma 6.4 and Theorem 3.2 there is an infinite
sequence of Z2-distinct solutions.

Next we consider the case that V (x) > V0 for a.e. x ∈ R
2 and (F4’) is

satisfied. Again we apply Theorem 5.1. Let vn := pV(un) and ṽi := pV(ũi)
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for n ≥ 1 and 0 ≤ i < K + 1. In view of (5.1) from Theorem 5.1, for any
0 ≤ k < K + 1 we get

lim
n→∞

‖vn‖2 ≥
k
∑

i=0

‖ṽi‖2 ≥ 2J(ũ0) +
k
∑

i=1

2J0(ũi) ≥ 2k inf
N0

J0,

hence K < ∞. Observe that

J ′(un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

=

∥

∥

∥

∥

∥

vn −
K
∑

i=0

ṽi(· − yi
n)

∥

∥

∥

∥

∥

2

+ bL

(

K
∑

i=0

ṽi(· − yi
n), vn −

K
∑

i=0

ṽi(· − yi
n)

)

−I ′(un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

=

∥

∥

∥

∥

∥

vn −
K
∑

i=0

ṽi(· − yi
n)

∥

∥

∥

∥

∥

2

+
K
∑

j=0

bL

(

ṽj , vn(· + yj
n) −

K
∑

i=0

ṽi(· − (yi
n − yj

n))

)

−I ′(un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

=

∥

∥

∥

∥

∥

vn −
K
∑

i=0

ṽi(· − yi
n)

∥

∥

∥

∥

∥

2

− I ′(un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

+ o(1),

since vn(· + yj
n) ⇀ ṽj , and for i �= j, bL(ṽj , ṽi(· − (yi

n − yj
n))) → 0 as n → ∞.

Since (F4’) holds, then by (5.4) we get un −
∑K

i=0 ũi(· − yi
n) → 0 in Lp(R2)6,

hence vn −
∑K

i=0 ṽi(· − yi
n) → 0 in Lp(R2)6. Then

I ′(un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

= V0

∣

∣

∣

∣

∣

vn −
K
∑

i=0

ṽi(· − yi
n)

∣

∣

∣

∣

∣

2

2

+
K
∑

j=0

∫

R2
V0

〈

ṽj , vn −
K
∑

i=0

ṽi(· − (yi
n − yj

n))

〉

dx

+
∫

R2
(V (x) − V0)

〈

vn, vn −
K
∑

i=0

ṽi(· − yi
n)

〉

+I ′
F (un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

= V0

∣

∣

∣

∣

∣

vn −
K
∑

i=0

ṽi(· − yi
n)

∣

∣

∣

∣

∣

2

+ o(1)
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and we get

J ′(un)

[

vn −
K
∑

i=0

ṽi(· − yi
n)

]

=

∥

∥

∥

∥

∥

vn −
K
∑

i=0

ṽi(· − yi
n)

∥

∥

∥

∥

∥

2

−V0

∣

∣

∣

∣

∣

vn −
K
∑

i=0

ṽi(· − yi
n)

∣

∣

∣

∣

∣

2

2

+ o(1)

≥ k2 − V0

k2

∥

∥

∥

∥

∥

vn −
K
∑

i=0

ṽi(· − yi
n)

∥

∥

∥

∥

∥

2

+ o(1)

and since (un) is a bounded Palais-Smale sequence we obtain

vn −
K
∑

i=0

ṽi(· − yi
n) → 0 in H1(R2)6.

Arguing similarly as above we get

I ′(un)

[

un −
K
∑

i=0

ũi(· − yi
n)

]

= V0

∣

∣

∣

∣

∣

un −
K
∑

i=0

ũi(· − yi
n)

∣

∣

∣

∣

∣

2

2

+ o(1)

and

un −
K
∑

i=0

ũi(· − yi
n) → 0 in L2(R2)6.

Hence, using the divergence property |yi
n − yj

n| → ∞ as n → ∞ for i �= j, we
get

lim
n→∞

‖vn‖2 =
K
∑

i=0

‖ṽi‖2,

lim
n→∞

|un|22 =
K
∑

i=0

|ũ|22,

and in view of (5.3) we finally get

c = inf
N

J = lim
n→∞

J(un) = J(ũ0) +
K
∑

i=1

J0(ũi) ≥ J(ũ0) + K inf
N0

J0.

Let us denote by ξ the ground state solutions of J0 obtained above.
Observe that J(tξ + w(tξ)) → −∞ as t → ∞, J(0 + w(0)) = 0, hence we find
t > 0 such that
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J(tξ + w(tξ)) ≥ c,

where c is given by (3.3). Then, in view of Lemma 6.1 and Theorem 3.1

inf
N0

J0 = J0(ξ) ≥ J0(tξ + w(tξ)) > J(tξ + w(tξ)) ≥ c = inf
N

J.

Therefore K = 0 and ũ0 �= 0 is a critical point of J . Observe that ũ0 ∈ N and
(using once more Fatou’s Lemma)

c = lim
n→∞

J(un) = lim
n→∞

(

J(un) − 1
2
J ′(un)(un)

)

≥ lim
n→∞

J(ũ0) − 1
2
J ′(ũ0)(ũ0) = J(ũ0)

so that J(ũ0) = infN J and ũ0 is a ground state solution. �

Proof of Theorem 1.2. Here V = V0 and we argue as in proof of Theorem 1.1
and we use the notation introduced therein. Suppose that (un) ⊂ M0 is the
bounded Palais-Smale sequence obtained in Sect. 4. Passing to a subsequence,
we find sequences (ũi)i≥0 ⊂ M0, (yi

n)n≥i ⊂ Z
2 such that all the statements

of Theorem 5.1 hold. Observe that by Corollary 5.2, ũ0 is a critical point of J
and ũi is a critical point of J0. Since limn→∞ IF (un) > 0, ũ0 �= 0 or ũ1 �= 0.
Note that

K0 :=
{

u ∈ X \ {0} : J ′
0(u) = 0

}

⊂ M0

and we already know that K0 �= ∅ since ũ0 �= 0 or ũ1 �= 0. It is easy to show
that c0 := infK0 J0 > 0 and, since K is nonempty, we may take any minimizing
sequence (ξn) ⊂ K0 such that J0(ξn) → c0. Similarly as above applying the
profile decomposition from Theorem 5.1 to (ξn), passing to a subsequence we
find (zn) ⊂ Z

2 such that ξn(· + zn) ⇀ ξ ∈ K0 and ξn(· + zn) → ξ a.e. on R
2.

Due to Fatou’s Lemma we have

lim
n→∞

J0(ξn) = lim
n→∞

(

J0(ξn) − 1
2
J ′

0(ξn)(ξn)
)

≥ J0(ξ) − 1
2
J ′

0(ξ)(ξ) = J0(ξ),

J0(ξ) = c0 and we conclude. If, in addition, f is odd in u, then in view
of Lemma 6.4 and Theorem 3.2 there is an infinite sequence of Z

2-distinct
solutions. �
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