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Abstract. In an unbounded 2D channel, we consider the vertical displace-
ment of a rectangular obstacle in a regime of small flux for the incoming
flow field, modelling the interaction between the cross-section of the deck
of a suspension bridge and the wind. We prove an existence and unique-
ness result for a fluid–structure-interaction evolution problem set in this
channel, where at infinity the velocity field of the fluid has a Poiseuille
flow profile. We introduce a suitable definition of weak solutions and we
make use of a penalty method. In order to prevent the obstacle from go-
ing excessively far from the equilibrium position and colliding with the
boundary of the channel, we introduce a strong force in the differential
equation governing the motion of the rigid body and we find a unique
global-in-time solution.
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1. Introduction and main result

Suspension bridges may experience several types of instability phenomena,
which affect more or less critically each component of the structure. Among all
components, the deck is the most sensitive part. When analyzing the dynamic
response of the bridge to the wind from the engineering point of view, we
observe that the bridge may suffer from a variety of problems: one degree and
two degrees of freedom instability, buffeting and vortex shedding. Two degrees
of freedom instability, also known as flutter instability, occurs when the vertical
and the torsional motion of the deck synchronize so that aerodynamic forces
introduce energy into the system. However, this only occurs after reaching a
critical value of the incoming wind velocity (see [9,14,28]). Thus, the vertical
and torsional displacements are decoupled in a regime of small oscillations.
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Figure 1. The channel with the vertically moving obstacle B

We set up our model precisely under the hypothesis of a small flux for the
incoming flow field. We consider the interaction between an obstacle and a fluid
in a 2D unbounded channel, where the flow is of Poiseuille type at infinity;
we analyze a fluid–structure problem by allowing the obstacle to move in a
vertical translation. In a regime of strong incoming flux, it would be necessary
to consider the full coupled vertical-torsional motion.

We follow the two-dimensional fluid–structure-interaction evolution prob-
lem introduced in [4]. We label as B = [−d, d] × [−δ, δ] a rectangular rigid
body representing the 2D cross-section of the deck of a suspension bridge; we
denote by m > 0 the mass of the body. Without loss of generality, we can
assume d to be equal to 1, by using the length of the body as reference length
scale. Such body is free to move vertically inside an infinitely long 2D channel
A = R× (−L,L), driven by the action of both a smooth elastic restoring force
and the fluid flow: see Fig. 1. The upper and lower boundaries of such channel
are denoted by Γ = R × {−L,L} and h indicates the position of the center of
the rigid body from the middle line x2 = 0. Thus,

Bh = B + hê2 ∀ |h| < L − δ

tracks the position of the body after the vertical translation. Notice that, when
|h| = L − δ, the obstacle collides with Γ. Due to the motion of the rigid body,
the domain occupied by the fluid Ωh depends itself on h, which explains the
subscript, and it is given by:

Ωh = R × (−L,L)\Bh = A\Bh. (1.1)

At infinity, the velocity field reproduces a Poiseuille flow profile, which we
label as q. Before giving the formulation of the problem, we point out that, by
a little abuse of notation, we will make use of the following Cartesian product

Ωh(t) × (0, T )
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to indicate the non-cylindrical space-time domain given by {(x, t) : 0 < t <
T, x ∈ Ωh(t)}. The fluid–structure-interaction evolution problem is then:

ut = μΔu − (u · ∇)u − ∇p, divu = 0 (x, t) ∈ Ωh(t) × (0, T ),

u = 0 (x, t) ∈ Γ × (0, T ), u = h′(t) ê2 (x, t) ∈ ∂Bh(t) × (0, T ),

lim
|x1|→∞

u(x1, x2) = q := λ(L2 − x2
2) ê1,

mh′′(t) + f(h(t)) = −ê2 ·
∫

∂Bh(t)

T (u, p)n̂ t ∈ (0, T ),

(1.2)

to which we associate the initial conditions u(x, 0) = u0, h(0) = h0, h′(0) = k0.
Here u : Ωh(t) × (0, T ) → R

2 and p : Ωh(t) × (0, T ) → R are respectively the
unknown velocity vector field and the unknown scalar pressure field, while
n̂ denotes the outward normal to ∂Ωh, thus directed in the interior of ∂Bh.
The constant λ in q measures the magnitude of the Poiseuille flow, which is
prescribed, thus λ is given. The motion of the body is governed by the ODE
in (1.2): f(h) is an elastic smooth restoring force, which we suppose to be
f ∈ C1(−L + δ, L − δ), and T (u, p) = −pI+ 2μD(u) is the fluid Cauchy stress
tensor, with I the 2 × 2-identity matrix and

D(u) =
1
2
(∇u + ∇uT ),

thus the right hand side of the ODE corresponds to the fluid lift. We also
assume that f(h) satisfies some further conditions, given later in (1.4), which
translate the assumption of f being a strong force, preventing the obstacle
from colliding with the boundary of the channel Γ. From the physical view
point indeed, f resumes the action of three kind of forces acting on the deck of
a suspension bridge, as also explained in [4, Introduction]: the upward restor-
ing force due to the elastic action of both the hangers and the sustaining
cables, the weight of the deck acting downwards and the elastic resistance to
deformations of the whole deck, preventing the obstacle to go too far from
its equilibrium horizontal position (see also [14]). Our model indeed loses its
physical meaning in case of collisions; on the other hand, collisions would be
purely virtual in the physical framework at consideration, because we can not
expect the bridge to be subjected to very large deformations. This justifies the
limit in the assumption in (1.4); we emphasize that, in this context, we are
not interested in choosing the optimal hypothesis on f ensuring the absence
of collisions. As in [26], we suppose that the initial velocity u0 admits the
following representation

u0(x) = ū0(x) + ζ(x1)λ(L2 − x2
2)ê1, with ū0(x) ∈ L2(Ωh), divu0(x) = 0,

(1.3)

where ζ(x1) is a smooth cutoff function such that ζ(τ) = 0, if |τ | < 2, ζ(τ) = 1
if |τ | > 3.

In [4], the authors prove that for the stationary version of (1.2) the equi-
librium position of the obstacle is perfectly symmetric under smallness as-
sumption on the imposed flow rate magnitude of the Poiseuille flow; actually,
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they are able to prove their result with an assumption on f weaker than (1.4).
The main purpose of our work is to prove the existence and the uniqueness
of a weak solution for the fluid–structure-interaction evolution problem (1.2).
In the literature several definitions of weak solutions have been adopted, as
well as several techniques to find such solutions (see, e.g., [6,8] for the 3D case,
[23,27] for the 2D case). In order to prove existence we adopt a penalty method
devised in a paper by Fujita and Sauer, see [10]; this technique was later ex-
ploited by Conca, San Martin and Tucsnak in [6] in order to prove existence
of solutions for a boundary problem modelling the motion of a rigid ball in a
viscous fluid occupying a bounded domain. Among the several aforementioned
techniques, we choose to apply the method by [6], because it enables to work
with a non-global weak formulation, in the sense that the terms concerning the
fluid sub-problem and those concerning the rigid body sub-problem of (1.2),
although coupled, remain distinguished. On the other hand, both the method
introduced in [8,23,27] would require working with global quantities and a
global weak formulation, in the sense that the integrals would be defined on
the whole domain A; in this context, the approach by [6] is more convenient
because of the presence of the strong force f in the ordinary differential equa-
tion governing the motion of the obstacle, which makes it non-trivial to define
a global weak form for the original coupled frame. The main difference with
the problem considered in [6] lies in the fact that the domain occupied by
both the rigid body and the fluid in (1.2) is an unbounded channel where a
non-zero velocity field is imposed at infinity; this requires building a solenoidal
extension of the Poiseuille flow. Moreover, besides the less affecting difference
of a rectangular shaped obstacle, the introduction of the strong force f in the
ordinary differential equation governing the motion of the obstacle in (1.2) al-
lows to obtain solutions with a global character in time, as well as uniqueness
of such solutions: indeed, this force prevents the obstacle from colliding with
the boundary of the channel.

Collisions are a delicate issue in the context of fluid–structure-interaction
problems, especially because different phenomena occur in the context of strong
or weak solutions. For strong solutions, in some particular 2D cases, collisions
are excluded (see [21,22,30]). However, this no-collision result appears physi-
cally unrealistic both at the macroscopic and microscopic scales, as pointed out
in [19,20] where it is suggested that the flaw lies in the modelling. If we move
to the realm of weak solutions, it is not known in general whether collisions
do occur in finite time or not, although, in some particular cases, where the
contact surfaces are regular enough, they might be excluded, see [30, Theorem
3.1]. However weak solutions exist globally even if collisions occur in finite
time, because they are characterized by vanishing relative velocity; this result
holds under regularity hypothesis on the boundary of the body and on the
fluid domain, see [27,30]. In [31] the author was able to construct at least two
weak solutions admitting collision in finite time and, in order to guarantee
uniqueness of weak solutions, one then needs to exclude collisions as pointed
out in [16]. In particular, while uniqueness of strong solutions is a known fact
both in two and three-dimensions, and both for no-slip case and the slip case
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(see [1,7,18,32]), in [16] the authors proved for the first time a result of unique-
ness for weak solutions for a two-dimensional fluid-rigid body system and in
[5] the author proved it for the slip case. Here, we adopt a different strategy
in order to explore existence and uniqueness of weak solutions, we make use
of the strong force f , as it is done in [4].

Our main result states the existence and uniqueness of weak solutions to
problem (1.2).

Theorem 1.1. Let Ωh be as in (1.1). Assume that f(h) ∈ C1(−L + δ, L − δ)
satisfies the following assumption

∃ r > 0 s.t. f ′(h) > 0∀h ∈ (−L + δ, L − δ),

lim
|h|→L−δ

|f(h)| 1
exp 1

(L−δ−|h|)4+r

= +∞. (1.4)

Moreover, let |h0| < L − δ and u0 satisfying (1.3) be such that u0 · n̂ = k0ê2 · n̂
on ∂Bh0 . Then, problem (1.2) admits a unique weak solution (u, h), defined in
a suitable sense, for any T < ∞. Moreover the energy of (u, h) is bounded.

Theorem 1.1 deserves some comments. First, we emphasize that, since
(1.2) is a fluid–structure-interaction problem, one needs to give a suitable
definition of weak solutions which takes into account the presence of the moving
obstacle. Because of such difficulty, we adopt a definition of weak solutions
which is a compromise between the one given in [13] and the one in [6]; weak
solutions are defined in Definition 2.3 after transforming problem (1.2) into
an equivalent problem, as we shall see in Sect. 2. Finally, the global-in-time
property of solutions is ensured because of the energy estimate associated to
problem (1.2), which guarantees that no collision occurs between the obstacle
and the boundary of the channel. Such energy estimate will be made explicit
in Theorem 2.6 for the equivalent problem. In particular, as in the case of the
Navier–Stokes equations in a 2D domain with cylindrical outlets to infinity,
we merely obtain an inequality, differently from what one usually obtains in a
bounded 2D domain: see [26].

The rest of the paper is devoted to proving Theorem 1.1 and it is orga-
nized as follows. In Sect. 2 we present some notations and preliminary results
which are essential to apply the penalty method and are useful throughout
the paper. Then we reformulate problem (1.2) in a reference frame attached to
the obstacle; this produces the equivalent problem, (2.7)–(2.8). At the end of
Sect. 2, Theorem 2.6 states the existence and uniqueness of solutions for the
equivalent problem (2.7)–(2.8). Thus, Theorem 1.1 is proven once we develop
the proof of such statement, which is addressed in the subsequent sections. In
Sect. 3, we introduce an auxiliary problem, at the core of the penalty method,
for which we prove existence of solutions with the Faedo–Galerkin procedure.
In Sect. 4, after some additional results, we conclude the proof of the existence
part of Theorem 2.6 and, consequently, the existence part of the main result of
the work, Theorem 1.1. Section 5 is devoted to proving uniqueness of solutions
to problem (2.7)–(2.8), which concludes the proof of Theorem 2.6 and thus also
of Theorem 1.1. The main difficulty of proving uniqueness is that we cannot



39 Page 6 of 38 C. Patriarca NoDEA

simply take the difference between two weak solutions of problem (2.7)–(2.8)
because, since the fluid domain has moving boundaries, those solutions are not
defined on the same domain, thus we will adopt a suitable change of variables
to solve such issue, following the work in [16]. As we already mentioned, if we
moved to the regime of strong incoming flux, we would have to consider an
obstacle characterized by a fully-coupled vertical-torsional motion. As a step
towards this direction, it appears interesting to look at the second model in-
troduced in [4] where the obstacle is immersed in the same channel but it is
only free to rotate around a fixed pin. In particular, in Sect. 6 we make some
remarks about this second fluid–structure-interaction evolution problem: we
highlight how this is a significantly different problem with respect to the case
of vertical translation both from the physical and mathematical point of view.

2. Preliminaries: an equivalent formulation

Problem (1.2) is set in a 2D unbounded channel with a prescribed non-zero
velocity field at infinity. We begin by capturing the flow at large |x1|: we
construct a suitable extension of the Poiseuille velocity profile at infinity by
using similar arguments to the classical procedure by Ladyzhenskaya [25] (see
also [2]). Let b3 be the following function, defined over (−L,L),

b3(x2) = λL3

[
x2

L
− 1

3

(
x2

L

)3 ]
. (2.1)

Observe that

b′
3(x2) = λ(L2 − x2

2).

We consider a partition of the channel A as

A =
2⋃

i=0

Ai, A0 = A ∩ {−3 ≤ x1 ≤ 3}, A1 = A ∩ {x1 < −3},

A2 = A ∩ {x1 > 3}. (2.2)

We define ζ1 to be a smooth cutoff function acting in the horizontal direction
such that

ζ1(x) = ζ1(x1) =

{
1 if |x1| < 2
0 if |x1| > 3

, ζ1 ∈ C∞(R × [−L,L]).

Then, let ε0 > 0. We take ζ2 to be a twice continously differentiable cutoff
function acting in the vertical direction

ζ2(x) = ζ2(x2) =

{
1 if |x2| < L − ε0/2
0 if |x2| > L − ε0/4

, ζ2 ∈ C2(R × [−L,L]),

obeying the inequalities

|ζ2(x2)| ≤ C,

∣∣∣∣∂ζ2(x2)
∂x2

∣∣∣∣ ≤ C

ε0
,

∣∣∣∣∂
2ζ2(x2)
∂x2

2

∣∣∣∣ ≤ C

ε2
0

,
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with some constants C > 0. Then we take

ζ(x) = ζ(x1, x2) = 1 − ζ1(x1) ζ2(x2) ∀x ∈ A. (2.3)

The above construction enables us to state:

Lemma 2.1. Let A = R × (−L,L), q as in (1.2) and let ε0 > 0 small be
arbitrarily fixed. Let

s(x) =
(

∂

∂x2

(
b3(x)ζ(x)

)
,− ∂

∂x1

(
b3(x)ζ(x)

))
,

where b3(x) is as in (2.1), and ζ(x) as in (2.3). Then the vector field s(x) is
such that

∇ · s = 0 in A, s = q in A1 ∪ A2,

with Ai, i = 1, 2 defined in (2.2). Moreover s ∈ W 1,∞(A) ∩ H2
loc(A), and

supp(s) = A\{|x1| < 2 ∧ |x2| < L − ε0}, and, for every ε0 > 0, there hold the
estimates

‖∇s‖L∞(A) ≤ c1

ε2
0

, ‖∇s‖L2(A0) ≤ c2

ε2
0

, (2.4)

where c1, c2 > 0 depend on L and λ.

As a first step of the penalty method implemented in [6], we change
problem (1.2) into an equivalent problem by considering a frame attached to
the rigid body, whose origin coincides with its center of mass. Thus we set

y = x − h(t) ê2,

and we denote

v(y, t) = u(y + h(t) ê2, t), p(y, t) = p(y + h(t) ê2, t),

T (v, p) = −pI + μ[∇v + (∇v)T ]

Ω̃(t) = Ωh(t) − h(t)ê2, Ah(t) = A − h(t)ê2, Γ̃(t) = Γ − h(t)ê2,

B = Bh(t) − h(t)ê2.

(2.5)

The domain of the fluid in the new reference frame Ω̃ shall also be partitioned

Ω̃(t) =
2⋃

i=0

Ω̃i(t), Ω̃0(t) = Ω̃(t) ∩ {−3 ≤ y1 ≤ 3},

Ω̃1(t) = Ω̃(t) ∩ {y1 < −3}, Ω̃2(t) = Ω̃(t) ∩ {y1 > 3}. (2.6)

We emphasize that the obstacle is now fixed, while the domain occupied by
both the fluid and the rigid body, Ah(t) = B ∪ ∂B ∪ Ω̃(t), changes with time.
Then, we notice that

∇yv = ∇xu, divy v = divx u, Δyv = Δxu, vt = ut + (h′ê2 · ∇y)v.
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Thus, we obtain the following problem (see also [12]):

vt = μΔv − (v · ∇) v − ∇p + (h′(t)ê2 · ∇) v, div v = 0 (y, t) ∈ Ω̃(t) × (0, T )

v = 0 (y, t) ∈ Γ̃(t) × (0, T ), v = h′(t)ê2 (y, t) ∈ ∂B × (0, T ),

lim
|y1|→∞

v(y) = q̃(y) := λ(L2 − (y2 + h(t))2) ê1

v(y, 0) = v0(y) y ∈ Ω̃(0)

(2.7)

where v0(y) = u0(y + h0ê2) with u0 as in (1.3). Notice that all derivatives
appearing in this problem are now taken with respect to the new variable
y = (y1, y2). The Poiseuille flow at infinity is obtained by transporting q as in
(1.2) to the new reference frame:

q̃(y) = q(y + h(t)ê2).

The motion of the rectangular body is governed by:

mh′′(t) + f(h(t)) = −ê2 ·
∫

∂B

T (v, p)n̂ t ∈ (0, T ). (2.8)

The original problem (1.2) is equivalent to (2.7)–(2.8), because we simply
adopted a change in the system of coordinates. Thus Theorem 1.1 is proven
if we prove existence of solutions to (2.7)–(2.8). We look for solutions to the
problem (2.7)–(2.8) of the form

v = v̂ + a,

where a is the solenoidal extension of the Poiseuille flow in the new reference
frame, strongly depending on h and on the choice of ε0 in Lemma 2.1:

a(y) = ah(t)(y; ε0) = s(y + h(t) ê2). (2.9)

The function a enjoys the same properties of s stated in Lemma 2.1 once we
substituted q and A with their counterparts in the new reference frame, q̃ and
Ah, and we partitioned Ah similarly to what we did in (2.2). Assume that

h0 ∈ [−L + δ + ε̂, L − δ − ε̂]

where ε̂ > 0 small is arbitrarily fixed. Then, the function v̂ solves the following
problem:

v̂t − μΔv̂ + (v̂ · ∇) v̂ + ∇p − (h′(t)ê2 · ∇) v̂

− (h′(t)ê2 · ∇) a + (v̂ · ∇) a + (a · ∇) v̂ = ĝ

(y, t) ∈ Ω̃(t) × (0, T ),

div v̂ = 0 (y, t) ∈ Ω̃(t) × (0, T ),

v̂ = 0 (y, t) ∈ Γ̃(t) × (0, T ), v̂ = h′(t)ê2 (y, t) ∈ ∂B × (0, T ), lim
|y1|→∞

v̂ = 0,

v̂(y, 0) = v̂0(y) = v0 − ah0(y; ε̂) y ∈ Ω̃(0),

(2.10)

where

ĝ := μΔa − (a · ∇) a. (2.11)
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Notice that v̂ → 0 as |y1| → ∞ and v̂0 ∈ L2(Ω̃(0)) is such that v̂0 · n̂ = k0ê2 · n̂
on ∂B. We also point out that supp(ĝ) ∈ Ah\{|y1| < 2 ∧ |y2| < L − ε0 − h}.
The vertical translation of the obstacle h responds to

mh′′(t) + f(h(t)) = −ê2 ·
∫

∂B

T (v̂ + a, p)n̂ t ∈ (0, T ), (2.12)

with initial conditions h(0) = h0, h′(0) = k0.
As already mentioned, in order to prove our main result we make use of

a procedure which is similar to the one adopted in [6]: problem (2.10)–(2.12)
is set in a region with moving boundaries, Ω̃(t), which makes it impossible to
apply the Faedo–Galerkin approximation with the standard functional spaces
of hydrodynamic evolutionary problems. The idea exploited in [6] is that of a
penalty method and it was first elaborated in the paper by Fujita and Sauer
(see [10]). The crucial idea of the method implies introducing an auxiliary
fixed, infinite domain Ã given by:

Ã = A − A = {x − y |x ∈ A, y ∈ A}, (2.13)

such that Ω̃(t) ⊂ Ah(t) ⊂ Ã (see Fig. 2 for the new configuration). Notice that
the vertical translation of Ω̃(t) inside Ã is confined: dist (∂Ã, Γ̃(t)) ≥ δ. This
is an obvious consequence of impenetrability of bodies but we will later prove
that this inequality actually holds strictly, thus the obstacle never collides
with the boundary of the channel. Inside the auxiliary fixed domain Ã, we can
naturally extend the velocity field at infinity q̃(y) outside Ah(t) for every h(t)
through its definition in (2.7), see Fig. 2.

We report three facts, that we will later use. First, an estimate for the
L2-norm of the gradient of q̃ in each one-dimensional section of the domain
Ã:

‖∇q̃‖L2(−2L+δ, 2L−δ) ≤ λ ξ̃ with ξ̃ =

√
8
3

(2L − δ) (7L2 − 10Lδ + 4 δ2).

(2.14)

Then, we give the following partition of Ã:

Ã =
2⋃

i=0

Ãi, Ã0 = Ã ∩ {−3 ≤ y1 ≤ 3}, Ã1 = Ã ∩ {y1 < −3},

Ã2 = Ã ∩ {y1 > 3}. (2.15)

Finally, we comment on some properties which can be derived from the as-
sumptions of f in (2.12) being a strong force, given in (1.4). In particular,
from (1.4) it follows that f(h)h > 0 for all h �= 0 and there exists ρ such that
f ′(h) > ρ > 0 for all h. Hence, if we call

F (h) =
∫ h

0

f(s)ds (2.16)

we obtain

f(h)h ≥ F (h) ≥ ρ

2
h2. (2.17)
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Figure 2. The channel, after the change of variables, moves
in the fixed red region Ã

The last condition (1.4) may be interpreted in the spirit of [17]. In [17], the
author considers systems of the general type x′′ + ∇V (x) = 0, with x ∈ R

n,
where the potential V (x) associated to a conservative dynamical system, such
as a n-body system, is assumed to be C2 everywhere except at a closed non
empty set S at which it has infinitely deep wells, i.e. V (x) → −∞ as x → S;
then, the system is said to satisfy the strong force condition if and only if there
exists a neighborhood N of S and U ∈ C2 such that U(x) → −∞ as x → S
and −V (x) ≥ |∇U(x)|2 for all x ∈ N\S. In a n-body system the singularities
correspond to collisions of the masses and the strong force condition allows to
avoid them (see also [3]). In our case, in the terminology of [17], f plays the
role of V ′ and the ODE in (2.12) satisfies the strong force assumption, with
the singularity exhibited at |h| = L − δ.

Now, we seek a rigorous definition of weak solutions to (2.7)–(2.8). We
introduce some classical functional spaces from mathematical fluid dynamics
(see [33] for instance):

V(Ã) = {v ∈ D(Ã) |div v = 0},

H(Ã) = closure of V w.r.t. the norm ‖ · ‖L2(Ã),

V (Ã) = closure of V w.r.t. the norm ‖∇ · ‖L2(Ã).

We emphasize that since Ã is bounded in the vertical direction, there holds
the Poincaré inequality, which makes H1

0 (Ã) an Hilbert space with respect to
the scalar product (u, v)H1

0 (Ã) = (∇u,∇v)L2(Ã). The presence of the obstacle
B requires introducing some further spaces:

W(Ã) = {(v, l) ∈ V(Ã) × R | v|B = l ê2},

H(Ã) = closure of W in L2(Ã) × R, V(Ã) = closure of W in H1
0 (Ã) × R

to which we associate the scalar products

〈(v1, l1), (v2, l2)〉H(Ã) =
∫

Ã\B

v1 · v2 dy + ml1l2,

〈(v1, l1), (v2, l2)〉V(Ã) = 2
∫

Ã\B

D(v1) · D(v2) dy + ml1l2.
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Finally, the weak formulation of problem (2.7)–(2.8) will exploit the following
spaces, which may be defined for any given function h(t). In particular, for
every t

Wh(t) = {(v, l) ∈ W(Ã) | supp v ∈ Ah(t)},

Hh(t) = closure of Wh(t) in L2(Ã) × R, Vh(t) = closure of Wh(t) in H1
0 (Ã)×R.

(2.18)

Then, we introduce the standard trilinear form:

ψ(u, v, w) =
∫

Ω̃

(u · ∇) v · w. (2.19)

We are ready to state and prove the following proposition. Let us denote
by 〈·, ·〉 the duality pairing between V and V ′.

Proposition 2.2. Let the couple (v, h) be a classical solution to (2.7)–(2.8) such
that |h(t)| ≤ L − δ − ε0 for all t ∈ [0, T ] for some ε0 > 0. Then, building the
extension a = ah(y; ε0) in (2.9) choosing the same ε0, the function v̂ = v − a
satisfies

−
∫ T

0

{(v̂, φt)L2(Ω̃(t)) +mh′l′ − f(h) l}+2μ

∫ T

0

(D(v̂),D(φ))L2(Ω̃(t))

+
∫ T

0

{ψ(v̂, v̂, φ) + ψ(v̂, a, φ) + ψ(a, v̂, φ)

− ψ(h′ê2, a, φ) − ψ(h′ê2, v̂, φ)} =
∫ T

0

〈ĝ, φ〉 + mk0 l(0) + (v̂0, φ(0))L2(Ω̃(0))

(2.20)

for every (φ, l) ∈ C1([0, T ];Vh(t)) such that φ(·, T ) = l(T ) = 0, with ĝ :=
μΔa − (a · ∇) a.

Proof. Consider the problem satisfied by (v̂, h), (2.10)–(2.12). In order to
obtain (2.20), we choose a test couple (φ, l) ∈ C1([0, T ],Vh(t)) such that
φ(·, T ) = l(T ) = 0. We multiply the first equation in (2.10) by φ and inte-
grate by parts on Q̃T = Ω̃(t) × [0, T ]. All terms may be treated in a standard
manner (see, e.g., [11]). Though, a particular attention must be devoted to
the diffusive and pressure terms. Indeed, we temporally move the term μΔa
appearing in ĝ in (2.10) on the left-hand side and we get:
∫ T

0

(−μΔv̂ − μΔa + ∇p, φ)L2(Ω̃(t)) =
∫ T

0

(divT (v̂ + a, p), φ)L2(Ω̃(t))

= −
∫ T

0

∫
∂B

(T n̂) · φ +
∫ T

0

∫
Ω̃(t)

T : ∇φ

= −
∫ T

0

ê2 ·
∫

∂B

(T (v̂ + a, p)n̂) l

+
∫ T

0

∫
Ω̃(t)

T (v̂ + a, p) : ∇φ
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=
∫ T

0

(mh′′ + f(h)) l

+ 2μ

∫ T

0

(D(v̂),D(φ))L2(Ω̃(t))

+ 2μ

∫ T

0

(D(a),D(φ))L2(Ω̃(t))

=−
∫ T

0

mh′l′+
∫ T

0

f(h)l

+2μ

∫ T

0

(D(v̂),D(φ))L2(Ω̃(t))

+2μ

∫ T

0

(D(a),D(φ))L2(Ω̃(t))−mk0l(0).

Thus, given ψ in (2.19) and

〈ĝ, φ〉 = 2μ(D(a),D(φ))L2(Ω̃(t)) − ψ(a, a, φ).

we obtain the weak formulation (2.20). �

These tools enable us to define weak solutions of (2.7)–(2.8). This defini-
tion is a compromise between the definition given in [6, Definition 1] and the
one given in [13, Definition 3.1], although the extension in [13] is constructed
so as to isolate the obstacle.

Definition 2.3. A couple (v, h) is called a weak solution of (2.7)–(2.8) with
initial data v0, h0, k0 if, given v̂ = v − a, where a = ah is the extension in
(2.9) depending on some ε0 = ε0(v0, h0, k0, T ) > 0, it satisfies the following
requirements:

h ∈ W 1,∞(0, T ;R) ∩ C0([0, T ]; [−L + δ + ε0, L − δ − ε0]), (2.21)
(v̂, h′) ∈ L2(0, T ;Vh(t)) ∩ L∞(0, T ;Hh(t)),

(v̂, h) satisfies (2.20) for every (φ, l) ∈ C1([0, T ];Vh(t))
such that φ(·, T ) = l(T ) = 0. (2.22)

Remark 2.4. The requirement h ∈ C0([0, T ]; [−L + δ + ε0, L − δ − ε0]) ensures
that no collision occurs between the obstacle and the boundary of the channel
as there exists a separation strip of size ε0 > 0 for all t ∈ [0, T ]. This makes
the definition of weak solution consistent, since it also allows to build the
solenoidal extension a = ah in (2.9) precisely by choosing such ε0 > 0. As
already mentioned, we will prove that this requirement is satisfied by making
use of the strong force assumption satisfied by f , given in (1.4). On the other
hand, it is worth mentioning that, one could prove the no-collisions result
without adding the strong force assumption, at least in the case of an obstacle
purely translating in the vertical direction, because the contact surfaces are
of the class C∞ (see [20,30]). However, as soon as one allows the obstacle
to rotate, this result does not hold anymore because the contact surfaces are
merely Lipschitz continuous.
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Finally, we provide an estimate on the norm of ĝ, defined as in (2.11), on
the auxiliary domain Ã, which we will exploit later.

Lemma 2.5. Let ĝ be defined as in (2.11), a(y) as in (2.9) for some ε0 > 0 and
Ã0 as in (2.15). Then ĝ ∈ V ′(Ã), the dual space of V (Ã), and

‖ĝ‖V ′(Ã) ≤ μ‖∇a‖L2(Ã0)
+ ‖a‖2

L4(Ã0)
.

Proof. Multiply ĝ by ϕ ∈ V (Ã) and integrate by parts over Ã. Since ϕ = 0 on
∂Ã, we obtain ∫

Ã

ĝ · ϕdy = μ(∇a,∇ϕ)L2(Ã) − ψ(a, a, ϕ). (2.23)

We proceed similarly to [15, Lemma 4.1] and we exploit the partition (2.15)
together with the properties of a once we naturally extended this function to
the whole fixed domain Ã through its definition (2.9). In particular a = q̃ in
Ã1 ∪ Ã2. Thus we divide the first term in (2.23):

(∇a,∇ϕ)L2(Ã) =
∫

Ã0

∇a : ∇ϕdy +
∫

Ã1

∇a : ∇ϕdy +
∫

Ã2

∇a : ∇ϕdy

and we remark that∫
Ã1

∇q̃ : ∇ϕdy =
∫

Ã1

Δq̃ · ϕdy = −2λ

∫ −3

−∞

[ ∫ 2L−δ

−2L+δ

ϕ · n̂ dy2

]
dy1 = 0

as ϕ carries no flux being divergence-free on Ã. For the same reason, also the
integral over Ã2 vanishes and we obtain, by applying the Hölder inequality,

∣∣μ (∇a,∇ϕ)L2(Ã)

∣∣ ≤ μ

∣∣∣∣
∫

Ã0

∇a : ∇ϕdx

∣∣∣∣ ≤ μ‖∇a‖L2(Ã0)
‖∇ϕ‖L2(Ã0)

.

Since a = q̃ in Ã1 ∪ Ã2 and since (q̃ · ∇)q̃ ≡ 0, we have that, again by the
Hölder inequality and the property of the trilinear form (see [33, Chapter 2,
Lemma 1.3]),

∣∣ψ (a, a, ϕ)
∣∣ =

∣∣ψ (a, ϕ, a)
∣∣ =

∣∣∣∣
∫

Ã0

(a · ∇)ϕ · a dx

∣∣∣∣ ≤ ‖a‖2
L4(Ã0)

‖∇ϕ‖L2(Ã0)
.

Thus we obtain∣∣∣∣
∫

Ã

ĝ · ϕdy

∣∣∣∣ = |μ(∇a,∇ϕ)L2(Ã) − ψ(a, a, ϕ)|

≤
(

μ‖∇a‖L2(Ã0)
+ ‖a‖2

L4(Ã0)

)
‖∇ϕ‖L2(Ã) ∀ϕ ∈ V (Ã),

from which the thesis of the lemma follows. �

The following theorem states existence and uniqueness of weak solutions
to problem (2.7)–(2.8).

Theorem 2.6. Let Ω̃ be as in (2.5). Let f ∈ C1(−L+δ, L−δ) satisfy conditions
(1.4). Let h0 ∈ [−L+δ+ ε̂, L−δ− ε̂], for some ε̂ > 0 small arbitrarily fixed, and
(v0 − ah0(y, ε̂), k0) ∈ Hh0 , where ah is as in (2.9). Then, problem (2.7)–(2.8)
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admits a unique weak solution (v, h), defined as in Definition 2.3, for any T <
∞. Moreover, let F be defined as in (2.16) and let ε0 = ε0(v0, h0, k0, T ) > 0 be
such that |h(t)| ≤ L−δ−ε0 for all t ∈ [0, T ]. Then, given v̂ = v−a, where a =
ah(y, ε0), the pair (v̂, h′) is almost everywhere equal to a function continuous
from [0, T ] into Hh(t), and (v̂, h) satisfies the following energy estimate:

‖v̂(t)‖2
L2(Ω̃(t)) + m‖h′(t)‖2

L∞(0,T ;R) + 2 F (h(t)) + 4 μ

∫ t

0
‖D(v̂(s))‖2

L2(Ω̃(s)) ds

≤ ‖v̂0‖2
L2(Ã\B) +m|k0|2 + 2F (h0) +

4

μ

∫ T

0
‖ĝ(s)‖2

V ′(Ã\B)ds

+
4

μ

(4L − 2δ)2

π2
·max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)

·
∫ T

0
α(s) exp

[
4

μ

(4L − 2δ)2

π2
· max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)
s

]
ds,

(2.24)

where α(s) is defined as

α(s) = ‖v̂0‖2
L2(Ã\B)

+ m|k0|2 + 2F (h0) +
4
μ

∫ s

0

‖ĝ(τ)‖2
V ′(Ã\B) dτ. (2.25)

We observe that one may expect the energy inequality in Theorem 2.6
to be an equality as for the case of the Navier–Stokes equations in a bounded
2D domain, but so far it is not known whether we should expect an equality
also in the case of a 2D domain with cylindrical outlets to infinity (see [26]).
Since the original problem (1.2) is equivalent to problem (2.7)–(2.8), the proof
of Theorem 1.1 is completed if we prove Theorem 2.6. We emphasize that
Theorem 2.6 has a stronger statement than Theorem 1.1, because it guarantees
the continuity of the (unique) solution in a suitable sense. The proof of the
existence part is developed in Sects. 3 and 4 and, as previously mentioned, it
takes advantage of a penalty method. Uniqueness is proven in Sect. 5: there, we
will consider two weak solutions of problem (2.7)–(2.8), (v1, h1) and (v2, h2), in
the sense of Definition 2.3. Given the extensions of the Poiseuille flow a1 = ah1

and a2 = ah2 defined as in (2.9), one can put v̂1 = v1 −a1 and v̂2 = v2 −a2 and
do the computations on (v̂1, h1) and (v̂2, h2). As we already pointed out in the
Introduction, we are not allowed to take the difference between the equation
in weak form satisfied by the two solutions, (2.20), because v̂1 and v̂2 are not
defined on the same domain: the definition of the functional spaces, (2.18),
depends on h1, h2, and the weak formulation (2.20) is set on two different
domains, Ω̃1(t) and Ω̃2(t). To solve such issue, we follow the procedure devised
in [16]; here, the authors build a map ψt projecting Ω̃2(t) on Ω̃1(t), which allows
to define a change of variables, so that they can introduce a solenoidal velocity
vector field v̂2, the pullback of v̂2 by such map, on Ω̃1(t). As a consequence,
one can define

w := v̂1 − v̂2, ĥ := h1 − h2. (2.26)

Then, one proceeds standardly, obtaining the equation satisfied by (w, ĥ), pro-
viding some proper estimates, and finally one can conclude by applying a
Grönwall’s inequality.
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3. A penalized problem

After changing problem (1.2) into the equivalent problem (2.10)–(2.12), the
second step of the penalty method exactly implies penalizing (2.20), which is
the weak formulation of problem (2.10)–(2.12). We denote by Eh the comple-
mentary domain of Ah in Ã, Eh = Ã\Ah and we introduce its characteristic
function χEh

. We emphasize that the functions belonging to W(Ã) differ from
those belonging to Wh precisely because their support might be also in Eh.
The penalty method eliminates the difficulty induced by the time dependent
domain by allowing to solve the problem in the fixed domain Ã, so that clas-
sical methods can be applied, by introducing a penalization term which takes
care of the remainder in Eh.

We extend v̂0 by zero outside Ah(0), while a(y) is naturally extended
outside Ah(t) to the whole fixed domain Ã through its definition (2.9) for
every t ∈ [0, T ] and we solve the following problem:

Let n ≥ 1 be fixed. Find

h ∈ W 1,∞(0, T ;R) ∩ C0([0, T ]; [−L + δ + ε0, L − δ − ε0])

(v̂, h′) ∈ L2(0, T ;V(Ã)) ∩ L∞(0, T ;H(Ã)),

for some ε0 = ε0(v̂0, h0, k0, T ) > 0, satisfying

−
∫ T

0

{(v̂, φt)L2(Ã\B)+mh′l′−f(h) l} + 2μ

∫ T

0

(D(v̂),D(φ))L2(Ã\B)

+
∫ T

0

{ψ(v̂, v̂, φ) + ψ(v̂, a, φ) + ψ(a, v̂, φ)−ψ(h′ê2, a, φ)

− ψ(h′ê2, v̂, φ)} + n

∫ T

0

(χEh
v̂, φ)L2(Ã)

=
∫ T

0

〈ĝ, φ〉 + mk0l(0) + (v̂0, φ(0))L2(Ã\B),

∀ (φ, l) ∈ C1([0, T ],V(Ã)) such that φ(·, T ) = l(T ) = 0.

(3.1)

We remark that the trilinear forms in (3.1) are defined as in (2.19), where
the integral is now on Ã\B, but with a little abuse of notation we still use ψ
as a label function. The existence of a solution to the penalized problem is
proven in the following proposition:

Proposition 3.1. Let Ã be a fixed domain defined by (2.13), partitioned as in
(2.15). Let f ∈ C1(−L + δ, L − δ) satisfy conditions (1.4). Assume that h0 ∈
[−L+δ+ε̂, L−δ−ε̂] for some ε̂ > 0 small arbitrarily fixed, and (v̂0, k0) ∈ H(Ã).
Then, there exists at least one solution (v̂, h) to problem (3.1) such that |h(t)| ≤
L − δ − ε0 for some ε0 = ε0(v̂0, h0, k0, T ) > 0. This solution is global in time
and, moreover, (v̂, h′) is almost everywhere equal to a function continuous from
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[0, T ] into H(Ã); furthermore, given F (h) as in (2.16), it satisfies the energy
estimate:

‖v̂(t)‖2
L2(Ã\B) +m‖h′(t)‖2

L∞(0,T ;R) + 2 F (h(t)) + 4μ

∫ t

0
‖D(v̂(s))‖2

L2(Ã\B) ds

+ 2 n

∫ t

0

∫
Eh

|v̂(s)|2 ds

≤ ‖v̂0‖2
L2(Ã\B) +m|k0|2 + 2F (h0) +

4

μ

∫ T

0
‖ĝ(s)‖2

V ′(Ã\B)ds

+
4

μ

(4L − 2δ)2

π2
·max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)

·
∫ T

0
α(s) exp

[
4

μ

(4L − 2δ)2

π2
· max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)
s

]
ds

(3.2)

with

α(s) = ‖v̂0‖2
L2(Ã\B)

+ m|k0|2 + 2F (h0) +
4
μ

∫ s

0

‖ĝ(τ)‖2
V ′(Ã\B) dτ.

Proof. Since the domain Ã is fixed, we can apply the Faedo–Galerkin pro-
cedure. The space V(Ã) is a separable Hilbert space, hence we can choose a
sequence given by a countable set of couples {(wi, 1)}∞

i=1 beloging to W(Ã) to
be a basis in V(Ã), orthonormal in H(Ã). For each N ≥ 1 we construct an
approximate solution

(
v̂N

HN

)
=

N∑
i=1

ciN (t)
(

wi

1

)
,

where the coefficients ciN are determined by the following first-order integro-
ordinary differential system

N∑
i=1

(wi, wj)L2(Ã\B)c
′
iN (t)+m

N∑
i=1

c′
iN (t)+f(hN (t))

+2μ

N∑
i=1

(D(wi),D(wj))L2(Ã\B)ciN (t) +
k∑

i,l=1

ψ(wi, wl, wj) ciN (t)clN (t)

+
N∑

i=1

ψ(wi, a, wj) ciN (t) +
N∑

l=1

ψ(a,wl, wj) clN (t) −
N∑

i=1

ψ(ê2, a, wj) ciN (t)

−
k∑

i,l=1

ψ(ê2, wl, wj) ciN (t)clN (t)

+
N∑

i=1

n(χEhN
wi, wj)L2(Ã)ciN (t) = 〈ĝ, wj〉 j = 1, . . . , N (3.3)

hN (t) = h0 +
N∑

i=1

∫ t

0

ciN (s)ds,

ciN (0) = the ith component of v̂0,N , HN (0) = k0,N .
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The initial conditions are given by the orthogonal projections in H(Ã) of
(v̂0, k0) onto the space spanned by {(wi, 1)}N

i=1, which we call (v̂0,N , k0,N ).
This system has a solution defined on some interval [0, tN ], provided that
there exists ε0 > 0 such that

|hN (t)| ≤ L − δ − ε0 ∀ t ∈ [0, tN ]. (3.4)

In this way, we are allowed to build the function a as in (2.9), by choosing the
same ε0. We shall see that this condition is indeed always guaranteed for any
t ∈ [0, T ] with T < ∞, because of the presence of f in (2.8). We will prove this
claim at the end of the proof of this proposition.

Our aim is finding an apriori estimate for the approximate solution
(v̂N ,HN ). To this end, we multiply (3.3) by cjN (t) and add the equations
for j = 1, . . . , N :

(v̂′
N , v̂N )L2(Ã\B)+mH ′

NHN + f(hN )HN +2μ ‖D(v̂N )‖2
L2(Ã\B) + ψ(v̂N , a, v̂N )

−ψ(HN ê2, a, v̂N ) + n‖v̂N‖2
L2(EHN

) = 〈ĝ, v̂N 〉 j = 1, . . . , N

which we rewrite as

1
2

d

dt

(
‖v̂N‖2

L2(Ã\B)
+ m|HN |2 + 2F (hN )

)

+2μ ‖D(v̂N )‖2
L2(Ã\B) + n‖v̂N‖2

L2(EHN
)

= 〈ĝ, v̂N 〉 − ψ(v̂N , a, v̂N ) + ψ(HN ê2, a, v̂N ), (3.5)

where F is defined in (2.16). Our aim is finding an a priori estimate for the
approximate solution (v̂N ,HN ). To this end, we start by estimating the right-
hand side of (3.5). The first trilinear form may be bounded exploiting the
Hölder inequality and the Young inequality

ψ(v̂N , a, v̂N ) ≤ ‖∇a‖L∞(Ã\B)‖v̂N‖2
L2(Ã\B)

≤ (4L − 2δ)
π

‖∇a‖L∞(Ã\B)‖v̂N‖L2(Ã\B)‖∇v̂N‖L2(Ã\B)

≤ 2
μ

(4L − 2δ)2

π2
‖∇a‖2

L∞(Ã\B)‖v̂N‖2
L2(Ã\B) +

μ

8
‖∇v̂N‖2

L2(Ã\B),

where we used the fact that the Poincaré constant in the domain Ã is π2/(4L−
2δ)2. For what concerns the second trilinear form, we exploit again the defini-
tion of a, as we did when proving Lemma 2.5. Since a(y) is equal to 0 on the
obstacle B, we write
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ψ(HN ê2, a, v̂N ) =
∫

Ã\B

(HN ê2 · ∇)a · v̂N =
∫

Ã

(HN ê2 · ∇)a · v̂N

=
∫ +∞

−∞

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)a · v̂N dy2

)
dy1.

Then

ψ(HN ê2, a, v̂N ) ≤
∣∣∣∣
∫ −3

−∞

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)q̃ · v̂N dy2

)
dy1

+
∫ +3

−3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)a · v̂N dy2

)
dy1

+
∫ ∞

+3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)q̃ · v̂N dy2

)
dy1

∣∣∣∣.

(3.6)

Consider the partition (2.15). The first term is treated as follows, by using
(2.14):

∣∣∣∣
∫ −3

−∞

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)q̃ · v̂N dy2

)
dy1

∣∣∣∣
≤ |HN |

∫ −3

−∞

(
‖∇q̃‖L2(−2L+δ,2L−δ)‖v̂N‖L2(−2L+δ,2L−δ)

)
dy1

≤ |HN |λ ξ̃

∫ −3

−∞
‖v̂N‖L2(−2L+δ,2L−δ) dy1

≤ |HN |λ ξ̃ ‖v̂N‖L2(Ã1)
≤ 4L − 2δ

π
|HN |λ ξ̃ ‖∇v̂N‖L2(Ã1)

.

The third integral in (3.6) can be treated analogously, so that we obtain:
∣∣∣∣
∫ −∞

+3

( ∫ 2L−δ

−2L+δ

(HN ê2 · ∇)q̃ · v̂N dy2

)
dy1

∣∣∣∣ ≤ 4L − 2δ

π
|HN |λ ξ̃ ‖∇v̂N‖L2(Ã2)

.

For what concerns the term in the region Ã0 = [−3, 3] × [−2L + δ, 2L − δ]:
∫ +3

−3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)a · v̂N dy2

)
dy1

≤ 4L − 2δ

π
|HN |‖∇a‖L2(Ã0)

‖∇v̂N‖L2(Ã\B).

Thus, we finally obtain that:

ψ(HN ê2, a, v̂N ) ≤ 4L − 2δ

π
|HN |‖∇a‖L2(Ã0)

‖∇v̂N‖L2(Ã\B)

+
4L − 2δ

π
|HN |λ ξ̃ ‖∇v̂N‖L2(Ã\B)

≤ 2
μ

(4L − 2δ)2

π2
|HN |2(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2) +

μ

4
‖∇v̂N‖2

L2(Ã\B)
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where we used the Young inequality and the fact that ‖∇v̂N‖2
L2(Ã1)

+ ‖∇v̂N‖2
L2(Ã2)

≤ ‖∇v̂N‖2
L2(Ã\B). Then, we apply again the Young inequal-

ity, after the Schwarz inequality, to provide a bound for the first term on the
right-hand side in (3.5):

|〈ĝ, v̂N 〉| ≤ ‖ĝ‖V ′(Ã\B)‖∇v̂N‖L2(Ã\B) ≤
2
μ

‖ĝ‖2
V ′(Ã\B) +

μ

8
‖∇v̂N‖2

L2(Ã\B),

since Lemma 2.5 guarantees that ĝ ∈ V ′(Ã\B). Thus, by reordering Eq. (3.5),
once we have plugged these estimates and used the following fact
∫

Ã\B

|∇v̂N |2 dy ≤
∫

Ã

|∇v̂N |2 dy = 2
∫

Ã

|D(v̂N )|2 dy = 2
∫

Ã\B

|D(v̂N )|2 dy,

since v̂N is a divergence free vector field vanishing on ∂Ã, we obtain

d

dt

(
‖v̂N‖2

L2(Ã\B)
+ m|HN |2 + 2F (hN )

)
+ μ‖∇v̂N‖2

L2(Ã\B)+ 2n‖v̂N‖2
L2(EHN

)

≤ 4
μ

‖ĝ‖2
V ′(Ã\B) +

4
μ

(4L − 2δ)2

π2
‖∇a‖2

L∞(Ã\B)‖v̂N‖2
L2(Ã\B)

+
4
μ

(4L − 2δ)2

π2
|HN |2(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2).

(3.7)

From (3.7), by integrating between 0 and t, we deduce that

‖v̂N (t)‖2
L2(Ã\B)

+m|HN (t)|2+2F (hN (t)) + 2μ
∫ t

0

‖∇v̂N (s)‖2
L2(Ã\B) ds

+ 2n

∫ t

0

∫
EHN

|v̂N (s)|2 ds

≤‖v̂0,N‖2
L2(Ã\B)

+m|k0,N |2+2F (h0) +
4
μ

∫ t

0

‖ĝ(s)‖2
V ′(Ã\B)ds

+
4
μ

(4L − 2δ)2

π2
‖∇a‖2

L∞(Ã\B)

∫ t

0

‖v̂N (s)‖2
L2(Ã\B)ds

+
4
μ

(4L − 2δ)2

π2
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

∫ t

0

|HN (s)|2ds

≤ ‖v̂0‖2
L2(Ã\B)

+m|k0|2 + 2F (h0) +
4
μ

∫ t

0

‖ĝ(s)‖2
V ′(Ã\B)ds

+
4
μ

(4L − 2δ)2

π2
‖∇a‖2

L∞(Ã\B)

∫ t

0

‖v̂N (s)‖2
L2(Ã\B)ds

+
4
μ

(4L − 2δ)2

mπ2
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

∫ t

0

m|HN (s)|2ds

≤ ‖v̂0‖2
L2(Ã\B)

+m|k0|2+2F (h0)+
4
μ

∫ t

0

‖ĝ(s)‖2
V ′(Ã\B)ds
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+
4
μ

(4L − 2δ)2

π2
·max

(
‖∇a‖2

L∞(Ã\B),
1
m

(‖∇a‖2
L2(Ã0)

+ λ2ξ̃2)
)

·
∫ t

0

(
‖v̂N (s)‖2

L2(Ã\B) + m|HN (s)|2
)

ds.

Since F (hN ) ≥ 0 by (2.17), invoking Grönwall’s lemma, we obtain for any
instant t ∈ [0, T ]:

‖v̂N (t)‖2
L2(Ã\B)

+ m|HN (t)|2

≤ α(t) exp
[

4
μ

(4L − 2δ)2

π2
· max

(
‖∇a‖2

L∞(Ã\B),
1
m

(‖∇a‖2
L2(Ã0)

+ λ2ξ̃2)
)

t

]
,

with

α(t) = ‖v̂0‖2
L2(Ã\B)

+ m|k0|2 + 2F (h0) +
4
μ

∫ t

0

‖ĝ(s)‖2
V ′(Ã\B) ds.

Thus, we finally get

‖v̂N (t)‖2
L2(Ã\B)+m|HN (t)|2+2 F (hN (t))

+2 μ

∫ t

0
‖∇v̂N (s)‖2

L2(Ã\B) ds+2 n

∫ t

0

∫
EHN

|v̂N (s)|2 ds

≤ ‖v̂0‖2
L2(Ã\B) +m|k0|2 + 2F (h0) +

4

μ

∫ t

0
‖ĝ(s)‖2

V ′(Ã\B)ds

+
4

μ

(4L − 2δ)2

π2
·max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)

·
∫ t

0
α(s) exp

[
4

μ

(4L − 2δ)2

π2
· max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)
s

]
ds

≤ ‖v̂0‖2
L2(Ã\B) +m|k0|2 + 2F (h0)+

4

μ

∫ T

0
‖ĝ(s)‖2

V ′(Ã\B)ds

+
4

μ

(4L − 2δ)2

π2
·max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)

·
∫ T

0
α(s) exp

[
4

μ

(4L − 2δ)2

π2
· max

(
‖∇a‖2

L∞(Ã\B),
1

m
(‖∇a‖2

L2(Ã0)
+ λ2ξ̃2)

)
s

]
ds

(3.8)

for all t ∈ [0, T ], where the right hand-side is bounded if T < ∞. In partic-
ular, the solution exists globally in time provided that condition (3.4) holds,
which we still need to prove; such condition in the original inertial reference
system translates the condition of absence of collisions occurring between the
rectangular obstacle and the boundary of the channel.

Estimate (3.8) implies the existence of a couple (v̂, h′) ∈ L∞(0, T ;H(Ã))∩
L2(0, T ;V(Ã)) and of a subsequence, which we denote by (v̂N , h′

N ), such that,
as N → ∞:

(v̂N , h′
N ) ⇀ (v̂, h′) in L2(0, T ;V(Ã)), (v̂N , h′

N ) ∗
⇀ (v̂, h′) in L∞(0, T ;H(Ã)),

hN → h in C0([0, T ];R),

(3.9)
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the latter holding because of the compact embedding of W 1,∞(0, T ;R) into
C0([0, T ];R). Moreover, through classical methods (see [6, Section 3] and [33,
Chapter 3, Section 3]), in view of (3.8) together with the fact that f(hN )
can be thought to be a bounded function as long as the rigid obstacle does
not touch the boundary of the channel, one can prove a further convergence
property (up to the extraction of a subsequence):

(v̂N , h′
N ) → (v̂, h′) inL2(0, T ;H(O)) for any compact setO ⊂ Ã.

By [6, Lemma 1] we also have that

χEhN
∩O → χEh∩O inLp(0, T ;Lp(O)) for any compact set O ⊂ Ã.

(3.10)
The convergence results in (3.9) together with (3.10), where we choose as O
the support of wj , us to pass to the limit in the system satisfied by (v̂N , h′

N ),
which is

(v̂′
N , wj)L2(Ã\B) + mh′

N + f(h′
N ) + 2μ (D(v̂N ),D(wj))L2(Ã\B)

+ψ(v̂N , v̂N , wj) + ψ(v̂N , a, wj) + ψ(a, v̂N , wj)
−ψ(h′

N ê2, a, wj) − ψ(h′
N ê2, v̂N , wj) + n(χEhN

v̂N , wj)L2(Ã) = 〈ĝ, wj〉
j = 1, . . . , N

v̂N (0) = v̂0,N , h′
N (0) = k0,N ,

and to obtain that (v̂, h) in (3.9) satisfies (3.1), as well as v̂(0) = v̂0 in the distri-
butional sense, by exploiting classical arguments (see for instance [33, Chapter
3, Section 3]). To prove that (v̂, h′) is almost everywhere equal to a function
continuous from [0, T ] into H(Ã), one can easily proceed as in [33, Chapter
3, Theorem 3.1] to obtain that (v̂′, h′′) ∈ L2(0, T ;V′(Ã)) and then apply [33,
Chapter 3, Lemma 1.2], by exploiting the fact that {V(Ã),H(Ã),V′(Ã)} is an
Hilbert triplet. Moreover, the function v̂ obeys the energy inequality (3.2),
which is a natural consequence of the convergence results that we have just
proved.

The proof of Proposition 3.1 is complete once we prove the following
lemma, which, combined with the last convergence result in (3.9), allows to
conclude on the global-in-time character of the solution.

Lemma 3.2. For all T < ∞, there exists ε0 = ε0(v̂0, h0, k0, T ) > 0 such that

|hN (t)| ≤ L − δ − ε0 ∀ t ∈ [0, T ].

Proof. By contradiction, let us suppose that there exists T < ∞ such that
hN (t̄) = L − δ for some t̄ ∈ [0, T ]. The same procedure can be applied if
hN = −L + δ. Since hN ∈ C0([0, T ];R), for any η > 0 small there exist
ε1 > ε2 > 0 such that

hN (t) ∈ [L − δ − 2η, L − δ − η], ∀ t ∈ (t̄ − ε1, t̄ − ε2).
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Taking into account the conditions satisfied by f reported in (1.4), one can
take η small enough so that there exists a constant C̄ > 0 such that

F (hN ) >

∫ L−δ−η

L−δ−2η

f(s)ds >

∫ L−δ−η

L−δ−2η

C̄ exp
1

(L − δ − s)4+r
ds

=
∫ 2η

η

C̄ exp
1

τ4+r
dτ ≥ C̄η exp

1
(2η)4+r

. (3.11)

The solenoidal extension a in (2.9) is now built taking ε0 = η, thus

a(y) = ahN
(y; η).

From the energy estimate (3.8) (which is uniform with respect to N), (3.11)
and the estimates (2.4), we obtain that there exist a positive constant C0,
depending on the initial data h0, k0, v̂0, and two positive constants C1, C2

depending on the geometrical and physical parameters, i.e. m,λ,L, δ, μ, such
that

2 C̄η exp
1

(2η)4+r
< C0 +

C1

η4
T +

C2

η4

∫ T

0

(
C0 +

C1

η4
s

)
exp

(
C2

η4
s

)
ds.

(3.12)

Integrating by parts the right-hand side of (3.12), we obtain that

2 C̄η exp
1

(2η)4+r
<

C1

C2
+ C0 exp

C2T

η4
− C1

C2
exp

C2T

η4
+

C1

η4
+

C1

η4
T exp

C2T

η4
.

This immediately yields a contradiction, since r > 0. From the above argument,
for all T < ∞ it must be that |hN (t)| < L − δ when t ∈ [0, T ]. Since hN ∈
C0([0, T ];R) and [0, T ] is compact, the thesis of the lemma follows. �

4. Proof of the main result: existence

We already mentioned how proving Theorem 1.1 is equivalent to proving The-
orem 2.6. The idea of the proof of the first part of Theorem 2.6 is exploiting
the result of existence for the penalized problem, given in Proposition 3.1. In-
deed, the next step of the penalty method implies passing to the limit in (3.1)
with respect to n. Again, we will follow the procedure by [6], highlighting the
differences when it is necessary. Let us label the weak solution to (3.1) making
the dependence on n explicit as (v̂n, hn); of course Eh also depends on n, thus
it may be relabelled as Ehn

This solution satisfies the energy estimate (3.2),
where we should also make explicit the dependence on n. Let us state and
prove two consequences of this fact.

The first consequence is natural: there exists a subsequence, which we
denote again by (v̂n, h′

n) such that

(v̂n, h′
n) ⇀ (v̂, h′) in L2(0, T ;V(Ã)), (v̂n, h′

n) ∗
⇀ (v̂, h′)

in L∞(0, T ;H(Ã)), hn → h in C0([0, T ];R), (4.1)

where the latter is due to the compact embedding of W 1,∞(0, T ;R) onto
C0([0, T ];R).
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The second consequence is proven in the following lemma.

Lemma 4.1. For any K ⊂ Ã compact set, the sequence v̂n satisfies

lim
n→∞

∫ T

0

∫
Eh∩K

|v̂n|2 dy ds = 0. (4.2)

Proof. From (3.2), we obtain that

lim
n→∞

∫ T

0

∫
Ehn

|v̂n|2 dy ds = 0. (4.3)

Following [6], we write∫ T

0

∫
Eh∩K

|v̂n|2 dy ds ≤
∫ T

0

∫
Ehn∩K

|v̂n|2 dy ds +
∫ T

0

∫
{Eh\Ehn}∩K

|v̂n|2 dy ds.

(4.4)

Then, we use the Hölder inequality:∫ T

0

∫
{Eh\Ehn}∩K

|v̂n|2 dy ds

=
∫ T

0

∫
Ã

χ{Eh\Ehn}∩K |v̂n|2 dy ds

≤
∫ T

0

‖χ{Eh\Ehn}∩K‖L2(Ã)‖v̂n‖2
L4(Ã)

→ 0 as n → ∞, (4.5)

where we exploit the result provided in [6, Lemma 1] to infer that χ{Eh\Ehn}∩K

→ 0 in Lp(Ã × [0, T ]) strongly ∀ p ∈ [1,∞) and that u ∈ L4(Ã × [0, T ]) as it
is proven in [33, Lemma 3.3]. If we combine (4.3), (4.5), (4.4), we obtain the
sought result (4.2). �

Now, we introduce, for any η > 0, given Oh(t) any bounded set such that
B̄ ⊂ Oh(t) ⊂ Ah(t),

QOh(t) = {(y, t) ∈ Ã × [0, T ] | y ∈ Oh(t)},

Σh(t),Oh(t)
= {(y, t) ∈ Ã × [0, T ] | y ∈ ∂Oh(t)},

Qi,η,Oh(t) = {(y, t) ∈ Ã × [0, T ] | y ∈ Oh(t), d(y, ∂Oh(t)) < η}, (4.6)

that is Qi,η contains the couple (y, t) such that y belongs to the interior bound-
ary strip of Oh. The sets in (4.6) depend on the choice of Oh, but from now
on we will omit the subscript Oh not to make the notation heavy. In order to
develop the proof of Theorem 2.6, we need to first prove an auxiliary result,
i.e. that v̂n is relatively compact in L2(Q), which implies the existence of a
subsequence, still labelled as v̂n, satisfying the following strong convergence
result

v̂n → v̂ in L2(Q). (4.7)

The procedure implemented in [6] in order to prove such convergence result
implies exploiting an Aubin–Lions type lemma: more precisely, one wants to
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apply [10, Lemma 4.6]. However, first we need to build the structure to apply
such lemma. Thus, we introduce an open bounded set D ⊂ R2 with Lipschitz
boundary such that B̄ ⊂ D, and the function spaces

M(D) = {(v, l) ∈ L2(D̄) × R |div v = 0, v|B = l ê2},

Z(D) = {(v, l) ∈ H(D) × R | v|B = l ê2} ⊂ M(D),

where H(D) can be characterized as follows since D is a Lipschitz open
bounded set (see [33, Theorem 1.4])

H(D) = {v ∈ L2(D) |div v = 0 , γνu = 0on ∂D}.

We associate to both Z(D) and M(D) the following scalar product:

((v1, v2)) =
∫

D\B

v1 · v2 dy + l1l2,

which makes both of them Hilbert spaces. Then, we define the projector P (D),

P (D) : M(D) → Z(D).

We will now prove two technical lemmas, starting by a useful property of such
projector.

Lemma 4.2. There exists a positive constant C such that

‖v − P (D)v‖L2(D) ≤ C‖v‖L2(∂D) ∀ v ∈ M(D) ∩ H1(D).

Proof. We follow step by step the proof of [6, Lemma 4]. We emphasize that
even if D is merely a Lipschitz domain this does not compromise the validity
of the proof. �

Then we prove the second technical lemma needed to guarantee (4.7).

Lemma 4.3. Let D be defined as above. Then we choose 0 < α < β < T , so
that D×(α, β) ⊆ Q; let Un be the restriction of v̂n to D×(α, β). Then P (D)Un

is strongly convergent in L2(D × (α, β)).

Proof. We introduce an auxiliary function space:

F (D) = {(v, l) ∈ H1
0 (D) × R |div v = 0, v|B = l ê2}.

Any element in F (D) can be extended by 0 in Ã\B, so we can consider F (D) ⊆
V(Ã). We pick as a test function φ in (3.1) φ = a(t)ϕ, with ϕ ∈ F (D) and
a(t) ∈ D(α, β) to obtain

d

dt
{(Un, ϕ)L2(D\B)+ mh′

n l}+f(hn) l = F (D)′〈gn, ϕ〉F (D) ∀ϕ ∈ F (D)

d

dt
((Un, ϕ)) = F (D)′〈gn, ϕ〉F (D) − f(hn) l ∀ϕ ∈ F (D)

(4.8)

where

F (D)′〈gn, ϕ〉F (D) =−2μ(D(Un),D(ϕ))L2(D)−ψ(Un, Un, ϕ)−ψ(Un, a, ϕ)

−ψ(a, Un, ϕ) + ψ(h′
nê2, a, ϕ) + ψ(h′

nê2, Un, ϕ)−〈ĝ, ϕ〉,
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provided that n is large enough. Since F (D) ⊆ Z(D), we may rewrite (4.8) as

d

dt
((P (D)Un, ϕ)) = F (D)′〈gn, ϕ〉F (D) −f(hn) l ∀ϕ ∈ F (D). (4.9)

From (4.9), we have that

| d

dt
((P (D)Un, ϕ))| = |F (D)′〈gn, ϕ〉F (D)| + |f(hn) l| ∀ϕ ∈ F (D).

(4.10)

Then, we can prove that the right-hand side of (4.10) can be bounded. Indeed,
by exploiting classical estimates (see [33, Chapter 3, Section 3.3]), Lemma 2.5,
the energy estimate (2.24), we obtain that

|F (D)′〈gn, ϕ〉F (D)| ≤ M1‖∇ϕ‖L2(D), ∀n ≥ 1, (4.11)

where M1 is a constant depending on T, μ, λ, the geometry of the problem and
the initial conditions. Also

|f(hn) l| ≤ M2|l|, ∀n ≥ 1, (4.12)

because f(hn) can be thought to be a bounded function as long as the rigid
obstacle does not touch the boundary of the channel, which has been proven.
Bounds (4.11) and (4.12) imply that∥∥∥∥ d

dt
P (D)Un

∥∥∥∥
L2(0,T ; [F (D)]′)

≤ M1 + M2, ∀n ≥ 1.

This inequality, together with the fact that Un is a bounded set in L2(0, T ;Z(D)
∩ H1(D)) because of the energy estimate (3.2), and the compact inclusions
Z(D) ∩ H1(D) ⊂ Z(D) ⊂ [F (D)]′, allow to apply [10, Lemma 4.6] so as to
obtain that P (D)Un forms a compact set in L2(D × (α, β)). �

Finally, one can give the following lemma:

Lemma 4.4. The sequence v̂n is relatively compact in L2(Q), thus there holds
(4.7).

Proof. In order to prove this lemma, one can follow precisely the procedure
given in [6, Theorem 3], once we declare the following notations: given s ∈ N,
define α0, α1, . . . , αs, real numbers, and the sets Ω1,Ω2, . . . ,Ωs such that

0 = α0 < α1 < · · · < αs = T

Ω̄i×]αi−1, αi[⊂ Q, Q\(Ωi×]αi−1, αi[) ⊂ Qi,η.

Then we denote

Iη =
s⋃

i=1

Ωi×]αi−1, αi[, Qη = Q\Iη.

With the help of such definitions, we follow step by step the proof of [6, Theo-
rem 3], which is divided in two parts. The first part uses Lemma 4.3, while the
second part aims at exploiting the classical compactness result by Kolmogorov,
[24, Chapter 3, Section 11.3, Theorem 3]. �
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We can now proceed to the proof of Theorem 2.6. The objective is proving
that the limit (v̂, h) in (4.1) is a solution to the original problem, thus it satisfies
(2.21)–(2.22)–(2.20).

We start by proving that (2.20) is satisfied. In other words, we pass to
the limit in (3.1). Take (φ, l) ∈ C1([0, T ];Wh(t)). Since there holds the last
convergence result in (4.1), there exists n0 ∈ N such that

(φ, l) ∈ C1([0, T ];Whn(t)) ∀n ≥ n0,

and the penalty term in (3.1) vanishes for all n ≥ n0, by applying Lemma
4.1, where K is the compact support of φ. The convergence results (4.1), (4.7)
(where as Oh defining Q in (4.6) we take the compact support of φ) together
with the density of Wh(t) in Vh(t) prove that (v̂, h) also satisfies (2.20) for
T < ∞.

The results of convergence (4.1) prove that (v̂, h) ∈ L2(0, T ;V(Ã)) ∩
L∞(0, T ;H(Ã)). By contradiction, let us suppose that supp(v̂) invades Eh.
Then, we can find K ⊂ Ã such that supp(v̂) ⊂ K. However, from (4.7) and
Lemma 4.1, we get a contradiction; thus in particular we obtain that (v̂, h)
satisfies (2.21)–(2.22). Moreover, with analogous considerations as those that
we did when proving Proposition 3.1, we obtain the continuity property of
(v̂, h) expressed in the statement of Theorem 2.6. Finally, the energy estimate
(2.24) simply follows from taking the limit as n → ∞ in (3.2); that explains
the expression for α(s) in (2.25). As a consequence of (3.2), we also obtain the
global character in time of the solution and the existence of some ε0 > 0 such
that |h(t)| ≤ L − δ − ε0 for all t ∈ [0, T ], by proceeding precisely as in Lemma
3.2.

5. Proof of the main result: uniqueness

We begin by stating the following regularity property on a solution given by
Theorem 2.6.

Lemma 5.1. Let (v, h) be a weak solution to problem (2.7)–(2.8) in the sense
of Definition 2.3. Then, given v̂ = v −a, where a = ah is the extension defined
as in (2.9), there holds

t v̂ ∈ L2(0, T ;Vh(t)), t ∂tv̂ ∈ L2(0, T ;V′
h(t)). (5.1)

Moreover, one can estimate the trilinear form as follows, for any w ∈ H1
0 (Ω̃(t)):

|ψ(w, v̂, w)| ≤ 21/2‖w‖L2(Ω̃(t))‖∇w‖L2(Ω̃(t))‖∇v̂‖L2(Ω̃(t)). (5.2)

Proof. The result in (5.1) follows immediately from the properties of any weak
solutions to problem (2.7)–(2.8) (see Theorem 2.6) (see also [16, Lemma 6]).
For what concerns (5.2), we can exploit the Hölder inequality together with
the classical interpolation argument [33, Chapter 3, Lemma 3.3]:

|ψ(w, v̂, w)| ≤ ‖w‖2
L4(Ω̃(t))

‖∇v̂‖L2(Ω̃(t))

≤ 21/2‖w‖L2(Ω̃(t))‖∇w‖L2(Ω̃(t))‖∇v̂‖L2(Ω̃(t)). �
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Let us consider two weak solutions of the equivalent problem (2.7)–(2.8),
(v1, h1) and (v2, h2), in the sense of Definition 2.3, with the same initial con-
ditions, where v1 is defined on the fluid domain Ω̃1(t) while v2 is defined on
Ω̃2(t). Let ε0 > 0 be such that mint∈[0,T ](dist(B, ∂Ω̃i)) ≥ ε0 for i = 1, 2; the
existence of such ε0 comes from Theorem 2.6. Finally, let ζ(y1, y2) be a smooth
cutoff function equal to 0 in a ε0/4 neighbourhood of ∂B and to 1 for any (t, y)
such that dist(y, ∂B) ≥ ε0/2. Then, for each of the two solutions, we define a
solenoidal velocity vector field Vi : [0, T ] × Ω̃i → R

2 as

Vi(t, y) := {−y1h
′
i∂y2ζ, ζh′

i + y1h
′
i∂y1ζ}. (5.3)

Notice that

Vi(t, y) =

{
0 if dist(y, ∂B) ≥ ε0/2
−h′

iê2 if dist(y, ∂B) ≤ ε0/4.

We introduce a further domain Ω̃0, which serves as reference configuration,
corresponding to the initial condition (v0, h0). Then, we build the deformation
mappings of such domain respectively into Ω̃1 and Ω̃2, Xi : [0, T ]×Ω̃0 → Ω̃i(t),
i = 1, 2 as the flow associated to (5.3):{

∂
∂tXi(t, y) = Vi(t,Xi(t, y))
Xi(0, y) = y.

Notice that, since ∇ · Vi = 0, Xi is volume preserving. More precisely, taking
y = (y1, y2) ∈ Ω̃0,

Xi(t, y1, y2) =

{
(y1, y2 + h0 − hi(t)) if dist(y, ∂B) ≥ ε0/2
(y1, y2) if dist(y, ∂B) ≤ ε0/4.

The mapping Xi is a smooth function of Vi. In particular, for some C > 0

‖∂t
jXi(t, y)‖

Ck( ¯̃Ωi)
≤ C|h(j)

i | ∀ j = 0, 1, ∀ k ∈ N. (5.4)

For each t ∈ [0, T ] we define the volume preserving diffeomorphisms

ψt : Ω̃2(t) −→ Ω̃1(t)

y �−→ ψt(y) = X1(t,X−1
2 (t, y))

ϕt = ψ−1
t : Ω̃1(t) −→ Ω̃2(t)

y �−→ ϕt(y) = X2(t,X−1
1 (t, y)).

(5.5)

Thus for any y = (y1, y2) such that dist(y, ∂B) ≥ ε0/2

ψt(y1, y2) = (y1, y2 + h2(t) − h1(t)), ϕt(y1, y2) = (y1, y2 + h1(t) − h2(t)).

Given the extensions of the Poiseuille flow associated to each of the two so-
lutions, a1 = ah1 and a2 = ah2 , defined as in (2.9), we put v̂1 = v1 − a1 and
v̂2 = v2 − a2. For any given y = (y1, y2) ∈ Ω̃1(t), we introduce the function

v̂2 = ∇ψt(y) · v̂2(t, ϕt(y)),
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the pullback of v̂2 by map ϕt in (5.5). Since a2 = 0 near the obstacle B,
because of (2.9) and the properties of s as in Lemma 2.1, we obtain that the
pullback of a2 corresponds to

a2 = ∇ψt(y) · a2(ϕt(y)) = a2(y1, y2 + h1 − h2) = s(y1, y2 + h1 − h2 + h2) = a1,

which implies that the solenoidal extension a1 and a2 are equal after the change
of variables. Thus, from now on, a1 = a2 = a. We remark that v̂2 mantains
the property of being solenoidal since ϕt is volume preserving.

The weak formulation satisfied by (v̂1, h1) can be obtained from (2.20),
after rewriting the equation by integrating by parts the two first terms. For a.e.
t ∈ [0, T ], there holds, for every (φ(t), l(t)) ∈ Vh1 such that φ(·, T ) = l(T ) = 0,

〈∂tv̂1(t), φ(t)〉 + mh′′
1(t) l(t) + f(h1(t)) l(t)

+ 2μ(D(v̂1(t)),D(φ(t)))L2(Ω̃1(t)) + ψ(v̂1(t), v̂1(t), φ(t)) + ψ(v̂1(t), a, φ(t))

+ ψ(a, v̂1(t), φ(t)) − ψ(h′
1(t)ê2, v̂1(t), φ) − ψ(h′

1(t)ê2, a, φ(t)) = 〈ĝ, φ(t)〉.
We refer to [16, Section 3.2] for the explicit computation of the partial deriva-
tives of v̂2 in terms of those of v̂2, so as to obtain that the equation satisfied
by v2 reads as

〈∂tv̂2, φ〉 + mh′′
2 l + f(h2) l + 2μ (D(v̂2),D(φ))L2(Ω̃1(t))

+ ψ(v̂2, v̂2, φ) + ψ(v̂2, a, φ) + ψ(a, v̂2, φ)

− ψ(h′
2ê2, v̂2, φ) − ψ(h′

2ê2, a, φ) = 〈ĝ, φ〉 − 〈f, φ〉,
for every (φ(t), l(t)) ∈ Vh1 such that φ(·, T ) = l(T ) = 0, where, using Ein-
stein’s summation convention and omitting the index t in ψt and ϕt,

fi = + (∂kϕi − δik)∂tv̂
k
2 + ∂kϕi∂lv̂

k
2(∂tψ

l) + (∂k∂tϕ
i)v̂k

2

+ (∂2
klϕ

i)(∂tψ
l)v̂k

2 + v̂l
2∂lv̂

k
2(∂kϕi − δik) + (∂2

lkϕi)v̂l
2v̂

k
2

− ∂jψ
m(∂2

mkϕi)∂lv̂
k
2∂jψ

l − (∂kϕi∂jψ
m∂jψ

l

− δikδjmδjl)∂2
mlv̂

k
2 − ∂kϕi∂lv̂

k
2(∂2

jjψ
l)

− ∂jψ
m(∂3

mlkϕi)∂jψ
lv̂k

2 − (∂2
lkϕi)∂2

jjψ
lv̂k

2 − (∂2
lkϕi)∂jψ

l∂jψ
m∂mv̂k

2 .

Now, let (w, ĥ) be defined as in (2.26). Then, taking the difference of the weak
formulations satisfied by v̂1 and v2, one has

〈∂tw, φ〉 + mĥ′′ l + [f(h1) − f(h2)] l + 2μ(D(w),D(φ))L2(Ω̃1(t))

+ ψ(v̂1, w, φ) + ψ(w, v̂2, φ) + ψ(w, a, φ)

+ ψ(a,w, φ) − ψ(h′
1ê2, w, φ) − ψ(ĥ′ê2, v̂2, φ) − ψ(ĥ′ê2, a, φ) = 〈f, φ〉.

Then we take (φ, l) = (w, h′) and we obtain

〈∂tw,w〉 +mĥ′′ ĥ′ + [f(h1) − f(h2)] ĥ′ + 2μ‖D(w)‖2
L2(Ω̃1(t))

= 〈f, w〉 − ψ(w, v̂2, w) − ψ(w, a,w) + ψ(ĥ′ê2, a, w).

Thus, using [33, Chapter 3, Lemma 1.2] and the fact that (w′, ĥ′′) ∈ L2

(0, T ;V′
h1

) from the properties of weak solutions to problem (2.7)–(2.8), there
holds
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d

dt

{
‖w‖2

L2(Ω̃1)
+ m |ĥ′|2 + 2

∫ h1

h2

f(s) ds

}
+ 4μ‖D(w)‖2

L2(Ω̃1)

= 2〈f, φ〉 − 2ψ(w, v̂2, w) − 2ψ(w, a,w) + 2ψ(ĥ′ê2, a, w). (5.6)

Now, we estimate the right hand side of the above inequality, starting from
the trilinear forms. For what concerns the second term, we exploit Lemma 5.1
and the Young inequality:

|2ψ(w, v̂2, w)| ≤ 2‖w‖2
L4(Ω̃1(t))

‖∇v̂2‖L2(Ω̃1(t))

≤ 23/2‖w‖L2(Ω̃1(t))‖∇w‖L2(Ω̃1(t))‖∇v2‖L2(Ω̃1(t))

≤ 10
μ

‖w‖2
L2(Ω̃1(t))

‖∇v̂2‖2
L2(Ω̃1(t))

+
μ

5
‖∇w‖2

L2(Ω̃1(t))

The third term can be estimated analogously to what we did in the proof of
Proposition 3.1, through the Hölder inequality, the Poincaré inequality in the
domain Ω̃1(t) and the Young inequality:

|2ψ(w, a,w)| ≤ 4L

π
‖∇a‖L∞(Ω̃1(t))‖∇w‖L2(Ω̃1(t))‖w‖L2(Ω̃1(t))

≤ 5
4μ

16L2

π2
‖∇a‖2

L∞(Ω̃1(t))‖w‖2
L2(Ω̃1(t)) +

μ

5
‖∇w‖2

L2(Ω̃1(t)).

Then, we consider the domain Ω̃1(t) to be partitioned as in (2.6) and we recall
that the function a enjoys the same properties of s stated in Lemma 2.1 once
we substituted q and Ah with q̃ as in (2.7) (where, instead of h, we consider
h1) and Ah1 . The last term on the right hand side of (5.6) is bounded following
the reasoning developed in the proof of Proposition 3.1 for the terms in (3.6).
Given

‖∇q̃‖L2(−L, L) = λ ξ with ξ =

√
8L3

3
,

one can write

|2ψ(ĥ′ê2, a, w)| ≤ 5
2μ

4L2

π2
|ĥ′|2(‖∇a‖2

L2(Ω̃1
0(t))

+ λ2ξ2) +
2μ

5
‖∇w‖2

L2(Ω̃1(t))

In order to estimate the first term on the right-hand side of Eq. (5.6), following
[16], we divide f into pieces

f = f1 + f2 + f3 + f4 + f5
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with

f1 := (∂k∂tϕ
i)v̂k

2 + (∂2
klϕ

i)(∂tψ
l)v̂k

2

−
∑

j

[
∂jψ

m(∂3
mlkϕi)∂jψ

lv̂k
2 + (∂2

lkϕi)∂2
jjψ

lv̂k
2

]
,

f2 := ∂kϕi∂lv̂
k
2(∂tψ

l) −
∑

j

[
∂jψ

m(∂2
mkϕi)∂lv̂

k
2∂jψ

l + ∂kϕi∂lv̂
k
2(∂2

jjψ
l)

+ (∂2
lkϕi)∂jψ

l∂jψ
m∂mv̂k

2

]
,

f3 := (∂2
lkϕi)v̂l

2v̂
k
2 , f4 := v̂l

2∂lv̂
k
2(∂kϕi − δik),

f5 := (∂kϕi − δik)∂tv̂
k
2 −

∑
j

(∂kϕi∂jψ
m∂jψ

l − δikδjmδjl)∂2
mlv̂

k
2 .

We have the following estimates, where we use (5.4).

• Concerning the first three terms:∣∣∣∣
∫ t

0

∫
Ω̃1(s)

f1 · w dy ds

∣∣∣∣ ≤ C‖v̂2‖L∞(0,T ;L2(Ω̃1))

∫ t

0

(
max
[0,s]

‖w(·, s)‖L2(Ω̃1(s)) max
[0,s]

|(ĥ(s), ĥ′(s))|
)

ds

≤ C‖v̂2‖L∞(0,T ;L2(Ω̃1))∫ t

0

(
max
[0,s]

‖w(·, s)‖2
L2(Ω̃1(s)) + max

[0,s]
|(ĥ(s), ĥ′(s))|2

)
ds,

∣∣∣∣
∫ t

0

∫
Ω̃1(s)

f2 · w dy ds

∣∣∣∣ ≤ C

∫ t

0

‖∇v̂2(·, s)‖L2(Ω̃1(s))

(
max
[0,s]

‖w(·, s)‖L2(Ω̃1(s)) max
[0,s]

|(ĥ(s), ĥ′(s))|
)

ds

≤ C

∫ t

0

‖∇v̂2(·, s)‖L2(Ω̃1(s))(
max
[0,s]

‖w(·, s)‖2
L2(Ω̃1(s)) + max

[0,s]
|(ĥ(s), ĥ′(s))|2

)
ds,

∣∣∣∣
∫ t

0

∫
Ω̃1(s)

f3 · w dy ds

∣∣∣∣ ≤ C

∫ t

0

‖v̂2(·, s)‖2
L4(Ω̃1(a))‖w(·, s)‖L2(Ω̃1(s)) max

[0,s]
|ĥ(s)| ds

≤ C‖v̂2‖L∞(0,T ;L2(Ω̃1))∫ t

0

‖∇v̂2(·, s)‖L2(Ω̃1(s)) max
[0,s]

‖w(·, s)‖L2(Ω̃1) max
[0,s]

|ĥ(s)| ds

≤ C‖v̂2‖L∞(0,T ;L2(Ω̃1))

∫ t

0

‖∇v̂2(·, s)‖L2(Ω̃1(s))(
max
[0,s]

‖w(·, s)‖2
L2(Ω̃1(s)) + max

[0,s]
|ĥ(s)|2

)
ds

≤ C‖v̂2‖L∞(0,T ;L2(Ω̃1))

∫ t

0

‖∇v̂2(·, s)‖L2(Ω̃1(s))
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(
max
[0,s]

‖w(·, s)‖2
L2(Ω̃1(s)) + max

[0,s]
|ĥ(s), ĥ′(s)|2

)
ds.

• For the fourth and fifth terms, we introduce

b1(t) := ‖∇v̂2(·, t)‖2
L2(Ω̃1(t))

‖t ∇v̂2(·, t)‖2
L2(Ω̃1(t))

,

b2(t) := ‖t ∂tv̂2(·, t)‖2
H−1(Ω̃1(t))

+ ‖t Δv̂2(·, t)‖2
H−1(Ω̃1(t))

,

which belong to L1(0, T ) thanks to Lemma 5.1, and we have∣∣∣∣
∫ t

0

∫
Ω̃1(s)

f4 · w dy ds

∣∣∣∣ ≤ C

∫ t

0

‖v̂2(·, s)‖L4(Ω̃1(s))‖t ∇v̂2(·, s)‖L2(Ω̃1(s))

∥∥∥∥1
t
(∂kϕi − δik)

∥∥∥∥
L∞(Ω̃1(s))

‖w(·, s)‖L4(Ω̃1(s)) ds

≤ C

∫ t

0

‖v̂2(·, s)‖L4(Ω̃1(s))‖t ∇v̂2(·, s)‖L2(Ω̃1(s))

max
[0,s]

|ĥ′(s)|‖w(·, s)‖L4(Ω̃1(s)) ds

≤ C

∫ t

0

‖∇v̂2(·, s)‖L2(Ω̃1(s))‖t ∇v̂2(·, s)‖L2(Ω̃1(s))

max
[0,s]

|ĥ′(s)|‖∇w(·, s)‖L2(Ω̃1(s)) ds

≤ μ

5

∫ t

0

‖∇w(·, s)‖2
L2(Ω̃1(s))

ds

+ C
5
4μ

∫ t

0

b1(s)max
[0,s]

|ĥ′(s)|2 ds

≤ μ

5

∫ t

0

‖∇w(·, s)‖2
L2(Ω̃1(s))

ds + C
5
4μ

∫ t

0

b1(s)

max
[0,s]

|ĥ(s), ĥ′(s)|2 ds,

where we use the Hölder inequality, the Young inequality, [33, Lemma 3.3]
and the Poincaré inequality.∣∣∣∣

∫ t

0

∫
Ω̃1(s)

f5 · w dy ds

∣∣∣∣
≤ C

∫ t

0

‖t ∂tv̂2(·, s)‖H−1(Ω̃1(s))∥∥∥∥1

t
(∂kϕi − δik)

∥∥∥∥
L∞(Ω̃1(s))

‖∇w(·, s)‖L2(Ω̃1(s)) ds

+ C

∫ t

0

‖t Δv̂2(·, s)‖H−1(Ω̃1(s))‖
1

t
(∂kϕi − δik)‖L∞(Ω̃1(s))‖∇w(·, s)‖L2(Ω̃1(s)) ds

≤ C

∫ t

0

‖t ∂tv̂2(·, s)‖H−1(Ω̃1(s)) max
[0,s]

|ĥ′(s)|‖∇w(·, s)‖L2(Ω̃1(s)) ds

+ C

∫ t

0

‖t Δv̂2(·, s)‖H−1(Ω̃1(s)) max
[0,s]

|ĥ′(s)|‖∇w(·, s)‖L2(Ω̃1(s)) ds
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≤
∫ t

0

(
C

5

4μ
‖t ∂tv̂2(·, s)‖2

H−1(Ω̃1(s)) max
[0,s]

|ĥ′(s)|2 +
μ

5
‖∇w(·, s)‖2

L2(Ω̃1(s))

)
ds

+

∫ t

0

(
C

5

4μ
‖t Δv̂2(·, s)‖2

H−1(Ω̃1(s)) max
[0,s]

|ĥ′(s)|2 +
μ

5
‖∇w(·, s)‖2

L2(Ω̃1(s))

)
ds

≤ 2μ

5

∫ t

0

‖∇w(·, s)‖2
L2(Ω̃1(s)) ds + C

5

4μ

∫ t

0

b2(s) max
[0,s]

|ĥ(s), ĥ′(s)|2 ds.

If we set

A(t) := ‖v̂2‖L∞(0,T ;L2(Ω̃1(t))) + ‖∇v̂2(·, t)‖L2(Ω̃1(t))

+ ‖v̂2‖L∞(0,T ;L2(Ω̃1(t)))‖∇v̂2(·, t)‖L2(Ω̃1(t)) ∈ L2(0, T ) ⊂ L1(0, T ),

B(t) := ‖v̂2‖L∞(0,T ;L2(Ω̃1(t))) + ‖∇v̂2(·, t)‖L2(Ω̃1(t))

+‖v̂2‖L∞(0,T ;L2(Ω̃1(t)))‖∇v̂2(·, t)‖L2(Ω̃1(t)) +
5
4μ

(b1(t) + b2(t)) ∈ L1(0, T ),

we obtain∣∣∣∣
∫ t

0

∫
Ω̃1(s)

f · w dy ds

∣∣∣∣
≤ C

∫ t

0

(
A(s)max

[0,s]
‖w(·, s)‖2

L2(Ω̃1(s))
+ B(s)max

[0,s]
|(ĥ(s), ĥ′(s))|2

)
ds

+
3μ

5

∫ t

0

‖∇w(·, s)‖2
L2(Ω̃1(s))

ds.

Then, given A(t) and B(t) as above, we define

Ā(t) := A(t) +
10
μ

‖∇v̂2(·, t)‖2
L2(Ω̃1(t))

+
5
4μ

16L2

π2
‖∇a‖2

L∞(Ω̃1(t))
,

B̄(t) := B(t) +
5
2μ

4L2

π2
(‖∇a‖2

L2(Ω̃1
0(t))

+ λ2ξ2).

We reorder (5.6) once we plugged the above estimates, considering the above
definitions and using that∫

Ω̃1
|∇w|2 dy ≤

∫
Ah1

|∇w|2 dy = 2
∫

Ah1

|D(w)|2 dy = 2
∫

Ω̃1
|D(w)|2 dy,

since w is a divergence free vector field vanishing on ∂Ah1 . Thus, integrating
between 0 and t we obtain, since w(0) = 0 = ĥ′(0),

‖w(t)‖2
L2(Ω̃1(t))

+ m|ĥ′(t)|2 + 2
∫ h1(t)

h2(t)

f(s) ds

≤ C

∫ t

0

(
Ā(s)max

[0,s]
‖w(·, s)‖2

L2(Ω̃1(s))

+B̄(s)max
[0,s]

|(ĥ(s), ĥ′(s))|2
)

ds. (5.7)

Then we set

D(t) = Ā(t) + B̄(t)
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Figure 3. The channel with the rotating obstacle B

and from (5.7), we infer

‖w(t)‖2
L2(Ω̃1(t))

+ m|ĥ′(t)|2

≤
∫ t

0

C D(s)
(

max
[0,s]

‖w(·, s)‖2
L2(Ω̃1(s))

+ max
[0,s]

|(ĥ(s), ĥ′(s))|2
)

ds.

As in [16], we notice that
d

dt
|ĥ|2 ≤ C(|ĥ′|2 + |ĥ|2). (5.8)

Using D(t) ∈ L1 and Grönwall’s lemma, we conclude that

‖w(t)‖2
L2(Ω̃1(t))

+ m|ĥ′(t)|2 = 0,

which, if one uses (5.8), implies finishing the proof.

6. Some remarks on torsional movements

If we aim at developing the analysis of the interaction between wind and sus-
pension bridges in the hypothesis of strong incoming flux, we need to consider
also the torsional movement of the deck. Hence, we refer to the second model
introduced in [4]. This section is devoted to discussing some remarks about
such a problem. In particular, we will briefly present the problem and illus-
trate the mathematical differences that the diverse physical behaviour of the
obstacle entails: we focus on the reasons why we do not expect the proof used
in the case of translation to work also in this case, because the same technique
will generate an infinite energy term.

In this case, as already mentioned, the obstacle B is free to rotate around
a fixed pin placed at its center of mass; this imposes a constraint on the
dimensions of the channel and of the obstacle L2 > δ2 +d2, because we assume
that the obstacle may a priori reach a vertical position. We denote by J the
inertia of the body and by θ the angle of rotation with respect to the horizontal.
The position of the body is tracked by

Bθ =
(

cos θ − sin θ
sin θ cos θ

)
B = R B ∀ |θ| <

π

2
, (6.1)

thus the fluid domain depends on θ and it is given by Ωθ = R× (−L,L)\Bθ =
A\Bθ: see Fig. 3. Let us denote again as Γ the union of the upper and lower
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boundaries of the channel, Γ = R × {−L,L}. The fluid–structure-interaction
evolution problem that we analyze is:

ut = μΔu − (u · ∇)u − ∇p, divu = 0 (x, t) ∈ Ωθ(t) × (0, T )

u = 0 (x, t) ∈ Γ × (0, T ), u = θ′(t)x⊥ (x, t) ∈ ∂Bθ(t) × (0, T ),

lim
|x1|→∞

u(x1, x2) = q := λ(L2 − x2
2) ê1

J θ′′(t) + g(θ(t)) = −
∫

∂Bθ(t)

x⊥ · T (u, p)n̂ t ∈ (0, T ),

(6.2)

to which we associate the initial conditions u(x, 0) = u0, θ(0) = θ0, θ′(0) = θ1.
The rectangular rigid body B is free to rotate driven by the action of both
an elastic angular restoring force g(θ) and the torque imposed by the fluid
stress. The force g plays the role which was played by f in the case of pure
translation, thus it resumes the action of the same three forces acting on the
deck of a suspension bridge (see Introduction): in this case the action of the
hangers and cables is symmetric, which makes g an odd function, and it is
not as strong as the action of resistance to deformations of the whole deck. In
particular, we assume that g(θ) ∈ C1(−π

2 , π
2 ) satisfies the following conditions

g odd, g′(θ) > 0 ∀ θ ∈
(
−π

2
,
π

2

)
, lim

θ→π/2
g(θ) = +∞. (6.3)

We emphasize that the third hypothesis in (6.3) is needed in order to pre-
vent the obstacle to reach a vertical position; if we imagine the obstacle to
representing the cross section of the deck of a bridge, this assumption seems
physically reasonable. We point out that (6.3) compared to (1.4) is not a strong
force assumption, but it is weaker, as collisions are already ruled out by the
geometric configuration.

The difference in the physics, and consequently in the mathematics of this
problem with respect to the case of an obstacle vertically translating is revealed
when we introduce the change of variables allowing to write the equations of
motion in a frame attached to B, whose coordinates are labelled as (y1, y2):

R y = x, (6.4)

where R is defined as in (6.1). The fluid–structure-interaction evolution prob-
lem in the new rotating reference frame is obtained consequently, similarly to
what is done in [12,29]. We just highlight that the Poiseuille flow at infinity
after the change of variables (6.4) assumes the following expression, for each
value of θ:

q̃(y) =

(
cos[θ λ

(
L2 − (y1 sin θ + y2 cos θ)2

)
], − sin[θ λ

(
L2 − (y1 sin θ + y2 cos θ)2

)
]

)
.

(6.5)

The auxiliary fixed domain that we labelled Ã in Sect. 2 is given by:

Ã = A − A = {x − y |x ∈ A, y ∈ A},

and it corresponds to R
2; indeed, the channel is unbounded and a priori it may

cover the whole plane when rotating. Here lies the essential difference in the
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Figure 4. The channel, after the change of variables, moves
in the whole plane R

2. Three possible positions of the chan-
nel are represented. The Poiseuille flow at the outlets of the
channel extends to the whole plane

physical framework of this problem with respect to the previous one; in the
case of an obstacle purely vertically translating, the movement of the channel
was still confined to a region bounded in one direction. Figure 4 represents
the new configuration. The auxiliary domain Ã corresponding to the whole
plane R

2 also reveals the difference in the mathematical framework. Indeed,
the velocity field at infinity q̃ defined in (6.5) in the new reference frame is
supposed to be extended outside the rotating channel, which we label Aθ(t), to
the whole R

2 if one wants to apply the penalty method, as we did in Sect. 2.
Thus, the Poiseuille flow would be extended to be a parabolic branch diverg-
ing to infinity: see Fig. 4, where we represented such extension only for the
horizontal position not to burden the picture. This implies that the solenoidal
extension now captures a flow to which it is associated an infinite energy, thus
compromising the possibility to prove existence of a weak solution to the pe-
nalized problem and, consequently, also to the original problem, through the
penalty method. On the other hand, as already mentioned in the Introduc-
tion, besides the penalty method, different methods have been conceived to
find existence of solutions (see [8,23,27]), which would allow handling rota-
tion without falling into the aforementioned difficulties. However, they require
building global quantities and a global weak formulation, where the integrals
must be defined on the whole domain A; as we are not dealing with a simple
Newton law in (6.2) due to the presence of g(θ), such methods are not of trivial
application.
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