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Global attractor for 3D Dirac equation with
nonlinear point interaction

Elena Kopylova

Abstract. We prove global attraction to stationary orbits for 3D Dirac
equation with concentrated nonlinearity. We show that each finite en-
ergy solution converges as t — +oo to the set of four-frequency “nonlin-
ear eigenfunctions”. The global attraction is caused by nonlinear energy
transfer from lower harmonics to the continuous spectrum and subsequent
dispersion radiation.

Mathematics Subject Classification. 35B40, 35B41.

1. Introduction

In the last decades equations with point interactions became an intensively
developing field of research, and this interest is driven by the possibility of in-
vestigating nonlinear problems in the context of solvable models. These equa-
tions are useful mathematical tool for modeling many phenomena in theoretical
physics, (see introduction in [11]).

The first rigorous mathematical results for equations with point interac-
tion were obtained since 1960 by F. Berezin, L. Faddeev, D. Yafaev, E. Zeidler
and others [6,16,37], and since 2000 by S. Albeverio, R. Hgegh-Krohn, D.
Noja, D. Yafaev and others [2,4,5,32,38]. A comprehensive overview of the
results can be found in [3,15].

Our paper concerns 3D Dirac equation with nonlinear point interaction.
Namely, we consider the system governed by the following equations

{ i (x,t) = Dptp(x,t) — D M((1)5(x)

g B K (o0 0010 = ()

reR? teR. (1.1)

Here D,, is the Dirac operator D,, := —ia - V + mf3, where m > 0, ay with
k =1,2,3 and 8 are 4 x 4 Dirac matrices; ¢(x,t), ((t) are vector functions
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with values in C*; g(z) is the Green function of the operator D2, = —A + m?
in R3,
—m|z|
e
= 1.2
ola) = T (12)
and K2, = (—=A + m?)7¢ is a smoothing operator, defined as and KZ, =

(—A +m?)~¢ is a smoothing operator, defined as

o~

. _ 1 Liew_ P(E)dE
(Kmﬂ/J)(SC)f (47'(')3/6 ¢ (€2+m2)53 6207

where 12(5) is the Fourier transform of ¢(z). Obviously, (K:,¢)(z) — ¢(x)
as € — 0 in H*(R3) for any ¢ € H*(R?) and any s € R. Hence, in the limit
¢ — 0, the coupling in (1.1) formally depends on the value of ¥(z,t) — ((t)g(z)
at one point x = 0.

We assume that the nonlinearity F;(¢) = F;(¢;), j = 1,...,4, admits a
real-valued potential:

Fi(¢) =0:,U(Q), U =Y Uj(lgl) € C*(CH), (1.3)

Jj=1

where J¢; 1= % + i% with (1 := Re(; and (j2 :=Im(j;, and

U(¢) > bl¢|* —a, for¢eC* whereb>0andacR. (1.4)
The system (1.1) is U(1)-invariant; that is,
Fi(e¢) =e®F(¢), j=1,...,4, €C, 0cR. (1.5)
Our main results are as follows. First, for initial data of type
Y(@,0) = f(2) + Gg(x), feHI(R)@C!, ¢eC!, (L6

we prove a global well-posedness of the Cauchy problem for the system (1.1)
(Theorem 2.1 below).

Further, we show that the system admits four-frequencies stationary or-
bits (or solitary wave solutions) of the type

4
Y(@,t) =D tu(@e ™, w€R, k=1,...,4. (1.7)
k=1

We obtain explicit formulas for the amplitudes v, ().

Finally, we prove that solitary waves form a global attractor in the case
when all polynomials F; are strictly nonlinear [see. conditions (3.2)-(3.3)].
Namely, in this case any solution with initial data (1.6) converges to the set
< of all solitary wave solutions:

where the convergence holds in local L2- seminorms.

Let us comment on previous results on the attraction to the set of solitary
waves for nonlinear U(1)-invariant equations. The first results on asymptotic
stability of solitary waves for nonlinear Schrédinger equation were obtained in
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[8,35,36], and then developed in [9,12,23] and other papers. The asymptotic
stability means the asymptotics of type (1.8) for solutions with initial data
close to .. Such local attraction for equations with nonlinear point interaction
was proved in [2,7,23-25,31]. These models allow an efficient analysis of the
corresponding linearized dynamics.

Global attraction of type (1.8) to the set of all stationary orbits was
established

(i) in [20] for 1D Klein—Gordon equation coupled to nonlinear oscillator :

D(x,t) = (07 — m®)g(a, 1) + 6(2)F(4(0,1)); (1.9)
(ii) in [30] for 1D Dirac equations with more regular nonlinearity D, '6(z)F

(¥(0,1));

(iii) in [21,22] for nD Klein—-Gordon and Dirac equations with nonlinearity of
type p(x) F({¢, p));

(iv) in [26,27,29] for 3D wave and Klein—-Gordon equations with concentrated
nonlinearity.

Global attraction of type (1.8) for 3D Dirac equation with nonlinear point
interaction was not considered previously.

Remark 1.1. The nonlinearity in (1.1) is more singular than the nonlinearities
considered in [26,27,30]. That’s why we introduced the smoothing operator
K¢,. In Sect. C.3.1, we show that without the operator K¢, the limit as x — 0
in the second equation of (1.1) generally does not exist.

We note also that the 3D Schrodinger equation with concentrated non-
linearity was justified in [10] as a scaling limit of a regularized nonlinear
Schrodinger dynamics. We suppose that for the Dirac equation a justifica-
tion can be done by suitable modification of methods [10], but it still remains
an open question.

Let us comment on our approach. For the proof of global well-posedness
we develop the approach which was introduced in [26,32] in the context of the
Klein—Gordon and wave equations. First, we obtain some regularity properties
i) of solutions ¢, (z,t) to the free Dirac equation with initial function (og(z),
and ii) of solutions ¥g(x, t) to the Dirac equation with zero initial function and
with source D,,;'¢(t)d(x) (Lemma 2.2, and Propositions 2.4 and 2.5 ). We use
these regularity properties to prove the existence of a local solution to (1.1) of
the type

¢($at) = wfree(xvt) + ,(/)S(xat)v ¢free = wf + (ng

where 1 (z,t) is a solution to the free Dirac equation with initial function f(z).
We show that ((t) is a solution to a first-order nonlinear integro-differential
equation driven by tgee(0,t). Then we prove that conditions (1.3)—(1.4) pro-
vide the conservation law (2.2). Finally, we use the conservation law to obtain
the global existence theorem.

Note that our system (1.1) gives a novel model of nonlinear point interac-
tion which provides a conservation law and a priori estimates. The introduced
smoothing operator K;, leads to justification of numerous limit permutation.
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We justify these limits by subtle arguments using properties of special func-
tions (generalized hypergeometric functions 1 F», modified Struve functions L,,,
modified Bessel functions I,, and others) [14,33].

To prove the global attraction, we split ¥ (z,t) as

(x,t) = gz, t) + of (z,t) + g (2.1),  @f =g +iD;" o,
vy =vs —iDy, G,

where §(z,t) is defined in (2.11). We show that ¢4 (-, ) and o] (-,t) converge
to zero as t — 400 in local H!-seminorms. Hence, it remains to prove (1.8) for
g (-, t) only. The proof relies on the study of the Fourier transform in time
J;(x,w) and ((w) and of their supports. First, we establish absolute conti-
nuity of the spectral density E () outside spectral gap [—m,m]. The absolute
continuity is a nonlinear version of Kato’s theorem on absence of embedded
eigenvalues in the context of the nonlinear system (1.1).

Then we prove the omega-limit compactness. This means that for each
sequence s — oo there exists an infinite subsequence s, — oo such that the
functions ¢(t + si,) converge to some function n(t) € C* uniformly in [¢t| < T
for any T' > 0. The absolute continuity of Z (+) provides that the time-spectrum
of 77(+) is contained in the spectral gap [—m,m]. The convergence of {(t + s, )
implies the convergence of g (x,t + si,) to some function ¢g(z,t) in in the
topology of Cy([-T,T], L}, .(R?)).

Further, we apply the Titchmarsh convolution theorem ([19, Theorem
4.3.3]) to conclude that the time-spectrum of each component n;, j = 1,...4, of
function 7 consists of a single frequency, 7;(w) = C;0(w —wj). The Titchmarsh
theorem controls the inflation of spectrum by the nonlinearity. Physically, these
arguments justify the following binary mechanism of energy radiation, which
is responsible for the attraction to solitary waves: (i) nonlinear energy transfer
from lower to higher harmonics, and (ii) subsequent dispersion decay caused by
energy radiation to infinity. We finish the proof using an integral representation

of ¢g(x,t) via n(t).

Remark 1.2. Our approach is also applicable for other interpretation of 3D
Dirac equation with concentrated nonlinearities. Namely, the source D' (t)§
(z) in the first equation of (1.1) can be replaced by more singular delta-like
source ((t)d(x). In this case, the function ¢ (z,t) in the second equation of
(1.1) should be replaced by the function D, !¢ (z,t). For such a system, the
convergence (1.8) holds in local H~!-seminorms.

2. Global well-posedness

We fix a nonlinear function F : C* — C* and define the domain

Ir = {4 € L*(R?) @ C* : 9(x) = treg(2) + Cy(2), ¢ € C,
Yreg € H2 ™ (R%) ® €13 lim_lim Kiutbreg(2) = F(O)},
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which generally is not a linear space. Note that the first equation of (1.1) can
be written in the other form

iWp(a,t) = Dpip(n,t),  Dpp(a,t) = Dinthyeg(2,1) (2.1)
(cf. equation (1.2) in [1], equation (7) in [2]).
Everywhere below we will write L? and H*® instead of L?(R3) ® C* and
H*(R3) ® C*. Denote |- || = || - || z2- In this section we will prove the following
result.

Theorem 2.1. Let conditions (1.3) and (1.4) hold. Then

(i) For every initial function ¢(x,0) = f(z) + Cog(x) € Dp with f € H3
the equation (1.1) has a unique solution ¥(x,t) = req(z,t) + ((t)g(z) €
C(R, Zr), such that ((t) € C1[0,00).

(ii) The following conservation law holds:

Hp (Y-, 1)) = %\\memg(-,tw +U(((t) = const, teR.  (2.2)
(iii) The following a priori bound holds:
S < C(¥(-,0), teR. (2.3)
(iv) The map W : (£(-),¢0) — (Wreg(--),C(+) is continuous H3+ @ C* —
C(R,H2™) @ (C*(R) ® CH).

Obviously, it suffices to prove Theorem 2.1 for ¢ > 0.
We split solutions to (1.1) as

’(/J(J,‘,t) - wfree(x't) + '(/)S(xat) = wf + Pg + wS(xat)a (24)

where 1¢(z,t) and ¢, are the unique solutions to the free Dirac equation with
initial functions f and (yg:

iy (@, t) = Dty (,t),  Pp(w,0) = f(=),
ing(xvt) = Dm‘pg(‘rvt)» @g(%O) = Cog(m),
and ¥g(x,t) is the solution to
iths (x,t) = Dmths (x,t) — D1 (£)(x),
A(®) + lim lim K7, (0(2,0) + ¥s(@,0) = ((Dg(@)) = FE®), (25)
¥s(z,0) =0, ¢(0) = .
Evidently,
Pr(-,t) € Cp([0,00), H2H),  ahy(-,1) € Cy([0,00), HZH). (2.6)
Hence,
A1) :=4(0,t) € CL[0,00) @ C*. (2.7)

Moreover, the linear map f(-) — A(-) is continuous H3* — C}[0,00) ® C*
since

Mlcto.0recs < CEINN 5+ >0 (2.8)



27 Page 6 of 44 E. Kopylova NoDEA

Now the existence and uniqueness of the solution ¥(-,t) € C([0,00), ZF of
the system (1.1) is equivalent to the existence and uniqueness of the solution
(s (-,t),¢(t)) to (2.5) such that ¢g(-,t) + ¢4(-,t) € C([0,00),ZF) and ¢ €
C10, 00).

Let us obtain an explicit formula for ¢4 (x,t). Note that the function

¢(x,1) = pg(2,t) — Cog(x) (2.9)
satisfies
i¢(z,t) = Dd(z,t) + D' Cob(x),  d(x,0) =0.
Hence,
$(x,t) = (=i0 — Dm) Dy, Goy(x,t) = =D G (@, t) — Go(z, 1), (2.10)

where

_ t _ 2 _ 2
gy M= la) e e AR
4|z 4 Jo Vs —z]2

is the solution to
Y, t) = (A =m?)y(x,t) +6(x), ~(x,0)=0, F(x,0)=0. (2.12)

Here J; is the Bessel function of the first order and 6 is the Heaviside function.
Finally, (2.9) and (2.10) imply

Wg(xat) = COg(JU) - Co’}/(ﬂf,t) - Z'DTTJCO"}/(JJ,Z%) = %L(%t) - iD;fCoW(x,t)v

(2.13)
where o7 (,1) == Co(g(z) —v(z,1)).
Lemma 2.2. For any t > 0 there exists
t
J
lim Tim K (g(x) — (2, 8)) = p(t) = — %+ [T 5 o1

e—0+ x—0 4 4 0 S

We prove this lemma in Sect. A. Note that the function u(t) is continuous
for t > 0, and there exists

) m
p(0) = lim p(t) = — .
Moreover,
wu(t) — 0, t— oo, (2.15)

since [;° 217%) 45 = 1 by [33, Formula 10.22.43].

2.1. Reduction to integro-differential equation

Here we consider the first equation of (2.5) for 1g with some given function
¢(t) € C[0,00) ® C*. We construct the solution and formulate its properties
which will be proved later. Further, we substitute the constructed solution into
the second equation of (2.5) and obtain an integro-differential equation for (.
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Lemma 2.3. Let ((t) € C1[0,00) ® C*. Then the unique solution g(x,t) to
the Dirac equation

is(a,t) = Dpbs(x,t) — D' ((1)8(x),  vs(x,0) =0 (2.16)
18 given by
Vs (a,t) == @s(x,t) +iD;, oy (x, t) + D, ps(x,t),  Co:=¢(0), (2.17)
where v is defined in (2.11), and

pslant) = Xt - Lol
—m (1 0(s = |z])Ji(my/5? — [z]?) ~ Ods
T T U ALY
o) = X
m [t 0(s —|x])Jy(m\/s? = [2]?) :
“i ] Nearr C(t — s)ds. (2.19)

Proof. Tt is easy to verify that the function pg(x,t) is the unique solution to
the Klein—-Gordon with J-like source

@s(x,t) = (A —m*)pg(x,t) + C(1)d(x), @s(x,0) =0, pg(x,0)=0.
(2.20)

In the case m = 0 this is well-known formula [14, Section 175]. Hence,

vs(z,t)= (10 + Dm)D;llgog(z, t)=ps(z,t) + iD;lICO"y(x, t) + innlpS(x, t).
(2.21)

O
In Sects. B and C , we justify the following limits

Proposition 2.4. For any ((t) € C'[0,00) ® C* there exists

i lim K7, (0s(2,) — C(0)g(@)

! (m((t) 0! m/Ot @C(t—s)ds), t>0. (2.22)

" 4r

Proposition 2.5. For any ((t) € C1[0,00) @ C* there exists

lim lim K&, D, ps(x,t) = ms (go [mt / - w = Jo (mt)}

e—0+ xz—0 41 mt

—|—C(t)—m/0t (/WW>C(t—s)ds), t>0.

(2.23)
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Substituting these limits into the second equation of (2.5) and taking into
accunt (2.14), we obtain the equation for {(¢):

S

MO+ o) + <m<<t> i -m [ e s)ds>

+ izf (go tm/,: % — Jo(mt)| +¢(®)
_m/o </oo J1(Z)dU>§(t—s)ds> =F(C(®), ¢(0) =(o. (2.24)

In the next two sections we will solve system (2.5) in reverse order: first we
solve the equation (2.24) for (¢) and then we solve the first equation of (2.21)
for g(x,t) with this ((t).
2.2. Local well-posedness

Here we prove the local well-posedness for the system (2.5). To do this, we
modify the nonlinearity F so that it becomes Lipschitz continuous. Define

A((0)) = /(#(1(0)) + a) /b, (2.25)

where ¥(0) = ¥(-,0) € ZF is the initial function from Theorem 2.1 and a,
b are constants from (1.4). Then we may pick a modified potential function

U(¢) € C2(C4,R), so that
(i) the identity holds

UQ)=U(Q), ¢l <A@(0), (2.26)
(ii) U(C) satisfies (1.4) with the same constant a, b as U(¢) does:
U(¢) = bl¢) —a, ¢eCt, (2.27)
(iii) the functions ﬁj ¢) = (“%Cj U(¢) are Lipschitz continuous:
F5(G) = i) < CIG —mil, - Gomy €C. (2.28)

First, we establish local well-posedness for system (2.5) with the modified
nonlinearity F'.

Proposition 2.6. (Local well-posedness). Let the conditions (2.26)—(2.28) hold.
Then

(i) there exists a unique solution (Yg(x,t),((t)) to (2.5) such that
Ureg (1) 1= Ps (1) + 94 (- £) = C(B)g() € C(0,7], H2™), ¢ e C?[0,7]®CH
(i) the map ((-) — yo (-, -) is continuous C?[0,7] © C* — (o, 7], Hz2).
Proof. (i) First, we solve integro-differential equation (2.24) with F instead of
F:

b J1(ms)
s

AE)+ Gonlt) + o= <m<<t> — i —m [ e s)ds>
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B2

_m/< N )Ct_s )Zﬁ(C(t)), ¢(0) = o, (2:29)

where \j, u € C'[0,00) by (2.7), (2.14). The next lemma follows by standard
contraction mapping principle.

+¢(t)

Lemma 2.7. Let conditions (2.26)—(2.28) be satisfied. Then
(i) for sufficiently small 7 > 0 the Cauchy problem (2.29) has a unique so-
lution ¢ € C*0,7] @ C*;
(ii) the map N\;j(-) — ¢(-) is continuous C'[0,7] — C?[0,7] for every j =
1,....4.
Now we define the function
Ys(x,t) = pg(x,t) +iD oy (x, t) +iD; ps(x,t), te]0,7],
where pg(z,t) and pg(z,t) are given by (2.18) and (2.19) with {(¢) the solution
0 (2.29).
Let us show that (¢g(x,t), ((t) is the solution to (2.5). Indeed, g satisfies

the first equation of (2.5). Moreover, (2.14), (2.22) and (2.23) imply for ¢ €
[0,7]

e—=0+x—

lim hm K, <ws(x,t) + @g(x,t) — C(t)9($)>

= Cop(t) + lim lim K7, (ps(@,t) + Dy, ps(@,t) — ((H)g(x))

—ot) + 3 (me® =0 - m [ “hms) o)

47 S

+i:1nf<<0 [tm[nftwqjml _Jo(mt)
7m/0 </°° W‘)C(ts)ds) :ﬁ(g(t)) - \(t), (2.30)

since ((t) solves (2.29). Hence, the second equation of (2.5) with F' holds.

Let us prove the uniqueness of this solution. Suppose that (g(-, ), C(t))
with 1¥g(-, ) +¢4(-, 1) € C([0,7], Z5) and ¢ € C'[0, 7] @ C* is another solution
0 (2.5). Then tg(z,t) satisfies the first equation of (2.5) with the source
D;}((t)6(x) and is given by formulas (2.17)~(2.19) with ((t) instead of ¢(t).
Hence, Propositions 2.4 and 2.5 and the second equation of (2.5) imply that
C(t) solves the Cauchy problem (2.29). The uniqueness of the solution of (2.29)
implies that () = ¢(t). Hence, thg = 1bg.
It remains to show that the function

Vyeg (@, 1) = b5 (2, 1) + @4, t) — ((t)g(x)

+¢(t)
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= w(fﬂ,t) - wf(x»t) - C(t)g(fﬂ) = wreg(xat) - 'l/)f(xvt)

satisfies
Ureg(51) € C((0, 7], H ™ (B?)). (2.31)
Indeed, 1, (z,t) is a solution to
Wreq (@, 1) = Dinthr g (w,1) — iC(t)g(x) (2.32)

with zero initial data. Hence, ¢, (v,t) = (=i0; — Dy,)w(x,t), where where
w(z,t) is the solution to

Wiz, t) = (A —m?)w(z,t) —il(t)g(x), w(z,0)=0, w(z,0)=0.
Then, for (2.31) we need to show that

w(,t) € C([0,7), H: *(R%)), w(-,t) e C([0,7], H2 °(R%), forany &> 0.

(2.33)
Applying the Fourier transform, we obtain
sin(s\/§*+m?) .
(e 1) = /O e (s
/2 2) .
w(E,t) = /0 W C(t — s)ds.
Hence, integration by parts gives
5_ e 2 2) .
@ tyiilen =i [ TUVELID o ga,
(0ol T )
(@4 m?)i+s
: t
- [VE ) o as),
@+md)TFE o (@)t

where ¢ € C[0,7] ® C* by (2.7), (2.14) and (2.29). Therefore,

C+)¢Glle0.4]
(€2 +m?2)its

€

(€2 +m?)i s w(E )| <

. telo,r], j=1,...,4.

Similarly,

3_e T~ C(l + T)HC'”CZ[O,T]
€ +m T8 (6 )] < =

L otelor], j=1,....4.
Hence, (2.33) follows.
(ii) Evidently, the linear map ¢(-) — ¢,,(-,-) is continuous C?[0,7] ® C* —
c(o, ], Hz7). O
Corollary 2.8. It is obvious that (2.30) can be rewritten as

lim hm K& reg(,t) = F(C(t), te]0,7]. (2.34)

e—0+ xz—
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2.3. Conservation law and a priori bound

Now we prove the conservation law (2.2) on the interval [0, 7].

Lemma 2.9. Let conditions (2.26)~(2.28) hold, and let ¥(t) € P, t € [0, 7],
be a solution to (1.1). Then

Hos((,1) = [ Dustbreg (DI + T(C(1) = const, ¢ €[0,7].  (2.35)

Proof. Equations (2.32) and (2.34) imply for any t € (0, 7]
lim *IIKE Dintreg|®
= limn [(F5, Dunthreg, K5 Dintireg) + (5 Dontbreg, Koy Donthres)|
= lim [(~iK5, D trey — KiuDunlg, K5 Dnthreg)
K, Dintbreg: =il Dreg — K, Do)
= lim [ = (D2,Cg, K20req) — (K2 tneg, D))
= lim [ = - (0(@), K2 thre) — - (K2 Uy, 3(2)]

= ¢ F(Q -8B = 250(0). (2.36)

Here the scalar product (K¢, D2 o Ureg, K5 Dimireg) exists since K treq(-,t) =
Kyhrey (1) + K5 0p (-, 1) € C([0, 00), H3/2) for any € > 0 due to (2.6) and
(2.31). Moreover, for any v > 0 and € > 0

sup ”Kanmwreg('at)”Hlm—u < 00.
te[0,7]

Hence, uniformly in ¢ € [0, 7], we have
EILT% ||K;Dm¢reg(t)” = ||Dm¢7'eg(t)”-

Therefore,

d
n Dm re '7t 2
Db 1)

& iy K65, Dyt - D)
= lim K5, Dty (D = 2 50(0), 7€ [0,7].
in the sense of distributions. Then (2.35) follows. O
Corollary 2.10. The following identity holds
U(C) =U((), telor]. (237)
Proof. First note that
A ((0)) > U (o) > bl¢o]* — a.

Therefore, |¢o| < A(1(0)) and then U(Co) = U(C), H#x(1(0)) = A5 (16(0)).
Further,

A1) = TL(1) 2 b)) —a, te0,7).
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Hence, (2.35) implies the a priory bound
€)1 < /Ol (0) +a)/b =/ @(0) + )b

= V(A ($(0) + a)/b= A¥(0), tE0,7]. (2.38)
Therefore, (2.37) follows by (2.26). O

2.4. Bootstrap argument

Identity (2.37) implies that we can replace F by F' in Proposition 2.6 and in
Lemma 2.9.

Now we can finish the proof of Theorem 2.1. The unique solution ¥ fyec(,t) to
the free Dirac equation with initial function f(z)+ (pg(z) exists for t € [0, c0)
(see Formula (2.13)). At the same time, the solution (() to equation (2.24)
exists for 0 < t < 7, where the time span 7 in Lemma 2.7 depends only on
A(4(0)). This solution defines the function ¥ g(x,t) by formulas (2.17)—(2.19)
so that (¢s(x,t),((¢) is the unique solution to the system (2.5) on the interval
[0, 7]. The bound (2.38) at t = 7 allows us to extend the solution ((¢) to the
time interval [7,27], and formulas (2.17)—(2.19) define ¢ g(x,t) on the interval
[0,27] then. We proceed by induction to obtain the solution for all ¢ > 0.

3. Solitary waves and main theorem

We assume that

4 N;
UQ) =Y _Ui(¢), where Uj(¢;) =Y unjl¢ ",
j=1 n=0
Up,; € R, UN;,j >0, Nj >2, g5=1,...,4. (31)

This assumption guarantees the bound (1.4), and it is crucial in our argument:
it allow us to apply the Titchmarsh convolution theorem. Equality (3.1) implies
that

Fi(G) = 0g,U;(¢) = a; (1G1*)¢s 5=1,-...4, (3.2)
where
N;
a;(1GI7) =D 2nun41G[*"7, (3:3)
n=1
Definition 3.1. (i) The solitary waves of equation (1.1) are solutions of the
form
w(xat) = wak (x)eiiu”cta Wi € Ra wi 7& Wy, l # jv djwk € Lz(R3)7
k

(3.4)
where the sum has a finite number of terms.
(ii) The solitary manifold is the set: .7 = {Z Yot Wk ER, wp #wj, 1 # j}.
k



NoDEA Global attractor for 3D Dirac equation Page 13 of 44 27

Below we show that the number of nonzero terms in (3.4) does not exceed
4. From (3.2) it follows that the set .7 is invariant under multiplication by e,
6 € R. Note that there is a zero solitary wave, since F(0) = 0.
Now we derive more precise representation for solitary waves.

Proposition 3.2. Assume that F(() satisfies (3.2). Then nonzero solitary waves
are given by

l/J(ﬂf,t) = ¢Q(x7t) + ingl(ZBQ(xat)a (35)
where Q = (w1, ..., ws) with |w;| <m,
$a(@,1) = (du, (T)e 1" L, G, (x)e™ ™), (3.6)
67\/7ij2\1|
d)wj(ﬂ,'):CjT'x‘, j:17,,,747 (37)

and C; = Cj(w;) € R are solutions to

m ,
(m —/m? —wi)(1 -‘ri;) =dma;(|C;1?), j=1,...,4 (3.8)

J

o, = {_1’ 7= (3.9)

Remark 3.3. In (3.5) some w; may be identical in contrast to (3.4).

with

Proof. We look for a solution ¢ (z,t) to (1.1) in the form (3.4):

P(x,t) = wak (z)e” ™ where wy < Wi (3.10)
k
Consider the function
X(,t) = 1p(x,t) — iD (2, t) =Y Y, (x)e 5, (3.11)
k
where
Xop = Yuwy — ka';v,l,l/}Wk = D;nl(Dm — W)Yy -
Hence,

ﬂ}uk == Dm(Dm - wk)71Xuk == Dm(Dm + Wk)(Dgn - wl%)71ka
= Xwy, T (sz + kam)(Dfn - Wz)leww (312)
Further, (3.11) implies that

Dx(,1) = Dt (2, 1) — itp(w,t) = D, ¢(£)d(x)
by the first equation of (1.1). Hence,

Z e r D2 o (2) = C(t)6 ().

k
by (3.11). Therefore,

— efm‘zl

Xwpg (17) = Ckmy

()= Cre ™. (3.13)
k
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where C}, := (Ck1,...,Cks). Now we derive the explicit formulas for 1, (),
using (3.12) and (3.13) only. One has
—m|z| 1 —ikx 3
R e ] T
Trfa] ~ @n) Jpe @+ D)€+ mE— o)

1 ( e—i&r e—i{m ) 3€
(2m)3w? Jrs \E2+m? —wi & +m?

1 (e_ mz—wilml e—m|;v|>

w? 4|z 4|z
Moreover,
—m|z| —m|z|
2 2\—1 € = 1/12 2y—1p12 € _ 1,12 1
1 e_\/mlw‘
=D
m 4|z
Substituting this into (3.12), we obtain by (3.13)
(L (l‘) = Puwy (Z‘) + ka;zlgowk (l‘), (3'14)
where we denote
_ e*vmszilr\
Oy (2) i= Cp——————.

4 |x|
Now we are able to find coefficients Cj;. The second equation of (1.1) together
with (3.4) and (3.14) imply

Jip, Jiy K5 D (9 (@) + @Dt (@) = Crgla) )

= lim lim K, g iwkt (gowk () — Crg(x) + kaﬂD;f(Pwk ()
k

e—0+ x—0
—iwga - VD, 2o, (v ) ZC’keﬂ”’“t (3.15)

Note, that

—\/m2—wﬁ|z\ 6—m|z|)

4|z  Arlz]

_&/( L ar
C2m? Jy \r24m2—w? 124 m?

Chr °°< m? m? —w? )d
= — — r
2m2 Jo \r24+m?  r24m?—w?

= %(mf m? — w?). (3.16)

lim th (gpwk(:c)fékg( )) Cy lim lim K, (

e—0+4+ z—0 e—0+4+ z—0

Similarly,

CL [ r2dr
63& mlm m Pwi () 272 /(; (702 + m2)(7~2 +m?2 — wz)
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Cr [* ( m? m? — w? )d
= — r
2m2w? Jo \r24+m? 24+ m? —w?

Ch 5
= (m—y/m? —w}). (3.17)
Moreover,
_ Cp £n&2d’¢ _
Jig, i K590, ) = b i [ @+ m? - W)@+ ma)iee

n=1,23. (3.18)
Substituting (3.16)—(3.18) into (3.15), we get

1 ; m
— Ch..e~ Wwrt _ 2 _ 2 i _ 2 _ )2
4”; kj€ (m A/m wk—|—0]‘% m—\/m° —wj
=a;(| Y Crje ™) Y Crje ™, j=1,....4 (3.19)
k k

Lemma 3.4. Let Cy; be solutions to (3.19). Then for each fized j = 1,...,4
only one of the coefficients Cy; is nonzero.

Proof. Tt suffices to consider the case j = 1 only. We should prove that
may be no more than one nonzero c; := Cj1. Assume, to the contrary,
that ck,,Chy,-.-,Ck, # 0 with k1 < ko < -+ < ky, where 2 < n. Then
Wey, < Wiy < - < wp, by (3.10). Denote 6y, = wy, —wp, >0, 1 <1< p<n.
Evidently, 6 := 01, = max 6;,. Then
1<i<p<n
|Zc e—zwkt‘2 —a+ bez5t +be—z6t + Z iélypt +El pe_iél’Pt)
(Lp)#(, n)
with some a > 0 and b # 0. Hence, (3.3) implies
ay(| che—iwkt|2) — dei(Ni=1)0t 4 ge—i(Ni-1)st | p
k

where R consists of terms of the type Ce’°® with |o| < (N7 — 1)6. Note that
d # 0 since a; is a polynomial of degree Ny — 1 > 1 due to (3.1) and (3.3).
Now the right hand side of (3.19) contains the terms e~ /[wr:t=(Ni=1)0Jt apnq
e wrnt+(N; =18l with nonzero coefficients, which are absent on the left hand
side. This contradiction proves the lemma. O

The lemma and formulas (3.4) and (3.14) imply

P (@,t) =D (@) e =) pu, j(@)e M 4 (Z Dyt (@) e_w’“t>
2 2 2 j

= Qo (@) e+ (Dptr(e, 1), G=1,...,4,

where

_iwkj t

ﬂ—j(wvt) = Wk; P, J(x) e
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We can assume that k; = j. Then Cy,; = Cjj;, wi; = wj, and @, j(x) = ¢, (x)
from (3.7) with C; = CJ ;- Then (3. 5) follows. It remains to note that equation
(3.19) in the case when Cj; = 0 for k # j is equation (3.8) for C; = Cjj;.
Proposition is completely proved. O

The following lemma gives a sufficient condition for the existence of
nonzero solitary waves.

Lemma 3.5. Let F' satisfy (3.2)~(3.3) with M; = —uy ; > 0, where j €{1;2;3;4}.
Then there exists an open subset I(M;) C (—m,m) such that for any w; €
I(M;) the jth equation of (3.8) has nonzero solutions C; = C(w;). Moreover,
I(M;) = (—m,m) iof M; >m/(32r?).

We prove this lemma in Appendix D.
Now the solitary manifold . reads

S ={®q+ D,;'Vo: Q= (w1,...,ws) € R*}, (3.20)
where
Po(x) = (Gu (@), -, 00, (@), Va(z) = (Wi, (2), - - ., Wadw, (2)).

Our main result is the following theorem.

Theorem 3.6. Let (3.1) be satisfied, and let ¥(0) := ¢ (x,0) = f(x) + (o with
f € H>T. Then the solution 1(z,t) to (1.1) with initial function 1(0) converges
to solitary manifold ./ in the space LE (R3):

tl}gloodlstL%()c(]RS)(lb(',t),y) =0. (3.21)

It suffices to prove Theorem 3.6 for ¢t — +oo.

4. Dispersive component

The following lemma states well known decay in local seminorms for the free
Dirac equation.

Lemma 4.1. (cf. [22, Proposition 4.3]) Let v¢(x,t) be a solution to the free
Dirac equation with initial function f € H*(R3). Then VR > 0,

[r( )llm2(BR) = 0, t— o0, (4.1)
where By is the ball of radius R.
Corollary 4.2. From (4.1) immediately follows that
At) =v5(0,t) =0, t— oo. (4.2)
Now consider
g (,1) = pga,t) + Dy o (, 1) = Colg(a) — (. 1)), (4.3)

where ¢, is the solution free Dirac equation with initial function (g, given by
(2.13).
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Lemma 4.3. ¢ (2,t) = Co(g(z) — y(z,t)) decays in HE,, seminorms. That is,
VR >0

lod ) 28Ry — O, t — oo. (4.4)

Proof. According to (2.12) the function h(z,t) := vy(z,t) — g(z) is the solutions
to

h(z,t) = (A —m*)h(e, 1), (h(z,t),h(z,0)],_, = (g.0).  (4.5)
Then (4.4) follows by Lemma 3.3 of [27]. O

In conclusion, let us show that
wq(-,t) € Cy([0,00), L?). (4.6)
Indeed, the energy conservation for equation (4.5) implies that
(A( 1), h(-,1)) € Cy([0, 00), L*(R®) & H " (R?)).
Hence,
(V04 1) = (A 8), (1)) + (9(-),0) € Cy([0, 00), L*(R?) & H™H(R?)).
Then (4.6) follows by (4.3).

5. Complex Fourier—Laplace transform

The conservation low (2.2) and a priory bound (2.3) imply that (-, t) €
Cy([0,00), L?). Hence, (4.6) implies

U)S('at) = w(at) - ql}f(vt) - @g('at) € Cb([oa OO), LZ) (51)
Let us analyze the Fourier-Laplace transform of ¥g(x, t):

Ys(x,w) = Fu[0t)s(z,t)] = /00 e“lhipg(x,t)dt, weCh, zeR3,
0
(5.2)

where C* := {z € C: Imz > 0}. Note that ¢g(-,w) is an L2-valued analytic
function of w € C* due to (5.1). Equation (2.16) implies that

(-

)
_WJS(x’W):DmJS(l‘vW)_D;z C( ) ( )7 w€C+, xGRg, (5'3)

¢

where ((w) is the Fourier-Laplace transform of ¢(¢):

{w) = Fialotc) = [ ety dt

0
Applying the Fourier transform to (5.3), we get

ot _ (afmBw) o1 o -
vsle = (a-€+mpb+w)(€2 +m?) <§2 +m?2  (a-&+mpB+ w)(&? +m2)><(w)
_ 1 w? wla - €+ mp) -
= (§2+m2 + (€2 + m2 — w2)(€2 + m2) - (€2 1 m? 7w2)(§2+m2)>c(w)
1 a-&+mp 1 1 -
- (§2+m2 — w? w (52 + m2 B £2 + m2 —w2>)g(w)7

ceR? wecCh. (54)
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Denote
(W) = Vw? —m2, Im s(w) > 0, weCT. (5.5)
The function s(w) is analytic on CT, and {/)Vs(x, w) is given by
Vs(z,w) = V(z,w)C(w), where
gi@lel m(e—mu| a%wﬂﬂ)’

View) = S 4 =
(z,w) 47| x| w

weCh. (5.6)

Amlz|  4rw|a

We then have, formally, for any € > 0,

Yg(z,t) = %/I - e_i‘”tV(;v,w)Z(w) dw
1 -

= — [ eV (z,w + i0){(w +i0) dw = .Z ., [V (z,w)¢(w)].
27 R

(5.7)

We will justify this identities in the next section.

6. Traces on the real line

By (5.1) the Fourier transform g (-, w) = .Z_.., [0(t)s(-,1)] is a tempered L2-
valued distribution of w € R. It is the boundary value of the analytic function
(5.2) in the following sense:

Us(ow) = lim vs(w+ie), weR, (6.1)
where the convergence holds in .’ (R, L?). Indeed,
Us(w +ie) = Frmu[0()Ps (- te ),
while (t)¢g(-,t)e " —0>+9(t)w5(-,t) in /(R, L?). Therefore, (6.1) holds by
E—
the continuity of the Fourier transform .%;_,, in ./ (R).

Similarly to (6.1), the distribution ((w), w € R, is the boundary value of
analytic in C* function ((w):

((w) = 513&. ((wHie), weR, (6.2)

since the function 6(¢)((t) is bounded. The convergence holds in the space of
tempered distributions ./ (R).

Let us justify that the representation (5.6) for Js(x, w) is also valid when
w € R\{—m;m}. Namely,

Lemma 6.1. V(z,w) is a smooth function of w € R\{—m;m} for any fized
x € R3\{0}, and the identity

Vs(r,w) = V(z,w){(w), weR\{~m;m} (6.3)
holds in the sense of distributions.

Proof. This lemma follows from (6.1) and (6.2) by the smoothness of V' (x,w)
for w # +m. O
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7. Absolutely continuous spectrum

Here we prove that the distribution {(w) = {(w + i0) is absolutely continuous
for real |w| > m.

Proposition 7.1. (cf. [21, Proposition 2.3]) ((w) € L} (R\[-m,m]) @ C*.

loc

Proof. We need to prove that
/|Z(w)|2 dw < o0 (7.1)
I

for any compact interval I such that I N [—m,m] = (). The Parseval identity
applied to

st(w,w +i€) = / sz, t)e™ =t dt, e >0,
0

gives

/R 19 (-, w + i€) |72 dw = 27T/ s ()12 e dt. (7.2)
0

The right-hand side of (7.2) does not exceed Cj/e, with some Cy > 0, since
sup;> [|1s (-, t)][z2 < oo by (5.1). Taking into account (5.6), we obtain

G

€

~ .  C(w i) 2
w + i€)|? V(i,w+ie) =—||7,dw < 7.3
/R|<< FiOPV (i 2 T (73)

since for any € > 0 the set of zeros of analytic function ((w + i€) has measure
Zero.

Lemma 7.2. There exists Ct such that

HV(-,erz'e)S(WJ”'E)H]QL2 >

Cr
Clw + ie) e

, wel, 0<e<|I|/2 (7.4)

Proof. For concreteness, we will consider the case I C (m,+o00). Due to the
middle line of (5.4), V(§,w) = V1(§) — Va(§,w), where
~ 1 wla-&+mp—w)

Vi(§) T e Va(§w) = E 1 m2— )& +m?)
One has
g(erie) 2 1 5 Z(erie) 2
Vi(-) = , = Vi(-)= 2
B 1 oo dep B ]
= E/O m—COH&t.

Hence it suffices to prove (7.4) for V5 only.
Denote by II1(§) orthogonal projections onto the eigenspaces of the operator

D, (&) = a- &+ Pm corresponding to the eigenvalues /&2 + m?:

T (€) = %(1 + \/%) (7.5)
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Denote by e+ (&, w) = I1L(§) lg(‘:i' the eigenvectors of the operator a-£+8m—w.

(w)

I¢(w)

Va(€,w) (w) _ wt Ve +mes(§w) + (~w— VE +m2)e_(€,w)
- Ice) @+ m? — )@ + )

wes (6 w) B we_(6,w)
(VEFmE+w)(€+m?)  (VETmE—w)(€+m?)
Using the mutual orthogonality of e, and e_ with respect to the L?-product,
we obtain for w € CT

) o Jol? e (€.)
Vaol(-,w)—= . =
I %wﬂL WP/Q@+W+MW+WF
e (€, w)I? .
+|\/§2+—”12—w|2(€2+m2)2) 8

Hence, for w € I C (m,00) and € > 0, we have

Al

Then the function V5(&, w) for w € CT can be expressed as

LAY

) . 6(w+ie) 2
It o

m? e (g0 +ie)l?
;ﬁ%ﬁé<ﬁm«wewﬁﬂm+&W+wvwﬁp

- m? / Q(w + ig,7)dr (7.6)
= 2m)3 Jr ((r—w)2 +2)r3vr2 —m2 '
where
r=+p?+m?, and Qw+ie,r):= / le—(§,w+ i5)|2dS, r>m.
(el =vrT=m?
Let us prove that ¢(I) := 12% ir}gj |Q(w’ +ig,7)| > 0. By (7.5),
1 as4mBy (W Fie)
e_(&,w +ie) = = (1— =
(E ) 2( /52 +m2) |<‘(w/+25)‘

— i(7"—04-5—17”%)73@ +Z:E) , €= V2 —m2
2r IC(w" + ie)|

The unit sphere S; and the interval I are compact sets. Hence, it suffices to

show that for any vector w € S1 and any r € I there exists § € S ;z—mz such
that

(r—a-&—mpB)w #£0.
Indeed, suppose that (r — a - § —mB)w = 0 for some § € S ;z—=. Then,
(- €)w = (r —mB)w, and for € = —¢ we have
(r—a-&=mB)w = (r —mpf)w — (a-E)w
=(r—-mB)w+ (a-&)w=2(r—mpB)w #0
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because of the nondegeneracy of the matrix » — mpg for r > m.
Now, (7.6) implies for any ¢ € (0, |I|/2)

C(w +ie) Hz < m2q(I)/ dr

Cw+ie)] 27 @r)P Jr((r—w)?+e2)r3yr2 —m?2
> CI/ alz > &

IN[w—e,w+e] 2e €

The last inequality is due to |[I N [w — &,w + €]| > &, which follows from w € T
and € < |I|/2. O
Substituting (7.4) into (7.3), we obtain

/ C(w+ie)2dw < Co/Cr, € € (0,]1]/2). (7.7)
I

We conclude that the set of functions g.(w) = ((w + i€), 0 < & < e; defined
for w € I, is bounded in the Hilbert space L?(I), and, by the Banach The-
orem, is weakly compact. The convergence of the distributions (6.2) implies

the weak convergence g. — g in the Hilbert space L?(I). The limit function
e—0+

g(w) coincides with the distribution ((w) restricted onto I. This proves the
bound (7.1) and finishes the proof of the proposition. O

[Va(-,w + ie)

8. Omega-limit compactness

Lemma 8.1. For any sequence s — oo there exists an infinite subsequence
(which we also denote by si) such that

C(t+sp) = nt), k—oo, teR, (8.1)

where 1(t) is some function from Cy(R) @ C*. The convergence is uniform on
[T, T] for any T > 0. Moreover, n(t) is the solution to

—n(t) + mn(t) —m /000 @n(l& — 5)ds

(/Oo Wdu)n(t - 8)d$> =47 F(n(t)), t € R.
- (8.2)

Proof. Theorem 2.1-iii), bound (2.8) and equation (2.24) imply that ¢ €
C}HR)®C*. Then (8.1) follows from the Arzeld-Ascoli theorem. Further, using
the asymptotics of Bessel function [33, Formula 10.7.8], we obtain

+imp (n(t) —m

Jo(mt) — 0, t/ M
mt u
°° rcos(u — 3m/4) _5/9

Moreover, for any ¢t € R

t+sg [e'e)
/ %mkg)((t + s — s)ds — / J1 (ms)n(t —s)ds, k— oo,
0 0

S
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/t+$k (/Oo %m“)d JC(t+ s, = s)ds
—>/ / i mu))n(t—s)ds, j— o0

by the Lebesgue dominated convergence theorem. Then equation (2.24) for
¢(t) together with (2.15) and (4.2) implies (8.2). O

Corollary 8.2. The distributions 1;(w), 7 = 1,...4, belongs to the space of
quasimeasures which are defined as functions with bounded continuous Fourier
transform.

Lemma 8.3. supp# C [—m, m].

Proof. Due to (8.1) and the continuity of the Fourier transform in ./(R), we
have

e —iwsy '
X(w)¢(w)e™ ™™ — x(w)n(w), &k — oo.
for any x € Cg°(R) such that supp y N [=m,m] = 0. The products x(w){(w)
are absolutely continuous measures since ((w) is locally L2 for w € R\[—m, m]

by Proposition 7.1. Then n(w) = 0 for w ¢ [—m, m] by the Riemann-Lebesgue
Theorem. O

9. Spectral inclusion and the Titchmarsh theorem
Here we will prove the following identity

ni(t)=Cje ™/, teR, wiel-mm], j=1...4  (9.1)

We start with an investigation of supp Fj(n;).

Lemma 9.1. The following spectral inclusion holds:

supp Fj(n;) C supp ;. (9.2)

Proof. Applying the Fourier transform to (8.2), we get by the theory of
quasimeasures (see [20]) that

AnFj(n;)(w) = (iw +m — mP(w) + imo;(1 - mQ))) 7 (w), j=1,....4.
(9.3)
where o, is defined in (3.9), P(w) and Q(w) are the Fourier transforms of the
functions P(t) = 9(t)@ and Q(t) = 0(t) [ Jl(mu) du. Note that P(t) and
Q(t) belong to L'(R). Therefore, the multiphcatlon by P(w) and Q(w) is well-

defined in the sense of quasimeasures (see Appendix B of [20]). Finally, (9.3)
implies (9.2). O

The second step is the following lemma

Lemma 9.2. For any omega-limit trajectory n;(t) one has
|n;(t)| = const, teR. (9.4)
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Proof. The assumption (3.2) implies that the function Fj(n;(t)), j =1,...,4
admits the representation

F(n;(#)) = a;(n; ())n; (1), (9-5)

where, according to (3.3)

N;
aj(n;) = 2ny 5ln; "2, (9.6)
n=1

The functions 7;(t) and a;j(n;(t)) are bounded continuous functions in R
by Lemma 8.1. Hence, 7;(t) and a;(n;(t)) are tempered distributions. More-

over, supp7; C [—m,m] and supp7; C [~m,m] according to Lemma 8.3.

—~—

Hence, a;(n;) also has a bounded support. Denote F; = supp Fj(n;), A; =

—

supp a;(n;), Z; = supp1;. Then the spectral inclusion (9.2) gives
Fj C Zj.

On the other hand, applying the Titchmarsh convolution theorem [19, Theo-
rem 4.3.3] to (9.5), we obtain

inf F; =inf A; +inf Z;, sup F; =sup A; 4 sup Z;.
Hence, inf A; = sup A; = 0, and then A; C {0}. Thus, we conclude that

supp a;(n;) = A; C {0}, and therefore the distribution a;(n;)(w) is a finite
linear combination of §(w) and it’s derivatives. Then ay(n;(t)) is a polynomial
in ¢. By Lemma 8.1, a;(n;(t)) is bounded then we conclude that a;(n;(t)) =
const. Finally, (9.4) follows since a;(n;(¢)) is a polynomial in 7;(¢), and its
degree 2N — 2 > 2 by (3.1) and (9.6). O

Now (9.4) means that n;(¢)7;(t) = C = const, and then 7; * %j =
2rCo(w — w;r) Hence, if 7; is not identically zero, the Titchmarsh theorem
implies that Z; = w; € [-m,m]. Indeed,

0=sup Z; +sup(—Z); =sup Z; — inf Z;,
and hence inf Z; = sup Z;. Therefore, 7j; is a finite linear combination of

O(w —w;r) and its derivatives. But the derivatives could not be present because

of the boundedness of 7;(t). Thus 7; ~ d(w — wj), which implies (9.1).

10. Convergence of singular component
Denote
1/J§ (xa t) = iﬁs(% t) - iD;f(o"Y(xa t) = @S(xa t) + ’iD;lps(l', t)a (101)

where ¢g(x,t) and pg(z,t) are defined in (2.18) and (2.19). Here we prove
that 95 (x,t) converges to some solitary wave.
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Lemma 10.1. The convergence holds

bg (ot +s5) = dai (1) +iD dor (1),  j— o0 (10.2)
in the topology of Cyp([=T,T), L} .(R*)) for any T > 0. Here
ot e V@l +
ba+ j(z,t) :¢w;r(x)e w; :CjTMe Wit i=1,..,4.

Proof. Definition (2.18) of pg(x,t), Lemma 8.1 and identity (9.1) imply that
for any x # 0

ws,j(x,t+s,) —

—iwt(t—

Cie " TID my In 0(s — e J1 (/52 = [o) it e—s) 4
4|z 4m Jo 52 — |x|?

C_e—iwft zu.)f|x| - m‘Z*(W;’)Hm‘

== - (e — mz(a:,w*)) = C'je_i“’f“e
4Am |z J

47| z|

= ¢w+(:c)e_iwf+t, k—oo, teR
J

by the Lebesgue dominated convergence theorem. Here Z(:E, w) = ﬁ (eim“’ —
ellelVe®=m*) js  the Fourier transform of the function L(z,t)

_ 0=l i (my/t2—|a|?)

(see Appendix in [27]). Hence, for any T > 0,

=
@s(t+sk) = ¢aor(t), k— o0 (10.3)

in Cy([-T,T), L% .(R3)). It remains to prove that for any 7> 0
Dy'ps (ot +s) = Dyldor (1) k— oo (10.4)

in Cy([-T,T), H:

loc

it +s1) — () = Cj(—iwfe™™7Y), k—oo, teR  (10.5)

(R?)). Lemma 8.1 and equation (2.24) imply that

uniformly on [—T,T] for any T' > 0. Hence, using (2.21), we obtain similarly
to (10.3) that for any T > 0,

ps(-t+sk) = do+ (1), k— oo (10.6)
—mly|

in Cb([iTa T]’LIQOC(R5)) Further, D;ﬁp&j(ﬂf,t) = / ejpsvj(z - y7t)dy7
rs 4yl

and

efm‘yl
/R3 WUDSJ@ —y,t)|dy

e—mlyl e—mlyl
gC(/ 7dy+/ dy)gc’goo, zeR3 teR
rs Y| — Yyl rs |yl

by (2.21). Then for any = € R3,
klim D, 2ps (-t + s;) = D2 klim ps(t+si) = D g+ (z,y)  (10.7)

by the Lebesgue dominated convergence theorem. Finally, from (10.6)—(10.7)
it follows that for any 7" > 0,

D,;lpg(~7t + s1) — D;1¢Q+(-,t), k — oo
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in Cy([-T,T), H} (R?)), which implies (10.4). O

11. Proof of global attraction
Substituting (2.13) and (2.17) into (2.4), we obtain

’(/J(J,‘, t) = wf(x't) + (pg(l‘, t) + ’Qbs(l‘, t)
+ys(a,t) +iDy oY (2, t) + Dy ps ()
= wf(.%‘.t) + (p;_(.%‘,t) + ’(/Jg(x,t)
by (4.3) and (10.1). Due to Lemmas 4.1 and 4.3 it suffices to prove that
tli,rg)diSthro(RS)(¢§("t)’y) =0. (111)
Assume by contradiction that there exists a sequence s, — oo such that
diStLlZOC(R3)(w§(',Sk),y) Z 5, Vk (112)

for some 6 > 0. According to Lemma 10.1, there exist a subsequence s, of
the sequence sy, w;-r € R and functions ¢_+ such that
J

wg('at—’—skn) H¢Q+(at)+ZD7;1¢Q+<7t)7 k’n—>OO, t€R7
in Cy([-T,T), L7 .(R?)) with any T' > 0. This implies that

loc
Vs (yse,) — o, () + D o (1), Ky — o0, (11.3)

in L} (R?). Here

Do, () = dor ;(2,0) = 6.+ (2), Var ;(2) = idar ;(2,0) = wF v+ (2).

The convergence (11.3) contradict (11.2) due to (3.20). This completes the
proof of Theorem 3.6. g
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A. Proof of Lemma 2.2
Note that
lim (g(z) — y(z,1))

z—0

. e=™=l gt —z))  m [PO(s—|x])J \/ — |z|?)
= |1 — _

4 || 4rr|x] 47 /52

¢
m m Ji(ms)
=——+ — ds.
am + i Jo s s

z—0

Hence it suffices to prove that
lim hm K (g(x) —y(x,t)) = lim (g(x) — vy(z,t)). (A1)

e—0+ x— x—0

Applying the Fourier transform f(ﬁ) = Fo_cf(x), we get

N 1 Usin(sy/€2 4+ m?)  cos(ty/E2 +m?)
g(g,t) (f t) €2 m? - 0 \/m ds = &2 +m?

_cos(ty/&% +m?) — cos(t[§])

52
m? cos(t\/&2 +m?)  cos(t[¢])
T e@rm) g 0 704

Then for (A.1) it suffices to justify the following permutation of limits:
lim lim K&, 7" (Cos(t\/m) —cos(tg]) m? cos(ty/€2 + m?) " cos(t|§|)>

Jim lim PR e €2(€2 + m2) €2
_ a}iglo ?{im (cos t@) — cos(tl¢])
m? cos(t\/€2 + m2)  cos(t[¢])
GRS e ) 10 (45)

We will do it for each term in (A.3) separately.
Step i) Applying the Lebesgue dominated convergence theorem, we obtain

_ m2cos(t\/€2 +m?2)

lim lim K, %, lim .7,
gir& zlin m” - £2 (52 + m2) wLO §—ow £2(€2 4 mz)
om? > cos(tvr? +m?) m2)
o2 )y r24m?
Step i) Let us prove that
e g1 cos(tlE]) oy cos(tlE])
alir(% iILI%)K Feoa e iﬁo Feoa e 0, t>0.

Indeed, for p := |z| < t,
1 cos(t|¢]) ~ i L/oo sin(rp) cos(tr)dr
0 p

L 1 sin(r(t + p)) — sin(r(t — p))
_ /O d

lim 3
p—0+ 47m2p r

r =0,
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(A4)
since
* sin(ra) * sinu
—=dr = —d > 0.
/0 dr /0 —du,
On the other hand,
< g1 cos(t[€])
Jim KT £2
t1&) ) 1 °° sin(rp) cos(tr)
T cos( _ /
pmo € &2(&2 + m?)¢ = 0t 272p r(r? +m?2)e
1 [ cos(tr)dr L(Eﬁm)%*f ﬁKs_%(mt) (A5)
Cor? Jy (r24m?)e 2w\ ¢ B '

by [14, Formula 1.3.(7)]. Here K, is the modified Bessel function, and T is the
gamma function. One can justify the last limit, splitting the integral into a
sum of integrals over the intervals [0,1] and [1,00), and integrating by parts
in the second one. Further,

t 1 /2 1—e/mK__1(mt
lim llmK‘E/*lM:hm (m) VK. 2( )20, t>0,
e—0+2—0 fow g2 em0+ 272\ ¢ I'(e)
since
1
S . ) _ ) (TN e
g =t Kyt =Ky = (55) T (49)

by [33, Formulas 5.7.1 and 10.39.2].
Step iii) It remains to check that

b T &5 71 SOV ?) — cos(tle)

e—0+ 1—0 - I
cos(ty/&2 + m?) — cos(t|¢])
= lim Tl e . t>0. (A7)
One has
e gt Cos(t/ETT ) —cos(tle)
m f—wr 52
1?7 (cos(tV/r2 4 m?)— cos(tr)) sin(pr) J
- 2m o pr(r? + m?)? '
o [T
0 Sy () » p=lel A
Evidently,
m i 2m (cos(tv/r?+ m?2)— cos(tr)) sin(pr) p
ei%ipi%i 0 p?”(?”2+m2)5 T

. 2m (coS(tm)— cos(tr)) sin(pr)

p—0+ 0 pr

dr.
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Hence, (A.7) will follow from

L oo (e:i:it\/r2 +m?2 _ e:l:itr) Sil’l(pT) i
e—0+ p—0+ Jo,, pr(r? +m?2)e
00 ( itv/r24+m2 _ Eitry o
~gm [ ) stnler) 4. (A.9)
p—0+ 2m por
One has
e — ) , itm?2
eTitVritm? _ oFitr eim"(i ZQm + Ry(r, t)); r>2m, t>0,
r
(A.10)
where
|Ry(r,t)] < C(m)(1+t)2/r?, 7| > 2m. (A.11)

The last estimate implies
> et Ry (r,t) sin(pr)

li li d
0t o0+ oy pr(rZ Ak m)E
jes} :titTR t) si 0 )
= lim c £ (7, )Sm(pr)dr:/ e Ry (r,t) dr. (A.12)
=0+ Jom pr 2m
Moreover,
oo Aitr o3

lim  lim e sin(rp) dr

e—0+ p—0+ Jo,, pr2(r2 +m?2)e
< et sin(rp) dr o0 etitr gy
=/ .

= lim

Jm e , t>0, (A.13)

that easily follows by means of integration by parts. Finally, (A.12)—(A.13)
imply (A.9).

B. Proof of Proposition 2.4
For any ¢ > 0,

tim (s, 1) — (1)) = tim (PC- D e oy ()

4z
m [t 0(s — [x]) Ty (my/s? = [2]?)

“i ) N ((t—s)ds)
= = (met) &) —m / @4@ ~ 5)ds).

Hence, it suffices to prove that

i lim K, (s (e, 1) — C(0g(@) = lim(ps(z,0) — ((g(x).  (B1)

—m|z|

(
The Fourier transform of pg(x,t) — ((t)g(z) for any ¢ > 0 reads

¢ sin 2 2
ote.t) —ctate) = [ LI (s
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cos(t §2+m2)g(0)+/t cos(s \/£2+m2)<-(t )
= —— 7 _— — s)ds.
£ +m? £2 +m?
Due to (A.2)-(A.3),

, 1 cos(t\/&2 +m?2) 1 cos(t\/&%2 + m?2)
sl—l>I(rJl+ ql«lin K n £2 4+ m?2 a0 6 £2 +m?2 '

Therefore, because of the continuity of the Fourier transform in .%’, it remains
to prove that

o1 cos(sy € +m?)

J i, fﬂwf (t = s)ds
. L cos(s\/E2 + m?) ; B
= %%/ T 52 e —=——((t — s)ds. (B.2)

Due to splitting (A.2), equality (B.2) will follow from the following three
equalities

9_1 cos(sy/E2 +m?) ;

M, | wmg(t‘s)ds

:ili%/ T COZ2 gzgj;;?f)é(t—s)ds. (B.3)
gty [ r, SVE LI el

:iiix})/ 7, cos(s 52“:;)_”8( D¢t~ 9as. B
R

:iii%/ Fl COZQK) C(t — s)ds. (B.5)

Step i) For any s € R and € > 0 the function fg(@ s) = C&“.f((;%i m € LY(R).

Hence T.(z,s) = ‘/ﬁ—mT (&, ) is continuous in z. Moreover it is uniformly
continuous in s. Therefore,

t

81_1}(I)1+ ill% ; T.(x,s)((t — s)ds

t

= i T-(0,5)C(t —
Jim, ; (0,5)¢(t — s)ds

t

:/0 To(0,5)¢(t — s)ds = lim [ To(x,s)C(t — s)ds. (B.6)

r—0 0

by uniformly continuity of 7.(0, s) in .



27 Page 30 of 44 E. Kopylova

Step ii) Let us prove (B.4). Due to (A.8)

ETE )1 s

§—x 52(52 T m2)s o272 —

where p = |z|, and

Spra) = /O ™ (cos(svr? +m?2) — cos(sr)) sin(pr) ar.

pr(r2 +m?2)e

P:I:( s) _ 0o (ej:isx/rz-&-mz o eiisr) sin(pr)
S pr(r? +m2)?

Applying the Lebesgue dominated convergence theorem, we obtain

T,

t

t

lim lim [ S.(p,s)C(t— s)ds = / S0(0,5)C(t — s)ds

e—0+ p—0 0 0
t

= lim [ So(p,s)C(t — s)ds
p—0 0

where S:(0,s) = ,l;ig%) Se(p,s) = fOQm Cog(g’ﬁ;—l:ig)acog(w)dr e > 0.

(A.10) implies

NoDEA

Further,

im2 * setisin(rp) dr /°° TRy (1, 5) sin(pr)d
.
2

p=* =+t— | S
S on PG+ M2 pr(r & me):

sin(rp) de®is" + B (p,s)

_m /
- or2(r2 + m2)e

m

where

¢ ¢
lim lim [ RZ(p,s)((t — s)ds = / RE(0,5)C(t — s)ds
e—0+ p—0 0 0

= lim R(jf(p, $)C(t — s)ds

y (A.11) and the Lebesgue theorem. Finally,
t 00 :

(/ sm(rp) deiisr>é(t o S)dS
0 pr

[, lim 207 + m2)e
t [o Sl
— lim ( / %Tf)dei“’“)c (t — s)ds,
=0 Jo om  PT

which easily follows by means of integration by parts.
Step i) Let us prove (B.5). Due to (A.5) we need to prove that

) . ¢ ° sin(rp) cos(sr) :
i, Jim | ( /0 W“)“‘SW‘S

t (/OOO sin(rp)pios(sr) dr)ﬁ(t _ s)ds.

= lim
p~>0+ 0
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Taking into account (A.4), we obtain

, t > sin(rp) cos(sr) e o\ds
lim (/o dr)((t )d

p—0+ 0 por
p 00 G S )
- ( / mmcos«swdr><<t_s)ds
p=0+ Jo 0 pr
1 e o : _ .
— lim — / ( / sin(r(s + p)) +sin(r(p 3))dr><(t—s)ds
p—0+ 2P 0 0 T
™ 1 (7. T
== lim - t—s)ds==C(t), t
3 Jim = [Mée—sas= . >0
since [;° #2% = 2 Hence (B.7) is equivalent to

lm lim [ (/Ooo Mdr)é(tfs)ds: gg(t). (B.8)

e—0+ p—0+ J pr(r2 +m?2)e

By [14, Formula 2.3.(28)],

°° sin(rp) cos(sr) ° sin(r(s + p)) —sin(r(s — p))
— 5 o dr = dr
o r(r24+m2)s 0 2r(r? +m?)¢
_ L[ Gi(e;s+p)+Gale,s+p) —Gi(e,s —p) = Ga(e,s —p), p<s
2 | Gi(e, s+ p) +Gale,s +p) +Gi(e,p—5) +Gale,p—s), s<p
(B.9)
where
_ VT 172511(_%"’5) 13 31 5
Gi(e, 2z) = 5 M ) 1F2(2, 5 g M )z,
_ Vm2EI(5—¢) 1 L 9 0\ 2
Ga(e, z) = > T +o 1F2(5,1+5,2+5,4mz )2%¢,
and 1 Fy(a,b,c; x) is the generalized hypergeometric function:
= (a), 2F Ila+k)
Fy(a,b,c;z) = —, a)y = ————
el )=2 )r(c)r K (@) I'(a)

k=0

where the series converges for all finite values of x € C and defines an entire
function (see [33, § 16.2 (ii)]). It is easy to see that

Gile.s+9) = Galess—p)| _ C()

p ()’

p<s<t, O0<e<l.

Hence,

e —Gile,s—p) -
lim lim st ) =GilEs =0 iy ggs—0.  (B.10)
e=0+ p—0+ / , P)

Further,

1 ! 5 2426 _ (g _ 0)\2K+28) it o)|ds
p/p|<( )P (s = )Y (1 - s
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— p2k+25 /; ((7_ + 1)2k+2a _ (7_ _ 1)2k+28)|<—(t _ Tp)|d7’
1

; 02k+26 2k+2e+1 2k+2e+1 g
< R A— 1 € _ -1 € 3
< max ()l o7 (T + D) (r=1) ),
<2 1¢(s )\( (2p)"% +(t+ )2k+25) k=0,1,2 (B.11)
max -_ = .
se[%t 2k +e+1 P ’ B
Hence,
.~ ~
_ _ . t
lim |/ Golestp) = Gales=n) iy g < €0 o
=0+ J, p L(e)
(B.12)
where we denote
& (c.2) V272 T( 7—5 i I(e+k) (mz)?k 2%
Z) =
2 V2 T(+e) &I+t +en  4FH!

In the case k = 0, taking into account (B.ll), we obtain for any small v > 0

lim Tim © /t ((s+p)* = (s — p)*){(t — 5)ds = lim /Ot 4es* 7 (t — s)ds

e—0+ p—0+ P P

v t 8
lim </ +/ ) = lim 4es%* 1 (t — s)ds
e—0+ 0 v e—0+ 0

= (=) tim, [ a5 s = 2t = n(w),

where n(v) € [0, v]. Because of the arbitrariness of v > 0, we get

1 [t . .
Jim T / (s + 9% — (5 — p))E(t — 5)ds = 26(2).
Together with (B.9), (B.10) and (B.12), this gives
¢ > sin(rp) cos(sr) : s
lim i ————d t—s)ds = =((t).
e ol pir& 0 </0 pr(r2 +m?2)e r)Q(t = s)ds 24( )
Now for (B.8) it remains to prove that
. . r °° sin(rp) cos(sr) : B

One has

C
|Gi(e,p+ )+ Gile,p—s)| < oK
Gole,p+s)+Gale,p—5) < Cp*, 0<s<p<l, 0<e<l,
Hence, (B.9) implies that

sin(rp) cos(sr) :
|/ (/ e ar >§(t—s)ds
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1 (7,
SC’p%;/ C(t—s)lds =0, p—0+, 0<e<lL
0

Therefore (B.13) follows.

C. Proof of Proposition 2.5

Note that D,,' = D,,,D,;2 = —ia-VD,.2 +mB3D,.2. Then the Proposition 2.5
will follow from the next three lemmas:

Lemma C.1. The following equality holds,

lim lim K¢, D, *ps(z,t) = lim D, *ps(z,t), t>0. (C.1)
e—0+2—0 z—0

Lemma C.2. The following limit holds,

tim D, %ps (1) = - (Co [mt At Jo(mﬁ)]

mt

() —m/o (/OO Jl(?“)g(t—s)ds), £ 0.

(C.2)

Lemma C.3. The following limit holds,
lim VKE D, ’ps(z,t) =0, 0<e<1, t>0. (C.3)

C.1. Proof of Lemma C.1
Note that pg(z,t) is a solution to (2.20) with ¢(¢) instead of ¢(t). Hence,
b sin(s4/€2 +m2) . .
SEVELT) (y  g)ds, Dips(ét
0 V& +m
tog =) 2y .
_ / Sin(svVE+m) sy gds, ¢ o0, (C.4)
0 (€ +m?) e+
and for (C.1) it suffices to prove that
t ; /€2 2
lim lim ﬁgjx sin(sv/& +m
e—=0+2—0 J, (52 + m2)1+5 /52 + m2
t - ) 2y .
=lim [ F2}, SIVELMY) ry gas b0, (C5)
=0 Jo (€2 + m?)\/€2 + m?

We split the integrand in (C.5) as
sin(sy/£24+ m?) (= s) = sin(sy/&24+ m?) — sin(s|¢|)
(€24 m?)\/E+ m? 28+ m?

 misin(sVE 4 m?) L sinGsle) g,
£2(e2+ mz)\/€2+ m2 52\/52_’_ m2 ’

ﬁS(£7 t) =

C(t — s)ds

(C.6)
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and justify the permutation of the limits (C.5) for integrals of each terms in
the RHS of (C.6) separately.

The proof of equality
t 2 g /2 2 .
lim lim ﬁf__{x m”sin(s /€% + m?) C(t—s)ds
e—0+ 2—0 0 52 (52 + m2)1+5 /52 + m2
o b m?sin(s\/€2 +m?) -
=lim [ F._, C(t — s)ds
z—0 0 52(§2 + m2) /52 + m2
is similar to the proof of equality (B.3). By the same arguments,

lim lim/ T w 1 sin(s §2+m2)—sm( IgDC(t s)ds

e~ 20 52 & +m?)e @+ m?
iy [, VT I ol

b S avE
since
|sin(t/€2 + m2) — sin(t[¢])| = 2| sin \/WHSI Ve mE g,

2

m2

<—.
RGETEr

(C.7)

It remains to prove that

lim lim t F1 sin(s[¢])

S Jo T e e
= hIIl/ (/5_%52511’1 |£D C(tfs)ds (CS)

z—0

C(t— s)ds

Applying the Lebesgue theorem, we obtain

o sin(sle)
i [, 2@ e

1 t 0o s - .
—— lim lim / / MCU — s)dr |ds
272 e=0+ p—0+ J o pr(r2+m2)ste

1 ¢ o0 sin(sr ;
= on2? sl 0+/ (/ 2 ( 2)l+edr ¢(t —s)ds
- o (r*+m?)2

—ﬁr(l) m / s°[I.(ms) — L_.(ms)]C(t — s)ds

~arz 2o

t

_ 4i [To(ms) — Lo(ms)|C(t — s)ds (C.9)
T Jo

by [14, Formula 2.3.(6)]. Here I.(2) is the modified Bessel function, and L_.(z)
is the modified Struve function, satisfying

Ia(z)w(%z)E/F(£+1)7 L,E(z)w(%z)_5+17 250 (C10)
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by Formulas (10.30.1) and (11.2.2) of [33]. On the other hand,

fo [ sinGsle)

=0 Jo T/ m?
I °° sin(sr) sin(pr) :
= lim — ——d t—s)d
o0y 272 0 </0 pry/r2 +m? r |Gt = s)ds
i L /“M Elt— )ds
p—0+ 272 Jo \ /o p(r2 +m?2)

: (A A sin(sr) sin(pr)dr .
+ lim 7/ / t—s)ds. (C.11
p—0+ 272 J < o pr(r24+m?)(r+ m) ¢( ) ( )
By the Lebesgue theorem

. t ° sin(sr) sin(pr)dr by
pli%lJr 0 (/0 pr(r24m?2)(r+vr2 + m?) ( —a)ds

_ [ > sin(sr)dr s _\ds
_/ou (r2+m2)<r+m)><(t )d (C.12)

Further, applying [18, Formula 3.742 (1)], we obtain

. K °° sin(sr) sin(pr)dr \ ; _ S\ds
lim (/0 )C(t )d

C(t — s)ds

=0+ Jo p(r? +m?)
t —ls—plm _ ,—(s+p)m
= lim i/ € < C(t —s)ds
p—0+4m J, p

™ i e~ rm [P sm —sm d
~ 4m p—lgl-s- p /0 (e —e Jo(t=s)ds
t _pm _ _—pm t
s € e : ™ :
Ii —sm gy _ —sm fry )
i Jim, ’ - e M((t— s)ds 2/0 e "M (t— s)ds

Moreover,

! o sin(sr)rdr \ : . L
/ (/0 St )C(”)d%/o el

by [14, Formula 2.2.(15)]. Therefore,
1 oo :

lim (/ sin(sr) sm(pr)dr>c~(t _s)ds
o \Jo

p—0+ pr(r? +m?2)

T °° sin(sr)dr \ : \ds
7/0 </0 (r2+m2)>§(t )d (C.13)
Now (C.11), (C.12), (C.13) and [14, Formula 2.2.(26)] imply

i [t Sl g

N N

—s)ds
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1 t > sin(sr)dr \ : ~ Ods
=92 ), < ; m)dt )d
_ % lo(ms) — Lo(ms)|C(t — s)ds,

0

which coincides with the right hand side of (C.9). Hence, (C.8) follows.

C.2. Proof of Lemma C.2
Integrating by parts in (C.4), we obtain

— in(t 2 2 t 2 2
Dups(,t) = - (;i( B %c(ow | YR - syas.
m m
(C.14)
Let us calculate the inverse Fourier transform of cos(sy/€24m?) and of

£24+m?2
sin(t4/&2+m?2)
(€2+m2)/€24+m2’

In the sense of distributions, we obtain

P 1 3 /S sin(uy/&2 +m2)du

_ el / (5(u — ) m f(u — Jz])Ji(myVa? = x2)>du
0

dmlz| 4r|z| 4w u? — 2

el o(s—z))  m [P 0(u—|z])J(mVu? — CE2)d

Amlz|  4rwlal 4 Jo u? — z?

(C.15)

-1 sin(ty/&2 + m?) - tcos(s\/quLmZ)d
N R M

B /t e—mlz| B 0(s — |x|)
Jo \ 4n|z] 4|zl
s _ 2 2
mo [0 |z i (myw? —[2P) | (C.16)
47T 0 \/m

Hence, (C.14) -(C.16) imply for ¢ > 0 and |z| < ¢

—mlz| _ 1 1 t S Jy( 2 42)
—2 — e -2, m Ji\myuT = r7)
Dm ps(l’,t) - CO <t 47T‘l‘| + . + dn " </|x| P du |ds

e b e,
+/0 (47r|x| pE=p )C(t )d

+
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m " le(mV“L”“P)du) — 8)ds C17
& [ ([ 2 oo

||

One has
tfemisl (s — Ja) emiel
li - t—s)ds = li
|w1\130 0 (47r|x| 47 || Gt —s)ds ‘11130 47 |z| /C
| 1 /lr ( d
+ lim t— s)ds
lz|—0 47 x| Jo ¢

——%Ag@m+$qw

Further, changing the order of integration gives

lim t /S Ji(my UZ_‘xP)du dS:/t /SMdu ds
12[=0 Jiz| \ Jj|  u? —|z|? 0 0 u

_t/ Jlmu /Jlmu

B Jl(mu)du 1o 1
—t/o 7+mJo( t)

u

Substituting this into (C.17), we obtain

47 lim Dm ps(x,t) = (o (tm - tm/ M - Jo(mt)>

jal—
—m/( )ds + C(t +m/ (/ Jlmud)((ts)ds
=@Gméj*%““—%mw>+aw
+m/0t (/:o ']175“) du) C(t — s)ds,

°° Ji(u)d
since / 1(::) Yo by [18, Formula 6.561(17)].
0

C.3. Proof of Lemma C.3

Note that
sin(s\/&2+m?)  sin(s|{]) sin(sy/&2 + m?) — sin(s|¢])
(€2 + m2)3/2te (€2 1+ m2)3/2+< + (£2+m2)3/2+s

_osin(slg) m?sin(s¢|)
[E1(E2 +m2) 12 |€](€2 4+ m2)3/2+e (/€2 + m? + |¢])
+sin(sm) — sin(s|¢])

(€2 + m?2)3/2+e
= Ql(|§|75a5> + Q2(|€|a SaE) + Q3(|£‘7S,E)-
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Taking into account (C.7), we obtain
Jim, VF L ,Q2(¢],5,2) =0, i, VZ1,Q3(¢l,s,6) =0, >0, s>0.
Hence, for (C.4) it remains to prove that

imy [zt smGlED oy —0, £>0, ¢t>0. (C.18
Py o Eﬂx‘§|(§2+m2)1+sg( s)ds c (C.18)

Formula 1.3(7) of [14], and formulas 10.27.4 and 10.25.2 of [33] imply

. sin(s|¢]) B / sin(sr) sin \x|r)dr
R =5y e
/ cos((s — |z|)r) — cos((s + |z|)r)
dr
47r2|x|

(r2 + m2)i+e

NG
T 4n?|z|T(1 + £)(2m)

~ls = [l |7 Ky (mls — |2]])

—(s+ |z))2 K, . (m(s + |]))

Qe

e

s — [ef| 4+ (I;E(ms — Jell) — Tyl |x|>)

(ool (L s+ o) = Ty ono + |x>>)]

a
= — (H;5<m<s —Jx)) Ty (m(s + |x|>>>
m2Te|z|
l+5
L <<s )L (s + [2])) — |s — |2l [T (m]s — x||>>,

where we denote

1
T BT (L 1 o) sin((F + o)) (2m) 12

1 y > y2k
IL(y) = (59)7"L( Z()4kk'F(u+k+ I

One has

I_1_.(m(s — |z[)) = _1_ (m(s + |z))

E
o m? (<s )~ (s + |a:|>2k)
B k;) 4REIT (2 — e + k)|z]
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1 - 3 _ 2k—1 _
i 2m2k( (2k> 2k-1 + <2k> $2k 3|x|2+...+ ( ok )S|m|2k 2)
k=1

4REIT(S — e + k)

Hence
] ¢t M_a__(m(s—Iz])) —H_1_.(m(s+|z]) ,
lim v - - C(t—s)ds=0, >0, t>0.
z—0 Jo ||
(C.19)
Further,
(s + [x[)' Iy, (m(s + [2]) = |s — [T Ty, (s — |2])
||
- m2ke <(s + |$|)2k+1+25 _ |S _ |1‘||2k+1+26>
7;;) AREIT (3 + & + k)|
Denoting aj := 2k + 2¢. In the case 7 := ﬁ > 1, we obtain
s+ |z|)or Tt — (s — |z)or Tt gy
vj ( | D ( | D _ 7JQ (ak+1) (S—I—|x‘)ak +(s_ |1.|)Oék:
|| ||
(s fr)or T — (s = Ja]) st
||
xi|x|*
- J||962 (ap +1) ((T + )% + (1 — 1)“’“)
—(r+ 1)t 4 (7 - 1)0“«“] . (C.20)
One has

[(ar +1)((7 +1)* + (1 — 1)%) — (T + 1) (7 — 1)

<

Cl(k), 1 § T S 2
Co(k)(T+ 1]y, — 1|*x=2, 7 >2

where C (k) = (ap +2)(3%% 4+ 1), Co(k) = ((g)ak2+§>(ak+1)ak. Hence,

t s x| )k 1—S—$ak 1

‘ IIVj( ™o)™ gy

_ Jzllees e o D)% 4 (o — 1)
- <<k+1><<+1> +ro)

—(T+ D) (7 - 1)‘”“) C(t = rlaf)dr|
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< fo]" max (1) <cl<k> +Call) |27 4 e ) )

[0,¢]
Therefore,
ot (s D) (s o+ 2]) = s = [l [FREIL (s = fal]) |
lim \Y% 2 ¢(t—s)ds =0,
e>0, t>0.

It remains to prove that

el (s + ‘1")1+2EH%+5(7”(5 + lz])) = |s = |e|[*F* I (Is = |2]) |
. 2 2 —
111rr%J \Y% izl ¢(t—s)ds =0,
x—0 Jo

e>0, t>0.

(C.21)
In the case s < |z|, we obtain similarly to (C.20)

(lz] + )2+ — (o] — syt

]

T 5|2 |**

= (e (@ mee = =)

— (L)t (1— T)ak+1> |
||+

||

IV;

<4 (o +1)2%%, 7= LR

||
Hence, for small |z,

o (2] + s)s ! = (o] — s)st!
| vj ‘xl
0

((t — s)ds|

<fols] [ (@ meed (=) - (e
. T)""‘“)é(t ~ rlal)dr] < O] (0 + 1)2°,

which implies (C.21).

C.3.1. The case € = 0. Note, that the limit (C.18) does not exist for € = 0
i.e. without the smoothing operator K;,. Namely, in this case

o _sinsle)
e+
_ / sin(sr) sin |x|r)d _ 1 (e=mls=lell _ g=m(s+lal))
27r2|:v| (r2 4+ m?) 8mm|z|

7ms( mlz| _ efm\z|) s> |{E|,
N 27r2|:v| e~mlzl(ems —emms) s < .

by [18, Formula 3.741(1)]. Hence,

sin( |§|)
hm V; / Jgiz BIG ) ((t — s)ds



NoDEA Global attractor for 3D Dirac equation Page 41 of 44 27

1 . em‘$‘ — e_mlm‘ t s

el .
L T / (e —e ™) ((t — s)ds
0

1 ) || .
— lim / (€™ —e ™) (t — s)ds
0

271'2 x—0 w

Evidently, the first limit in the RHS is zero. Further, L'Hopital’s rule implies
Plems — e=m3) (¢ (t — s)ds mp _ o=mp)F(p — .
p—0 1% p—0 2p

Hence, the second limit in the RHS is zero, and the third limit does not exist.

D. Existence of nonzero solitary waves

Here we prove the lemma 3.5. It suffices to consider the case j = 1 only, since
the equation (3.8) for j = 2 is the same, and for j = 3,4 is similar. We rewrite
the equation (3.8) with j =1 as
wilwi +m
% = 47ay(|C1 %), wy € (—m,m), (D.1)
m+ \/m° — wj

where

Ny
a1(|C|2) =M — Z 2nun’1|(|2"_2, Ny > 2, M > 0, UN;,1 > 0.

n=2
Necessarily, equation (D.1) has nonzero solutions C; = Ci(wy) for wy €
(=m,m), satisfying the condition
w1(wy +m)
m+ \/m? — w?
Obviously, (D.2) holds for any M > 0 and w; sufficiently close to 0 or to —m.
Moreover, (D.2) holds for any M > 0 and for wy; € (—m,m) such that

< 4mM. (D.2)

w1 (w1 +m) < 4rMm,

which is equivalent to

—m +vm?2 + 64772Mm}

—m < w; < min {m; 5
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