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Abstract. We consider a two-dimensional model of viscoelastic von Kármán
plates in the Kelvin’s-Voigt’s rheology derived from a three-dimensional
model at a finite-strain setting in Friedrich and Kruž́ık (Arch Ration
Mech Anal 238: 489–540, 2020). As the width of the plate goes to zero,
we perform a dimension-reduction from 2D to 1D and identify an effec-
tive one-dimensional model for a viscoelastic ribbon comprising stretch-
ing, bending, and twisting both in the elastic and the viscous stress. Our
arguments rely on the abstract theory of gradient flows in metric spaces
by Sandier and Serfaty (Commun Pure Appl Math 57:1627–1672, 2004)
and complement the Γ-convergence analysis of elastic von Kármán rib-
bons in Freddi et al. (Meccanica 53:659–670, 2018). Besides convergence
of the gradient flows, we also show convergence of associated time-discrete
approximations, and we provide a corresponding commutativity result.
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1. Introduction

The derivation of effective theories for thin structures such as plates, rods,
or ribbons is a classical problem in continuum mechanics. Despite the long
history of the subject with contributions already by Euler, Kirchhoff, and von
Kármán (see [6,12] for surveys), rigorous results relating lower-dimensional
theories to three-dimensional elasticity have only been obtained comparably
recently. They were triggered by the use of variational methods, particularly
by Γ-convergence [13] together with quantitative rigidity estimates [24]. In
this present work, we are interested in effective descriptions for viscoelastic
ribbons, i.e., bodies with three different length scales: a length l which is much
larger than the width ε which, in turn, is much larger than the thickness h.
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This difference in the characteristic dimensions allows to model the material
effectively as a one-dimensional continuum [16].

In elasticity theory, the study of such models dates back to works by
Sadowsky [26] and Wunderlich [38] who proposed and formally justified
one-dimensional energies from a two-dimensional Kirchhoff plate model, cor-
responding to h = 0 and to the limiting passage ε → 0. Recently, Freddi,
Hornung, Mora, and Paroni [19] gave a rigorous justification of a cor-
rected model and addressed also related effective descriptions derived from
von Kármán plate models [20]. More generally, a hierarchy of one-dimensional
models has been derived from three-dimensional nonlinear elasticity by con-
sidering the simultaneous limit h � ε → 0 for appropriate rates h/ε [17,18].
On the contrary, the assumption h ∼ ε leads to different effective rod models
identified in [2,32,33].

The present work is devoted to a similar scenario of deriving one-
dimensional theories for viscoelastic von Kármán ribbons. Let us start by con-
sidering a nonlinear three-dimensional model of a viscoelastic material with
reference configuration Ωε,h = (− l

2 , l
2 ) × (− ε

2 , ε
2 ) × (−h

2 , h
2 ) at finite strains

in Kelvin’s-Voigt’s rheology, i.e., a spring and a damper coupled in parallel.
Neglecting inertia, the nonlinear system of equations takes the form

−div
(

∂F W (∇y) + ∂Ḟ R(∇y, ∂t∇y)
)

= f in [0, T ] × Ωε,h, (1.1)

where [0, T ] is the process time interval and y : [0, T ] × Ωε,h → R
3 denotes

a deformation with gradient ∇y. The tensors ∂F W and ∂Ḟ R correspond to
the elastic stress and the viscous stress, respectively, and are related to a
stored energy density W as well as a (pseudo-)potential R of dissipative forces.
(Here, F and Ḟ are placeholders for ∇y and ∂t∇y, respectively.) Eventually, f
describes an external force. In contrast to the rapidly developed static theory
of nonlinear elasticity, due to the physically relevant assumptions on frame
indifference for both W and R (see [5,7]), existence of solutions remains a
challenging problem and results are scarce. We refer, e.g., to [28] for local in-
time existence or to [15] for the existence of measure-valued solutions. To date,
weak solutions in a general finite strain setting [21,31] can only be guaranteed
by using the concept of second-grade nonsimple materials where the elastic
properties additionally depend on the second gradient of the deformation [39,
40]. At the same time, let us mention that a main justification of the model
investigated in [21] lies in the observation that, in the small strain limit, the
problem leads to the standard system of linear viscoelasticity without second
gradient.

Recently in [22], starting from a version of (1.1) for nonsimple materials,
a dimension reduction has been performed to derive a von Kármán-like vis-
coelastic plate model on a two-dimensional plate Sε = (− l

2 , l
2 )× (− ε

2 , ε
2 ). This

complements the static Γ-convergence analysis for elastic materials [25], which
has justified the von Kármán plate equations proposed more than 100 years
ago [41]. In contrast to previous works on viscoelastic plates [9–11,35], where
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the starting point is already a plate model, [22] constitutes a rigorous deriva-
tion by proving that solutions to (1.1) converge in a suitable sense to effective
two-dimensional equations. More precisely, there are in-plane displacements
u : [0, T ] × Sε → R

2 and out-of-plane displacements v : [0, T ] × Sε → R such
that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g2D = −div
(
C

2
W

(
e(u) + 1

2∇v ⊗ ∇v
)

+ C
2
R

(
e(∂tu) + ∇∂tv ⊗ ∇v

))
,

f2D = −div
((

C
2
W

(
e(u) + 1

2∇v ⊗ ∇v
)

+ C
2
R

(
e(∂tu) + ∇∂tv ⊗ ∇v

))∇v
)

+ 1
12div div

(
C

2
W ∇2v + C

2
R∇2∂tv

)
(1.2)

in [0, T ] × Sε, where e(u) := 1
2 (∇u + ∇uT ) denotes the linear strain tensor,

and C
2
W as well as C

2
R are tensors of elasticity and viscosity coefficients, re-

spectively, derived suitably from W and R. In addition to the vertical force
f2D, we also consider a horizontal force g2D that was not included in [22] for
simplicity. The first equation features a membrane term both in the elastic and
the viscous stress, and the second equation contains also a bending term. The
problem is closely related to the von Kármán functional given by (neglecting
the forces)

φε(u, v) :=
1
2

∫
Sε

Q2
W

(
e(u) +

1
2
∇v ⊗ ∇v

)
dx +

1
24

∫
Sε

Q2
W (∇2v) dx,

where Q2
W (F ) = F : C2

W F for F ∈ R
2×2. Indeed, (1.2) can proved to be a

(metric) gradient flow for φε for a metric suitably related to C
2
W , see again [22].

This approach was additionally exploited in [23] for numerical approximation
of the system (1.2) via a minimizing movement scheme. We also refer to [1]
for a related dynamical problem considering inertial terms but no viscosity.

In order to describe the one-dimensional effective behavior of thin vis-
coelastic ribbons, the goal of the present paper is to perform another dimension
reduction by letting the width ε in (1.2) go to zero. In a purely static setting,
this problem has been addressed in [20] by identifying the Γ-limit of the se-
quence 1

εφε in terms of the non-convex functional

φ0(ξ1, ξ2, w, θ) :=
1
2

∫ l/2

−l/2

Q0
W

(
ξ′
1 +

|w′|2
2

)
dx1 (1.3)

+
1
24

∫ l/2

−l/2

(
Q0

W (ξ′′
2 ) + Q1

W (w′′, θ′)
)
dx1

comprising stretching, bending, and twisting, where Q0
W and Q1

W are quadratic
forms suitably related to Q2

W . More precisely, the in-plane displacement u can
be related to an axial displacement ξ1 and an orthogonal in-plane displacement
ξ2. In contrast, the out-of-plane displacement v generates an out-of-plane dis-
placement w, and the derivative of v in the direction orthogonal to the axis
leads to a twist function θ.
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In the framework of viscoelastic ribbons, we relate the nonlinear equations
(1.2) to the following equations for viscoelastic ribbons

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1D
1 = − d

dx1

(
C0

W

(
ξ′
1 + |w′|2

2

)
+ C0

R(∂tξ
′
1 + w′∂tw

′)
)

,

g1D
2 = 1

12

d2

dx2
1

(
C0

W ξ′′
2 + C0

R∂tξ
′′
2

)
,

f1D = − d

dx1

((
C0

W

(
ξ′
1 + |w′|2

2

)
+ C0

R(∂tξ
′
1 + w′∂tw

′)
)
w′

)

+ 1
24

d2

dx2
1

(
∂1Q

1
W (w′′, θ′) + ∂1Q

1
R(∂tw

′′, ∂tθ
′)

)
,

0 = d

dx1

(
∂2Q

1
W (w′′, θ′) + ∂2Q

1
R(∂tw

′′, ∂tθ
′)

)

(1.4)

in [0, T ] × (− l
2 , l

2 ), where the constants C0
W > 0 and C0

R > 0, and the qua-
dratic form Q1

R are again related to Q2
W and Q2

R, respectively. Moreover, f1D,
g1D are forces derived from f2D, g2D. Note that the equations are again given
in divergence form. More precisely, we prove existence of solutions to (1.4)
and make the dimension reduction rigorous, i.e., we show that solutions to
(1.2) converge to solutions of (1.4) in a specific sense. The solutions have to be
understood in a weak sense, see (2.13) for the exact definition. The same prop-
erty holds for time-discrete approximations, and we provide a corresponding
commutativity result, see Fig. 1.

Heuristically, (1.4) can be understood as the effective equation of a thin-
walled beam with reference configuration Ωε,h governed by (1.1), when we first
let h → 0 and then ε → 0. In a forthcoming work, we will make this intuition
rigorous by studying simultaneous limits h � ε → 0, complementing the purely
elastic analysis in [18]. Let us mention that in [20] also other energy regimes
have been considered, leading to a “linearized” von Kármán or a “constrained”
von Kármán energy. Whereas the former case is completely covered by our
analysis, the latter is subtler due to the nonlinear constraint det(∇2v) = 0 in
the two-dimensional setting.

Our general strategy is to treat the systems (1.2) and (1.4) in the abstract
setting of metric gradient flows [4] for the energies φε and φ0, respectively,
where the underlying metric is given by a dissipation distance suitably related
to C

2
R, ∂1Q

1
R, ∂2Q

1
R, and C0

R. (We also refer to [30] for a thorough explanation
to this approach.) We follow the approach of evolutionary Γ-convergence de-
vised in [29,34,36,37]. In using this theory, the challenge lies in proving that
the additional conditions needed to ensure convergence of gradient flows are
satisfied.

More specifically, to use the abstract convergence result, lower semiconti-
nuity of the energies, the metrics, and the local slopes is needed. The estimate
for the energies and metrics essentially follows from [20], see Theorems 5.1
and 5.2 below. The lower semicontinuity of the local slopes, however, is more
technical and the core of our argument. We briefly present the main idea in the
one-dimensional setting. The local slope of φ0 in a metric space with metric
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D0 is defined by

|∂φ0|D0(z) := lim sup
ẑ→z

(φ0(z) − φ0(ẑ))+

D0(z, ẑ)
.

(To simplify the notation here, we use a single variable z in place of (ξ1, ξ2, w, θ),
see (1.3).) We use a finer representation of the local slope, based on gener-
alized convexity properties, to show that the local slope coincides with the
global slope, see [4, Definition 1.2.4], up to some lower order terms. Essen-
tially, this shows |∂φ0|D0(z) ≈ (φ0(z)−φ0(z̃))+

D0(z,z̃) for some z̃. Consider a sequence
(zn)n∈N converging to a limit z. The main step consists in constructing a mu-
tual recovery sequence (z̃n)n∈N such that φ0(zn) − φ0(z̃n) → φ0(z) − φ0(z̃)
and D0(zn, z̃n) → D0(z, z̃), see Lemma A.2. The strategy to prove the lower
semicontinuity of local slopes along the sequence φε is similar, but the con-
struction of mutual recovery sequences (see Lemma 5.3) is subtler as suitable
compatibility conditions between the elastic energy and the viscous dissipation
are needed. We consider different conditions in that direction, ranging from
materials with small Poisson ratio to vanishing dissipation potentials in the
direction of the width ε, see Subsection 2.3 for details. Let us emphasize that
mutual recovery sequences are also crucial to perform the limiting passage on
the time-discrete level, see Theorem 5.7.

The plan of the paper is as follows. In Sect. 2, we introduce the one- and
two-dimensional models and state our main results. The main goal is to prove
the existence of solutions to the one-dimensional model, which is based on
gradient flows in metric spaces [4]. In particular, Theorem 2.2(i) provides the
existence of solutions to the one-dimensional gradient flow by relying on the
theory of generalized minimizing movements. Moreover, Theorem 2.2(ii) iden-
tifies solutions of the gradient flow as weak solutions of the one-dimensional
system of PDEs (1.4). Finally, Theorem 2.3 addresses the relation to the two-
dimensional system. Besides the convergence of two-dimensional solutions to
the one-dimensional solutions, we also get analogous results for the semidis-
cretized problems. In particular, convergences for vanishing time step and van-
ishing width of the plate commute, see Fig. 1. Section 3 is devoted to definitions
concerning the theory of gradient flows in metric spaces. In particular, we re-
call the approximation scheme and also collect the necessary existence results
for curves of maximal slopes [4,14]. While Sect. 4 collects separately the main
properties of the two- and one-dimensional systems, Sect. 5 addresses the rela-
tion between the two systems. Finally, proofs of the main results can be found
in Sect. 6, and several technical proofs are postponed to the Appendix A.

Notation

In what follows, we use standard notation for Lebesgue spaces, Lp(Ω), which
are measurable maps on Ω ⊂ R

d, d = 1, 2, integrable with the p-th power
(if 1 ≤ p < +∞) or essentially bounded (if p = +∞). Sobolev spaces, i.e.,
W k,p(Ω) denote the linear spaces of maps which, together with their weak
derivatives up to the order k ∈ N, belong to Lp(Ω). Further, W k,p

0 (Ω) contains
maps from W k,p(Ω) having zero boundary conditions (in the sense of traces).
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Moreover, for a function v ∈ W k,p(Ω), the set W k,p
v (Ω) contains maps from

W k,p(Ω) attaining v at the boundary (in the sense of traces) up to the (k−1)-
th order. To emphasize the target space E, we write W k,p(Ω;E). If E = R,
we write W k,p(Ω) as usual. We refer to [3] for more details on Sobolev spaces
and their duals. If the integration variable is clear from the context, we usually
drop dx at the end of integrals.

2. The model and main results

2.1. The two-dimensional setting

In this subsection we describe the two-dimensional von Kármán plate model.
Fixing an interval I = (− l

2 , l
2 ), the set Sε := I × (− ε

2 , ε
2 ) represents a two-

dimensional reference configuration of a two-dimensional plate, where l > 0
denotes the length and ε > 0 the width. For u ∈ W 1,2(Sε;R2) and v ∈
W 2,2(Sε;R) we define the von Kármán functional by

φε(u, v) :=
1
ε

∫
Sε

1
2
Q2

W

(
e(u) +

1
2
∇v ⊗ ∇v

)
+

1
ε

∫
Sε

1
24

Q2
W (∇2v)

− 1
ε

∫
Sε

(
f2D

ε v + g2D
ε · u

)
, (2.1)

where e(u) := 1
2 (∇u + ∇uT ) denotes the linear strain tensor and ⊗ the Eu-

clidean tensor product. Moreover, Q2
W denotes a quadratic form on R

2×2, re-
lated to the tensor C2

W in (1.2) via the mapping A �→ Q2
W (A) = A : C2

W A. The
quadratic form is derived from a frame-indifferent energy density W . There-
fore, it only depends on the symmetric part of a matrix A ∈ R

2×2, i.e., on
1
2 (A + AT ), and is positive definite on R

2×2
sym. This functional describes the en-

ergy of a two-dimensional plate deformed in three-dimensional space, where
u and v correspond to in-plane and out-of-plane displacements, respectively.
The energy comprises both a membrane term depending on u and v, as well as
a bending term, only depending on v. Eventually, the functions f2D

ε ∈ L2(Sε)
and g2D

ε ∈ L2(Sε;R2) correspond to a vertical force density and a horizontal
force density, respectively.

We also introduce a global dissipation distance Dε((u, v), (ũ, ṽ)) between
two displacements (u, v), (ũ, ṽ) ∈ W 1,2(Sε;R2) × W 2,2(Sε) whose square is
given by

Dε((u, v), (ũ, ṽ))2 =
1
ε

∫
Sε

Q2
R

(
e(ũ) − e(u) +

1
2
∇ṽ ⊗ ∇ṽ − 1

2
∇v ⊗ ∇v

)

+
1

12ε

∫
Sε

Q2
R

(∇2ṽ − ∇2v
)
. (2.2)

Here, Q2
R is a quadratic form on R

2×2, positive definite on R
2×2
sym, which cor-

responds to the tensor C
2
R in (1.2) and is derived from a nonlinear viscous

dissipation potential R, see (1.1).
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As shown in [22,23], the metric gradient flow of φε with respect to the
metric Dε, for a given initial datum (u0, v0) ∈ W 1,2(Sε;R2) × W 2,2(Sε), cor-
responds to the 2D equations for viscoelastic von Kármán plates
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div
(
C

2
W

(
e(u) + 1

2∇v ⊗ ∇v
)
+ C

2
R

(
e(∂tu) + ∇∂tv � ∇v

))
= g2D

ε ,

−div
((

C
2
W

(
e(u) + 1

2∇v ⊗ ∇v
)
+ C

2
R

(
e(∂tu) + ∇∂tv � ∇v

))∇v
)

+ 1
12div div

(
C

2
W ∇2v + C

2
R∇2∂tv

)
= f2D

ε in [0, ∞) × Sε,

u(0, ·) = u0, v(0, ·) = v0 in Sε,

(2.3)

where 
 is the symmetrized tensor product and div denotes the distributional
divergence. The existence of solutions to (2.3) complemented with Dirichlet
boundary conditions on ∂Sε has been addressed in [22,23]. For performing
the dimension reduction, we instead only impose boundary conditions on the
lateral boundaries ∂I × (− ε

2 , ε
2 ). More precisely, given functions û1 ∈ W 1,2(I),

û2 ∈ W 2,2(I), and v̂ ∈ W 2,2(I), we define the space of admissible functions by

S 2D
ε :=

{
(u, v) ∈ W 1,2(Sε;R2) × W 2,2(Sε) :

u(x) = (û1(x1) − x2û
′
2(x1), 1

ε û2(x1)), v(x) = v̂(x1),

∂1v(x) = ∂1v̂(x1) on ∂I × (− ε
2 , ε

2 )
}

. (2.4)

Note that the proof in [22,23] can still be performed under (2.4) up to minor
adjustments, but the equations (2.3) need to be complemented with zero Neu-
mann boundary conditions on the top and the bottom of Sε. As we will see
below, however, they do not affect the effective 1D model. The structure of
the conditions on u is related to the space of Bernoulli-Navier functions, see
(2.9) below.

We say that (u, v) ∈ W 1,2([0,∞);S 2D
ε ) is a weak solution of (2.3) if

u(0, ·) = u0, v(0, ·) = v0 and for a.e. t ≥ 0 we have∫
Sε

(
C

2
W

(
e(u)+ 1

2∇v ⊗ ∇v
)
+C

2
R

(
e(∂tu)+∇∂tv 
 ∇v

))
: ∇φu =

∫
Sε

g2D
ε · φu,

(2.5a)∫
Sε

(
C

2
W

(
e(u) + 1

2∇v ⊗ ∇v
)

+ C
2
R

(
e(∂tu) + ∇∂tv 
 ∇v

))
:
(∇v 
 ∇φv

)

+
1
12

∫
Sε

(
C

2
W ∇2v + C

2
R∇2∂tv

)
: ∇2φv =

∫
Sε

f2D
ε φv (2.5b)

for all (φu, φv) ∈ S 0
ε , where S 0

ε is defined as in (2.4) for û1 = û2 = v̂ = 0.
Note that (2.5a) corresponds to two scalar equations and (2.5b) corresponds
to one scalar equation, respectively.

2.2. Compactness and limiting variables

For the limiting passage, it is more convenient to work on a fixed domain that
does not depend on ε. To this end, we introduce the set S := I × (− 1

2 , 1
2 ) and
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define the scaled versions y ∈ W 1,2(S;R2) and w ∈ W 2,2(S) by

y1(x1, x2) :=u1(x1, εx2), y2(x1, x2) :=εu2(x1, εx2), w(x1, x2) :=v(x1, εx2),
(2.6)

and the scaled differential operators Eε, ∇ε, ∇2
ε by

Eεy :=
(

∂1y1
1
2ε (∂1y2 + ∂2y1)

1
2ε (∂2y1 + ∂1y2) 1

ε2 ∂2y2

)
,

∇εw :=
(
∂1w,

1
ε
∂2w

)
and ∇2

εw :=
(

∂2
11w

1
ε∂2

12w
1
ε∂2

21w
1
ε2 ∂2

22w

)
. (2.7)

Thus, by the chain rule we have

Eεy(x) = e(u)(x1, εx2), ∇εw(x) = ∇v(x1, εx2), ∇2
εw(x) = ∇2v(x1, εx2).

Similarly, we define the scaled forces f̂2D
ε : S → R and ĝ2D

ε : S → R
2 by

f̂2D
ε (x1, x2) = f2D

ε (x1, εx2) and ĝ2D
ε (x1, x2) = g2D

ε (x1, εx2) and assume that
the scaled versions satisfy

f̂2D
ε ⇀ f1D, ĝ2D

ε,1 ⇀ g1D
1 ,

1
ε
ĝ2D

ε,2 ⇀ g1D
2 weakly in L2(S) (2.8)

for functions f1D ∈ L2(I) and g1D ∈ L2(I;R2). Here and in the following, with
a slight abuse of notation, we regard all functions defined on I as functions on
S which do not depend explicitly on the variable x2.

Starting from the variables y and w in dimension two, we now introduce
corresponding limiting variables in the one-dimensional setting. We will iden-
tify the limit of the in-plane displacements with two-dimensional Bernoulli-
Navier functions defined by

BN(û1,û2)(S;R2) :=
{

y ∈ W 1,2(S;R2) : e(y)12 = e(y)22 = 0, y1 = û1 − x2û
′
2,

y2 = û2 on Γ
}

,

where for shorthand, we set Γ := ∂I ×(− 1
2 , 1

2 ). Compared to [20], this function
space is different since in our analysis we consider functions with boundary
values instead of functions with vanishing mean. By arguing analogously to [8,
Theorem 4.1], the space of Bernoulli-Navier functions can be identified with
functions defined on I, namely

BN(û1,û2)(S;R2) =
{

y ∈ W 1,2(S;R2) : ∃ ξ1 ∈ W 1,2
û1

(I), ∃ ξ2 ∈ W 2,2
û2

(I) such that

y1(x) = ξ1(x1) − x2ξ
′
2(x1), y2(x) = ξ2(x1)

}
. (2.9)

Here, it is worth noting that the second component has a higher regularity
and that ξ′

2 = û′
2 on ∂I as ξ1 − x2ξ

′
2 = û1 − x2û

′
2 on ∂I for a.e. x2 ∈ (− 1

2 , 1
2 ).

We recall the scalings (2.6) and (2.7), and denote by S 2D
ε,M := {(u, v) ∈

S 2D
ε : φε(u, v) ≤ M} the sublevel sets of the energy.

Proposition 2.1. (Compactness) Let (uε, vε)ε be a sequence such that (uε, vε) ∈
S 2D

ε,M for M > 0. Let (yε, wε)ε be the scaled sequence in the sense of (2.6).
Then, up to a subsequence, there exists a vertical displacement w ∈ W 2,2

v̂ (I), a
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twist function θ ∈ W 1,2
0 (I), and a horizontal displacement y ∈ BN(û1,û2)(S;R2)

such that

wε ⇀ w in W 2,2(S), ∇εwε ⇀ (w′, θ) in W 1,2(S;R2),

∇2
εwε ⇀

(
w′′ θ′

θ′ γ

)
in L2(S;R2×2

sym)

for a suitable γ ∈ L2(S) and

yε ⇀ y in W 1,2(S;R2) and Eεyε ⇀ E in L2(S;R2×2
sym)

for a suitable E ∈ L2(S;R2×2
sym) such that E11 = ∂1y1.

The proof is omitted as it closely follows the lines of [20, Lemma 2.1]
where functions with vanishing mean have been considered. In fact, the only
difference lies in using suitable versions of Poincaré’s and Korn’s inequality for
functions with given trace, and in checking that the limits satisfy the boundary
conditions. To see the latter, it suffices to observe that yε(x) = (û1(x1) −
x2û

′
2(x1), û2(x1)), wε(x) = v̂(x1), and 1

ε∂2wε = 0 on Γ, see (2.4) and (2.6).
Here, our choice of the boundary values in (2.4) becomes apparent since it
guarantees that the limit of the in-plane displacements can be identified with
functions in (2.9). We also refer to [27], where clamped boundary conditions in
a related context are considered. Later we will see that the compactness result
also holds in the time-dependent setting along solutions to (2.5).

2.3. Effective quadratic forms and compatibility conditions

As a preparation for the formulation of the one-dimensional model, we intro-
duce effective quadratic forms related to Q2

S , S = W,R, introduced in Subsec-
tion 2.1. Recall that Q2

W and Q2
R are defined on R

2×2 which depend only on
symmetric matrices and can thus be identified with functions defined on R

3

via (q11, q12, q22) �
(

q11 q12
q12 q22

)
. For the sake of readability, we use both types of

notation in the sequel. We define reduced quadratic forms by minimizing the
second and third entry. More precisely, we let

Q1
S(q11, q12) := min

α∈R

Q2
S(q11, q12, α) (2.10)

for (q11, q12) ∈ R
2 and

Q0
S(q11) := min

z∈R

Q1
S(q11, z) = C0

Sq2
11 (2.11)

for q11 ∈ R and a suitable constant C0
S > 0. We denote by C

1
W and C

1
R the

corresponding second-order tensors.
To perform a rigorous evolutionary dimension reduction, we require some

compatibility conditions of the quadratic forms Q2
W and Q2

R as we need to
construct mutual recovery sequences, compatible for the elastic energy and
the viscous dissipation at the same time (see Theorems 5.6 and 5.7). A first
possibility is given by the assumption that

arg min
α∈R

Q2
S(q11, q12, α) = 0, arg min

z∈R

Q1
S(q11, z) = 0 for all q11, q12 ∈ R.

(H1)
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This induces a restriction from a modeling point of view since it particularly
corresponds to materials with Poisson ratio zero, such as cork. A reasonable
generalization is to assume that Q2

S are ε-dependent, denoted by Q2
S,ε, such

that Q2
S,ε = Q2

S +o(1)Q̂S for ε → 0, where Q2
S satisfies (H1) and Q̂S is any pos-

itive definite quadratic form. (For simplicity, we did not include this explicitly
in the notation in (2.1) and (2.2).) Another sound option is to consider thin
materials with general Poisson ratio, but with a vanishing dissipation effect in
the e2 direction. In this case, the assumptions are given by

lim
ε→0

Q2
R,ε(q11, q12, α) = Q1

R(q11, q12), arg min
z∈R

Q1
S(q11, z) = 0 for S = W,R

(H2)

for all q11, q12, α ∈ R. This setting includes, but is not restricted to, the case
of linear isotropic elastic materials with corresponding quadratic form

Q2
W (q11, q12, q22) := 2μ(q2

11 + 2q2
12 + q2

22) + λ(q11 + q22)2,

where μ > 0 and λ ∈ R are suitable Lamé parameters. In particular, (H1)
corresponds to λ = 0. In this paper, we cover both cases described above. We
remark that (H1) and (H2) are only needed for the proof of Lemma 5.3.

2.4. Equations of viscoelastic vK ribbons in 1D

We now present the effective 1D equations. To this end, define the set of
admissible functions by

K := W 1,2
û1

(I) × W 2,2
û2

(I) × W 2,2
v̂ (I) × W 1,2

0 (I). (2.12)

In the following, we write ′ for spatial- and ∂t for time derivatives. Recall the
definition of the forces in (2.8). Given (ξ0

1 , ξ0
2(t), w0, θ0) ∈ K, we consider the

system of equations

g1D
1 = − d

dx1

(
C0

W

(
ξ′
1 +

|w′|2
2

)
+ C0

R(∂tξ
′
1 + w′∂tw

′)
)

,

g1D
2 = 1

12

d2

dx2
1

(
C0

W ξ′′
2 + C0

R∂tξ
′′
2

)
,

f1D = − d

dx1

((
C0

W

(
ξ′
1 +

|w′|2
2

)
+ C0

R(∂tξ
′
1 + w′∂tw

′)
)

w′
)

+ 1

24

d2

dx2
1

(
∂1Q

1
W (w′′, θ′) + ∂1Q

1
R(∂tw

′′, ∂tθ
′)

)
,

0 = d

dx1

(
∂2Q

1
W (w′′, θ′) + ∂2Q

1
R(∂tw

′′, ∂tθ
′)

)
in [0,∞) × I

such that ξ1(0, ·) = ξ0
1 , ξ2(0, ·) = ξ0

2 , w(0, ·) = w0, θ(0, ·) = θ0 in I and
(ξ1(t), ξ2(t), w(t), θ(t)) ∈ K for t ∈ [0,∞). We also say that (ξ1, ξ2, w, θ) ∈
W 1,2([0,∞);K) is a weak solution if ξ1(0, ·) = ξ0

1 , ξ2(0, ·) = ξ0
2 , w(0, ·) = w0,

θ(0, ·) = θ0 and for a.e. t ≥ 0, we have

0 =
∫

I

(
C0

W

(
ξ′
1 +

|w′|2
2

)
+ C0

R(∂tξ
′
1 + w′∂tw

′)
)

φ′
ξ1 −

∫
I

g1D
1 φξ1 , (2.13a)
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0 =
∫

I

1
12

(
C0

W ξ′′
2 + C0

R∂tξ
′′
2

)
φ′′

ξ2 −
∫

I

g1D
2 φξ2 , (2.13b)

0 =
∫

I

(
C0

W

(
ξ′
1 +

|w′|2
2

)
+ C0

R(∂tξ
′
1 + w′∂tw

′)
)

w′φ′
w

+
1
24

∫
I

(
∂1Q

1
W (w′′, θ′) + ∂1Q

1
R(∂tw

′′, ∂tθ
′)

)
φ′′

w −
∫

I

f1Dφw, (2.13c)

0 =
∫

I

(
∂2Q

1
W (w′′, θ′) + ∂2Q

1
R(∂tw

′′, ∂tθ
′)

)
φ′

θ (2.13d)

for all φξ1 ∈ W 1,2
0 (I), φξ2 ∈ W 2,2

0 (I), φw ∈ W 2,2
0 (I), and φθ ∈ W 1,2

0 (I).
We point out that (2.13b) describing the orthogonal in-plane displace-

ment ξ2 is completely decoupled from the other equations, whereas the axial
in-plane displacement ξ1 is always coupled to the vertical displacement w by
(2.13a) and (2.13c). Interestingly, under assumption (H1), one can check that
the twist function only appears in (2.13d), and (2.13d) is also independent of
w in this setting, i.e., (2.13d) decouples completely, as well.

Our goal will be to show existence of weak solutions to (2.13) and that
weak solutions (2.5) converge to weak solutions (2.13) in a suitable sense. In
particular, we will relate (2.13) to a metric gradient flow with respect to an
energy φ0 in the space

S 1D := BN(û1,û2)(S;R2) × W 2,2
v̂ (I) × W 1,2

0 (I), (2.14)

endowed with a metric D0 whose square is given by

D0((y, w, θ), (ỹ, w̃, θ̃))2 :=
∫

S

Q0
R

(
∂1y1 − ∂1ỹ1 +

|w′|2
2

− |w̃′|2
2

)

+
1
12

∫
I

Q1
R(w′′ − w̃′′, θ′ − θ̃′) (2.15)

for (y, w, θ), (ỹ, w̃, θ̃) ∈ S 1D and the energy φ0 is given by

φ0(y, w, θ) :=
1
2

∫
S

Q0
W

(
∂1y1+

|w′|2
2

)
+

1
24

∫
I

Q1
W (w′′, θ′) −

∫
I

f1Dw+g1D · y

(2.16)

for (y, w, θ) ∈ S 1D. Note that (2.16) coincides with (1.3) (for f1D = 0, g1D =
0) by using (2.9) and by performing an integration over x2, where one uses∫ 1/2

−1/2
x2 = 0 and

∫ 1/2

−1/2
x2

2 = 1/12. For notational convenience, we work with
S 1D instead of the (equivalent) space K, i.e., we identify (ξ1, ξ2) with y via
(2.9).

2.5. Main results

To show existence and convergence of solutions, we will use the abstract theory
of gradient flows [4] and evolutionary Γ-convergence [29,36,37]. In particular,
our approach to prove existence of 1D solutions is twofold as we derive it
both by time-discrete approximations and also by limits of two-dimensional
solutions.



11 Page 12 of 42 M. Friedrich and L. Machill NoDEA

Our first main result addresses the existence of time-discrete solutions to
the one-dimensional problem and their convergence to a curve of maximal slope
for φ0 with respect to D0 and |∂φ0|D0 . For the main definitions and notation for
curves of maximal slope and strong upper gradients we refer to Subsection 3.1.
In particular, we write |∂φε|Dε

and |∂φ0|D0 for the local slopes, where the en-
ergies and metrics are defined in (2.1), (2.2), (2.15), and (2.16). The definition
of time-discrete solutions is given in Subsection 3.2. The relevant results about
existence of curves of maximal slope are recalled in Subsections 3.2 and 3.3.

Theorem 2.2. (Solutions in the one-dimensional setting) Consider (ξ0
1 , ξ0

2 , w0, θ0) ∈
K and define y0 := (ξ0

1 − x2(ξ0
2)′, ξ0

2), i.e., (y0, w0, θ0) ∈ S 1D.

(i) (Approximation and existence) For each null sequence (τl)l∈N and each
sequence of discrete solutions (Ūτl

)l as in (3.2) below, there exists an
absolutely continuous function (y, w, θ) : [0,∞) → S 1D with respect to
the metric D0 satisfying (y, w, θ)(0) = (y0, w0, θ0) such that, up to a
subsequence, not relabeled,

Ūτl
(t) → (y(t), w(t), θ(t)) for all t ∈ [0,∞) as l → ∞

with respect to the topology induced by D0, and (y, w, θ) is a curve of
maximal slope for φ0 with respect to |∂φ0|D0 .

(ii) (Identification) Each curve of maximal slope (y, w, θ) for φ0 with respect
to |∂φ0|D0 can be identified via (2.9) with a curve

(ξ1, ξ2, w, θ) ∈ W 1,2
(
[0,∞);K)

(2.17)

such that (ξ1, ξ2, w, θ) is a weak solution of the system (2.13).

Now, we study the relation of weak solutions (2.5) and weak solutions
(2.13). To this end, we need to specify the topology of the convergence. We de-
fine mappings πε : S 2D

ε → S by πε(u, v) := (y, w, ∂2w
ε ), where y and w are the

scaled in-plane and out-of-plane displacements corresponding to u and v, see
(2.6), and S = πε(S 2D

ε ). We say that πε(uε, vε) = (yε, wε,
∂2wε

ε ) σ→ (y, w, θ)
if we have the convergence in the sense of Proposition 2.1. Furthermore, we
say that (uε, vε)

πσ→ (y, w, θ) if πε(uε, vε)
σ→ (y, w, θ). The sequence (uε, vε)ε

converges strongly to (y, w, θ), written (uε, vε)
πρ→ (y, w, θ), if the convergence

in Proposition 2.1 also holds with respect to the strong in place of the weak
topology. We remark that the limiting variables (y, w, θ) are contained in the
space S 1D ⊂ S defined in (2.14).

Theorem 2.3. (Relation between two-dimensional and one-dimensional sys-
tem) Suppose that (H1) or (H2) holds. Consider a null sequence (εl)l∈N

and a sequence of initial data (u0
εl

, v0
εl

)εl
with (u0

εl
, v0

εl
) ∈ S 2D

εl,M
such that

(u0
εl

, v0
εl

) πσ→ (y0, w0, θ0) ∈ S 1D and φε(u0
εl

, v0
εl

) → φ0(y0, w0, θ0).

(i) (Convergence of continuous solutions) Let (uεl
, vεl

)l be a sequence of
curves of maximal slopes for φεl

with respect to |∂φεl
|Dεl

satisfying
(uεl

(0), vεl
(0)) = (u0

εl
, v0

εl
). Then, there exists an absolutely continuous
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Ȳε,τ Ūτ

(uε, vε () y, w, θ)

τ → 0

ε → 0

ε → 0

τ → 0
ε, τ → 0

Figure 1. Illustration of the commutativity result given in
Theorems 2.2 and 2.3, where τ indicates the timestep and ε
the width of the ribbon. The horizontal and diagonal arrows
are addressed in Theorem 2.3. The left vertical arrow is a
consequence of [23, Theorem 4.1], up to minor adaptions due
to boundary conditions. The remaining vertical arrow corre-
sponds to Theorem 2.2

function (y, w, θ) : [0,∞) → S 1D with respect to the metric D0 satisfying
(y, w, θ)(0) = (y0, w0, θ0) such that, up to a subsequence, not relabeled,

(uεl
(t), vεl

(t))
πρ→ (y(t), w(t), θ(t)) for all t ∈ [0,∞) as l → ∞

and (y, w, θ) is a curve of maximal slope for φ0 with respect to |∂φ0|D0 .
(ii) (Convergence of discrete solutions) For all τ > 0 and all discrete solutions

Ȳεl,τ as in (3.2) below there exists a discrete solution Ūτ of the one-
dimensional system such that, up to a subsequence, not relabeled,

Ȳεl,τ
πρ→ Ūτ for all t ∈ [0,∞) as l → ∞.

(iii) (Convergence at specific scales) For each null sequence (τl)l∈N and each
sequence of discrete solutions Ȳεl,τl

as in (3.2) below, there exists an
absolutely continuous function (y, w, θ) : [0,∞) → S 1D with respect to
the metric D0 satisfying (y, w, θ)(0) = (y0, w0, θ0) such that, up to a
subsequence, not relabeled,

Ȳεl,τl
(t)

πρ→ (y(t), w(t), θ(t)) for all t ∈ [0,∞) as l → ∞
and (y, w, θ) is a curve of maximal slope for φ0 with respect to |∂φ0|D0 .

Note that in the two-dimensional setting the existence of curves of max-
imal slope in (i) and discrete solutions in (ii) and (iii) is guaranteed by [22,
Theorem 2.2] and [23, Theorem 4.1]. In particular, weak solutions in the two-
dimensional setting converge (in the sense above) to solutions of the one-
dimensional equations. We refer to Fig. 1 for an illustration. We point out
that existence of solutions to the one-dimensional equations follows without
(H1) or (H2), see Theorem 2.2. These compatibility conditions are only needed
to prove Theorem 2.3.
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3. Preliminaries: curves of maximal slope

In this section, we recall the relevant definitions about curves of maximal slope
and present abstract theorems concerning the convergence of time-discrete
solutions and continuous solutions to curves of maximal slope.

3.1. Definitions

We consider a complete metric space (S ,D). We say a curve y : (a, b) → S is
absolutely continuous with respect to D if there exists m ∈ L1(a, b) such that

D(y(s), y(t)) ≤
∫ t

s

m(r) dr for all a ≤ s ≤ t ≤ b.

The smallest function m with this property, denoted by |y′|D, is called metric
derivative of y and satisfies for a.e. t ∈ (a, b) (see [4, Theorem 1.1.2] for the
existence proof)

|y′|D(t) := lim
s→t

D(y(s), y(t))
|s − t| .

We define the notion of a curve of maximal slope. We only give the basic
definition here and refer to [4, Section 1.2, 1.3] for motivations and more details.
By h+ := max(h, 0) we denote the positive part of a function h.

Definition 3.1. (Upper gradients, slopes, curves of maximal slope) We consider
a complete metric space (S ,D) with a functional φ : S → (−∞,+∞].

(i) A function g : S → [0,∞] is called a strong upper gradient for φ if for
every absolutely continuous curve y : (a, b) → S the function g ◦ y is
Borel and

|φ(y(t)) − φ(y(s))| ≤
∫ t

s

g(y(r))|y′|D(r) dr for all a < s ≤ t < b.

(ii) For each y ∈ S the local slope of φ at y is defined by

|∂φ|D(y) := lim sup
z→y

(φ(y) − φ(z))+

D(y, z)
.

(iii) An absolutely continuous curve y : (a, b) → S is called a curve of maximal
slope for φ with respect to the strong upper gradient g if for a.e. t ∈ (a, b)

d
dt

φ(y(t)) ≤ −1
2
|y′|2D(t) − 1

2
g2(y(t)).

3.2. Curves of maximal slope as limits of time-discrete solutions

We consider a sequence of complete metric spaces (Sk,Dk)k, as well as a
limiting complete metric space (S0,D0). Moreover, let (φk)k be a sequence of
functionals with φk : Sk → [0,∞] and φ0 : S0 → [0,∞].

We introduce time-discrete solutions for the energy φk and the metric Dk

by solving suitable time-incremental minimization problems: consider a fixed
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time step τ > 0 and suppose that an initial datum Y 0
k,τ is given. Whenever

Y 0
k,τ , . . . , Y n−1

k,τ are known, Y n
k,τ is defined as (if existent)

Y n
k,τ = argminv∈Sk

Φk(τ, Y n−1
k,τ ; v), Φk(τ, u; v) :=

1
2τ

Dk(v, u)2 + φk(v).

(3.1)

We suppose that for a choice of τ a sequence (Y n
k,τ )n∈N solving (3.1) exists.

Then we define the piecewise constant interpolation by

Ȳk,τ (0) = Y 0
k,τ , Ȳk,τ (t) = Y n

k,τ for t ∈ ((n − 1)τ, nτ ], n ≥ 1. (3.2)

We call Ȳk,τ a time-discrete solution. Note that the existence of such solutions
is usually guaranteed by the direct method of the calculus of variations under
suitable compactness, coercivity, and lower semicontinuity assumptions.

Our goal is to study the limit of time-discrete solutions as k → ∞. To this
end, we need to introduce a suitable topology for the convergence. We suppose
that there exists a set S with S ⊇ S0 and a projection πk : Sk → S . (Note
that a usual assumption is S = S0, see e.g. [37], but for our application we
need a slightly more general setting.)

We assume that there is a possibly weaker topology σ on S . Given a
sequence (zk)k, zk ∈ Sk, and z ∈ S , we say zk

πσ→ z if πk(zk) σ→ z. We
suppose that the topology σ satisfies

zk
πσ→ z, z̄k

πσ→ z̄ ⇒ lim inf
k→∞

Dk(zk, z̄k) ≥ D0(z, z̄) (3.3)

for all z, z̄ ∈ S0. Moreover, we assume that for every sequence (zk)k, zk ∈ Sk,
and N ∈ N we have

φk(zk) ≤ N ⇒ zk
πσ→ z ∈ S0 (up to a subsequence). (3.4)

Further, we suppose lower semicontinuity of the energies and the slopes in the
following sense: for all z ∈ S0 and (zk)k, zk ∈ Sk, we have

zk
πσ→ z ⇒ lim inf

k→∞
|∂φk|Dk

(zk) ≥ |∂φ0|D0(z), lim inf
k→∞

φk(zk) ≥ φ0(z).

(3.5)

We now formulate the main convergence result of time-discrete solutions
to curves of maximal slope, proved in [34, Section 2].

Theorem 3.2. Suppose that (3.3)–(3.5) hold. Moreover, assume that |∂φ0|D0 is
a strong upper gradient for φ0. Consider a null sequence (τk)k. Let (Y 0

k,τk
)k

with Y 0
k,τk

∈ Sk and z̄0 ∈ S0 be initial data satisfying

Y 0
k,τk

πσ→ z̄0, φk(Y 0
k,τk

) → φ0(z̄0).

Then, for each sequence of discrete solutions (Ȳk,τk
)k starting from (Y 0

k,τk
)k,

there exists a limiting function z : [0,+∞) → S0 such that, up to a subse-
quence, not relabeled,

Ȳk,τk
(t) πσ→ z(t), φk(Ȳk,τk

(t)) → φ0(z(t)) ∀t ≥ 0
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as k → ∞, and z is a curve of maximal slope for φ0 with respect to |∂φ0|D0 .
In particular, z satisfies the energy identity

1
2

∫ T

0

|z′|2D0
(t) dt +

1
2

∫ T

0

|∂φ0|2D0
(z(t)) dt + φ0(z(T )) = φ0(z̄0) ∀T > 0.

(3.6)

The statement is a combination of convergence results for curves of max-
imal slope [37] with their approximation by time-discrete solutions via the
minimizing movement scheme. For a more detailed discussion of similar state-
ments, we refer for example to [22, Section 3].

3.3. Curves of maximal slope as limits of continuous solutions

As before, (Sk,Dk)k and (S0,D0) denote complete metric spaces, with cor-
responding functionals (φk)k and φ0. For the relation of the two- and one-
dimensional systems, we will use the following result.

Theorem 3.3. Suppose that (3.3)–(3.5) hold. Moreover, assume that |∂φn|Dn
,

|∂φ0|D0 are strong upper gradients for φn, φ0 with respect to Dn, D0, respec-
tively. Let ū ∈ S0. For all n ∈ N, let un be a curve of maximal slope for φn

with respect to |∂φn|Dn
such that

(i) sup
n∈N

sup
t≥0

φn(un(t)) < ∞

(ii) un(0) πσ→ ū, φn(un(0)) → φ0(ū).

Then, there exists a limiting function u : [0,∞) → S0 such that up to a sub-
sequence, not relabeled,

un(t) πσ→ u(t), φn(un(t)) → φ0(u(t)) ∀t ≥ 0

as n → ∞ and u is a curve of maximal slope for φ0 with respect to |∂φ0|D0 .

The result is a variant of [37] and is given in [21, Theorem 3.6], with the
only difference being that here we consider a sequence of spaces instead of a
fixed space. The generalization is straightforward and follows from standard
adaptions.

4. Properties of energies and dissipation distances

In this section, we collect basic properties of the energies and dissipation dis-
tances, and we establish properties for the local slopes. We recall the definition
of the energy and the dissipation distance in (2.1), (2.16) and (2.2), (2.15), re-
spectively. We also recall the notation for the sublevel sets S 2D

ε,M = {(u, v) ∈
S 2D

ε : φε(u, v) ≤ M}. In what follows, we assume that f2D, g2D = 0 for the
sake of simplicity, see (2.1). Indeed, the force terms can be included in the
analysis by minor, standard modifications.
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4.1. Properties in 2D

In this subsection, we state the relevant properties of the local slopes in the
two-dimensional setting, which are provided by the following lemma.

Lemma 4.1. (Properties of the two-dimensional setting) Let M > 0. We have:
(i) (S 2D

ε,M ,Dε) is a complete metric space.
(ii) Let Φ1(t) :=

√
t2 + Ct3 + Ct4 and Φ2

M (t) := C
√

Mt2 +Ct3 +Ct4 for any
C > 0 large enough. Suppose that (u, v) ∈ S 2D

ε,M . Then, the local slope for
the energy φε admits the representation

|∂φε|Dε
(u, v) = sup

(ũ,ṽ)∈S 2D
ε

(u,v) �=(ũ,ṽ)

(
φε(u, v) − φε(ũ, ṽ) − Φ2

M

(Dε

(
(u, v), (ũ, ṽ)

)))+

Φ1
(Dε

(
(u, v), (ũ, ṽ)

)) .

(iii) The local slope |∂φε|Dε
is a strong upper gradient for φε.

Proof. Item (i) is proved in [22, Lemma 4.6]. For the proof of (ii), we refer to
[22, Lemmas 4.8 and 4.9]. One only needs to ensure that the constant C can
be chosen independently of ε. The crucial step is the scaling of the embedding
W 1,2(Sε) ⊂⊂ L4(Sε) on the thin domain Sε in order to deal with the non-
linearity ∇v ⊗ ∇v in the energy (2.1) and the metric (2.2). More precisely, by
a scaling argument, [22, (4.15)] can be replaced by

‖ 1
2∇(v0 − v1) ⊗ ∇(v0 − v1)‖L2(Sε) ≤ C‖∇(v0 − v1)‖2

L4(Sε)

≤ Cε−1/2‖v0 − v1‖2
W 2,2(Sε)

≤ C
√

εD2
ε

(
(u0, v0), (u1, v1)

)
for (u0, v0), (u1, v1) ∈ S 2D

ε,M , where the last inequality follows from (2.2),
Poincaré’s inequality, and the positivity of Q2

R. This is sufficient to adapt the
proof of [22, Lemma 4.8]. The mappings Φ1 and Φ2

M have been introduced after
[22, (4.19)] and before [22, (4.21)], respectively. Item (iii) is also a consequence
of [22, Lemma 4.9]. �

4.2. Properties in 1D

In this subsection, we derive properties in the one-dimensional setting. We
mainly need a one-dimensional version of Lemma 4.1 as well as some basic
properties of the metric space (S 1D,D0) and the energy φ0. The proofs are
analogous to the corresponding proofs in [21,22]. We refer to Appendix A
where we give the main arguments for the reader’s convenience.

Lemma 4.2. (Properties of (S 1D,D0) and φ0) Consider the canonical norm
‖ · ‖can on S 1D which is defined as

‖(y, w, θ)‖can := ‖y‖W 1,2(S;R2) + ‖w‖W 2,2(I) + ‖θ‖W 1,2(I).

(i) Completeness: (S 1D,D0) is a complete metric space.
(ii) Topology: The topology induced by ‖ · ‖can coincides with the topology

induced by D0. In particular, there exists a constant C > 0 such that

‖w − w̃‖W 2,2(I) + ‖θ − θ̃‖W 1,2(I) ≤ CD0((y, w, θ), (ỹ, w̃, θ̃)) and (4.1)
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‖y − ỹ‖W 1,2(S;R2) ≤ CD0((y, w, θ), (ỹ, w̃, θ̃)) + C‖w′ + w̃′‖L4(I)‖w′ − w̃′‖L4(I)

(4.2)

for (y, w, θ), (ỹ, w̃, θ̃) ∈ S 1D.
(iii) Compactness: Let (yk, wk, θk)k be a sequence in S 1D with supk∈N

φ0(yk, wk, θk) < ∞. Then, supk∈N ‖(yk, wk, θk)‖can < +∞ and, up to
a subsequence, (yk, wk, θk)k converges weakly in (S 1D, ‖ · ‖can) to some
(y, w, θ) ∈ S 1D.

(iv) Lower semicontinuity: If (yk, wk, θk) and (ỹk, w̃k, θ̃k) converge weakly in
(S 1D, ‖ · ‖can) to (y, w, θ) and (ỹ, w̃, θ̃), respectively, we have lim infk→∞
φ0(yk, wk, θk) ≥ φ0(y, w, θ) and lim infk→∞ D0((yk, wk, θk), (ỹk, w̃k, θ̃k)) ≥
D0((y, w, θ), (ỹ, w̃, θ̃)).

The following lemma is the one-dimensional version of Lemma 4.1.

Lemma 4.3. (Properties of the one-dimensional slope |∂φ0|D0) Let M > 0. We
have:

(i) The local slope for the energy φ0 admits the representation
|∂φ0|D0(y, w, θ)

= sup
(y,w,θ)�=(ỹ,w̃,θ̃)∈S 1D

(
φ0(y, w, θ) − φ0(ỹ, w̃, θ̃) − Φ2

M (D0((y, w, θ), (ỹ, w̃, θ̃)))
)+

Φ1(D0((y, w, θ), (ỹ, w̃, θ̃)))

for all (y, w, θ) ∈ S 1D satisfying φ0(y, w, θ) ≤ M , where Φ1 and Φ2
M are

defined in Lemma 4.1(ii).
(ii) The local slope |∂φ0|D0 is a strong upper gradient for φ0.
(iii) Lower semicontinuity: If (yk, wk, θk)k ⊂ S 1D converges weakly in (S 1D, ‖·

‖can) to (y, w, θ) ∈ S 1D, we have lim infk→∞ |∂φ0|D0(yk, wk, θk) ≥
|∂φ0|D0(y, w, θ).

5. Relation between 2D and 1D setting

In this section, we briefly recall the convergence results in the static case [20]
and then we prove lower semicontinuity for the local slopes along the passage
from the 2D to the 1D setting. Recall the projection mapping πε, the space
S = πε(S 2D

ε ), and the convergences πσ and πρ introduced before Theorem
2.3. In the sequel, it is convenient to express φε and Dε in terms of the scaled
functions y and w introduced in (2.6). By a change of variables we have (recall
f2D = g2D = 0)

φε(y, w) =
1
2

∫
S

Q2
W

(
Eεy +

1
2
∇εw ⊗ ∇εw

)
+

1
24

∫
S

Q2
W (∇2

εw) (5.1)

and

D2
ε((y, w), (ỹ, w̃)) =

∫
S

Q2
R

(
Eεy − Eεỹ +

1
2
∇εw ⊗ ∇εw − 1

2
∇εw̃ ⊗ ∇εw̃

)

+
1
12

∫
S

Q2
R(∇2

εw − ∇2
εw̃) (5.2)

for all (y, w), (ỹ, w̃) ∈ S .
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5.1. Γ-convergence

We briefly recall the Γ-convergence result in [20] which particularly yields the
lower semicontinuity of the energies and the dissipation.

Theorem 5.1. (Γ-convergence of energies) φε converges to φ0 in the sense of
Γ-convergence. More precisely,
(i) (Lower bound) For all (y, w, θ) ∈ S 1D and all sequences (uε, vε)ε , (uε, vε) ∈
S 2D

ε , such that (uε, vε)
πσ→ (y, w, θ) we find

lim inf
ε→0

φε(uε, vε) ≥ φ0(y, w, θ).

(ii) (Optimality of lower bound) For all (y, w, θ) ∈ S 1D there exists a sequence
(uε, vε)ε with (uε, vε) ∈ S 2D

ε for all ε > 0 such that (uε, vε)
πρ→ (y, w, θ) and

lim
ε→0

φε(uε, vε) = φ0(y, w, θ).

In [20, Theorem 2.3(i),(ii)], the proof has been given for functions with
vanishing mean. The adaptions to the present setting, however, are minor. In
particular, the construction of recovery sequences needs to be slightly adjusted
to comply with the imposed boundary conditions. We defer details to Lemma
5.3 and Remark 5.5(a) below where we use a similar ansatz as in [20].

Theorem 5.2. (Lower semicontinuity of dissipation distances) Let M > 0.
Then, for sequences (uε, vε)ε and (ũε, ṽε)ε, (uε, vε), (ũε, ṽε) ∈ S 2D

ε,M , with
(uε, vε)

πσ→ (y, w, θ) and (ũε, ṽε)
πσ→ (ỹ, w̃, θ̃) we have

lim inf
ε→0

Dε((uε, vε), (ũε, ṽε)) ≥ D0

(
(y, w, θ), (ỹ, w̃, θ̃)

)
.

Proof. The argument is analogous to the one in Theorem 5.1(i) (cf. [20, The-
orem 2.3(i)]) as the structure of Dε and D0 is similar to φε and φ0, see (2.15),
(2.16), (5.1), and (5.2). �
5.2. Lower semicontinuity of slopes

In contrast to Theorems 5.1 and 5.2, the derivation of lower semicontinuity for
the local slopes is more challenging as in its definitions metrics appear in the
denominator and energies are subtracted in the enumerator. Roughly speaking,
we need a reverse inequality in Theorem 5.1(i) and Theorem 5.2 which in
general is false. The representations of the slopes in Lemmas 4.1 and 4.3 allow
us to construct recovery sequences such that the “reverse inequality” is true.
More precisely, we have the following.

Lemma 5.3. (Mutual recovery sequence) Suppose that (H1) or (H2) holds.
Consider a sequence (uε, vε)ε, (uε, vε) ∈ S 2D

ε,M , such that (uε, vε)
πσ→ (y, w, θ).

Let (ỹ, w̃, θ̃) ∈ S 1D. Then, there exists a mutual recovery sequence (ũε, ṽε)ε,
(ũε, ṽε) ∈ S 2D

ε for all ε > 0, such that

lim inf
ε→0

(
φε(uε, vε) − φε(ũε, ṽε)

) ≥ φ0(y, w, θ) − φ0(ỹ, w̃, θ̃) (5.3)

and

lim
ε→0

Dε((uε, vε), (ũε, ṽε)) = D0((y, w, θ), (ỹ, w̃, θ̃)). (5.4)
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Remark 5.4. In the following and in later proofs, we will frequently use the
elementary expansion

Q(a) − Q(b) = Q(a − b) + 2C[a − b, b] (5.5)

for all a, b, where Q is a quadratic form with associated bilinear form C.

Proof of Lemma 5.3. The proof is based on the ansatz of the recovery sequence
in [20], slightly modified to comply with the imposed boundary conditions.
Recall the definition of the quadratic forms in (2.10)–(2.11). We first suppose
that (H2) holds as this case is more delicate. At the end of the proof, we briefly
present the adaptions for (H1).
Step 1: Definition of recovery sequences. Given (uε, vε), let (yε, wε) as in (2.6).
Let γ, E12, and E22 be the functions given by Proposition 2.1 such that
1
ε2 ∂22wε ⇀ γ, (Eεyε)12 ⇀ E12 and (Eεyε)22 ⇀ E22 in L2(S). We let γ̃ : I → R

and z : S → R be functions such that

Q2
W (w̃′′, θ̃′, γ̃) = Q1

W (w̃′′, θ̃′) and

Q0
W (∂1ỹ1 + 1

2 w̃′′2) = Q2
W (∂1ỹ1 + 1

2 w̃′′2, 0, z). (5.6)

As Q2
W is positive definite on R

2×2
sym and (ỹ, w̃, θ̃) ∈ S 1D, we find that γ̃ ∈ L2(I)

and z ∈ L2(S). By standard density arguments for L2- and W 1,2-spaces, there
exist functions θε ∈ C∞

c (I) and γ̃ε, ζε ∈ C∞
c (S) such that θε → θ̃ − θ in

W 1,2(I), εθ′
ε, εθ

′′
ε → 0 in L2(I), γ̃ε → γ̃ − γ, ε∂1γ̃ε → 0, ε2∂2

11γ̃ε → 0 in L2(S),
and ζε → z − E22, ε∂1ζε → 0 in L2(S). We define the recovery sequence for
the vertical displacement w̃ε as

w̃ε(x) = wε(x) + w̃(x1) − w(x1) + εx2θε(x1) + ε2

∫ x2

−1/2

∫ t

−1/2

γ̃ε(x1, s) ds dt.

(5.7)

By recalling (2.7), we compute

∇εwε(x)=

(
∂1wε(x) + w̃′(x1) − w′(x1) + εx2θ′

ε(x1) + ε2
∫ x2

−1/2

∫ t
−1/2 ∂1γ̃ε(x1, s) ds dt

1
ε
∂2wε(x) + θε(x1) + ε

∫ x2
−1/2 γ̃ε(x1, s) ds

)

and further see that the entries of the scaled Hessian ∇2
εw̃ε(x) are given by

∂2
11wε(x) = ∂11wε(x) + w̃′′(x1) − w′′(x1) + εx2θ

′′
ε (x1)

+ ε2

∫ x2

−1/2

∫ t

−1/2

∂2
11γ̃ε(x1, s) ds dt

1
ε∂2

12wε(x) = 1
ε∂12wε(x) + θ′

ε(x1) + ε
∫ x2

−1/2
∂1γ̃ε(x1, s) ds

1
ε2 ∂2

22wε(x) = 1
ε2 ∂22wε(x) + γ̃ε(x1, x2)

Let us now address the in-plane displacements. We define

(ȳε)1(x1, x2) := ỹ1(x) − y1(x) + εx2

(
w′(x1)θ(x1) − w̃′(x1)θ̃(x1)

)
,

(ȳε)2(x1, x2) := ỹ2(x) − y2(x) − ε2

2 x2θ̃
2(x1) + ε2

∫ x2

−1/2
ζε(x1, s) ds. (5.8)
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The characterization in (2.9) implies that ∂2y1 = −∂1y2, ∂2ỹ1 = −∂1ỹ2, and
∂2y2 = ∂2ỹ2 = 0. Then, by the definition of Eε we have

(Eεȳε)11 = ∂1ỹ1(x) − ∂1y1(x) + εx2

(
w′(x1)θ′(x1) + w′′(x1)θ(x1)

− w̃′(x1)θ̃′(x1) − w̃′′(x1)θ̃(x1)
)
,

(Eεȳε)12 = 1
2

(
w′(x1)θ(x1) − w̃′(x1)θ̃(x1)

)

− εx2

2
θ̃(x1)θ̃′(x1) +

ε

2

∫ x2

−1/2

∂1ζε(x1, s) ds,

(Eεȳε)22 = − 1
2 θ̃2(x1) + ζε(x1, x2).

The construction ensures that ȳε ∈ W 1,2(S;R2). We let ỹε := yε + ȳε. Eventu-
ally, we define ũε and ṽε such that (ỹε)1(x1, x2) = (ũε)1(x1, εx2), (ỹε)2(x1, x2) =
ε(ũε)2(x1, εx2), and w̃ε(x1, x2) = ṽε(x1, εx2), see (2.6). As θ, θ̃, θε, ỹ − y, and
w̃−w vanish on ∂I, and γε, ζε vanish on ∂S, an inspection of (5.7)–(5.8) shows
that (ũε, ṽε) ∈ S 2D

ε .
Step 2: Proof of (5.4). Due to Proposition 2.1 and the compact embedding
W 1,2(S) ⊂⊂ L4(S), we find that ∇εwε → (w′, θ) in L4(S;R2) and hence

∇εwε ⊗ ∇εwε → (w′, θ) ⊗ (w′, θ) in L2(S;R2×2). (5.9)

Similarly, due to the fact that ∂1wε → w′ in L4(S), 1
ε∂2wε → θ in L4(S), and

θε → θ̃ − θ in W 1,2(I), we have that ∇εw̃ε → (w̃′, θ̃) in L4(S;R2), and thus

∇εw̃ε ⊗ ∇εw̃ε → (w̃′, θ̃) ⊗ (w̃′, θ̃) in L2(S;R2×2).

This along with ζε → z − E22 in L2(S) and ỹε − yε = ȳε implies by an
elementary computation

Eε(ỹε − yε) +
1
2
∇εw̃ε ⊗ ∇εw̃ε − 1

2
∇εwε ⊗ ∇εwε

−→
(

∂1ỹ1 − ∂1y1 + 1
2 (w̃′2 − w′2) 0

0 z − E22 − 1
2θ2

)
(5.10)

strongly in L2(S;R2×2). Moreover, by θε → θ̃ − θ in W 1,2(I) and γ̃ε → γ̃ − γ
in L2(S), we have

∇2
ε(w̃ε − wε) →

(
w̃′′ − w′′ θ̃′ − θ′

θ̃′ − θ′ γ̃ − γ

)
(5.11)

strongly in L2(S;R2×2). Proposition 2.1 and (5.9) also yield

Eεyε +
1

2
∇εwε ⊗ ∇εwε ⇀

(
∂1y1 + 1

2
w′2 E12 + w′θ

E12 + w′θ E22 + 1
2
θ2

)
and ∇2

εwε ⇀

(
w′′ θ′

θ′ γ

)

(5.12)

weakly in L2(S;R2×2). Then, by (5.10), (5.11), and (H2) (including explicitly
the ε-dependence of Q2

R,ε) we find that
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∫
S

Q2
R,ε

(
Eε(ỹε − yε) + 1

2∇εw̃ε ⊗ ∇εw̃ε − 1
2∇εwε ⊗ ∇εwε

)

+
1
12

∫
S

Q2
R,ε

(
∇2

ε(w̃ε − wε)
)

−→
∫

S

Q0
R

(
∂1ỹ1 − ∂1y1 +

1
2
(w̃′2 − w′2)

)
+

1
12

∫
I

Q1
R

(
w̃′′ − w′′, θ̃′ − θ′).

This shows (5.4).
Step 3: Proof of (5.3). We additionally use (5.5) and the fact that a product
of sequences converges weakly in L1 if one factor converges weakly and the
other one strongly: by (5.11), (5.12) we obtain∫

S

Q2
W (∇2

εwε) −
∫

S

Q2
W (∇2

εw̃ε)

=
∫

S

Q2
W (∇2

εwε − ∇2
εw̃ε) + 2C2

W [∇2
εwε − ∇2

εw̃ε,∇2
εw̃ε]

−→
∫

S

Q2
W

((
w′′ − w̃′′ θ′ − θ̃′

θ′ − θ̃′ γ − γ̃

))
+ 2C2

W

[ (
w′′ − w̃′′ θ′ − θ̃′

θ′ − θ̃′ γ − γ̃

)
,

(
w̃′′ θ̃′

θ̃′ γ̃

)]

= L1 :=
∫

S

Q2
W

((
w′′ θ′

θ′ γ

))
−

∫
S

Q2
W

((
w̃′′ θ̃′

θ̃′ γ̃

) )
. (5.13)

By (2.10) and (5.6) this implies

L1 ≥
∫

I

Q1
W

(
(w′′, θ′)

) −
∫

I

Q1
W

(
(w̃′′, θ̃′)

)
. (5.14)

Similarly, due to (5.5), (5.10), and (5.12), we have∫
S

Q2
W

(
Eεyε +

1
2
∇εwε ⊗ ∇εwε

) −
∫

S

Q2
W

(
Eεỹε + ∇εw̃ε ⊗ ∇εw̃ε

)

−→ L2 :=
∫

S

Q2
W

( (
∂1y1 + 1

2w′2 E12 + w′θ
E12 + w′θ E22 + 1

2θ2

))

−
∫

S

Q2
W

( (
∂1ỹ1 + 1

2 w̃′2 E12 + w′θ
E12 + w′θ z

) )
. (5.15)

By (H2) we have arg min q12Q
2
W (q11, q12, q22) = 0 and thus Q2

W (q11, q12, q22) =
Q2

W (q11, 0, q22) + bq2
12 for some b > 0. This along with (2.10) and (5.6) shows

L2 ≥
∫

S

Q0
W

(
∂1y1 + 1

2 |w′|2) −
∫

S

Q0
W

(
∂1ỹ1 + 1

2 |w̃′|2) (5.16)

which in combination with (5.14) concludes the proof of (5.3).
Step 4: Adaptions for (H1). We now suppose that (H1) holds. We redefine γ̃
and z differently compared to (5.6): let γ̃ = γ and z = θ2/2 + E22. Then,
(5.10)–(5.11) imply∫

S

Q2
R

(
Eε(ỹε − yε) + 1

2∇εw̃ε ⊗ ∇εw̃ε − 1
2∇εwε ⊗ ∇εwε

)

+
1
12

∫
S

Q2
R

(
∇2

ε(w̃ε − wε)
)
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−→
∫

S

Q2
R

((
∂1ỹ1 − ∂1y1 + 1

2 (w̃′2 − w′2) 0
0 0

))

+
1
12

∫
I

Q2
R

( (
w̃′′ − w′′ θ̃′ − θ′

θ̃′ − θ′ 0

) )
.

This along with (H1) shows (5.4). By (5.13) and (5.15) we get φε(uε, vε) −
φε(ũε, ṽε) → 1

2L2 + 1
24L1, where L1 and L2 are given for z = θ2/2 + E22 and

γ̃ = γ, respectively. The condition in (H1) implies that Q2
W (q11, q12, q22) =

aq2
11 + bq2

12 + cq2
22 for suitable a, b, c > 0. In view of (2.16), this yields 1

2L2 +
1
24L1 = φ0(y, w, θ) − φ0(ỹ, w̃, θ̃) and concludes the proof of (5.3). �

Remark 5.5. (Recovery sequences) The ansatz for the recovery sequence in
(5.7) and (5.8) is similar to [20] with the difference that (a) (5.8) is slightly
modified to deal with boundary conditions and (b) we add suitable corrections
concerning the difference of (y, w, θ) and (ỹ, w̃, θ̃) and the variables γ and E22

resulting from Proposition 2.1.

(a) The definition ensures that we can construct recovery sequences for
(ỹ, w̃, θ̃) in Theorem 5.1(ii): choose (uε, vε) = (0, 0) and (y, w, θ) = (0, 0, 0)
and construct (ũε, ṽε) ∈ S 2D

ε as in the above proof. Then we can again
obtain (5.3). This along with φε(uε, vε) = 0 = φ0(y, w, θ) yields
lim supε→0 φε(ũε, ṽε) ≤ φ0(ỹ, w̃, θ̃).

(b) The correction ensures strong convergence in (5.10)–(5.11) which allows
to pass to the limit in the metric term. Clearly, this is not relevant in the
purely static setting [20]. Our construction does not only take the limiting
configuration (y, w, θ) into account, but also the limits γ and E22 provided
by Proposition 2.1. Therefore, as γ and E22 may be x2-dependent, in
contrast to [20], we need to construct suitable approximations in C∞

c (S)
instead of using correction terms only defined on the interval I. In the
case (H2), being more general for Q2

W , the quantities z − E22 − 1
2θ2 and

γ̃ −γ do not vanish in general and therefore an additional assumption on
Q2

R,ε is required. In particular, due to the involved relaxation, see (5.14)
and (5.16), we only expect an inequality in (5.3). The argument for (H1)
is simpler and the mutual recovery sequence even satisfies an equality in
(5.3) which can be deduced from the structure of the quadratic form.

Now we derive the lower semicontinuity of the slopes. The same argument
for a single energy/metric was used in the proof of [23, Theorem 3.2]. We
include the proof here for the reader’s convenience.

Theorem 5.6. (Lower semicontinuity of slopes) Suppose that (H1) or (H2)
holds. Then, for each sequence (uε, vε)ε with (uε, vε) ∈ S 2D

ε,M such that
(uε, vε)

πσ→ (y, w, θ) we have

lim inf
ε→0

|∂φε|Dε
(uε, vε) ≥ |∂φ0|D0(y, w, θ).
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Proof. First, by Theorem 5.1(i) we get φ0(y, w, θ) ≤ M . Let δ > 0 and use
Lemma 4.3(i) to find (ỹ, w̃, θ̃) ∈ S 1D with (ỹ, w̃, θ̃) �= (y, w, θ) such that

|∂φ0|D0(y, w, θ) − δ≤
(
φ0(y, w, θ) − φ0(ỹ, w̃, θ̃) − Φ2

M (D0((y, w, θ), (ỹ, w̃, θ̃)))
)+

Φ1(D0((y, w, θ), (ỹ, w̃, θ̃)))
.

Let (ũε, ṽε)ε be the mutual recovery sequence constructed in Lemma 5.3. Then,
Lemma 5.3 yields

|∂φ0|D0(y, w, θ) − δ

≤ lim inf
ε→0

(
φε(uε, vε) − φε(ũε, ṽε) − Φ2

M (Dε((uε, vε), (ũε, ṽε)))
)+

Φ1(Dε((uε, vε), (ũε, ṽε)))
.

In view of Lemma 4.1(ii), taking the supremum and sending δ → 0 yields

lim inf
ε→0

|∂φε|Dε
(uε, vε) ≥ |∂φ0|D(y, w, θ)

and concludes the proof. �

5.3. Convergence of minimizers and strong convergence

In the next theorem, we analyze time-discrete solutions introduced in (3.1). We
denote by Φε the two-dimensional and by Φ0 the one-dimensional scheme. We
show that minimizers of the two-dimensional discretization scheme converge
to minimizers of the one-dimensional scheme.

Theorem 5.7. (Convergence of minimizer of the schemes) Suppose that (H1)
or (H2) holds. Let (uε, vε)ε with (uε, vε) ∈ S 2D

ε be a sequence such that

(uε, vε)
πσ→ (y, w, θ) and φε(uε, vε) → φ0(y, w, θ) (5.17)

as ε → 0. Moreover, let τ > 0 and consider a sequence (Yε,τ )ε, Yε,τ ∈ S 2D
ε ,

such that
Yε,τargmin z∈S 2D

ε
Φε(τ, (uε, vε), z) for all ε > 0 and Yε,τ

πσ→ Uτ as ε → 0.

Then,

(i) Uτ = arg min v∈S 1DΦ0(τ, (y, w, θ), v),

(ii) Φε(τ, (uε, vε), Yε,τ ) → Φ0(τ, (y, w, θ), Uτ ),

(iii) φε(Yε,τ ) → φ0(Uτ ).

Proof. The proof is based on the fundamental property that Γ-convergence
induces convergence of minima and minimizers. By Theorem 5.1(i) and The-
orem 5.2 we have

inf
v∈S 1D

Φ0(τ, (y, w, θ), v) ≤ Φ0(τ, (y, w, θ), Uτ ) ≤ lim inf
ε→0

Φε(τ, (uε, vε), Yε,τ ).

(5.18)

Let δ > 0 and consider (ỹ, w̃, θ̃) ∈ S 1D such that

inf
v∈S 1D

Φ0(τ, (y, w, θ), v) + δ ≥ Φ0(τ, (y, w, θ), (ỹ, w̃, θ̃)).
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In view of Lemma 5.3 and (5.17), we find a mutual recovery sequence (ũε, ṽε)ε

such that

inf
v∈S 1D

Φ0(τ, (y, w, θ), v) + δ ≥ lim sup
ε→0

φε(ũε, ṽε)

+ lim sup
ε→0

1
2τ

D2
ε((uε, vε), (ũε, ṽε)) (5.19)

≥ lim sup
ε→0

Φε(τ, (uε, vε), (ũε, ṽε))

≥ lim sup
ε→0

Φε(τ, (uε, vε), Yε,τ ),

where the last step follows from minimality of Yε,τ . By sending δ → 0, (5.18)
and (5.19) imply (i) and (ii) as all inequalities are actually equalities. Finally,
(iii) follows by (ii) and Theorems 5.1 (i) and 5.2. �

The following lemma helps us to show that the convergence of the se-
quences in Theorems 2.2 and 2.3 holds in a strong sense.

Lemma 5.8. (Strong convergence of recovery sequences) Let (uε, vε)ε with
(uε, vε) ∈ S 2D

ε be a sequence such that

(uε, vε)
πσ→ (y, w, θ) and φε(uε, vε) → φ0(y, w, θ).

Then, we have (uε, vε)
πρ→ (y, w, θ).

Proof. Let (yε, wε) be the scaled version corresponding to (uε, vε) introduced
in (2.6). By Proposition 2.1 we have

∇2
εwε ⇀

(
w′′ θ′

θ′ γ

)
and Eεyε + 1

2
∇εwε ⊗ ∇εwε ⇀

(
∂1y1 + 1

2
w′′2 E12 + 1

2
w′θ

E12 + 1
2
w′θ E22 + 1

2
θ2

)

(5.20)

weakly in L2(S;R2×2
sym), for suitable functions γ ∈ L2(S), E12 ∈ L2(S), and

E22 ∈ L2(S). It suffices to show that these convergences are strong. Then all
(strong) convergences indicated in Proposition 2.1 follow where Eεyε converges
due to the compact embedding W 1,2(S) ⊂⊂ L4(S). We start the proof by
observing that the convexity of Q2

W and (uε, vε)
πσ→ (y, w, θ) yield

lim inf
ε→0

φε(uε, vε) ≥1
2

∫
S

Q2
W

( (
∂1y1 + 1

2w′2 E12 + 1
2w′θ

E12 + 1
2w′θ E22 + 1

2θ2

) )

+
1
24

∫
S

Q2
W

((
w′′ θ′

θ′ γ

))
,

where we used the representation of φε in (5.1). By (2.10)–(2.11) and (2.16),
the right-hand side is bigger or equal than φ0(y, w, θ). This along with limε→0

φε(uε, vε) = φ0(y, w, θ) shows that all inequalities are actually equalities. Using
once more (5.20) and the convexity of Q2

W , we derive by (5.1) that

1
2

∫
S

Q2
W

(
Eεyε +

1
2
∇εwε ⊗ ∇εwε

) → 1
2

∫
S

Q2
W

((
∂1y1 + 1

2w′2 E12 + 1
2w′θ

E12 + 1
2w′θ E22 + 1

2θ2

))
,

1
24

∫
S

Q2
W (∇2

εwε) → 1
24

∫
S

Q2
W

( (
w′′ θ′

θ′ γ

))
.



11 Page 26 of 42 M. Friedrich and L. Machill NoDEA

This together with weak convergence (5.20), the expansion (5.5), and the pos-
itive definiteness on R

2×2
sym of Q2

W shows that (5.20) holds with strong conver-
gence. �

6. Proof of the main results

In this section, we give the proofs of the main results.

6.1. Passage from 2D to 1D

In this subsection, we prove Theorem 2.3. Let M > 0. We fix a null sequence
(εl)l∈N and a sequence of initial data (u0

εl
, v0

εl
) ∈ S 2D

ε,M such that (u0
εl

, v0
εl

) πσ→
(y0, w0, θ0) ∈ S 1D and φε(u0

εl
, v0

εl
) → φ0(y0, w0, θ0) as l → ∞. Moreover, we

assume that (H1) or (H2) holds.

Proof of Theorem 2.3(i). Let (uεl
, vεl

)εl
be a sequence of curves of maximal

slopes for φεl
with respect to |∂φεl

|Dεl
satisfying (uεl

(0), vεl
(0)) = (u0

εl
, v0

εl
).

We check that the assumptions of Theorem 3.3 are satisfied. The spaces
(S 2D

εl,M
,Dεl

) and (S 1D,D0) are complete metric spaces due to Lemma 4.1(i)
and Lemma 4.2(i). In the notation of Subsection 3.2, we have S = πε(S 2D

εl
)

and S0 := S 1D. Clearly, we have S0 ⊂ S . Moreover, Proposition 2.1 yields
(3.4) and Theorems 5.1, 5.2, and 5.6 give (3.3) and (3.5). Furthermore, the
slopes are strong upper gradients due to Lemma 4.1(iii) and Lemma 4.3(ii).
As the energies of the curves of maximal slopes are uniformly bounded de-
pending only on the initial data, see (3.6), we can apply Theorem 3.3. This
yields the existence of a curve of maximal slope (y, w, θ) for φ0 with respect to
|∂φ0|D0 and the convergence (uεl

(t), vεl
(t)) πσ→ (y(t), w(t), θ(t)) for t ≥ 0, up to

a subsequence. It remains to observe that the convergence is actually strong.
This follows from the fact that liml→∞ φεl

(uεl
(t), vεl

(t)) = φ0(y(t), w(t), θ(t))
for t ≥ 0 (see Theorem 3.3) and Lemma 5.8. �

Proof of Theorem 2.3(iii). Let (τl)l be a null sequence and let Ȳεl,τl
be a dis-

crete solution to the two-dimensional problem. As in the previous proof, we
check that all assumptions of Theorem 3.2 are satisfied. Thus, there exists a
subsequence such that we have

Ȳεl,τl
(t) πσ→ (y(t), w(t), θ(t))

for all t ≥ 0 as l → ∞ and (y, w, θ) is a curve of maximal slope for φ0 with
respect to |∂φ0|D0 . Moreover, the convergence holds in a strong sense for all
t ≥ 0 due to Lemma 5.8. �

Proof of Theorem 2.3(ii). Let τ > 0 and let Ȳεl,τ be a discrete solution to
the two-dimensional problem with Ȳεl,τ (0) = (u0

εl
, v0

εl
). By construction, the

energies of the discrete solution Ȳεl,τ are uniformly bounded depending only
on the initial data. Thus, by a diagonal argument and Proposition 2.1, we
obtain a subsequence and (Un

τ )n∈N such that Ȳεl,τ (nτ) πσ→ Un
τ for all n ∈ N.

Now, we need to show that
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(i) Un
τ = arg min

v∈S 1D

Φ0(τ, Un−1
τ ; v), (ii) Ȳεl,τ (nτ)

πρ→ Un
τ ,

(iii) φεl
(Ȳεl,τ (nτ)) → φ0(Un

τ )

for all n ∈ N. We show properties (i)–(iii) by induction. Suppose that Ȳεl,τ ((n−
1)τ)

πρ→ Un−1
τ and φεl

(Ȳεl,τ ((n−1)τ)) → φ0(Un−1
τ ) for a fixed n ∈ N. (Clearly,

this holds for n = 1 by Lemma 5.8 as Ȳεl,τ (0) πσ→ U0
τ and φεl

(Ȳεl,τ (0)) →
φ0(U0

τ ) by assumption.) Due to Theorem 5.7, the element Un
τ is a mini-

mizer of Φ0(τ, Un−1
τ ; ·) which shows (i). Moreover, Theorem 5.7 also yields

φεl
(Ȳεl,τ (nτ)) → φ0(Un

τ ) which gives (iii). Finally, (ii) follows by Lemma 5.8.
By defining Ūτ as in (3.2) we can conclude. �

6.2. Solutions in 1D

In this subsection we prove Theorem 2.2.

Proof of Theorem 2.2(i). Our goal is to apply Theorem 3.2: instead of a se-
quence of metric spaces, we only consider the single metric space (S 1D,D0)
which is complete due to Lemma 4.2(i). We let σ be the weak convergence
in (S 1D, ‖ · ‖can), for which Lemma 4.2(iii) provides the compactness prop-
erty (3.4). By Lemma 4.2(iv) and Lemma 4.3(iii) we get (3.3) and (3.5). As
|∂φ0|D0 is a strong upper gradient, see Lemma 4.3(ii), Theorem 3.2 yields the
convergence of time-discrete solution to a curve of maximal slope. Strong con-
vergence with respect to ‖ · ‖can can be obtained by repeating the arguments
in the proof of Lemma 5.8. We omit the details. Eventually, convergence with
respect to D0 is induced by Lemma 4.2(ii). �

Remark 6.1. (Alternative existence proof) If one is only interested in exis-
tence and not in time-discrete approximation, one could directly use Theorem
2.3(i): by Theorem 5.1 we can construct a recovery sequence (u0

ε, v
0
ε)ε such

that (u0
ε, v

0
ε)

πρ→ (y0, w0, θ0). Then, curves of maximal slope (uε, vε) for φε with
respect to |∂φε|Dε

in the two-dimensional setting exist by [22, Theorem 2.2],
up to minor adjustments, and by Theorem 2.3(i) we conclude the proof. Note,
however, that in this way we need to require (H1) or (H2). �

After having shown existence of curves of maximal slope, our goal is to
establish a relation to the effective one-dimensional equations, see Theorem
2.2(ii). The natural idea is to make use of the energy identity (3.6). For this
purpose, we use a finer representation of the local slope |∂φ0|D0 . Afterwards, we
give sharp estimates for the metric derivative and the derivative of φ0◦(y, w, θ).
This will provide enough information for the relation to the equations. For the
following arguments, it is convenient to introduce the abbreviations

H(y, w, θ|ŵ) := (∂1y1 + w′ŵ′, w′′, θ′) ∈ L2(S;R3),

G(y, w, θ) := (∂1y1 +
|w′|2

2
, w′′, θ′) ∈ L2(S;R3) (6.1)
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for (y, w, θ) ∈ S 1D and ŵ ∈ W 2,2(I). By an elementary computation we get

G(y, w, θ) − G(ỹ, w̃, θ̃) = (∂1y1 − ∂1ỹ1 + |w′|2 − w̃′w′, w′′ − w̃′′, θ′ − θ̃′)

− ( |w′|2
2 − w′w̃′ + |w̃′|2

2 , 0, 0
)

= H(y − ỹ, w − w̃, θ − θ̃|w) − 1
2 ((w′ − w̃′)2, 0, 0).

(6.2)

We further introduce extended quadratic forms

Q̄S(x1, x2, x3) := Q0
S(x1) +

1
12

Q1
S(x2, x3) (6.3)

for (x1, x2, x3)T ∈ R
3 and S = W,R.

Lemma 6.2. (Representation of the energy and the metric) For (y, w, θ), (ỹ, w̃,

θ̃) ∈ S 1D, it holds

φ0(y, w, θ) =
1
2

∫
S

Q̄W

(
G(y, w, θ)

)
,

D2
0((y, w, θ), (ỹ, w̃, θ̃)) =

∫
S

Q̄R

(
G(y, w, θ) − G(ỹ, w̃, θ̃)

)
.

Proof. The statement follows directly from (2.15)–(2.16) and (6.1). �

By (2.10) and (2.11) we find that Q̄S is positive definite on R
3 for S =

W,R. We denote by C̄S its associated bilinear form which induces a bijective
mapping (x1, x2, x3) �→ C̄S(x1, x2, x3) from R

3 to R
3. By

√
C̄S we denote its

unique root and by
√
C̄S

−1
the inverse of

√
C̄S .

Lemma 6.3. (Fine representation of the one-dimensional slope) There exists a
differential operator L : S 1D → L2(S;R3) satisfying∫

S

L(y, w, θ) · H(φy, φw, φθ|w) = 0

for all (y, w, θ) ∈ S 1D and (φy, φw, φθ) ∈ BN(0,0)(S;R2) ×W 2,2
0 (I) × W 1,2

0 (I)
such that the local slope at (y, w, θ) ∈ S 1D can be represented by

|∂φ0|D0(y, w, θ) =
∥∥∥√

C̄R

−1(
C̄W G(y, w, θ) + L(y, w, θ)

)∥∥∥
L2(S;R3)

.

The proof follows along the lines of the corresponding representation in
dimension two, see [22, Lemma 6.1]. For the convenience of the reader, we give
a self-contained proof in Appendix A.

Proof of Theorem 2.2(ii). We now use a standard technique to relate curves of
maximal slope to PDEs in Hilbert spaces, see [4, Section 1.4]. More precisely,
the proof follows the lines of [22, Theorem 2.2(ii)]. We divide the proof into
three steps. First, we construct the curve (ξ1, ξ2, w, θ) and prove the regularity
stated in the theorem. Step 2 consists in deriving sharp estimates for |v′|D0 and
d
dtφ0◦v for v = (y, w, θ). This allows to relate the curve to the one-dimensional
system of equations in Step 3.
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Step 1: Let (y, w, θ) : [0,∞) → S 1D be a curve of maximal slope for φ0 with
respect to |∂φ0|D0 . Using (2.9) there exist functions ξ1 : [0,∞) → W 1,2

û1
(I)

and ξ2 : [0,∞) → W 2,2
û2

(I) such that y1(t)(x) = ξ1(t)(x1) − x2ξ2(t)′(x1) and
y2(t)(x) = ξ2(t)(x1) for all t ≥ 0 almost everywhere in S. By definition, we
have for every t ≥ 0

‖ξ1(t)‖W 1,2(I) + ‖ξ2(t)‖W 2,2(I) ≤ C‖y(t)‖W 1,2(S;R2). (6.4)

As (y, w, θ) is a curve of maximal slope we get that φ0(y(t), w(t), θ(t)) is de-
creasing in time, see (3.6). This together with Lemma 4.2(iii) and (6.4) yields

(ξ1, ξ2, w, θ) ∈ L∞(
[0,∞);K)

, (6.5)

where K is defined in (2.12). As (y(t), w(t), θ(t))t≥0 is absolutely continuous
with respect to (S 1D,D0) we have that |(y, w, θ)′|D0 ∈ L2([0,∞)). Then, by
Lemma 4.2(ii), (6.4), and (6.5) we observe that (ξ1, ξ2, w, θ) is an absolutely
continuous curve with respect to K. Thus, by [4, Remark 1.1.3] we observe that
ξ1, ξ2, w, and θ are differentiable for a.e. t and we have (2.17). More precisely,
for all 0 ≤ s < t, and almost everywhere in S (respectively I) it holds that

f(t) − f(s) =
∫ t

s

∂tf(r) dr for f ∈ {∂1y1, w
′, w′′, θ′}. (6.6)

Step 2: As preparation for the representation of the metric derivative, we now
consider the difference G(y, w, θ)(t)−G(y, w, θ)(s). The identity (6.2) and the
linearity of H(·, ·, ·|w(t)) yield for a.e. t and a.e. x ∈ S

lim
s→t

G(y, w, θ)(t) − G(y, w, θ)(s)
t − s

=H(∂ty(t), ∂tw(t), ∂tθ(t)|w(t))

− ∂tw(t) lim
s→t

1
2
(w(t) − w(s))

=H(∂ty(t), ∂tw(t), ∂tθ(t)|w(t)). (6.7)

Using (6.1), (6.6), Poincaré’s and Jensen’s inequality, and Fubini’s Theorem,
we obtain for all 0 ≤ s ≤ t

∥∥∥G(y(t), w(t), θ(t)) − G(y(s), w(s), θ(s)) −
∫ t

s

H(∂ty(r), ∂tw(r), ∂tθ(r)|w(t)) dr
∥∥∥2

L2(S;R3)

=

∫
S

1

2
(w′(t) − w′(s))4 ≤ C

( ∫
S

(w′′(t) − w′′(s))2
)2

= C
( ∫

S

|t − s|2
( 1

|t − s|
∫ t

s

∂tw
′′(r) dr

)2
dx

)2

≤ C
( ∫

S

|t − s|
∫ t

s

∂tw
′′(r)2 dr dx

)2

= C|t − s|2
( ∫ t

s

‖∂tw
′′(r)‖2

L2(S)

)2
. (6.8)

We now estimate the metric derivative |(y, w, θ)′|D0 . By Lemma 6.2, (6.7), and
Fatou’s Lemma we get for a.e. t ≥ 0
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|(y, w, θ)′|D0(t) = lim
s→t

(
D2

0

(
(y(t), w(t), θ(t)), (y(s), w(s), θ(s))

)
|t − s|2

)1/2

≥
( ∫

S

lim inf
s→t

Q̄R

(
G(y(t), w(t), θ(t)) − G(y(s), w(s), θ(s))

|t − s|
))1/2

=
∥∥∥√

C̄RH(∂ty(t), ∂tw(t), ∂tθ(t)|w(t))
∥∥∥

L2(S;R3)
. (6.9)

We now analyze the derivative d
dt (φ0 ◦(y, w, θ))(t) of the absolutely continuous

curve φ0◦(y, w, θ). Note that for a.e. t ≥ 0 we have lims→t

∫ t

s
‖∂tw

′′(r)‖2
L2(S) dr

= 0 by (2.17) and, in a similar fashion, lims→t |s − t|−1‖ ∫ t

s
H(∂ty(r), ∂tw(r),

∂tθ(r)|w(t)) dr‖2
L2(S;R3) = 0 by (2.17) and Hölder’s inequality. Thus, using

Lemma 6.2, (5.5), and (6.7)– (6.8), we obtain for a.e. t ≥ 0

d

dt
(φ0 ◦ (y, w, θ))(t) = lim

s→t

φ0(y(t), w(t), θ(t)) − φ0(y(s), w(s), θ(s))

t − s

≥ lim inf
s→t

1

t − s

∫
S

C̄W

[
G(y(t), w(t), θ(t)), G(y(t), w(t), θ(t)

− G(y(s), w(s), θ(s))
]

− lim sup
s→t

1

2(t − s)

∫
S

Q̄W

(
G(y(t), w(t), θ(t))

− G(y(s), w(s), θ(s))
)

≥
∫

S

C̄W

[
G(y(t), w(t), θ(t)), H(∂ty(t), ∂tw(t), ∂tθ(t)|w(t))

]
.

By the property of L stated in Lemma 6.3, and the fact that ∂ty(t), ∂tw(t), ∂tθ(t)
vanish on ∂I and ∂S, respectively, we get

d
dt

(φ0 ◦ (y, w, θ))(t) ≥
∫

S

(
C̄W G(y(t), w(t), θ(t))

+ L(y(t), w(t), θ(t))
) · H(∂ty(t), ∂tw(t), ∂tθ(t)|w(t))

=
∫

S

√
C̄R

−1(
C̄W G(y(t), w(t), θ(t))

+ L(y(t), w(t), θ(t))
) ·

√
C̄RH(∂ty(t), ∂tw(t), ∂tθ(t)|w(t)).

We find by Lemma 6.3, (6.9), and Young’s inequality

d
dt

φ0((y, w, θ)(t)) ≥ −|(y, w, θ)′|2D0
(t)

2
− |∂φ0|2D0

(y(t), w(t), θ(t))
2

≥ d
dt

φ0((y, w, θ)(t))

for a.e. t ≥ 0, where the last step is a consequence of the fact that (y(t), w(t), θ(t))
is a curve of maximal slope with respect to φ0. Consequently, all inequalities
employed in the proof are in fact equalities, and we get
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√
C̄R

−1(
C̄W G(y(t), w(t), θ(t)) + L(y(t), w(t), θ(t))

)
+

√
C̄RH(∂ty(t), ∂tw(t), ∂tθ(t)|w(t)) = 0

pointwise a.e. in S for a.e. t ≥ 0. Multiplying the equation with
√
C̄R from

the left and testing with H(φy, φw, φθ|w(t)) from the right for (φy, φw, φθ) ∈
BN(0,0)(S,R2)×W 2,2

0 (I)×W 1,2
0 (I) yields with the property of Lemma 6.3 for

a.e. t ≥ 0∫
S

(
C̄W G(y(t), w(t), θ(t)) + C̄RH(∂ty(t), ∂tw(t), ∂tθ(t)|w(t))

)

· H(φy, φw, φθ|w(t)) = 0. (6.10)

Step 3: Eventually, we verify that (ξ1, ξ2, w, θ) solve the one-dimensional equa-
tions. To this end, we use the identity (6.10) by choosing functions such that
φi = φj = 0 for i, j ∈ {y, w, θ} with i �= j in (6.10). The simplest case is the
derivation of (2.13d) by setting φy = 0 and φw = 0. To this end, we recall (6.1)
and (6.3) and remark that ∂iQ̄S(·) = 2(C̄S(·))i as C̄S is symmetric. Thus, an
integration leads to (omitting the variable t from now on)

0 =
∫

S

(
C̄W G(y, w, θ) + C̄RH(∂ty, ∂tw, ∂tθ|w)

)
· (0, 0, φ′

θ)

=
1
24

∫
I

(
∂2Q

1
W (w′′, θ′) + ∂2Q

1
R(∂tw

′′, ∂tθ
′)

)
φ′

θ,

which is exactly equation (2.13d). Setting φy = 0 and φθ = 0 leads to

0 =
∫

I

(
C0

W (ξ′
1 +

|w′|2
2

) + C0
R(∂tξ

′
1 + w′∂tw

′)
)
w′φ′

w

+
1
24

∫
I

(
∂1Q

1
W (w′′, θ′) + ∂1Q

1
R(∂tw

′′, ∂tθ
′)

)
φ′′

w,

where we used (2.9) and
∫ 1/2

−1/2
x2 dx2 = 0. This gives (2.13c). The missing

equations follow by setting φθ = 0 and φw = 0: characterization (2.9) yields the
existence of functions φξ1 ∈ W 1,2

0 (I) and φξ2 ∈ W 2,2
0 (I) such that ∂1(φy)1 =

φ′
ξ1

− x2φ
′′
ξ2

. Inserting this and using
∫ 1/2

−1/2
x2

2 dx2 = 1/12 yields

0 =
∫

I

(
C0

W (ξ′
1 +

|w′|
2

) + C0
R(∂tξ

′
1 + w′∂tw

′)
)
φ′

ξ1 +
1
12

(
C0

W ξ′′
2 + C0

R∂tξ
′′
2

)
φ′′

ξ2 .

As we can choose φξ1 = 0 and φξ2 = 0 independently, we obtain (2.13a) and
(2.13b). �
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Appendix A. One-dimensional properties

In this section we give the proofs of the properties in the one-dimensional set-
ting. The arguments are similar to the two-dimensional case and one can follow
closely the lines of [21,22]. Yet, we include complete proofs here for the reader’s
convenience. We start by proving Lemma 4.2 which is rather elementary. The
proof of Lemma 4.3 is more technical and is divided into the following steps:
by constructing suitable “generalized geodesics”, see Lemma A.1, we establish
the representation of the local slope |∂φ0|D0 stated in Lemma 4.3(i). This is at
the core of proving Lemma 4.3(ii),(iii), where we additionally construct suit-
able mutual recovery sequences for the weak lower semicontinuity of the slope
similar to Lemma 5.3 (see Lemma A.2). Finally, at the end of the section, we
give the proof of Lemma 6.3. In the following, C > 0 denotes a universal con-
stant that may change from line to line. Moreover, the symbol ⇀ will stand
for weak convergence in the space (S 1D, ‖ · ‖can).

Proof of Lemma 4.2. We first derive the lower bounds (4.1) and (4.2). By
Poincaré’s inequality and the fact that Q1

R is positive definite, we get for all
(y, w, θ), (ỹ, w̃, θ̃) ∈ S 1D that

‖w − w̃‖2
W 2,2(I) + ‖θ − θ̃‖2

W 1,2(I) ≤ C‖w′′ − w̃′′‖2
L2(I) + C‖θ′ − θ̃′‖2

L2(I)

≤ C

∫
I

Q1
R

(
w′′ − w̃′′, θ′ − θ̃′)

≤ CD2
0((y, w, θ), (ỹ, w̃, θ̃)),

i.e., (4.1) holds. By (2.9) and Korn-Poincaré’s inequality we get

‖y − ỹ‖2
W 1,2(S;R2) ≤ C‖e(y − ỹ)‖2

L2(S;R2×2
sym)

= C‖∂1y1 − ∂1ỹ1‖2
L2(S).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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This along with the triangle inequality, the positivity of Q0
R, and Hölder’s

inequality yields

‖y − ỹ‖2W 1,2(S;R2) ≤ C

∫
S

Q0
R

(
∂1y1 − ∂1ỹ1 + |w′|2

2 − |w̃′|2
2

)

+ C‖|w′|2 − |w̃′|2‖2L2(I)

≤ CD2
0((y, w, θ), (ỹ, w̃, θ̃)) + C‖w′ + w̃′‖2L4(I)‖w′ − w̃′‖2L4(I).

This shows (4.2). Thus, the embedding W 1,2(I) ⊂⊂ L4(I) and Hölder’s in-
equality yield that every converging sequence with respect to the topology
induced by D0 converges with respect to ‖ · ‖can and vice versa. This shows
(ii). Using analogous computations to (ii), with φ0 in place of D2

0, we find that
(iii) holds. To see (iv), we consider (yk, wk, θk) ⇀ (y, w, θ) and (ỹk, w̃k, θ̃k) ⇀

(ỹ, w̃, θ̃). As W 1,2(I) ⊂⊂ L4(I), we obtain

∂1(yk)1 +
|w′

k|2
2

⇀ ∂1y1 +
|w′|2

2
, ∂1(ỹk)1 +

|w̃′
k|2
2

⇀ ∂1ỹ1 +
|w̃′|2

2
in L2(S).

As the quadratic forms Q0
W , Q1

W , Q0
R, and Q1

R are positive definite, weak lower
semicontinuity follows. We finally prove (i). The positivity and the complete-
ness follow from (ii). Eventually, the triangle inequality follows from the fact
that D2

0 is the sum of two quadratic forms. �

We now aim at proving that |∂φ0|D0 is weakly lower semicontinuous and
a strong upper gradient. To verify this, we follow the approach of [23] which is
based on a generalized convexity condition as the metric D0 and the energy φ0

are non-convex, due to the nonlinearity |w′|2. We refer to [23, Remark 1] for
a detailed discussion. In the sequel, we frequently replace (y, w, θ) by a single
variable u for notational convenience.

Lemma A.1. (Convexity and generalized geodesics in the one-dimensional set-
ting) Let M > 0. Let Φ1(t) :=

√
t2 + Ct3 + Ct4 and Φ2

M (t) := C
√

Mt2 +
Ct3 + Ct4 for any C > 0 large enough. Then, for all u0 := (y0, w0, θ0) ∈ S 1D

satisfying φ0(u0) ≤ M and all u1 := (y1, w1, θ1) ∈ S 1D we have

(i) D0(u0, us) ≤ sΦ1(D0(u0, u1))
(ii) φ0(us) ≤ (1 − s)φ0(u0) + sφ0(u1) + sΦ2

M (D0(u0, u1))

for us := (1 − s)u0 + su1 and s ∈ [0, 1].

Proof. Let M > 0, u0 ∈ S 1D with φ0(u0) ≤ M , and u1 ∈ S 1D. For conve-
nience, we first introduce some abbreviations and provide some preliminary es-
timates. We set D = D0(u0, u1), Bdiff = 1

2 (w′
0−w′

1)
2, and Gs

0 = ∂1(ys)1+ 1
2 |w′

s|2
for s ∈ [0, 1]. Then, by Sobolev embedding and (4.1) we find

‖Bdiff‖L2(I) ≤ C‖w′
0 − w′

1‖2
L4(I) ≤ C‖w0 − w1‖2

W 2,2(I) ≤ CD2. (A.1)

Then, by the positivity of Q0
R and the definition of D0 we derive

‖G1
0 − G0

0‖2
L2(S) ≤ C

∫
S

Q0
R(G1

0 − G0
0) ≤ CD2. (A.2)
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Similarly, we observe by the definition of φ0, Q0
W > 0, and the fact that

φ0(u0) ≤ M that

‖G0
0‖2

L2(S) ≤ C

∫
S

Q0
W (G0

0) ≤ CM. (A.3)

We now start with the proof of (i). First, we observe

1
12

∫
I

Q1
R

(
(w′′

s , θ′
s) − (w′′

0 , θ′
0)

)
= s2 1

12

∫
I

Q1
R

(
(w′′

1 , θ′
1) − (w′′

0 , θ′
0)

)
.

We will show that there exists C > 0 independently of s such that∫
S

Q0
R(Gs

0 − G0
0) ≤ s2

∫
S

Q0
R(G1

0 − G0
0) + Cs2D3 + Cs2D4 (A.4)

for s ∈ [0, 1]. Then, recalling the definition of D0, (i) follows for the func-
tion Φ1(t) =

√
t2 + Ct3 + Ct4. To show (A.4), we obtain by an elementary

expansion

Gs
0 − G0

0 = s(G1
0 − G0

0 − (1 − s)Bdiff). (A.5)

Then (2.11) yields∫
S

Q0
R(Gs

0 − G0
0) =s2

∫
S

Q0
R(G1

0 − G0
0) + s2(1 − s)

∫
S

Q0
R(Bdiff)

− 2s2(1 − s)
∫

S

C0
R(G1

0 − G0
0)Bdiff ,

from which we deduce (A.4), using (A.1), (A.2), and the Cauchy-Schwarz in-
equality.

We now show (ii) for the function Φ2
M (t) = C

√
Mt2 +Ct3 +Ct4 for some

C > 0. Due to convexity of s �→ ∫
I
Q1

W (w′′
s , θ′

s), it suffices to show∫
S

Q0
W (Gs

0) ≤ (1 − s)
∫

S

Q0
W (G0

0) + s

∫
S

Q0
W (G1

0) + C
√

MsD2

+ CsD3 + Cs2D4. (A.6)

By (A.5) we have Gs
0 = (1−s)G0

0+sG1
0−s(1−s)Bdiff , and then an elementary

expansion yields

(Gs
0)

2 =(1 − s)(G0
0)

2 + s(G1
0)

2

− (1 − s)s(G0
0 − G1

0)
2 − 2s(1 − s)2G0

0Bdiff

− 2s2(1 − s)G1
0Bdiff + s2(1 − s)2B2

diff .

Thus, by taking the integral and using the Cauchy-Schwarz inequality we get∫
S

Q0
W (Gs

0) ≤(1 − s)
∫

S

Q0
W (G0

0) + s

∫
S

Q0
W (G1

0)

+ Cs(‖G0
0‖L2(S) + ‖G1

0‖L2(S))‖Bdiff‖L2(S) + Cs2‖Bdiff‖2
L2(S).

By using ‖G1
0‖L2(S) ≤ ‖G0

0‖L2(S) +‖G1
0 −G0

0‖L2(S), (A.1), (A.2), and (A.3) we
get (A.6). This concludes the proof of (ii). �
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We are now ready to prove the representation of the local slope stated in
Lemma 4.3(i), which will help us to show that the local slope is weakly lower
semicontinuous and a strong upper gradient.

Proof of Lemma 4.3(i). Let Φ1 and Φ2
M be defined as in Lemma A.1 and note

that limt→0 Φ1(t)/t = 1 and limt→0 Φ2
M (t)/t = 0. This and the property that

(a + b)+ ≤ a+ + b+ for every a, b ∈ R yields
|∂φ0|D0(y, w, θ)

= lim sup
(ỹ,w̃,θ̃)→(y,w,θ)

(
φ0(y, w, θ) − φ0(ỹ, w̃, θ̃)

)+
D0((y, w, θ), (ỹ, w̃, θ̃))

≤ lim sup
(ỹ,w̃,θ̃)→(y,w,θ)

(
φ0(y, w, θ) − φ0(ỹ, w̃, θ̃) − Φ2

M (D0((y, w, θ), (ỹ, w̃, θ̃)))
)+

Φ1(D0((y, w, θ), (ỹ, w̃, θ̃)))

≤ sup
(y,w,θ) �=(ỹ,w̃,θ̃)∈S 1D

(
φ0(y, w, θ) − φ0(ỹ, w̃, θ̃) − Φ2

M (D0((y, w, θ), (ỹ, w̃, θ̃)))
)+

Φ1(D0((y, w, θ), (ỹ, w̃, θ̃)))
.

To see the other inequality, we write u0 = (y, w, θ) and fix u1 := (ỹ, w̃, θ̃) with
u0 �= u1. Define us := (1−s)u0 +su1. By Lemma A.1 we obtain the inequality

(φ0(u0) − φ0(us))+

D0(u0, us)
≥ (sφ0(u0) − sφ0(u1) − sΦ2

M (D0(u0, u1)))+

sΦ1(D0(u0, u1))
.

In view of Theorem 4.2(ii), us → u0 as s → 0 with respect to the topology
induced by D0, i.e., by letting s → 0 the left-hand side is smaller or equal to
|∂φ0|D0(u0). Taking the supremum on the right-hand side over all u1 ∈ S 1D,
u1 �= u0, yields the lower bound for the local slope. �

Similarly to Lemma 5.3, we construct a mutual recovery sequence as a
key ingredient to show weak lower semicontinuity of slopes.

Lemma A.2. (Mutual recovery sequence in the one-dimensional setting) Let
(zk)k ⊂ S 1D be a sequence such that zk ⇀ z and u ∈ S 1D. Then there exists
a sequence (uk)k ⊂ S 1D such that

(i) lim
k→∞

D0(zk, uk) = D0(z, u),

(ii) φ0(z) − φ0(u) = lim
k→∞

(φ0(zk) − φ0(uk)).

Proof. Let zk = (yk, wk, θk) such that zk ⇀ z = (y, w, θ) ∈ S 1D and consider
u = (ỹ, w̃, θ̃) ∈ S 1D. We define the mutual recovery sequence by

uk := (ỹk, w̃k, θ̃k) = (yk + ỹ − y, wk + w̃ − w, θk + θ̃ − θ).

Then, by the compact embedding W 1,2(I) ⊂⊂ L4(I), we have

|w′
k|2 − |w̃′

k|2 → |w′|2 − |w̃′|2 in L2(I).

Moreover, by construction it holds that ∂1(yk)1 −∂1(ỹk)1 = ∂1y1 −∂1ỹ1, w′′
k −

w̃′′
k = w′′ − w̃′′, and θ′

k − θ̃′
k = θ′ − θ̃′. This implies (i) since
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lim
k→∞

D2
0((yk, wk, θk), (ỹk, w̃k, θ̃k)) =

∫
S

Q0
R

(
∂1y1 − ∂1ỹ1 +

|w′|2
2

− |w̃′|2
2

)

+ 1
12

∫
I

Q1
R(w′′ − w̃′′, θ′ − θ̃′).

We now address (ii). We only have weak convergence of (∂1(yk)1 + 1
2 |w′

k|2)k

in L2(S), but strong convergence of (∂1(ỹk)1 + 1
2 |w̃′

k|2 − ∂1(yk)1 + 1
2 |w′

k|2)k in
L2(S). Thus, by adapting the arguments in Step 3 of the proof of Lemma 5.3,
in particular using (5.5), we find as k → ∞

∫
S

(
Q0

W

(
∂1(yk)1 + |w′

k|2
2

) − Q0
W

(
∂1(ỹk)1 + |w̃′

k|2
2

))

→
∫

S

(
Q0

W

(
∂1y1 + |w′|2

2

) − Q0
W

(
∂1ỹ1 + |w̃′|2

2

))
.

The observation that∫
I

Q1
W (w′′

k − w̃′′
k , θ′

k − θ̃′
k) =

∫
I

Q1
W (w′′ − w̃′′, θ′ − θ̃′)

for every k ∈ N concludes the proof of (ii). �

We now proceed with the proof of Lemma 4.3(ii),(iii).

Proof of Lemma 4.3(ii),(iii). We first show (ii). As the local slope is a weak
upper gradient in the sense of Definition [4, Definition 1.2.2] by [4, Theo-
rem 1.2.5], we only need to show that for an absolutely continuous curve
z : (a, b) → S 1D satisfying |∂φ0|D0(z)|z′|D0 ∈ L1(a, b) the curve φ0 ◦ z is abso-
lutely continuous. It is not restrictive to assume that (a, b) is a bounded interval
and that the curve z is extended by continuity to [a, b]. Thus, S 1D

z := z([a, b])
is compact and we define diam(S 1D

z ) := sups,t∈[a,b] D0(z(s), z(t)) < +∞.
Thus, by Lemma 4.2(ii) we find an M > 0 such that φ0(z(s)) ≤ M for every
s ∈ [a, b]. Since φ0 is D0-lower semicontinuous by Lemma 4.2(ii) and (iv), the
global slope

Iφ0(v) := sup
v �=w∈S 1D

z

(φ0(v) − φ0(w))+

D0(v, w)

is a strong upper gradient with respect to S 1D
z by [4, Theorem 1.2.5]. Thus,

it holds for all a < s ≤ t < b that

|φ0(z(t)) − φ0(z(s))| ≤
∫ t

s

Iφ0(z(r))|z′|D0(r) dr,

see Definition 3.1(i). The claim follows once we bound Iφ0(z)|z′|D0 with an
integrable function. To this end, we define the constants

C1 := sup
t∈[0,diam(S 1D

z )]

Φ1(t)
t

< +∞ and C2 := sup
t∈[0,diam(S 1D

z )]

Φ2
M (t)
t

< +∞,
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where Φ1 and Φ2
M are given in Lemma 4.3(i). Hence, for every v ∈ S 1D

z it
holds that

Iφ0(v) ≤ sup
v �=w∈S 1D

z

(
φ0(v) − φ0(w) − Φ2

M (D0(v, w))
)+

Φ1(D0(v, w))
Φ1(D0(v, w))

D0(v, w)

+ sup
v �=w∈S 1D

z

(
Φ2

M (D0(v, w))
)+

D0(v, w)

≤C1|∂φ0|D0(v) + C2.

By using the assumption that |∂φ0|D0(z)|z′|D0 ∈ L1(a, b) we get the absolute
continuity.

We now show (iii). Let (yk, wk, θk)k ⊂ S 1D be such that (yk, wk, θk) ⇀
(y, w, θ) for some (y, w, θ) ∈ S 1D. We let ε > 0 and define zk := (yk, wk, θk),
z := (y, w, θ), and M := φ0(z). By Lemma 4.3(i) there exists u ∈ S 1D such
that

|∂φ0|D0(z) ≤
(
φ0(z) − φ0(u) − Φ2

M

(D0(z, u)
))+

Φ1
(D0(z, u)

) + ε.

Let (uk)k ⊂ S 1D be the sequence given by Lemma A.2. Since Φ1 and Φ2
M are

continuous, we obtain

|∂φ0|D0(z) ≤ lim inf
k→∞

(
φ0(zk) − φ0(uk) − Φ2

M

(D0(zk, uk)
))+

Φ1
(D0(zk, uk)

) + ε

≤ lim inf
k→∞

|∂φ0|D0(zk) + ε,

where the last step follows again by Lemma 4.3(i). The statement follows by
sending ε → 0. �

We close this section by proving the fine representation for the local slope
given in Lemma 6.3.

Proof of Lemma 6.3. To simplify the notation, we will write (ỹ, w̃, θ̃) → (y, w, θ)
instead of D0((ỹ, w̃, θ̃), (y, w, θ)) → 0. Recall the definitions in (6.1) and (6.3).
The embedding W 1,2(I) ⊂⊂ L4(I) yields ‖G(y, w, θ)−G(ỹ, w̃, θ̃)‖L2(S;R3) → 0
as (ỹ, w̃, θ̃) → (y, w, θ). Then, by the positivity of Q̄R we get

∫
S

Q̄W (G(y, w, θ) − G(ỹ, w̃, θ̃))( ∫
S

Q̄R(G(y, w, θ) − G(ỹ, w̃, θ̃))
)1/2

≤C
‖G(y, w, θ) − G(ỹ, w̃, θ̃)‖2

L2(S;R3)

‖G(y, w, θ) − G(ỹ, w̃, θ̃)‖L2(S;R3)

→0.
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This along with the expansion (5.5) and Lemma 6.2 yields

|∂φ0|D0 (y, w, θ)

= lim sup
(ỹ,w̃,θ̃)→(y,w,θ)

( ∫
S

1
2
Q̄W (G(y, w, θ)) − 1

2
Q̄W (G(ỹ, w̃, θ̃))

)+
( ∫

S Q̄R(G(y, w, θ) − G(ỹ, w̃, θ̃))
)1/2

= lim sup
(ỹ,w̃,θ̃)→(y,w,θ)

( ∫
S C̄W [G(y, w, θ), G(y, w, θ) − G(ỹ, w̃, θ̃)]

)+
( ∫

S Q̄R(G(y, w, θ) − G(ỹ, w̃, θ̃))
)1/2

= lim sup
(ỹ,w̃,θ̃)→(y,w,θ)

( ∫
S C̄W [G(y, w, θ), H(y − ỹ, w − w̃, θ − θ̃|w) − 1

2
((w′ − w̃′)2, 0, 0)]

)+
( ∫

S Q̄R(G(y, w, θ) − G(ỹ, w̃, θ̃))
)1/2

,

where the last equality follows from (6.2). Due to (4.1), (6.2), and Lemma 6.2,
we find that ∫

S
Q̄R(G(y, w, θ) − G(ỹ, w̃, θ̃))∫

S
Q̄R(H(y − ỹ, w − w̃, θ − θ̃|w))

→ 1,

∫
S
(w′ − w̃′)2( ∫

S
Q̄R(G(y, w, θ) − G(ỹ, w̃, θ̃))

)1/2
→ 0

as (ỹ, w̃, θ̃) → (y, w, θ). Thus, we obtain

|∂φ0|D0(y, w, θ) = lim sup
(ỹ,w̃,θ̃)→(y,w,θ)

( ∫
S
C̄W [G(y, w, θ), H(y − ỹ, w − w̃, θ − θ̃|w)]

)+
( ∫

S
Q̄R(H(y − ỹ, w − w̃, θ − θ̃|w))

)1/2
.

We introduce the space of test functions P := BN(0,0)(S,R2) × W 2,2
0 (I) ×

W 1,2
0 (I). Since the operator H is linear, we can simplify this expression by

substitution with sequences that converge to 0. Moreover, as the enumerator
and denominator are positively homogeneous of degree one, we derive the
representation

|∂φ0|D0(y, w, θ) = sup
0 �=(ŷ,ŵ,θ̂)∈P

( ∫
S
C̄W [G(y, w, θ),H(ŷ, ŵ, θ̂|w)]

)+

∥∥√
C̄RH(ŷ, ŵ, θ̂|w)

∥∥
L2(S;R3)

, (A.7)

where we have used the definition of
√
C̄R. We now want to show that the

supremum is attained by considering the minimization problem

min
(ȳ,w̄,θ̄)∈P

F(ȳ, w̄, θ̄),

where

F(ȳ, w̄, θ̄) :=
1
2

∫
S

∣∣∣√C̄RH(ȳ, w̄, θ̄|w)
∣∣∣2 −

∫
S

C̄W [G(y, w, θ),H(ȳ, w̄, θ̄|w)].

The existence of a solution can be guaranteed by the direct method of the calcu-
lus of variations. The functional F is weakly lower semicontinuous as

√
C̄R and

H are linear operators and |·|2 is convex. To show coercivity, we consider a con-
stant C > 0 such that F(ȳ, w̄, θ̄) ≤ C. Since C̄R[H(ȳ, w̄, θ̄|w),H(ȳ, w̄, θ̄|w)] ≥
c|H(ȳ, w̄, θ̄|w)|2 by the positivity of Q̄R, we obtain by Cauchy-Schwarz

‖H(ȳ, w̄, θ̄|w)‖L2(S;R3) ≤ C,
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where C depends on y, w, and θ. Arguing similarly to the proof of Lemma 4.2(ii),
we find that ‖w̄‖W 2,2(I) ≤ C, ‖θ̄‖W 1,2(I) ≤ C, and ‖ȳ‖W 1,2(S;R2) ≤ C. Thus,
there exists a unique minimizer (y∗, w∗, θ∗) ∈ P. By computing the Euler-
Lagrange equations, we observe that the minimum satisfies∫

S

√
C̄RH(y∗, w∗, θ∗|w) ·

√
C̄RH(φy, φw, φθ|w)

−
∫

S

C̄W [G(y, w, θ),H(φy, φw, φθ|w)]

for all (φy, φw, φθ) ∈ P. This equation can also be formulated as∫
S

L(y, w, θ) · H(φy, φw, φθ|w) = 0 (A.8)

for all (φy, φw, φθ) ∈ P, where we define the operator L by

L(y, w, θ) := C̄RH(y∗, w∗, θ∗|w) − C̄W G(y, w, θ).

By (6.1) and the regularity of the functions, we find L(y, w, θ) ∈ L2(S;R3).
By (A.7), (A.8), and the definition of L we then get

|∂φ0|D0(y, w, θ) ≥
∫

S
(C̄W G(y, w, θ) + L(y, w, θ)) · H(y∗, w∗, θ∗|w)∥∥∥√

C̄RH(y∗, w∗, θ∗|w)
∥∥∥

L2(S;R3)

=

∫
S

√
C̄R

−1
(C̄W G(y, w, θ) + L(y, w, θ)) ·

√
C̄RH(y∗, w∗, θ∗|w)∥∥∥√

C̄RH(y∗, w∗, θ∗|w)
∥∥∥

L2(S;R3)

=
∥∥∥√

C̄RH(y∗, w∗, θ∗|w)
∥∥∥

L2(S;R3)

=
∥∥∥√

C̄R

−1
(C̄W G(y, w, θ) + L(y, w, θ))

∥∥∥
L2(S;R3)

.

On the other hand, by a similar argument, in view of (A.7) and (A.8), we find

|∂φ0|D0(y, w, θ) = sup
0 �=(ŷ,ŵ,θ̂)∈P

∫
S
(C̄W G(y, w, θ) + L(y, w, θ)) · H(ŷ, ŵ, θ̂|w)∥∥∥√

C̄RH(ŷ, ŵ, θ̂|w)
∥∥∥

L2(S;R3)

≤
∥∥∥√

C̄R

−1
(C̄W G(y, w, θ) + L(y, w, θ))

∥∥∥
L2(S;R3)

,

where we again distributed
√

C̄R suitably to the two terms and used the
Cauchy-Schwarz inequality. This concludes the proof. �
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