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Nonlinear Differential Equations
and Applications NoDEA

Gradient formula for transition semigroup
corresponding to stochastic equation driven
by a system of independent Lévy processes

Alexei M. Kulik, Szymon Peszat and Enrico Priola

Abstract. Let (Pt) be the transition semigroup of the Markov family
(Xx(t)) defined by SDE

dX = b(X)dt + dZ, X(0) = x,

where Z = (Z1, . . . , Zd)∗ is a system of independent real-valued Lévy
processes. Using the Malliavin calculus we establish the following gradient
formula

∇Ptf(x) = E f (Xx(t)) Y (t, x), f ∈ Bb(R
d),

where the random field Y does not depend on f . Moreover, in the im-
portant cylindrical α-stable case α ∈ (0, 2), where Z1, . . . , Zd are α-stable
processes, we are able to prove sharp L1-estimates for Y (t, x). Uniform
estimates on ∇Ptf(x) are also given.
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1. Introduction

Let (Pt) be the transition semigroup of a Markov family X = (Xx(t)) on R
d,

that is

Ptf(x) = E f(Xx(t)), f ∈ Bb(Rd), t ≥ 0, x ∈ R
d. (1)
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In the paper X is given by the stochastic differential equation

dXx(t) = b(Xx(t))dt + dZ(t), Xx(0) = x ∈ R
d, (2)

where b : Rd �→ R
d is a C2(Rd,Rd) and Lipschitz mapping and

Z(t) = (Z1(t), . . . , Zd(t))
∗
, t ≥ 0,

is a Lévy process in R
d. We assume that Zj , j = 1, . . . , d, are independent

real-valued Lévy processes. We denote by mj the Lévy measure of Zj . Recall
that ∫

R

(ξ2 ∧ 1)mj(dξ) < +∞.

We assume that each Zj is of purely jump type

Zj(t) =

∫ t

0

∫
{ξ∈R : |ξ|>1}

ξ Πj(ds, dξ) +

∫ t

0

∫
{ξ∈R : |ξ|≤1}

ξ [Πj(ds, dξ) − dsmj(dξ)] ,

(3)

where Πj(ds,dξ) is a Poisson random measure on [0,+∞) × R with intensity
measure dsmj(dξ).

The main aim of this article is to establish the following gradient formula

∇Ptf(x) = E f (Xx(t)) Y (t, x), f ∈ Bb(Rd), (4)

where the random field Y does not depend on f . The gradient formulae of such
type date back to [5,10] and are frequently called the Bismut–Elworthy–Li for-
mulae. Note that [5] uses an approach based on the Girsanov transformation.
On the other hand [10] introduces martingale methods to derive formulae like
(4) in the Gaussian setting; this approach also works for jump diffusions with
a non-degenerate Gaussian component (cf. Section 5 in [20]).

One important consequence of (4) is the strong Feller property of the
semigroup (Pt), e.g. [7–9,18], which in particular motivates our interest in this
topic. Moreover, such gradient formulae allow the Greeks computations for
pay-off functions in mathematical finance, e.g. [6,11]. In particular in [11] the
authors apply the Malliavin calculus on the Wiener space to the sensitivity
analysis for asset price dynamics models.

For Lévy-driven SDEs with a possibly degenerate Gaussian component,
the Bismut–Elworthy–Li formula has been obtained in [21] under the assump-
tion on the Lévy measure to have a density with respect to Lebesgue measure in
R

d; see also [22,23] for the Bismut–Elworthy–Li formula for an SDE driven by
a subordinated Brownian motion. In our study, we are focused on the more dif-
ficult situation, where the noise is presented by a collection of one-dimensional
Lévy processes, and thus is quite singular.

In plain words, the substantial complication of the problem in our case
is that the class of the random vector fields, which are “admissible” for the
noise in the sense that they allow the integration-by-parts formula, is much
more restricted. Namely, in our case only the “coordinate axis differentiability
directions” in R

d are actually allowed, while in the case of the Lévy measure
with a density there are no limitation on these directions. For the first advances
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in the Malliavin calculus for Lévy noises, supported by (singular) collection of
curves, we refer to [16].

In the important cylindrical α-stable case (i.e., when each Zj is α-stable)
with α ∈ (0, 2) we obtain the sharp estimate

sup
x∈Rd

E |Y (t, x)| ≤ CT t−
1
α , t ∈ (0, T ]. (5)

The method we use to obtain (5) seems to be of independent interest. It has
two main steps. The first one is a bound for E |Y (t) − Y (t, x)|, where Y (t)
corresponds to Y (t, x) when b = 0 in (2), i.e., Xx(t) = x + Z(t). The second
step concerns with E |Y (t)| (see Sect. 8). Both steps require sharp estimates
and are quite involved (see in particular Sects. 6.2 and 8). Formula (5) implies
the bound (‖ · ‖∞ stands for the supremum norm)

‖∇Ptf‖∞ := sup
x∈Rd

|∇Ptf(x)| ≤ CT t−
1
α ‖f‖∞, f ∈ Bb(Rd), t ∈ (0, T ].

(6)

It seems that when 0 < α ≤ 1 also estimate (6) is new; it cannot be obtained
by a perturbation argument which is available when α > 1. In fact we will
establish (6) for any process Z with small jumps similar to α-stable process.
Recall that estimates like (6) for α > 1 hold even in some non-degenerate
multiplicative cases (see Theorem 1.1 in [15]; in such result the Lipschitz case
γ = 1 requires α > 1). We expect that our approach should also work for
SDEs with multiplicative cylindrical noise; such an extension is a subject of
our ongoing research.

Let us mention that from the analytical point of view we are concerned
with the gradient estimates of the solution to the following equation with a
non-local operator

∂u

∂t
(t, x) = 〈b(x), ∇u(t, x)〉

+
d∑

j=1

∫
R

(
u(t, x + ξej) − u(t, x) − χ{|ξ|≤1}ξ

∂u

∂xj
(t, x)

)
mj(dξ), t > 0,

u(0, x) = f(x), where ej , j = 1, . . . , d, is the canonical basis of Rd.

2. Main result

Let Qtf(x) = E f(Zx(t)) be the transition semigroup corresponding to the
Lévy proces Zx(t) = x + Z(t). The proof of the following theorem concerning
BEL formulae for (Pt) and (Qt) is postponed to Sect. 6.

Theorem 1. Let P = (Pt) be given by (1), (2). Assume that:

(i) b ∈ C2(Rd,Rd) has bounded derivatives ∂bi

∂ξj
, ∂2bi

∂ξj∂ξk
, i, j, k = 1, . . . , d.

(ii) There is a ρ > 0 such that

lim inf
ε↓0

ερmj{|ξ| ≥ ε} ∈ (0,+∞], j = 1, . . . , d.
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(iii) There exists a r > 0 such that each mj restricted to the interval (−r, r)
is absolutely continuous with respect to Lebesgue measure. Moreover, the
density ρj = dmj

dξ is of class C1((−r, r)\{0}) and there exists a κ > 1
such that for all j, ∫ r

−r

|ξ|κρj(ξ)dξ < +∞, (7)

∫ r

−r

|ξ|2κ

(
ρ′

j(ξ)
ρj(ξ)

)2

ρj(ξ)dξ < +∞, (8)
∫ r

−r

|ξ|2κ−2ρj(ξ)dξ < +∞. (9)

Then there are integrable random fields Y (t) = (Y1(t), . . . , Yd(t)), and Y (t, x) =
(Y1(t, x), . . . , Yd(t, x)), t > 0, x ∈ R

d, such that for any f ∈ Bb(Rd), t > 0,
x ∈ R

d,

∇Qtf(x) = E f(Zx(t))Y (t)

and the Bismut–Elworthy–Li formula (4) for (Pt) holds. Moreover, for any
T > 0 there is an independent of t ∈ (0, T ] and x constant C such that

E (|Y (t)| + |Y (t, x)|) ≤ Ct−
κ
ρ + 1

2 , (10)

E |Y (t) − Y (t, x)| ≤ Ct−
κ
ρ + 3

2 . (11)

Remark 1. Note that, what is expected, the rate −κ
ρ + 1

2 depends only on the
small jumps of Z.

Remark 2. In fact we have formulae for the fields appearing in Theorem 1.
Namely,

Yj(t) =
d∑

k=1

[Ak,j(t)D∗
k1(t) − DkAk,j(t)] ,

Yj(t, x) =
d∑

k=1

[Ak,j(t, x)D∗
k1(t) − DkAk,j(t, x)] ,

(12)

where:

• the matrix-valued random fields A(t) = [Ak,j(t)] ∈ M(d×d) and A(t, x) =
[Ak,j(t, x)] ∈ M(d × d) are given by

A(t) = [DZ(t)]−1
,

A(t, x) = [DXx(t)]−1 ∇Xx(t), P−a.s,
(13)

We note that the matrix A(t) is diagonal with entries

Aj,j(t) =
(∫ t

0

∫
R

Vj(s, ξj)Πj(ds,dξj)
)−1

.
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• DZ(t) and DXx(t) are the Malliavin derivatives (see Sect. 3 and formulae
(27) and (29)) of Z(t) and Xx(t) respectively, with respect to the field
V = (V1, . . . , Vd),

Vj(t, ξ) = φδ(ξj)ψδ(t) = Vj(t, ξj). (14)

Here ψδ ∈ C∞(R) and φδ ∈ C∞(R\{0}) are non-negative functions such
that

ψδ(z) =

{
0 if |z| ≥ δ,

1 if |z| ≤ δ
2

, φδ(z) = |z|κψδ(z), (15)

with κ appearing in assumption (iii) of Theorem 1, and

δ ∈ (0, r] small enough.

• ∇Xx(t) is the derivative in probability of Xx with respect to the initial
condition x,

• D∗
k1(t) is the adjoint derivative operator calculated on the constant func-

tion 1, see Sect. 3, Lemma 3.

Remark 3. The fields Y (t) and Y (t, x) are not uniquely determined by the
BEL formulae. In particular the BEL formula for (Qt) holds with Y (t) being
replaced by Y (t)+ η(t), where η(t) is any zero-mean random variable which is
independent of Zx(t). Note that the conditional expectations E (Y (t)|Zx(t))
and E (Y (t, x)|Xx(t)) are uniquely determined. On the other hand, E |Y (t)|
and E |Y (t, x)| may depend on the choice of the fields.

Estimate (10) implies new uniform gradient estimates

‖∇Ptf‖∞ ≤ CT t−
κ
ρ + 1

2 ‖f‖∞ , t ∈ (0, T ], f ∈ Bb(Rd). (16)

Although (16) is quite general, it is not sharp in the relevant cylindrical α-
stable case with α ∈ (0, 2). In such case ρ = α and κ is any real number
satisfying κ > 1 + α

2 . Therefore we only get that for any ε > 0 and T < +∞
there is a constant Cε,T such that for any f ∈ Bb(Rd),

‖∇Ptf‖∞ ≤ Cε,T t−
1
α −ε ‖f‖∞ , t ∈ (0, T ]. (17)

We will improve the previous estimate in Sect. 8 by considering ε = 0. To this
purpose we will also use the next remark.

Remark 4. Our main theorem provides also estimate (11) for E |Y (t, x) − Y (t)|.
This can be useful. Indeed if for some specific Lévy processes Zj we have

E |Y (t)| ≤ CT t−η, t ∈ (0, T ] (18)

or even if E |E (Y (t)|Xx(t))| ≤ CT t−η for some η such that
κ

ρ
− 3

2
≤ η ≤ κ

ρ
− 1

2
,

where κ verifies our assumptions, then we can improve (10) and get, for t ∈
(0, T ],

E |Y (t, x)| ≤ C ′
T t−η, t ∈ (0, T ]. (19)
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By (19) one deduces

‖∇Ptf‖∞ ≤ C ′
T t−η ‖f‖∞ , t ∈ (0, T ].

In particular when Zj are independent real α-stable processes, α ∈ (0, 2), we
will get in Sect. 8 the crucial estimate

E |Y (t)| ≤ CT t−
1
α , t ∈ (0, T ]. (20)

Combining (11) with (20) we deduce in the cylindrical α−stable case

E |Y (t, x)| ≤ C ′
T t−

1
α , t ∈ (0, T ], (21)

(where C ′
T is independent of x and t) and the sharp gradient estimate

‖∇Ptf‖∞ ≤ C ′
T t−

1
α ‖f‖∞ , t ∈ (0, T ].

Remark 5. The time dependent case could be also considered. This is the case
when the drift b(x) is replaced by b(t, x) (assuming that b : [0, T ] × R

d → R
d

is Borel and verifies |b(t, x)| ≤ C(1 + |x|), b(t, ·) ∈ C2(Rd,Rd) with all spatial
derivates bounded uniformly in t ∈ [0, T ]). In such situation one deals with a
time dependent Markov semigroup (Pst). Fixing s ∈ [0, T ) one could obtain a
formula for ∇(Pstf)(x) with s < t ≤ T , f ∈ Bb(Rd) which generalizes (4). The
strategy is basically the same as in this paper but the computations would be
much more involved.

As mentioned in the introduction a difficulty of the Proof of Theorem1
is also to show that the Malliavin derivative of the solution D(Xx(t)) in the
direction to a suitable random field V is invertible and the inverse is inte-
grable with sufficiently large power. The idea (see the proof of our Lemma 5)
is to show that D(Xx(t)) ≈ DZ(t), where DZ(t), is a diagonal matrix with
the terms

∫ t

0

∫
R

Vj(s, ξj)Πj(ds,dξj) on diagonal. Therefore the integrability of
(D(Xx(t)))−1 follows from the known fact, see Sect. 5 that

E

[∫ t

0

∫
R

Vj(s, ξj)Πj(ds,dξj)
]−q

≤ C(q, T ) t−
κq
ρ , ∀ q ∈ (1,+∞).

On the other hand, several technical difficulties arise in proving the sharp
bounds for E |Y (t) − Y (t, x)| and E |Y (t)|.

Finally, we mention that an attempt to prove (4) has been done in [4] by
the martingale approach used in [21] (see, in particular, Lemma A.3 in [4]).
However the BEL formula in [4] does not seem to be correct, since there is a
gap in the proof, passing from formula (48) to (49) in page 1450 of [4], which
consists in an undue application of the chain rule. It seems that the compli-
cation here is substantial, and it is difficult to adapt directly the approach
used in [21] to the current setting, where because of singularity of the noise it
is hard to guarantee invertibility of the Malliavin derivative w.r.t. one vector
field. Exactly this crucial point is our reason to use a matrix-valued Malliavin
derivative of the solution w.r.t. a vector-valued field V = (V1, . . . , Vd).
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3. Malliavin calculus

In this section we adopt in a very direct way the classical concepts and results
of Bass and Cranston [3] and Norris [17] to the case of Z = (Z1, . . . , Zd)∗ being
a Lévy process in R

d with independent coordinates Zj . For more information
on Malliavin calculus for jump processes we refer the reader to the book of
Ishikawa [12] (see also [2] and the references therein).

We assume that Z = (Z1, . . . , Zd)
∗ is defined on a probability space

(Ω,F ,P). By the Lévy–Itô decomposition

Z(t) =
∫ t

0

∫
Rd

ξ Π(ds,dξ),

where Π is the Poisson random measure on E := [0,+∞) × R
d with intensity

measure dsμ(dξ),

Π(ds,dξ) := Π̂(ds,dξ)χ{|ξ|≤1} + Π(ds,dξ)χ{|ξ|>1},

Π̂(ds,dξ) := Π(ds,dξ) − dsμ(dξ).

Moreover, as the coordinates of Z are independent,

μ(dξ) :=
d∑

j=1

μj(dξ),

μj(dξ) := δ0(dξ1) . . . δ0(dξj−1)mj(dξj)δ0(dξj+1) . . . δ0(dξd),

(22)

where δ0 is the Dirac δ-function, and mj(dξj) is the Lévy measure of Zj . Note
that

Π(ds,dξ) =
d∑

j=1

Πj(ds,dξ),

where Πj are independent Poisson random measures each on [0,+∞)×R
d with

the intensity measure dsμj (we use the same symbol as for the one-dimensional
Πj(ds,dξ) appearing in (3) when no confusion may arise).

Consider the filtration

Ft = σ
(
Π([0, s] × Γ): 0 ≤ s ≤ t, Γ ∈ B(Rd)

)
, t ≥ 0.

The Poisson random measure Π can be treated as a random element in the
space Z+(E) of integer-valued measures on (E,B) with the σ-field G generated
by the family of functions

Z+(E) 
 ν �→ ν(A) ∈ {0, 1, 2, . . . ,+∞}, A ∈ B.

Definition 1. Let p ∈ (0,+∞). We call a random variable Ψ: Ω �→ R an
Lp-functional of Π if there is a sequence of bounded measurable functions
ϕn : Z+(E) �→ R such that

lim
n→+∞E |Ψ − ϕn(Π)|p = 0. (23)



7 Page 8 of 27 A. M. Kulik, S. Peszat and E. Priola NoDEA

A random variable Ψ: Ω �→ R is called an L0-functional of Π if, instead of
(23), the convergence in probability holds

ϕn(Π)
(P)→ Ψ. (24)

The space of all Lp-functionals of Π is denoted by Lp(Π). Note that for
p ≥ 1, Lp(Π) is a Banach space with the norm ‖Ψ‖Lp(Π) = (E |Ψ|p)1/p, and for
p ∈ (0, 1), Lp(Π) is a Polish space with the metric ρLp(Π)(Φ,Ψ) = E |Φ − Ψ|p.

Assume now that V = (V1, . . . , Vd) : [0,+∞) × R
d �→ R

d is a field given
by (14) and (15). The parameter δ appearing in (15) will be specified later.
Define transformations Qε

k, ε > 0 and k = 1, . . . , d, Qε
k : Z+(E) �→ Z+(E) as

follows

Qε
k

⎛
⎝∑

j

δτj ,ξj

⎞
⎠ =

∑
j

δτj ,ξj+εVk(τj ,ξj
k)ek

,

where ek, k = 1, . . . , d, is the canonical basis of Rd.
Now let Ψ ∈ L0(Π). Write

Qε
kΨ = (P) − lim

n→+∞ ϕn(Qε
k(Π)),

where ϕn : Z+(E) �→ R are such that (24) holds true. It follows from Lemma 2
below that Qε

kΨ is well defined, that is the limit exists and does not depend
on the particular choice of an approximation sequence (ϕn).

Definition 2. We call Ψ ∈ L0(Π), differentiable (with respect to the field
V = (V1, . . . , Vd)) if there exist limits in probability

DkΨ = (P) − lim
ε→0

1
ε

(Qε
k(Ψ) − Ψ) , k = 1, . . . , d.

Here DkΨ is the Malliavin derivative of Ψ along the direction Vkek.

If Ψ ∈ L0(Π) is differentiable then we set

DΨ = (D1Ψ, . . . , DdΨ) .

The proof of the following chain rule is standard and left to the reader.

Lemma 1. Assume that Ψ1, . . . ,Ψm are differentiable functionals of Π. Then
for any f ∈ C1

b (Rm) the variable f (Ψ1, . . . ,Ψm) is differentiable and

Dkf (Ψ1, . . . ,Ψm) =
m∑

j=1

∂f

∂xj
(Ψ1, . . . ,Ψm) DkΨj , k = 1, . . . , d. (25)

Let ρk = dmk

dx be the density of the Lévy measure mk restricted to
(−r, r)\{0} ⊂ R. We extend artificially ρk putting ρk(0) = 1. Given ε ∈ [−1, 1]
sufficiently small and k = 1, . . . , d, define

λε
k(t, ξk) :=

{(
1 + ε∂Vk

∂ξk
(t, ξk)

)
ρk(ξk+εVk(t,ξk))

ρk(ξk) , if ξk ∈ (− r
2 , r

2

) \ {0},

1 , otherwise,

Λε
k(t, ξk) := λε

k(t, ξk) − 1 − log λε
k(t, ξk),
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and

Mε
k(t) := exp

{∫ t

0

∫
Rd

log λε
k(s, ξk)Π̂k(ds,dξ) −

∫ t

0

∫
Rd

Λε
k(s, ξk)μk(dξ)ds

}
,

where μk is defined in (22) and

Π̂k(ds,dξ) := Πk(ds,dξ) − dsμk(dξ).

Note that the set{
ξk ∈

(
−r

2
,
r

2

)
: ξk + εVk(t, ξk) = 0

}

is of Lebesgue measure zero.
We will need the following result (see e.g. [17] or [13]).

Lemma 2. The process Mε
k is a martingale and for all T ≥ 0, and m ∈ R,

E [Mε
k(T )]m < +∞. Let T ∈ (0,+∞). Then, under the probability dPε =

Mε
k(T )dP, Qε

k(Π) restricted to [0, T ] × R
d is a Poisson random measure with

intensity μk(dξ)ds.

The following lemma provides an integration by parts formula for the
derivative Dk. For the completeness we repeat some elements of a proof from
[17].

Lemma 3. For any 1 ≤ q ≤ 2 and t ∈ (0,+∞), the random variable

D∗
k1(t) := −

∫ t

0

∫
(−r,r)×Rd−1

∂
∂ξk

(Vk(s, ξk)ρk(ξk))

ρk(ξk)
Π̂k(ds,dξ) (26)

is q-integrable. Assume that p ≥ 2 and that Φ ∈ Lp(Π) is differentiable and
Ft-measurable. Then EDkΦ = EΦD∗

k1(t).

Proof. Note that the process D∗
k1(t) is well defined and q-integrable thanks

to (8) and (9). The integrability follows from the fact, see e.g. [1], Theorem
4.4.23, or [19], Lemma 8.22, that one has

E |D∗
k1(t)|2 ≤ cE

∫ t

0

∫
(−r,r)×R

∣∣∣∣∣
∂

∂ξk
(Vk(s, ξk)ρk(ξk))

ρk(ξk)

∣∣∣∣∣
2

dsρk(ξk)dξk.

By Lemma 2 we have
d
dε

E (Qε
kΦ) Mε

k(t) = 0.

Thus

0 = E
[
DkΦM0

k (t) + ΦR(t)
]

= E [DkΦ + ΦR(t)] ,

where

R(t) :=
d
dε

Mε
k(t)|ε=0.

Consequently, we need to show that D∗
k1(t) = −R(t).

Since

Mε
k(t) = exp

{∫ t

0

∫
Rd

log λε
k(s, ξk)Π̂k(ds, dξ) −

∫ t

0

∫
(−r,r)×Rd−1

Λε
k(s, ξk)μk(dξ)ds

}
,
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we have

R(t)=

∫ t

0

∫
Rd

d
dε

λε
k(s, ξk)

λε
k(s, ξk)

|ε=0Π̂k(ds, dξ)−
∫ t

0

∫
(−r,r)×Rd−1

d

dε
Λε

k(s, ξk)|ε=0μk(dξ)ds.

Finally

d
dε

λε
k(s, ξk)|ε=0 =

∂Vk

∂ξk
(s, ξk) +

ρ′
k(ξk)

ρk(ξk)
Vk(s, ξk) =

d
dξk

(Vk(s, ξk)ρk(ξk))

ρk(ξk)
.

�

4. Malliavin derivative of Xx

Let Xx(t) = [Xx
1 (t), . . . , Xx

d (t)]∗ ∈ R
d be the value of the solution at time t.

We use the convention that the vectors in R
d are columns, and the derivatives

(gradients) are rows. Using the chain rule (see Lemma 1) it is easy to check that
each of its coordinate is a differentiable functional of Π and the d × d-matrix
valued process DXx(t),

[DXx(t)]i,j = DjX
x
i (t)

satisfies the following random ODE

dDXx(t) = ∇b(Xx(t))DXx(t)dt + dZV (t), DXx(0) = 0 (27)

(cf. Section 5 in [3]) where ZV (t) =
[
ZV

ij (t)
]
, t ≥ 0, is a d × d-matrix valued

process

ZV
j,j(t) :=

∫ t

0

∫
R

Vj(s, ξ)Πj(ds,dξ) = DjZj(t), ZV
j,i(t) = 0 if i �= j.

(28)

Note that
∫
R

|Vj(t, ξ)|mj(dξ) < +∞ thanks to (7), and therefore, the process
ZV is well defined and q-integrable for any q ∈ [1,+∞). The integrability
follows from the so-called Kunita inequality (see [1]) and assumption (7). In
fact the Kunita inequality ensures that for q ≥ 2,

E

∣∣∣∣
∫ t

0

∫
R

Vj(s, ξi)Πj(ds,dξj)
∣∣∣∣
q

≤ Cq

[(∫ t

0

∫
R

V 2
j (s, ξj)dsρj(ξj)dξj

)q/2

+
∫ t

0

∫
R

V q
j (s, ξj)dsρj(ξj)dξj

]
.

Clearly we have:

DZ(t) = ZV (t), t ≥ 0. (29)

Let ∇Xx(t) be the derivative in probability of the solution with respect to the
initial value

[∇Xx(t)]i,j =
∂

∂xj
Xx

i (t).
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Note that, the process Xx might not be integrable. However, as the noise is
additive and b has bounded derivatives, ∇Xx(t) exists, it is p-integrable, for
any p ≥ 1, and

d∇Xx(t) = ∇b(Xx(t))∇Xx(t)dt, ∇Xx(0) = I.

Since b has bounded derivatives, we have the next result in which ‖ · ‖ is the
operator norm on the space of real d × d-matrices.

Lemma 4. For all t ≥ 0 and x ∈ R
d, ∇Xx(t) is an invertible matrix. Moreover,

there is a constant C such that

‖∇Xx(t)‖ + ‖ (∇Xx(t))−1 ‖ ≤ CeCt, ∀ t ≥ 0, ∀x ∈ R
d.

Moreover, there is a constant C, possibly depending on T, such that

‖∇Xx(t) − I‖ + ‖ (∇Xx(t))−1 − I‖ ≤ Ct, ∀ t ∈ [0, T ], ∀x ∈ R
d.

As a simple consequence of (27) and Lemma 4 we have

DXx(t) = ∇Xx(t)
∫ t

0

(∇Xx(s))−1 dZV (s). (30)

Let

M(t, x) :=
∫ t

0

(∇Xx(s))−1 dZV (s). (31)

Then DXx(t) = ∇Xx(t)M(t, x) and consequently the matrix valued process
A = [Ak,j(t, x)] given by (13) satisfies

A(t, x) = (DXx(t))−1 ∇Xx(t) = (M(t, x))−1
. (32)

The proof of the following lemma is moved to the next section (Sect. 5).

Lemma 5. Assume that the parameter δ in (15) is small enough. Let p ≥ 1. The
Malliavin matrix DXx(t) is invertible and p-integrable. Moreover, the matrix
valued process A = [Ak,j(t, x)] given by (13) or (32) is differentiable and p-
integrable.

5. Proof of Lemma5

As before ‖ · ‖ denotes
the operator norm on the space of real d × d-matrices. Moreover for a

random d × d-matrix B we set

‖B‖Lp = (E ‖B‖p)1/p, p ≥ 1.

Lemma 6. (i) For any t > 0, the matrix ZV (t) is invertible, P-a.s.. Moreover,
for any p ≥ 1, T > 0, there is a constant C = C(p, T ) such that

‖ (ZV (t)
)−1 ‖Lp ≤ Ct−

κ
ρ , t ∈ (0, T ].
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(ii) Assume that the parameter δ in (15) is small enough (possibly depending
on the dimension d). Then the matrix M(t, x) is invertible, P-a.s.. Moreover,
for any p ≥ 1 and any T > 0, there is a constant C = C(p, T ) such that

‖A(t, x) − (
ZV (t)

)−1 ‖Lp ≤ Ct−
κ
ρ + 1, t ∈ (0, T ] (33)

where A(t, x) = (M(t, x))−1.

Proof. The first part of the lemma follows from Corollary 1 from Sect. 7 below.
To show the second part note that

M(t, x) = ZV (t) +
∫ t

0

R(s, x)dZV (s),

where R(t, x) := (∇Xx(t))−1 − I is a random variable taking values in the
space of d × d matrices. Note that(∫ t

0

R(s, x)dZV (s)
)

i,j

=
∫ t

0

∫
R

Rij(s, x)Vj(s, ξj)Πj(ds,dξj)

=

⎛
⎝ ∑

0<s≤t

R(s, x)Ṽ (s,�Z(s))

⎞
⎠

i,j

,

with �Z(s) = Z(s)−Z(s−), where Ṽ (s, z) is a diagonal matrix, s ≥ 0, z ∈ R
d,

such that

(Ṽ (s, z))i,i = Vi(s, zi), i = 1, . . . , d.

Moreover, P-a.s., ZV (t) =
∑

0<s≤t Ṽ (s,�Z(s)) is convergent by (7) and it is
also invertible. We write

M(t, x) =
(

I +
∫ t

0

R(s, x)dZV (s) (ZV (t))−1

)
ZV (t). (34)

We would like to obtain, for δ > 0 small enough, t > 0,

A(t, x) = (ZV (t))−1

(
I +

∫ t

0

R(s, x)dZV (s) (ZV (t))−1

)−1

. (35)

To this purpose we consider

Q(t, x) =
∫ t

0

R(s, x)dZV (s) (ZV (t))−1.

Recall that (ej) is the canonical basis of Rd. We get for j = 1, . . . , d, P-a.s.,

Q(t, x)ej =
∑

0<s≤t

R(s, x)Ṽ (s,�Z(s))ej

(∫ t

0

∫
R

Vj(y, ξj)Πj(dy,dξj)
)−1

=
∑

0<s≤t

R(s, x)Vj(s,�Zj(s))ej

(∫ t

0

∫
R

Vj(y, ξj)Πj(dy,dξj)
)−1
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and so

|Q(t, x)ej | ≤
∑

0<s≤t

‖R(s, x)‖ Vj(s, �Zj(s))

(∫ t

0

∫
R

Vj(y, ξj)Πj(dy, dξj)

)−1

≤ min (Ct, 1/2)

∫ t

0

∫
R

Vj(y, ξj)Πj(dy, dξj)

(∫ t

0

∫
R

Vj(s, ξj)Πj(ds, dξj)

)−1

= min (Ct, 1/2) , (36)

where C is independent of x ∈ R
d, t ≥ 0 and ω, P-a.s. Above we used the second

estimate of Lemma 4; ‖R(s, x)‖ ≤ Cs. We will need also that |Q(t, x)ej | ≤ 1/2.
To this end we have to consider δ sufficiently small. In fact we require δC ≤ 1/2.

Therefore, as ZV (t) is invertible, the matrix M(t, x) is invertible and
A(t, x) = (M(t, x))−1 satisfies (35). Moreover

A(t, x) =
(
ZV (t)

)−1
+
(
ZV (t)

)−1
+∞∑
n=1

(−1)n(Q(t, x))n. (37)

Consequently, we have∥∥∥A(t, x) − (
ZV (t)

)−1
∥∥∥

Lp
≤ C1t ‖ (ZV (t)

)−1 ‖Lp

and (33) follows. The proof is complete. �
Remark 6. We note that in the previous proof it is important to have a term
like

∫ t

0
R(s, x)dZV (s) (ZV (t))−1 (cf. (34)). Such term can be estimated in a

sharp way by min(Ct, 1/2). On the other hand, a term like (ZV (t))−1
∫ t

0
R(s, x)

dZV (s) would be difficult to estimate in a sharp way (we can estimate its L2-
norm by Ct−

κ
ρ + 3

2 ). On this respect see also the computations in Sect. 6.2.

5.1. Proof of Lemma5

Since b has bounded derivatives of the first and second order, ∇Xx(t) and
(∇Xx(t))−1 are differentiable and p-integrable. Next, thanks to (9), the matrix
valued process ZV given by (28) is also differentiable, p-integrable, and

DkZV
k,k(t) =

d
dε

∫ t

0

∫
R

Vk(s, ξk + εVk(s, ξk))Πk(ds,dξk)|ε=0

=
∫ t

0

∫
R

ψ2
δ (s)φδ(ξk)φ′

δ(ξk)Πk(ds,dξk).
(38)

Therefore, as

dDXx(t) = ∇b(Xx(t))DXx(t)dt + dZV (t), DXx(0) = 0,

b has bounded derivatives of the first and second order, and dZV (t) is p-
integrable and differentiable, we infer that DXx(t) is p-integrable and differ-
entiable. Clearly ∇Xx(t) is invertible. By Lemma 6, the matrix M(t, x) given
by (31) is invertible, p-integrable and differentiable. Since, (cf. (30) and (31)),

M(t, x) = (∇Xx(t))−1
DXx(t)

and, by Lemma 6, A(t, x) := (M(t, x))−1 is p-integrable, we infer that DXx(t)
is invertible, and (DXx(t))−1 is p-integrable.
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We can show the differentiability of (DXx(t))−1 or equivalently of A(t, x)
in a standard way based on the observation that

Dk (DXx(t))−1 = − (DXx(t))−1 (DkDXx(t)) (DXx(t))−1
. �

6. Proof of Theorem1

By Lemma 5 the random field Y (t, x) given by (12) is well defined and inte-
grable. By an approximation argument, see e.g. [21], Corollary 3.1 and its proof
given in Section 4.3, or [14], see also [18], Lemma 2.2 for gradient estimates, it
is enough to show that for any f ∈ C1

b (Rd) we have (4). To this end note that

∇Ptf(x) = ∇E f(Xx(t)) = E∇f(Xx(t))∇Xx(t).

Since, by Lemma 1,

Df(Xx(t)) = ∇f(Xx(t))DXx(t),

and, by Lemma 5 the matrix DXx(t) is invertible, we have

∇Ptf(x) = E (Df(Xx(t))) [DXx(t)]−1 ∇Xx(t)

= E (Df(Xx(t))) A(t, x) =
d∑

j=1

d∑
k=1

EDkf(Xx(t))Ak,j(t, x)e∗
j ,

where A(t, x) is given by (13) or equivalently by (32), and, as gradients are
row vectors, e∗

j is the transpose of ej . By the chain rule we have

d∑
k=1

Dkf(Xx(t))Ak,j(t, x) =

d∑
k=1

{Dk [f(Xx(t))Ak,j(t, x)] − f(Xx(t))DkAk,j(t, x)} .

Hence, by Lemma 3, we have (4) with Y given by (12). The same arguments
can be applied to show the BEL formula for the Lévy semigroup.

The proof of (10) and (11) is more difficult, and it is divided into the
following two parts.

6.1. Lévy case

Assume that b ≡ 0, that is Xx(t) = Zx(t). Let us fix a time horizon T < +∞.
We are proving estimate (10) for the process Y (t) corresponding to the pure
Lévy case.

We have, for j = 1, . . . , d,

Yj(t) =
d∑

k=1

[Ak,j(t)D∗
k1(t) − DkAk,j(t)] ,

where A(t) = [DZx(t)]−1 =
[
ZV (t)

]−1 and ZV (t) is a diagonal matrix defined
in (28). Therefore

Yj(t) =
D∗

j1(t)
ZV

j,j(t)
− Dj

1
ZV

j,j(t)
=

D∗
j1(t)

ZV
j,j(t)

+
DjZ

V
j,j(t)(

ZV
j,j(t)

)2 ,
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where D∗
j1(t) and DjZ

V
j,j are given by (26) and (38), respectively. We have

E

∣∣∣D∗
j1(t)

(
ZV

j,j(t)
)−1

∣∣∣ ≤
(
E
∣∣D∗

j1(t)
∣∣2) 1

2
(
E
∣∣ZV

j,j(t)
∣∣−2

) 1
2

.

By Lemma 6, there is a constant C1 such that E
∣∣ZV

jj(t)
∣∣−2 ≤ C1t

− 2κ
ρ . Next

there are constants C2 and C3 such that

E
∣∣D∗

j1(t)
∣∣2 ≤ C2

∫ t

0

∫ δ

−δ

∣∣∣∣∣
∂

∂ξj
(Vj(s, ξj)ρj(ξj))

ρj(ξj)

∣∣∣∣∣
2

ρj(ξj)dξjds ≤ C3t, (39)

where the last estimate follows from (8) and (9). Therefore there is a constant
C4 such that

E

∣∣∣D∗
j1(t)

(
ZV

j,j(t)
)−1

∣∣∣ ≤ C4t
− κ

ρ + 1
2 , t ∈ (0, T ]. (40)

Let us observe now that
∣∣DjZ

V
j,j(t)

∣∣ =
∣∣∣∣
∫ t

0

∫
R

ψ2
δ (s)φδ(ξj)φ′

δ(ξj)Πj(ds,dξj)
∣∣∣∣

≤
(∫ t

0

∫
R

ψ2
δ (s)φ2

δ(ξj)Πj(ds,dξj)
)1/2 (∫ t

0

∫
R

ψ2
δ (s) (φ′

δ(ξj))
2 Πj(ds,dξj)

)1/2

≤
∫ t

0

∫
R

ψδ(s)φδ(ξj)Πj(ds,dξj)
(∫ t

0

∫
R

ψ2
δ (s) (φ′

δ(ξj))
2 Πj(ds,dξj)

)1/2

;

here in the last inequality we have used an elementary inequality

∑
k

x2
k ≤

(∑
k

xk

)2

,

valid for any non-negative real numbers {xk}. Thus

∣∣DjZ
V
j,j(t)

∣∣ ≤ ZV
j,j(t)

(∫ t

0

∫
R

ψ2
δ (s) (φ′

δ(ξj))
2 Πj(ds,dξj)

)1/2

. (41)

Therefore, by Lemma 6,

E

∣∣∣∣∣
DjZ

V
j,j(t)(

ZV
j,j(t)

)2
∣∣∣∣∣ ≤ E

(∫ t

0

∫
R

ψ2
δ (s) (φ′

δ(ξj))
2 Πj(ds,dξj)

)1/2

∫ t

0

∫
R

ψδ(s)φδ(ξj)Πj(ds,dξj)

≤
(
E

∫ t

0

∫
R

ψ2
δ (s) (φ′

δ(ξj))
2 Πj(ds,dξj)

)1/2

×
(
E

(∫ t

0

∫
R

ψδ(s)φδ(ξj)Πj(ds,dξj)
)−2

)1/2

≤ C5t
− κ

ρ + 1
2 .

(42)

Note that
∫
R

(φ′
δ(ξj))

2
mj(dξj) < +∞ thanks to (9). Summing up, we can find

a constant C such that

E |Y (t)| ≤ Ct−
κ
ρ + 1

2 , (43)
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which is the desired estimate. �

6.2. General case

Recall that M and A = M−1 are given by (31) and (32), respectively. Let
T > 0. We prove first that (for δ > 0 small enough) there is a constant c such
that for t ∈ (0, T ],

E |D∗
k1(t)Ak,j(t, x)| ≤ ct−

κ
ρ + 1

2 , (44)

E

∣∣∣D∗
k1(t)Ak,j(t, x) − D∗

k1(t)
(
ZV (t)

)−1

k,j

∣∣∣ ≤ ct−
κ
ρ + 3

2 . (45)

By Lemma 6 there is a constant C > 0 such that

‖A(t, x) − (
ZV (t)

)−1 ‖Lq ≤ Ct−
κ
ρ + 1, t ∈ (0, T ], q ≥ 1.

Therefore, (45) follows from (39) by using the Cauchy–Schwarz inequality.
Clearly (44) follows from (40) and (45).

It is much harder to evaluate L1-norm of the term

I(t, x) := −
d∑

j=1

d∑
k=1

DkAk,j(t, x)ej =
d∑

j=1

d∑
k=1

[A(t, x)(DkM(t, x))A(t, x)]k,j ej .

(46)

Recall that R(s, x) := (∇Xx(s))−1 − I. Moreover,

M(t, x) = ZV (t) +
∫ t

0

R(s, x)dZV (s)

is differentiable, p-integrable, and we have (see also (38)):

DkM(t, x) = DkZV (t) +
∫ t

0

R(s, x)dDkZV (s) +
∫ t

0

DkR(s, x)dZV (s).

(47)

We have ‖R(s, x)‖ ≤ C1s, s ∈ [0, T ], and that there are non-negative random
variables η(s), integrable with an arbitrary power, such that, P-a.s., 0 ≤ η(s) ≤
η(t), 0 ≤ s ≤ t ≤ T ,

‖DkR(s, x)‖ ≤ η(s), ‖η(s)‖L2 ≤ C2 s
3
2 , s ∈ [0, T ], (48)

where C2 is independent of s. Indeed, using that d∇Xx(t) = ∇b(Xx(t))∇Xx(t)
dt, ∇Xx(0) = I,

dR(t, x) = − [R(t, x)∇b(Xx(t)) + ∇b(Xx(t))] dt, R(0, x) = 0.

Since ∇b is bounded we have ‖R(s, x)‖ ≤ C1s. After differentiation we obtain

dDkR(t, x) = −
[
DkR(t, x)∇b(Xx(t)) + (R(t, x) + 1)

d∑
i=1

∂

∂xi
∇b(Xx(t))DkXx

i (t)

]
dt,

DkR(0, x) = 0.
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By (30), there is a constant C3 such that for all t ∈ [0, T ], ‖DkXx(t)‖ ≤
C3‖ZV (t)‖. Therefore there is a constant C4 such that

‖DkR(t, x)‖ ≤ C4

∫ t

0

[‖DkR(s, x)‖ + ‖ZV (s)‖] ds,

and consequently

‖DkR(t, x)‖ ≤ η(t) := C5

∫ t

0

‖ZV (s)‖ds, t ∈ [0, T ].

We will show that I(t, x) is a proper perturbation of the already esti-
mated

I0(t) :=
d∑

j=1

DjZ
V
j,j(t)(

ZV
j,j(t)

)2 ej =
d∑

j=1

d∑
k=1

[(
ZV (t)

)−1
(DkZV (t))

(
ZV (t)

)−1
]

k,j
ej .

(49)

The proof will be completed as soon as we can show there is a constant C6

such that

E |I(t, x) − I0(t)| ≤ C6t
− κ

ρ + 3
2 , t ∈ (0, T ]. (50)

This will imply that

E |I(t, x)| ≤ E |I(t, x) − I0(t)| + E |I0(t)| ≤ C7t
− κ

ρ + 1
2 . (51)

Collecting (44) and (51) will give the estimate for E |Y (t, x)|.
Let us prove (50). Recalling that A(t, x) = (M(t, x))−1 we have to esti-

mate

‖A(t, x)(DkM(t, x))A(t, x) − (ZV (t))−1(DkZV (t))
(
ZV (t)

)−1 ‖ ≤ J1 + J2 + J3,

where

J1 = ‖A(t, x)(DkM(t, x))[A(t, x) − (
ZV (t)

)−1
]‖,

J2 = ‖A(t, x)(DkM(t, x) − DkZV (t)) (ZV (t))−1‖,

J3 = ‖[A(t, x) − (ZV (t))−1]DkZV (t) (ZV (t))−1‖.

We have

E [J3] ≤ ‖[A(t, x) − (ZV (t))−1]‖L2 ‖DkZV (t) (ZV (t))−1‖L2 .

Using (33) we infer

E [J3] ≤ C8t
− κ

ρ + 1‖DkZV (t) (ZV (t))−1‖L2 .

Since

‖DkZV (t) (ZV (t))−1‖ =

∣∣∣∣∣
DkZV

k,k(t)
ZV

k,k(t)

∣∣∣∣∣ ,
we can use (41) and get

E
∥∥DkZV (t) (ZV (t))−1

∥∥2 ≤ E

(∫ t

0

∫
R

ψ2
δ (s) (φ′

δ(ξk))2 Πk(ds,dξk)
)

≤ C9t,
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see (9). Hence we have

E [J3] ≤ C10t
− κ

ρ + 3
2 .

We evaluate now J2. By Lemma 6 we have

E [J2] ≤ ‖A(t, x)‖L2 ‖(DkM(t, x) − DkZV (t)) (ZV (t))−1‖L2

≤ Ct−
κ
ρ ‖(DkM(t, x) − DkZV (t)) (ZV (t))−1‖L2 .

Next

(DkM(t, x) − DkZV (t)) (ZV (t))−1

=
(∫ t

0

R(s, x)dDkZV (s) +
∫ t

0

DkR(s, x)dZV (s)
)

(ZV (t))−1.
(52)

We will argue as in the proof of Lemma 6. Note that(∫ t

0

R(s, x)dDkZV (s)
)

ij

= 0 if j �= k.

Recall that, for δ small enough,(∫ t

0

R(s, x)dDkZV (s)
)

ik

=
∫ t

0

ψ2
δ (s)Rik(s, x)

∫
R

φδ(ξk)φ′
δ(ξk)Πk(ds,dξk)

=

⎛
⎝ ∑

0<s≤t

R(s, x)Ũ(s,�Z(s))

⎞
⎠

ik

,

where Ũ(s, z) is a diagonal matrix, s ≥ 0, z ∈ R
d, such that

(Ũ(s, z))ii = Ui(s, z) = ψ2
δ (s)φδ(zi)φ′

δ(zi), i = 1, . . . , d.

Hence
∣∣∣
∫ t

0
R(s, x)dDkZV (s) (ZV (t))−1ek

∣∣∣

=
∣∣∣ ∑
0<s≤t

R(s, x)Ũ(s, �Z(s))ek

( ∫ t

0

∫
R

Vk(y, ξk)Πk(dy, dξk)
)−1

∣∣∣

≤
∑

0<s≤t

‖R(s, x)‖Uk(s, �Zk(s))
( ∫ t

0

∫
R

Vk(y, ξk)Πk(dy, dξk)
)−1

≤ C1t
∑

0<s≤t

Uk(s, �Zk(s))
( ∫ t

0

∫
R

Vk(y, ξk)Πk(dy, dξk)
)−1

= C1t
DkZV

k,k(t)

ZV
k,k(t)

,

see (38). We deduce that
∥∥∥
∫ t

0

R(s, x)dDkZV (s) (ZV (t))−1
∥∥∥

L2
≤ C11t

3
2 .

Therefore, in order to estimate J2, it remains to consider∫ t

0

DkR(s, x)dZV (s) (ZV (t))−1 =
∑

0<s≤t

DkR(s, x)Ṽ (s,�Z(s))(ZV (t))−1,
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where Ṽ (s, z) is a diagonal matrix, s ≥ 0, z ∈ R
d, such that (Ṽ (s, z))ii =

Vi(s, zi). Using the bound (48) we obtain, for j = 1, . . . , d, P-a.s.,
∣∣∣
∫ t

0

DkR(s, x)dZV (s)
(
ZV (t)

)−1
ej

∣∣∣

≤
∑

0<s≤t

‖DkR(s, x)‖Vj(s,�Zj(s))
(∫ t

0

∫
R

Vj(r, ξj)Πj(dr,dξj)
)−1

≤ η(t).

It follows that∥∥∥
∫ t

0

DkR(s, x)dZV (s)
(
ZV (t)

)−1
∥∥∥

L2
≤ C12 t

3
2 .

Summing up we have

E [J2] ≤ C13t
− κ

ρ + 3
2 .

To treat J1 we note that by Lemma 6 we have

E [J1] ≤ ‖A(t, x)‖L2‖(DkM(t, x))[A(t, x) − (
ZV (t)

)−1
]‖L2

≤ Ct−
κ
ρ ‖(DkM(t, x))[A(t, x) − (

ZV (t)
)−1

]‖L2 .
(53)

We write

‖(DkM(t, x))[A(t, x) − (
ZV (t)

)−1
]‖

= ‖(DkM(t, x))(M(t, x))−1M(t, x)[A(t, x) − (
ZV (t)

)−1
]‖

≤ ‖(DkM(t, x))(M(t, x))−1‖ ‖I − M(t, x)
(
ZV (t)

)−1 ‖.

The more difficult term is

‖(DkM(t, x))(M(t, x))−1‖ = ‖(DkM(t, x))
(
ZV (t)

)−1
ZV (t)(M(t, x))−1‖

≤ ‖(DkM(t, x))
(
ZV (t)

)−1 ‖ ‖ZV (t)(M(t, x))−1‖.

By (37) we have

ZV (t) (M(t, x))−1 = ZV (t)A(t, x)

= ZV (t)
( (

ZV (t)
)−1

+
(
ZV (t)

)−1
+∞∑
n=1

(−1)n(Q(t, x))n
)

=
+∞∑
n=0

(−1)n(Q(t, x))n.

Hence, by (36),

‖ (ZV (t)
)
(M(t, x))−1‖ ≤ C̃1,

where C̃1 is independent of x, t ∈ (0, T ] and ω, P-a.s.. The term

‖(DkM(t, x))
(
ZV (t)

)−1 ‖
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can be treated as the first term in (52). Therefore we have

‖(DkM(t, x))
(
ZV (t)

)−1 ‖L2 ≤ C̃2t
1
2 .

Summing up we have

‖(DkM(t, x))(M(t, x))−1‖L2 ≤ C̃3t
1
2 , t ∈ (0, T ].

Since

‖I − M(t, x)
(
ZV (t)

)−1 ‖ =
∥∥∥
∫ t

0

R(s, x)dZV (s)
(
ZV (t)

)−1
∥∥∥ ≤ C̃4t,

where c3 is independent of x and ω, P-a.s., we have

E [J1] ≤ C̃5t
− κ

ρ + 3
2 ,

and the proof is complete. �

7. An integrability result

Assume that M is a Poisson random measure on [0,+∞) × R with intensity
measure dtm(dξ). Given a measurable h : R �→ [0,+∞) let

Jh(t) :=
∫ t

0

∫
R

h(ξ)M(ds,dξ).

Then for any β > 0,

E e−βJh(t) = exp
{

−t

∫
R

(
1 − e−βh(ξ)

)
m(dξ)

}
.

Using the identity

y−q =
1

Γ(q)

∫ +∞

0

βq−1e−βydβ, y > 0,

we obtain

EJh(t)−q =
1

Γ(q)

∫ +∞

0

βq−1
E e−βJh(t)dβ

=
1

Γ(q)

∫ +∞

0

βq−1 exp
{

−t

∫
R

(
1 − e−βh(ξ)

)
m(dξ)

}
dβ.

Using this method one can obtain (see Norris [17]) the following result.

Lemma 7. If for a certain ρ > 0,

lim inf
ε↓0

ερm{h ≥ ε} > 0,

then

EJh(t)−q ≤ Ct−
q
ρ , q ≥ 1, t ∈ (0, 1].
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Let φδ ∈ C∞(R \ {0}) be given by (15). Assume that m(dξ) satisfies
hypothesis (ii) of Theorem 1 and h = φδ. Then

lim inf
ε↓0

ε
ρ
κ m{φδ ≥ ε} ≥ lim inf

ε↓0
ε

ρ
κ m

{
ξ ∈

[
−δ

2
,
δ

2

]
: |ξ|κ ≥ ε

}

≥ lim inf
ε↓0

ε
ρ
κ m

{
ξ : ε

1
κ ≤ |ξ| ≤ δ

2

}

≥ lim inf
ε↓0

ερm

{
ξ : ε ≤ |ξ| ≤ δ

2

}
> 0.

Consequently, by Lemma 7 we have the following result:

Corollary 1. For any q ≥ 1 there is a constant C = C(q, T ) such that

EJφδ
(t)−q ≤ Ct−

κq
ρ , t ∈ (0, T ].

Moreover,

EJφδ
(t) = t

∫
R

φδ(ξ)m(dξ) < +∞.

8. Sharp estimates in the cylindrical α-stable case

Here we are concerned with rather general perturbation of α-stable case. In-
deed in such case we can improve the estimate on Y (t) given in Sect. 6.1. This
estimate according to Remark 4 leads to the sharp gradient estimates (6).

Below in (54) we will strengthen hypotheses (8) and (9). In Remark 7 we
clarify the validity of the new assumptions in the relevant cylindrical α-stable
case.

Lemma 8. Let α ∈ (0, 2). Suppose that all the assumptions of Theorem1 hold
with ρ = α and for some κ > 1 + α/2. Moreover, suppose that, for the same
κ,

lim sup
u→0+

u−2κ+2+α

∫
|ξ|≤u

[
|ξ|2κ

(
ρ′

j(ξ)
ρj(ξ)

)2

+ |ξ|2κ−2
]
ρj(ξ)dξ < +∞, (54)

and there exists p ∈ (1, 2) such that

lim sup
u→0+

u−pκ+p+α

∫
u≤|ξ|≤r

[
|ξ|pκ

∣∣∣∣
ρ′

j(ξ)
ρj(ξ)

∣∣∣∣
p

+ |ξ|pκ−p
]
ρj(ξ)dξ < +∞. (55)

Then the following estimate holds for the R
d-valued process Y (cf. (43)) :

E |Y (t)| ≤ CT t−
1
α , t ∈ (0, T ]. (56)

Remark 7. We provide a sufficient condition such that all the hypotheses of
Lemma 8 hold. To this purpose recall that ρj is the C1-density of the Lévy
measure mj associated to the process Zj ; such density exists on (−r, r)\{0},
r > 0 as in (iii) of Theorem1.

Moreover, lα(ξ) := |ξ|−1−α denotes the density of the Lévy measure of a
symmetric one-dimensional α-stable process, α ∈ (0, 2).
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Assume that there is a positive constant c such that, for ξ ∈ (−r, r)\{0},∣∣∣∣
ρ′

j(ξ)
ρj(ξ)

∣∣∣∣ ≤ c
(
|ξ|−1 + 1

)
and c−1lα(ξ) ≤ ρj(ξ) ≤ clα(ξ), (57)

j = 1, . . . , d. It is easy to check that (57) implies all the assumptions of
Lemma 8 with arbitrary κ ∈ (1 + α/2, 1 + α). Thus under condition (57) we
obtain (56) and the sharp gradient estimates (6).

Proof. To prove the result we can assume d = 1 so that Y1 = Y ; Π is the
associated Poisson random measure and we set m1 = μ for the corresponding
Lévy measure having C1-density ρ1 = ρ on (−r, r).

It is enough to show (56) for small t, say 0 < t1/α ∨ t ≤ δ/2 ≤ 1, where
δ ≤ r is small enough.

Note that φδ(ξ) = |ξ|κ for |ξ| ≤ δ/2. Moreover, recall that ψδ(t) = 1 for
t ≤ δ/2. Let us fix κ = 1 + 3

4α. We have

Y (t) =
D∗1(t)
ZV (t)

− D
1

ZV (t)
=

D∗1(t)
ZV (t)

+
DZV

(ZV (t))2
.

We have

D∗1(t) = −
∫ t

0

∫
(−δ,δ)

φ′
δ(ξ)ρ(ξ) + φδ(ξ)ρ′(ξ)

ρ(ξ)
Π̂(ds,dξ),

DZV (t) =
∫ t

0

∫
(−δ,δ)

φδ(ξ)φ′
δ(ξ)Π(ds,dξ),

ZV (t) =
∫ t

0

∫
(−δ,δ)

φδ(ξ)Π(ds,dξ).

We are showing that

E

∣∣∣∣D
∗1(t)

ZV (t)

∣∣∣∣ ≤ C2t
− 1

α . (58)

We concentrate on D∗1(t):

D∗1(t)=I1(t) + I2(t), I1(t)=−
∫ t

0

∫
{t1/α<|ξ|<δ}

φ′
δ(ξ)ρ(ξ)+φδ(ξ)ρ′(ξ)

ρ(ξ)
Π̂(ds, dξ),

I2(t) = −
∫ t

0

∫
{|ξ|≤t1/α}

φ′
δ(ξ)ρ(ξ) + φδ(ξ)ρ′(ξ)

ρ(ξ)
Π̂(ds, dξ).

Concerning I1(t) we can improve some estimates of Sect. 6.1; using the
Hölder inequality (because ξ is separated from 0): for the given p ∈ (1, 2) and
q : 1/p + 1/q = 1 we have

E

∣∣∣I1(t)
(
ZV (t)

)−1
∣∣∣ ≤ (E |I1(t)|p)1/p

(
E
∣∣ZV (t)

∣∣−q
)1/q

.

By Corollary 1, there is a constant C1 such that E
∣∣ZV (t)

∣∣−q ≤ C1t
− κq

α ,
recall that ρ = α now. Since p ∈ (1, 2), there exists a positive constant c such
that

E |I1(t)|p ≤ c

∫ t

0

∫
{t1/α<|ξ|<δ}

∣∣∣∣φ
′
δ(ξ)ρ(ξ) + φδ(ξ)ρ′(ξ)

ρ(ξ)

∣∣∣∣
p

ρ(ξ)dξds,
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see e.g. Lemma 8.22 in [19]. Since φδ(ξ) = |ξ|κψδ(ξ), it follows that for |ξ| ≤ δ,
|φ′

δ(ξ)| ≤ Cδ|ξ|k−1.
We have by (55)

∫
{t1/α<|ξ|<δ}

∣∣∣∣φ
′
δ(ξ)ρ(ξ) + φδ(ξ)ρ′(ξ)

ρ(ξ)

∣∣∣∣
p

ρ(ξ)dξ ≤ C3(t1/α)p(κ−1)−α = C3t
p

α
(κ−1)−1

with some constant C3. Combined with the previous inequality, this gives

E |I1(t)|p ≤ ct · C3t
p
α (κ−1)−1 = cC3t

p
α (κ−1).

Therefore by the Hölder inequality

E

∣∣∣I1(t)
(
ZV (t)

)−1
∣∣∣ ≤ C

1
q

1 t−
κ
α · (cC3)

1
p t

1
α (κ−1) = C4t

− 1
α . (59)

For I2(t), we proceed in a similar way. Namely, by the Cauchy inequality,
isometry formula, Lemma 6 and using (54) we find

E |I2(t)(ZV (t))−1|

≤
(
E (I2(t))2

) 1
2
(
E |ZV (t)|−2

) 1
2

≤ C5

(∫ t

0

∫
{|ξ|≤t1/α}

(
φ′

δ(ξ)ρ(ξ) + φδ(ξ)ρ′(ξ)
ρ(ξ)

)2

ρ(ξ)dξ

)1/2

t−
κ
α

≤ C6

(
t(t1/α)2(κ−1)−α

) 1
2
t−

κ
α = C6t

− 1
α ,

(60)

which completes the proof of (58). Now we are showing that

E

∣∣∣∣∣
DZV (t)

(ZV (t))2

∣∣∣∣∣ ≤ C7t
− 1

α . (61)

To this end note that

∣∣∣∣∣
∫ t

0

∫
{δ/2<|ξ|≤δ}

φδ(ξ)φ
′
δ(ξ)Π(ds, dξ)

∣∣∣∣∣

≤
[∫ t

0

∫
{δ/2<|ξ|≤δ}

φ2
δ(ξ)Π(ds, dξ)

]1/2 [∫ t

0

∫
{δ/2<|ξ|≤δ}

(
φ′

δ(ξ)
)2

Π(ds, dξ)

]1/2

≤
∫ t

0

∫
{δ/2<|ξ|≤δ}

φδ(ξ)Π(ds, dξ)

∫ t

0

∫
{δ/2<|ξ|≤δ}

∣∣φ′
δ(ξ)

∣∣Π(ds, dξ)

≤ ZV (t)

∫ t

0

∫
{δ/2<|ξ|≤δ}

∣∣φ′
δ(ξ)

∣∣Π(ds, dξ).



7 Page 24 of 27 A. M. Kulik, S. Peszat and E. Priola NoDEA

Hence, as the arguments from the derivation of (59) (recall that for |ξ| ≤
δ, |φ′

δ(ξ)| ≤ Cδ|ξ|k−1) we obtain

E

∣∣∣∣∣
∫ t

0

∫
{δ/2<|ξ|<δ}φδ(ξ)φ′

δ(ξ)Π(ds,dξ)

(ZV (t))2

∣∣∣∣∣ ≤ E

∫ t

0

∫
{t1/α<|ξ|<δ} |φ′

δ(ξ)| Π(ds,dξ)

ZV (t)

≤ cC3C t
1
α (κ−1)t−

κ
α = C9t

− 1
α .

Set

K(t) := (ZV (t))−2

∫ t

0

∫
{δ/2≥|ξ|>t1/α}

φ′
δ(ξ)φδ(ξ)Π(ds,dξ)

and

H(t) := (ZV (t))−2

∫ t

0

∫
{|ξ|≤t1/α}

φ′
δ(ξ)φδ(ξ)Π(ds,dξ).

Since φδ(ξ) = |ξ|κ if |ξ| ≤ δ/2, we have

|K(t)| ≤ κ
(
ZV (t)

)−2
∫ t

0

∫
{δ/2≥|ξ|>t1/α}

φ2
δ(ξ)|ξ|−1 Π(ds,dξ)

≤ κ
(
ZV (t)

)−2
t−

1
α

∫ t

0

∫
R

φ2
δ(ξ)Π(ds,dξ)

= κ
(
ZV (t)

)−2
t−

1
α

[(∫ t

0

∫
R

φ2
δ(ξ)Π(ds,dξ)

)1/2
]2

≤ κ
(
ZV (t)

)−2
t−

1
α

[∫ t

0

∫
R

φδ(ξ)Π(ds,dξ)
]2

= κ t−
1
α .

We are dealing now with H(t). Since

∫ t

0

∫
{|ξ|≤t1/α}

|φ′
δ(ξ)φδ(ξ)|Π(ds, dξ)

≤
(∫ t

0

∫
{|ξ|≤t1/α}

(φ′
δ(ξ))2Π(ds, dξ)

)1/2 (∫ t

0

∫
R

φ2
δ(ξ)Π(ds, dξ)

)1/2

≤ ZV (t)

∫ t

0

∫
{|ξ|≤t1/α}

|φ′
δ(ξ)| Π(ds, dξ) = κZV (t)

∫ t

0

∫
{|ξ|≤t1/α}

|ξ|κ−1 Π(ds, dξ),

we have, arguing as in (60), using again (54),

E |H(t)| ≤ κE

∫ t

0

∫
{|ξ|≤t1/α} |ξ|κ−1 Π(ds,dξ)

ZV (t)
≤ C10t

− 1
α ,

which finishes the proof of (61). �
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