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Abstract. In this work we prove the existence of nontrivial bounded vari-
ation solutions to quasilinear elliptic problems involving a weighted 1-
Laplacian operator. A key feature of these problems is that weights are
unbounded. One of our main tools is the well-known Caffarelli-Kohn-
Nirenberg’s inequality, which is established in the framework of weighted
spaces of functions of bounded variation (and that provides us the neces-
sary embeddings between weighted spaces). Additional tools are suitable
variants of the Mountain Pass Theorem as well as an extension of the
pairing theory by Anzellotti to this new setting.
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1. Introduction

In the celebrated paper [13], Caffarelli, Kohn and Nirenberg established an
interpolation inequality involving weighted Lebesgue norms of functions and
their first derivatives. This inequality, in turn, allows one to show continu-
ous and compact embeddings theorems dealing with weighted Sobolev spaces.
Furthermore, this inequality and the connected embeddings have been ap-
plied to analyze several elliptic and parabolic problems involving weighted
Laplacian and p-Laplacian operators (for elliptic problems, see for instance
[1,2,9,12,14,36] and the references therein).

Regarding anisotropic problems involving the 1-Laplacian operator, we
refer to [32] as the first paper which studies the existence and uniqueness of
the anisotropic total variation flow. On the other hand, in [29], the author
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finds the Euler-Lagrange equation for the anisotropic least gradient problem

inf
{∫

Ω

φ(x,Du) : u ∈ BV (Ω), u|∂Ω = f

}
. (1.1)

We could also cite [37], where the author studies questions about the existence
and the regularity of minimizers of (1.1), where φ(x,Du) = a(x)|Du| and the
weight function a(·) is a smooth bounded function.

As a common hypothesis in all of these articles, we have the fact that
the weight w satisfies 0 < α ≤ w(x) ≤ β < ∞. This assumption implies that
the natural space to analyze the corresponding problem is BV , the space of
functions of bounded variation (as in the isotropic case).

The aim of this paper is to consider some anisotropic problems with
unbounded weights related to the Caffarelli–Kohn–Nirenberg inequality. More
precisely, we study existence of positive solutions to the following problem⎧⎨

⎩
−div

(
1

|x|a
Du

|Du|
)

=
1

|x|b f(u) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω is a bounded open set in R
N (with N ≥ 2) containing the origin and

having Lipschitz boundary ∂Ω, and the two parameters satisfy 0 < a < N − 1
and a < b < a + 1. Hypotheses on function f : R → R will be listed further
below.

To the best of our knowledge, this work is the first attempt to deal with
anisotropic problems having unbounded weights. In this situation, BV (Ω) is
unsuitable and it cannot be the natural space to analyze this problem. Now,
the energy space turns out to be a weighted BV –space. In the first step this
weighted space, denoted by BVa(Ω), is introduced. Since our weights are relat-
ed to the Caffarelli–Kohn–Nirenberg inequality, one of our main endeavors is
to adapt this inequality to our setting. More specifically, we prove the following
result.

Theorem 1.1. Let 0 < a < N − 1, 0 < θ ≤ 1 and a < b < a + 1. Then there
exists a constant CCKN > 0 such that(∫

Ω

1
|x|αrθ

|u|rθdx

) 1
rθ

≤ CCKN

(∫
Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1

)θ (∫
Ω

|u|dx

)1−θ

(1.3)

holds for all u ∈ BVa(Ω), where α = θb and rθ = N
N−θ(1+a−b) . Here BVa(Ω)

denotes the appropriate weighted BV –space, which was introduced in [10] (see
Sect. 2.3 below).

The concept of solution to problems involving the 1–Laplacian operator
lies on the theory of L∞–divergence–measure vector fields (see [7,18]). It pro-
vides tools to handle bounded vector fields and gradients of BV –functions,
including a Green’s formula. Since in our context this theory can no longer
be used, it follows that we must extend it to establish the necessary tools to
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deal with it. This extension is far from being trivial, since the weight which is
included in the vector field is unbounded. Using this tool, we may introduce
the concept of solution to problem (1.2) (see Definition 4.9 below) and broach
its study.

Before stating our main result in this paper, we list the assumptions on
function f in problem (1.2):
(f1) f ∈ C0([0,+∞),R);
(f2) f(0) = 0;
(f3) There exist constants c1, c2 > 0 and 1 < q < N

N−(1+a−b) , such that

|f(s)| ≤ c1 + c2s
q−1, s ∈ [0,+∞);

(f4) There exist μ > 1 and s0 > 0 such that

0 < μF (s) ≤ f(s)s, ∀ s ≥ s0,

where F (t) =
∫ t

0
f(s)ds;

(f5) f is increasing on [0,+∞).

Remark 1.2. Some consequences of (f4) are in order. It is not difficult to de-
duce from (f4) that there exist two positive constants d1 and d2 satisfying

F (s) ≥ d1s
μ − d2

for all s > 0. Applying (f4) again, we get f(s) ≥ μ(d1s
μ−1 − d2s

−1) for all
s ≥ s0 and so, having in mind μ > 1, it yields

lim
s→+∞ f(s) = +∞ .

Remark 1.3. Since we are looking for nonnegative solutions, we may (and will)
extend f(s) as usual defining f(s) = 0 if s < 0. As a consequence, we have
F (s) = 0 for all s < 0.

Our main result is the following.

Theorem 1.4. Suppose that f satisfies conditions (f1)−(f4). Then there exists
a nontrivial nonnegative solution to problem (1.2). This solution is actually a
ground-state solution (i.e., that solution which has the lowest energy among
all nontrivial ones) if we further require condition (f5).

Two different approaches will be used to prove this result. In each case a
suitable variant of Mountain Pass Theorem (see [3]) is applied. In the first
of them, we consider approximate solutions to problems involving the p–
Laplacian operator and next we let p go to 1. Then we find a hindrance due
to the assumptions on the function f which are needed to find solutions to
p–problems. Indeed, in the literature on the p–Laplacian setting, our assump-

tion (f2) is too general to get a solution and a hypothesis as lim
s→0

f(s)
|s|p−1

= 0

is required. The difficulty is overcome by modifying the reaction term in the
p–problems and then control the convergence process. In the second, we work
by using variational methods applied to the problem itself defined in BVa(Ω).
We apply a version of Mountain Pass Theorem suitable for functionals defined
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on this sort of spaces. In addittion, by using this approach, we are able also
to show that this mountain pass solution is in fact a ground-state solution of
the problem, i. e., its energy level is the lowest one among all the nontrivial
solutions.

We briefly explain the plan of this paper. In Sect. 2 we present some pre-
liminary results and define the space BVa(Ω). In Sect. 3 we set the Caffarelli–
Kohn–Nirenberg inequality in the space BVa(Ω). In Sect. 4 we extend the
Anzellotti pairing theory to include unbounded vector fields and also define
the sense of solution we deal with. Section 5 is devoted to prove Theorem 1.4 by
using the approximation method by problems involving weighted p-Laplacian
problems. Finally, in Sect. 6 we present the proof of Theorem 1.4 by using the
purely variational approach.

2. Preliminaries

We denote by HN−1(E) the (N − 1)-dimensional Hausdorff measure of a set
E while |E| stands for its N -dimensional Lebesgue measure. We will usually
handle an auxiliary function: the truncation function at level ±k defined by

Tk(s) =

{
s if |s| ≤ k,

k
s

|s| if |s| > k. (2.4)

In what follows, Ω ⊂ R
N (N ≥ 1) is an open and bounded set such that

0 ∈ Ω. Moreover, its boundary ∂Ω is Lipschitz–continuous. Thus, an outward
normal unit vector ν(x) is defined for HN−1–almost every x ∈ ∂Ω.

From now on, we denote:

• C1
c (Ω), stands for the space of functions with compact support which are

continuously differentiable on Ω
• C∞

c (Ω), denotes the space of all functions with compact support having
derivatives of all orders

We will make use of the usual Lebesgue and Sobolev spaces. Lebesgue
spaces with respect to a measure μ will be written as Lq(Ω, μ). The measure
will be deleted when it is Lebesgue measure.

Sometimes we will need to use convolution with mollifiers. We will denote
by ρ ∈ C∞

c (RN ) a symmetric mollifier whose support is B(0, 1) and its associ-
ated approximation to the identity by ρε(x) := 1

εN ρ
(

x
ε

)
, for ε > 0. The main

properties of approximation to identity can be found, for instance, in [4,11].
We explicitly remark that, if not otherwise specified, we will denote by

C several positive constants whose value may change from line to line. These
values will only depend on the data but they will never depend on p or other
indexes we will introduce.

2.1. Weighted spaces

Our objective in this subsection is to study spaces having a weight of the form
x 	→ |x|−a, with a > 0. We refer to [25,26,28] as sources for a more extensive
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study on weights and weighted spaces. We begin by introducing some features
of these weights.

Recall that w, a nonnegative locally integrable function on R
N , belongs

to Muckenhoupt’s class A1 if there exists a constant Cw > 0 such that

−
∫

B

wdx ≤ Cw ess inf
B

w, for all ball B ⊂ R
N , (2.5)

where −
∫

B
fdx = 1

|B|
∫

B
fdx.

It is well-known that the weight function w(x) = 1
|x|a belongs to Muck-

enhoupt’s class A1 if and only if 0 < a < N , so that in this case there exists a
constant Ca > 0 such that

−
∫

B(x,r)

1
|y|a dy ≤ Ca inf

y∈B(x,r)

1
|y|a , (2.6)

for all B(x, r) ⊂ R
N . We point out that this fact implies an inequality con-

necting mollifiers and this weight. Indeed,

(ρε ∗ w)(x) =
1
εN

∫
B(x,ε)

ρ

(
x − y

ε

)
1

|y|a dy ≤ ‖ρ‖∞|B(x, 1)|
|B(x, ε)|

∫
B(x,ε)

1
|y|a dy

and, as a consequence of belonging to A1,

(ρε ∗ w)(x) ≤ Ca‖ρ‖∞|B(0, 1)| inf
y∈B(x,ε)

1
|y|a ≤ C

|x|a (2.7)

holds for all x ∈ Ω.
Given a > 0 and s ≥ 1, let us denote by Ls

a(Ω) the set of measurable
functions u such that (∫

Ω

1
|x|a |u|sdx

) 1
s

< ∞.

Remark 2.1. Since Ω is a bounded set, it follows that

ma := inf
x∈Ω

{
1

|x|a
}

is positive. We note that this implies that the embedding Ls
a(Ω) ↪→ Ls(Ω) is

continuous for all s ≥ 1.

Definition 2.2. Let p ≥ 1 and fix 0 < a < N−p
p . The weighted Sobolev space

D1,p
a (Ω) is defined as the completion of restrictions of C∞

c (RN ) with respect
to the norm given by

‖u‖p,a =
(∫

Ω

1
|x|ap

|u|pdx +
∫

Ω

1
|x|ap

|∇u|pdx

) 1
p

Observe that functions in this space belong to

W 1,p(Ω, |x|−ap) = {u ∈ Lp
ap(Ω); ∇u ∈ Lp

ap(Ω;RN )}.

Reasoning as in Remark 2.1, we deduce that there is a continuous embedding
D1,p

a (Ω) ↪→ W 1,p(Ω).
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Remark 2.3. In [27] is proved that the space W 1,p(Ω, |x|−ap) is equal to the
closure of {ϕ ∈ C∞(Ω); ‖u‖p,a < ∞}.

The Sobolev space D1,p
0,a(Ω) is defined as the completion of C∞

c (Ω) with
respect to the norm ‖ · ‖p,a. Notice that there is a continuous embedding
D1,p

0,a(Ω) ↪→ W 1,p
0 (Ω). A Poincaré type inequality implies that this norm is

equivalent in D1,p
0,a(Ω) to the norm given by

‖u‖ =
(∫

Ω

1
|x|ap

|∇u|pdx

) 1
p

. (2.8)

This will be the norm we will use in what follows.
For more information on weighted Sobolev spaces, we refer to [27] (see

also [2,36]).

2.2. The space BV (Ω)

In this subsection, we just introduce some properties of the space of functions
of bounded variation. As mentioned in the introduction, it is the natural space
to study problems involving the 1–Laplacian operator. This space is defined
as

BV (Ω) =
{
u ∈ L1(Ω) : Du is a finite Radon measure

}
where Du : Ω → R

N denotes the distributional gradient of u. Henceforth, we
denote the distributional gradient by ∇u when it belongs to L1(Ω;RN ).

We recall that the space BV (Ω) endowed with the norm

‖u‖BV (Ω) =
∫

Ω

|Du| +
∫

Ω

|u|dx

is a Banach space which is non reflexive and non separable. On the other hand,
the notion of a trace on the boundary can be extended to functions u ∈ BV (Ω),
so that we may write u

∣∣
∂Ω

. Indeed, there exists a continuous linear operator
BV (Ω) ↪→ L1(∂Ω) extending the boundaries values of functions in C(Ω). As
a consequence, an equivalent norm on BV (Ω) can be defined:

‖u‖BV (Ω),1 =
∫

Ω

|Du| +
∫

∂Ω

|u| dHN−1.

We will often use this norm in what follows.
In addition, the following continuous embeddings hold

BV (Ω) ↪→ Lm(Ω) , for every 1 ≤ m ≤ N

N − 1
, (2.9)

which are compact for 1 ≤ m < N
N−1 .

For further properties of functions of bounded variations, we refer to [4]
and [21].
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2.3. The space BVa(Ω)

In this subsection, we study the definition and main properties of the space
BVa(Ω), which is our energy space. We mainly follow [10] to where we refer
for a wider analysis.

Let us define varau(Ω) as

varau(Ω) := sup
{∫

Ω

u div φdx; φ ∈ C1
c (Ω,RN ), s.t. |φ(x)| ≤ 1

|x|a
}

.

We remark that the Riesz representation Theorem implies that varau(Ω)
defines a Radon measure (see, for instance, [21, Section 1.8]).

We point out that the function

x 	→ 1
|x|a , 0 < a < N − 1 ,

is continuous in Ω\{0}, and hence it is lower semicontinuous. Then, appealing
to [10, Theorem 4.1], we obtain the next result.

Theorem 2.4. The following statements are equivalent:

(a) varau(Ω) < ∞;
(b) u ∈ BV (Ω) and 1

|x|a ∈ L1(Ω, |Du|).
Moreover,

varau(Ω) =
∫

Ω

1
|x|a |Du|.

Definition 2.5. Let BVa(Ω) be the space of functions u ∈ L1(Ω) such that
| · |−a|Du| is a finite Radon measure, i.e.,

BVa(Ω) =
{

u ∈ L1(Ω) :
∫

Ω

1
|x|a |Du| < +∞

}
.

The space BVa(Ω) is a Banach space when endowed with the norm

‖u‖BVa(Ω) :=
∫

Ω

1
|x|a |Du| +

∫
Ω

|u|dx.

Moreover, note that ma

∫
Ω

|Du| ≤ ∫
Ω

1
|x|a |Du| (ma as in Remark 2.1), so that

BVa(Ω) ↪→ BV (Ω).

Then

BVa(Ω) ↪→ L1(∂Ω)

and so every u ∈ BVa(Ω) has a trace on ∂Ω.
We point out that the functional given by

u 	→ varau(Ω) =
∫

Ω

1
|x|a |Du|
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is lower semicontinuous with respect to the L1–convergence since each u 	→∫
Ω

u div φdx is so. Furthermore, similar arguments lead to the lower semicon-
tinuity of the functional

u 	→
∫

Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u| dHN−1 (2.10)

We also need to use the lower semicontinuity of another functional. For a fixed
nonnegative ϕ ∈ C∞

c (Ω), consider

u 	→
∫

Ω

ϕ
1

|x|a |Du| , (2.11)

As a consequence of [10, Theorem 3.3], we may write∫
Ω

ϕ
1

|x|a |Du| = sup
{∫

Ω

u div (ϕΦ) dx : Φ ∈ C1
c (Ω)N |Φ| ≤ 1

|x|a
}

(2.12)

from where the desired lower semicontinuity follows.
We end this subsection by showing that just like in the space BV (Ω), we

can have an equivalent norm in BVa(Ω) which involves an integral over ∂Ω.
Its proof is a consequence of being equivalent ‖ · ‖BV (Ω) and ‖ · ‖BV (Ω),1, and
using that the positive quantities

Ma = sup
x∈∂Ω

{
1

|x|a
}

and ma = inf
x∈∂Ω

{
1

|x|a
}

are finite.

Proposition 2.6. The norm ‖ · ‖BVa
is equivalent to the norm given by

‖u‖BVa(Ω),1 =
∫

Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1.

Proposition 2.7. Let u, v ∈ BVa(Ω), then max{u, v},min{u, v} ∈ BVa(Ω) and
the following inequality is valid

‖max{u, v}‖BVa(Ω),1 + ‖min{u, v}‖BVa(Ω),1 ≤ ‖u‖BVa(Ω),1 + ‖v‖BVa(Ω),1.
(2.13)

In particular, choosing v = 0, we have that u+ := max{u, 0}, u− = min{u, 0} ∈
BVa(Ω), with u = u+ + u−, and it holds

‖u‖BVa(Ω),1 = ‖u+‖BVa(Ω),1 + ‖u−‖BVa(Ω),1. (2.14)

3. The Caffarelli–Kohn–Nirenberg inequality in BVa(Ω)

In this section we are going to present a version of the Caffarelli–Kohn–
Nirenberg inequality [13] in the space BVa(Ω). We do not prove it in its full
generality, but just introduce those cases to be applied. In particular, we em-
ploy them to prove embeddings involving BVa(Ω).

First of all we state the particular cases of the Caffarelli–Kohn–Nirenberg
inequality we are interested in.
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Lemma 3.1. Let p ≥ 1 and consider parameters satisfying 0 < a < N−p
p ,

0 < θ ≤ 1 and a < b < a + 1. Then there exists a constant CCKN > 0 such
that the following inequality holds for all u ∈ C∞

c (RN ):
(∫

RN

1
|x|αrθ

|u|rθdx

) 1
rθ ≤ CCKN

(∫
RN

1
|x|ap

|∇u|pdx

) θ
p

(∫
RN

|u|dx

)1−θ

,

where α = θb and rθ = Np
θN−p[θ(1+a−b)−N(1−θ)] .

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u ∈ BVa(Ω) and consider its extension to R
N de-

fined by

ũ(x) =
{

u(x) if x ∈ Ω,
0 if x /∈ Ω.

We remark that Dũ = Du + u|∂Ω · HN−1
∂Ω (see [4, Theorem 3.87]).

Note also that ũ ∗ ρε ∈ C∞
c (RN ) and so we may apply Lemma 3.1 for

p = 1 (so that rθ = N
N−θ(1+a−b) ). Thus, for every ε > 0, we get

(∫
RN

1
|x|αrθ

|ũ ∗ ρε|rθdx

) 1
rθ

≤ CCKN

(∫
RN

1
|x|a |∇(ũ ∗ ρε)|dx

)θ (∫
RN

|ũ ∗ ρε|dx

)1−θ

. (3.15)

We will separately take the limit as ε → 0 in each integral.
We begin by analyzing the gradient term. Thanks to [4, Proposition

3.2(c)], we write∫
RN

1
|x|a |∇(ũ ∗ ρε)|dx ≤

∫
RN

(
1

|x|a ∗ ρε

)
|Dũ|

Moreover, by the continuity of our weight,
1

|x|a ∗ ρε → 1
|x|a pointwise in R

N \ {0} (3.16)

and this fact, jointly with (2.7), allows us to apply the Dominated Convergence
Theorem and obtain

lim
ε→0

∫
RN

(
1

|x|a ∗ ρε

)
|D(ũ)| =

∫
RN

1

|x|a |D(ũ)| =

∫
Ω

1

|x|a |Du| +

∫
∂Ω

1

|x|a |u| dHN−1 .

(3.17)
On the other hand, since

ρε ∗ ũ → ũ in L1(RN ), (3.18)

it follows that

lim
ε→0

∫
RN

|ũ ∗ ρε|dx =
∫
RN

|ũ|dx =
∫

Ω

|u|dx . (3.19)

Furthermore, we deduce from

ρε ∗ ũ(x) → ũ(x) a. e. in R
N ,
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and Fatou’s Lemma that∫
Ω

1
|x|αrθ

|u|rθdx =
∫
RN

1
|x|αrθ

|ũ|rθdx ≤ lim inf
ε→0

∫
RN

1
|x|αrθ

|ũ∗ρε|rθdx . (3.20)

Therefore, using (3.17), (3.19) and (3.20), we may pass to the limit in
(3.15) and obtain the desired result. �

In the following results, we denote CΩ = sup{|x| : x ∈ Ω}, which is finite
since Ω is bounded.

Theorem 3.2. Let a < b < a + 1 and r = N
N−(1+a−b) . Then for all q ∈ R,

1 ≤ q ≤ r, the embedding

BVa(Ω) ↪→ Lq
b(Ω)

is continuous.

Proof. In this proof, we consider several cases. All of them are consequence of
some manipulations involving Hölder’s inequality and the version of Caffarelli–
Kohn–Nirenberg’s inequality given in Theorem 1.1.

First of all, let us consider the case q = 1. We apply the mentioned
inequalities to get∫

Ω

1
|x|b |u|dx ≤

(∫
Ω

1
|x|br

|u|r
) 1

r

|Ω| r−1
r

≤ |Ω| r−1
r CCKN

(∫
Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1

)
.

Now consider 1 < q < r. In this case, arguing as above, we obtain∫
Ω

1
|x|b |u|qdx =

∫
Ω

1
|x|b−bq

1
|x|bq

|u|qdx

≤ Cbq−b
Ω

∫
Ω

1
|x|bq

|u|qdx

≤ Cbq−b
Ω |Ω| r−q

r

(∫
Ω

1
|x|br

|u|rdx

) q
r

≤ Cbq−b
Ω |Ω| r−q

r Cq
CKN

(∫
Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1

)q

.

Finally, the case q = r follows from a similar argument.
Therefore, in any case, there exists C > 0 such that(∫

Ω

1
|x|b |u|qdx

) 1
q

≤ C

(∫
Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1

)

holds for every u ∈ BVa(Ω) and we are done. �

Theorem 3.3. Let a < b < a+1 and r = N
N−(1+a−b) . Then for all q, 1 ≤ q < r

the embedding

BVa(Ω) ↪→ Lq
b(Ω)

is compact.
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Proof. Let (un) be a bounded sequence in BVa(Ω) and note that, since BVa(Ω)
↪→ BV (Ω), (un) is also bounded in BV (Ω). Then, by the compact embedding
in BV (Ω), there exist a subsequence (not relabeled) and u ∈ BV (Ω) such
that

un → u in L1(Ω) . (3.21)

Let 1 < q < r. Note that there exists θ ∈ (0, 1) such that

1
θ

< q <
N

N − θ(1 + a − b)
.

Then, using first Hölder’s inequality and then (1.3) we get∫
Ω

1
|x|b |un − u|qdx

=
∫

Ω

1
|x|b−θbq

1
|x|θbq

|un − u|qdx

≤ Cθbq−b
Ω

∫
Ω

1
|x|θbq

|un − u|qdx

≤ Cθbq−b
Ω |Ω|

rθ−q

rθ

(∫
Ω

1
|x|θbrθ

|un − u|rθdx

) q
rθ

≤ Cθbq−b
Ω |Ω|

rθ−q

rθ Cq
CKN‖un − u‖qθ

BVa(Ω),1

(∫
Ω

|un − u|dx

)(1−θ)q

,

which tends to 0 as n → ∞. Here we have used that (un)n is bounded in
BVa(Ω) and (3.21).

It remains to consider q = 1. Note that there exists 0 < θ̄ < 1 such that
θ̄(1 + a) > b. Performing similar manipulations, we get∫

Ω

1
|x|b |un − u|dx =

∫
Ω

1
|x|b−θ̄b

1
|x|θ̄b

|un − u|dx

≤
(∫

Ω

(
1

|x|b−θ̄b

) r
θ̄

r
θ̄

−1
) r

θ̄
−1

r
θ̄

(∫
Ω

1
|x|θ̄brθ̄

|un − u|rθ̄dx

) 1
r

θ̄

Observe that, since θ̄(a + 1) > b, it follows that b(1 − θ̄) rθ̄

rθ̄−1 < N , so that

A =

(∫
Ω

(
1

|x|b−θ̄b

) r
θ̄

r
θ̄

−1
) r

θ̄
−1

r
θ̄

< +∞ .

Hence, applying (1.3), it yields
∫

Ω

1
|x|b |un − u|dx ≤ A

(∫
Ω

1
|x|θ̄brθ̄

|un − u|rθ̄dx

) 1
r

θ̄

≤ ACCKN‖un − u‖θ̄
BVa(Ω),1

(∫
Ω

|un − u|dx

)1−θ̄

,

which tends to 0 as above. �
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4. Extension of the Anzellotti theory

In this Section, we extend the Anzellotti theory to a setting which involves
unbounded vector fields. To begin with, we recall this theory. Not only these
results will be applied, but they will also serve us as a guide for its broadening.

4.1. Remainder of Anzellotti’s theory

We recall the notion of weak trace on ∂Ω of the normal component defined
in [7] for every z ∈ L∞(Ω;RN ) such that its distributional divergence div z is
a Radon measure having finite total variation. This trace is a function [z, ν] :
∂Ω → R satisfying [z, ν] ∈ L∞(∂Ω) and ‖ [z, ν] ‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), being
ν(·) the outer normal unitary vector on ∂Ω.

In [7], it was also introduced a distribution (z,Du) : C∞
c (Ω) → R defined

by

〈(z,Du), ϕ〉 = −
∫

Ω

uϕ div z −
∫

Ω

u z · ∇ϕdx , (4.22)

where
u ∈ BV (Ω) ∩ L∞(Ω) and div z ∈ L1(Ω) , (4.23)

among other possible pairings. It is then proved

|〈(z,Du), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

|Du| (4.24)

for all open sets U ⊂ Ω such that suppϕ ⊂ U . As a consequence, (z,Du) is a
Radon measure whose total variation satisfies

|(z,Du)| ≤ ‖z‖∞|Du| . (4.25)

Finally, a Green formula involving the measure (z,Du) and the weak
trace [z, ν] is established in [7], namely:∫

Ω

(z,Du) +
∫

Ω

u div z =
∫

∂Ω

u [z, ν] dHN−1 (4.26)

being z and u as in (4.23).

4.2. Weighted theory

In this subsection, we consider weights w(x) = |x|−a, with 0 < a < N − 1.
Nevertheless, we point out that most of the results holds for more general
weights.

We define the space

DMa(Ω) =
{

z ∈ L∞(Ω,RN ); div
(

1
|x|a z

)
∈ L1(Ω)

}
.

Note that, if z ∈ DMa(Ω), then div z ∈ L1(Ω). Indeed, choose ϕ ∈
C∞

c (Ω), mollify the function ϕ|x|a and have in mind [1, Lemma 1.5] to get∫
Ω

ϕ|x|adiv
(

1
|x|a z

)
dx = −

∫
Ω

1
|x|a z · ∇(ϕ|x|a)dx.
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Thus,
∫

Ω

ϕ|x|adiv
(

1
|x|a z

)
dx −

∫
Ω

ϕ|x|az · ∇
(

1
|x|a

)
dx

=
∫

Ω

1
|x|a z∇̇(ϕ|x|a)dx −

∫
Ω

ϕ|x|az · ∇
(

1
|x|a

)
= −

∫
Ω

z∇̇ϕdx,

and this fact means that

divz = |x|adiv
(

1
|x|a z

)
− ϕ|x|az · ∇

(
1

|x|a
)

∈ L1(Ω). (4.27)

On the other hand, the following equalities are valid in the sense of distribu-
tions

div
(

Tk

(
1

|x|a
)

z

)
= Tk

(
1

|x|a
)

div(z) + z · ∇Tk

(
1

|x|a
)

, ∀k > 0. (4.28)

Hence, letting k → ∞, it also holds

div
(

1
|x|a z

)
=

1
|x|a div(z) + z · ∇

(
1

|x|a
)

, (4.29)

in the sense of distributions. This last identity implies that

1
|x|a div(z) ∈ L1(Ω) (4.30)

Then Anzellotti’s theory supplies us with the weak trace [z, ν] on ∂Ω and
the Radon measure (z,Du) for every u ∈ BV (Ω) ∩ L∞(Ω) (and so for every
u ∈ BVa(Ω) ∩ L∞(Ω)).

It is easy to compare
[

1
|x|a z, ν

]
and 1

|x|a [z, ν]. To see that they are equal,
we just employ the inequality

1
|x|a ≤ Ma, for all x ∈ ∂Ω.

for certain finite constant Ma.

Lemma 4.1. For every z ∈ DMa(Ω) we have that
[

1
|x|a z, ν

]
=

1
|x|a [z, ν] HN−1 − a. e. ∂Ω.

Proof. For each k > 0, by the Proposition 2 of [15], we obtain
[
Tk

(
1

|x|a
)

z, ν

]
= Tk

(
1

|x|a
)

[z, ν] HN−1 − a. e. ∂Ω

Now it is enough to take k ≥ Ma to get our result. �
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4.3. Measures
(

1
|·|a z,Du

)
and 1

|·|a (z,Du)

In this subsection, we take z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω), and
introduce two distributions

(
1

|x|a z,Du
)

and 1
|x|a (z,Du), which turn out to be

equal. Finally, we will prove a Green’s formula that connects them to traces[
1

|x|a z, ν
]

= 1
|x|a [z, ν].

We begin by observing that
(
Tk

(
1

|x|a
)

z,Du
)

= Tk

(
1

|x|a
)

(z,Du) as

measures for all k > 0. In order to do so, first notice that div
(

1
|x|a z

)
∈ L1(Ω).

Then
(
Tk

(
1

|x|a
)

z,Du
)

is defined as in (4.22) by
〈(

Tk

(
1

|x|a
)

z,Du

)
, ϕ

〉

= −
∫

Ω

uϕdiv
(

Tk

(
1

|x|a
)

z

)
dx −

∫
Ω

uTk

(
1

|x|a
)

z · ∇ϕdx .

On the other hand, Tk

(
1

|x|a
)

(z,Du) is such that
〈

Tk

(
1

|x|a
)

(z,Du) , ϕ

〉
=

∫
Ω

Tk

(
1

|x|a
)

ϕ (z,Du) .

It is not difficult to connect both distributions. To this end, denote w(x) =
Tk

(
1

|x|a
)

and consider the mollification of ϕw. Then

ρε ∗ (ϕw) → ϕw uniformly in Ω

∇ (ρε ∗ (ϕw)) → ∇(ϕw) strongly in L1(Ω;RN )

and so ∫
Ω

Tk

(
1

|x|a
)

ϕ (z,Du)

= lim
ε→0

∫
Ω

ρε ∗ (ϕw) (z,Du)

= − lim
ε→0

∫
Ω

u(ρε ∗ (ϕw))div z dx − lim
ε→0

∫
Ω

uz · ∇ (ρε ∗ (ϕw)) dx

= −
∫

Ω

uϕTk

(
1

|x|a
)

div z dx −
∫

Ω

uz · ∇
(

ϕTk

(
1

|x|a
))

dx .

We stress that (4.27) implies that both distributions are equal. So, we have
proved the following lemma.

Lemma 4.2. For every z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω), we have that(
Tk

(
1

|x|a
)

z,Du

)
= Tk

(
1

|x|a
)

(z,Du) as Radon measures in Ω,∀k > 0.

We define the weighted pairings as the limit of the above functionals.
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Definition 4.3. Let z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω). Then we define
the functional

(
1

|x|a z,Du
)

: C∞
c (Ω) → R as

〈(
1

|x|a z,Du

)
, ϕ

〉
= −

∫
Ω

uϕdiv
(

1
|x|a z

)
dx −

∫
Ω

1
|x|a uz · ∇ϕdx

Lemma 4.4. For every z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω), we have that(
1

|x|a z,Du

)
=

1
|x|a (z,Du) as distributions.

As a consequence, since 1
|x|a (z,Du) is a Radon measure in Ω, so is

(
1

|x|a z,Du
)
.

Proof. We point out that 1
|x|a ∈ L1(Ω, (z,Du)), since |(z,Du)| ≤ ‖z‖∞|Du|

and u ∈ BVa(Ω) ∩ L∞(Ω). Moreover, we have〈
1

|x|a (z,Du), ϕ
〉

=
∫

Ω

ϕ
1

|x|a (z,Du)

= −
∫

Ω

uϕ
1

|x|a div (z) dx −
∫

Ω

uϕz · ∇
(

1
|x|a ϕ

)
dx.

Thus, having in mind (4.28), both distributions are equal. �

Theorem 4.5. Let z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω). For all open sets
U ⊂ Ω and for all functions ϕ ∈ C∞

c (U), it yields∣∣∣∣
〈(

1
|x|a z,Du

)
, ϕ

〉∣∣∣∣ ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

1
|x|a |Du|.

Proof. Note that, from (4.24) we have that∣∣∣∣
〈(

1
|x|a z,Du

)
, ϕ

〉∣∣∣∣ =
∣∣∣∣
∫

U

1
|x|a ϕ(z,Du)

∣∣∣∣ (4.31)

≤
∫

U

1
|x|a |ϕ| |(z,Du)| (4.32)

≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

1
|x|a |Du|dx, (4.33)

what proves the result. �

Corollary 4.6. The measures
(

1
|x|a z,Du

)
and

∣∣∣( 1
|x|a z,Du

)∣∣∣ are absolutely con-
tinuous with respect to the measure 1

|x|a |Du| and the inequality
∣∣∣∣
∫

B

(
1

|x|a z,Du

)∣∣∣∣ ≤
∫

B

∣∣∣∣
(

1
|x|a z,Du

)∣∣∣∣ ≤ ‖z‖L∞(U)

∫
B

1
|x|a |Du|

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
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Theorem 4.7. Let z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω). Then we have
∫

Ω

udiv
(

1
|x|a z

)
dx +

∫
Ω

1
|x|a (z,Du) =

∫
∂Ω

1
|x|a [z, ν] u dHN−1.

Proof. It follows from (4.26), jointly with Lemmas 4.1 and 4.2, that
∫

Ω

u div
(

Tk

(
1

|x|a
)

z

)
dx +

∫
Ω

Tk

(
1

|x|a
)

(z,Du)

=
∫

∂Ω

Tk

(
1

|x|a
)

[z, ν] u dHN−1. (4.34)

for all k > 0. Since x 	→ 1
|x|a is a bounded function on ∂Ω, then for k large

enough, Tk

(
1

|x|a
)

= 1
|x|a . Hence,

lim
k→+∞

∫
∂Ω

Tk

(
1

|x|a
)

[z, ν] u dHN−1 =
∫

∂Ω

1
|x|a [z, ν] u dHN−1. (4.35)

On the left hand side of (4.34), we will apply the Dominated Convergence
Theorem. In the first term, we may pass to the limit as in the proof of the
Theorem 4.5, taking into account (4.27), (4.29) and ∇

(
1

|x|a
)

∈ L1(Ω). On the
other hand, we denote by θ(z,Du) the Radon–Nikodým derivative of (z,Du)
with respect to |Du|, so that |θ(z,Du)| ≤ ‖z‖∞. Then

Tk

(
1

|x|a
)

(z,Du) = Tk

(
1

|x|a
)

θ(z,Du)|Du|

and ∣∣∣∣Tk

(
1

|x|a
)

θ(z,Du)
∣∣∣∣ ≤ ‖z‖∞

|x|a .

Owing to 1
|x|a ∈ L1(Ω, |Du|), we are allowed to use the Dominated Convergence

Theorem. Therefore, when k → ∞, identity (4.34) becomes
∫

Ω

udiv
(

1
|x|a z

)
dx +

∫
Ω

1
|x|a (z,Du) =

∫
∂Ω

1
|x|a [z, ν] u dHN−1

as desired. �

Remark 4.8. Note that, by Lemmas 4.1 and 4.4, the last identity can also be
written as∫

Ω

udiv
(

1
|x|a z

)
dx +

∫
Ω

(
1

|x|a z,Du

)
=

∫
∂Ω

[
1

|x|a z, ν

]
u dHN−1.

4.4. Concept of solution to problem (1.2)

Once we have the weighted theory available, we may introduce the definition
of solution to problem (1.2).
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Definition 4.9. We say that u ∈ BVa(Ω)∩L∞(Ω) is a solution of problem (1.2)
if there exists a vector field z ∈ L∞(Ω,RN ) with ‖z‖∞ ≤ 1 and such that

(1) −div
(

1
|x|a z

)
= 1

|x|b f(u), in D′(Ω),

(2)
(

1
|x|a z,Du

)
= 1

|x|a |Du| as measures on Ω,

(3) [z, ν] ∈ sign (−u) on ∂Ω.

We will need a variational formulation of our concept of solution. We
begin with the following equivalence, whose proof in the non weighted setting
can be found in [6, Proposition 2].

Proposition 4.10. For u ∈ BVa(Ω) ∩ L∞(Ω), the following assertions are e-
quivalent.
(a) u is a solution to problem (1.2).
(b) there exists a vector field z ∈ L∞(Ω,RN ) satisfying ‖z‖∞ ≤ 1,

−div
(

1
|x|a z

)
=

1
|x|b f(u), in D′(Ω),

and∫
Ω

1
|x|b f(u)(v − u)dx =

∫
Ω

1
|x|a (z,Dv) −

∫
∂Ω

1
|x|a v[z, ν] dHN−1 − ‖u‖BV (Ω),1

(4.36)
for all v ∈ BVa(Ω) ∩ L∞(Ω).

Proof. To see that (a) ⇒ (b), just take v ∈ BVa(Ω) ∩ L∞(Ω), multiply the
equality (1) of Definition 4.9 by v−u and apply Green’s formula and conditions
(2) and (3).
The reverse implication (b) ⇒ (a) is deduced by taken v = u in (4.36). Indeed,
we obtain

‖u‖BV (Ω),1 ≤
∫

Ω

1
|x|a (z,Du) −

∫
∂Ω

1
|x|a u[z, ν] dHN−1

and conditions (2) and (3) follow since ‖z‖∞ ≤ 1. �
Corollary 4.11. If u is a solution to problem (1.2), then∫

Ω

1
|x|b f(u)(v − u)dx ≤ ‖v‖BV (Ω),1 − ‖u‖BV (Ω),1 . (4.37)

holds for every v ∈ BVa(Ω).

Proof. When v ∈ BVa(Ω) ∩ L∞(Ω), it is an easy consequence of Proposition
4.10 and the condition ‖z‖∞ ≤ 1. For a general v ∈ BVa(Ω), apply this
inequality to Tk(v) to get∫

Ω

1
|x|b f(u)(Tk(v) − u)dx ≤ ‖Tk(v)‖BV (Ω),1 − ‖u‖BV (Ω),1

≤ ‖v‖BV (Ω),1 − ‖u‖BV (Ω),1 . (4.38)

Now, on account of Theorem 3.2, v ∈ L1
b(Ω) and so we may let k go to ∞ on

the left hand side of (4.38). �



57 Page 18 of 40 J. C. O. Chata, M. T. O. Pimenta and S. S. de León NoDEA

Corollary 4.12. Every solution to problem (1.2) is nonnegative.

Proof. Let u be a solution to problem (1.2). By Proposition 2.7, we may take
v = u+ in Corollary 4.11 obtaining∫

Ω

1
|x|b f(u)(−u−) ≤ ‖u+‖BV (Ω),1 − ‖u‖BV (Ω),1 = −‖u−‖BV (Ω),1 .

On the left hand side, the integrand vanishes (recall that f(s) = 0 for all s ≤ 0)
and we get ∫

Ω

1
|x|b f(u)(−u−) =

∫
{u<0}

1
|x|b f(u)(−u) = 0 .

Therefore, ‖u−‖BV (Ω),1 ≤ 0 and so u = u+ ≥ 0. �

To characterize the sub-differential of the norm, we could try to adapt
the proof of [6, Section 5] to our weighted framework. Nevertheless, for our
purposes, the following result will be enough.

Proposition 4.13. Let h ∈ L1(Ω) and assume that problem⎧⎨
⎩

−div
(

1
|x|a

Du

|Du|
)

= h in Ω,

u = 0 on ∂Ω,
(4.39)

has a bounded solution w. (By a solution to problem (4.39) we mean that w
satisfies Definition 4.9 with the obvious replacement of 1

|x|b f(w) by h.)
If u ∈ BVa(Ω) ∩ L∞(Ω) and h ∈ ∂‖u‖BV (Ω),1, then u is also a solution to
problem (4.39).

Proof. Let w ∈ BVa(Ω) ∩ L∞(Ω) be a solution to problem (4.39). Then there
exists a vector field z ∈ L∞(Ω,RN ) such that ‖z‖∞ ≤ 1 and

−div
(

1
|x|a z

)
= h in D′(Ω)

jointly with conditions (2) and (3). Taken w − u as test function, it yields∫
Ω

h(w − u) dx

=
∫

Ω

1
|x|a (z,Dw) −

∫
Ω

1
|x|a (z,Du)

−
∫

∂Ω

1
|x|a w[z, ν] dHN−1 +

∫
∂Ω

1
|x|a u[z, ν] dHN−1

= ‖w‖BV (Ω),1 −
∫

Ω

1
|x|a (z,Du) +

∫
∂Ω

1
|x|a u[z, ν] dHN−1 (4.40)

On the other hand, assumption h ∈ ∂‖u‖BV (Ω),1 implies∫
Ω

h(w − u) dx ≤ ‖w‖BV (Ω),1 − ‖u‖BV (Ω),1 . (4.41)
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Hence, gathering (4.40) and (4.41), it follows that

−
∫

Ω

1
|x|a (z,Du) +

∫
∂Ω

1
|x|a u[z, ν] dHN−1 ≤ −‖u‖BV (Ω),1

and the result is a consequence of being ‖z‖∞ ≤ 1. �

5. Proof of Theorem 1.4 through p–Laplacian problems

This section is devoted to prove Theorem 1.4 assuming conditions (f1) − (f4)
by an approximating approach. We first consider problems involving the p-
Laplacian operator and, following the arguments of [31], we prove a priori
estimates which allow us to find the solution w of Problem (1.2) as p → 1+.

5.1. Approximating problems involving p-Laplacian operators

First of all, we consider 1 < p̄ < 2 and so p̄ < N < N
1+a−b . Since 0 < a < N −1,

μ > 1 and 1 < q < N
N−(1+a−b) , we may assume that p̄ also satisfies

a <
N − p̄

p̄
< N − 1, μ > p̄ and p̄ < q < q + p̄ − 1 <

N

N − (1 + a − b)
.

This implies that, denoting q̄ = q + p̄ − 1,

p <
N

1 + a − b
, a <

N − p

p
, μ > p and p < q̄ <

Np

N − p(1 + a − b)
.

for every 1 < p ≤ p̄. Now, for each 1 < p ≤ p̄, we consider the problem⎧⎨
⎩

−div
(

1
|x|ap

|∇u|p−2∇u

)
=

1
|x|b fp(u) in Ω,

u = 0 on ∂Ω,
(5.42)

where fp(s) = f(s)|s|p−1. Observe that, as a consequence of (f1) − (f4), the
function fp satisfies:
(f1p) fp ∈ C0([0,+∞),R);

(f2p) lim
s→0+

fp(s)
|s|p−1

= 0;

(f3p) There exist constants c1, c2 > 0 and p < q̄ < Np
N−p(1+a−b) , such that

|fp(s)| ≤ c1 + c2s
q̄−1 for all s ∈ [0,+∞).

(f4p) There exists μ > p such that

0 < μFp(s) ≤ fp(s)s, ∀ s ≥ s0,

where Fp(t) =
∫ t

0
fp(s)ds.

Remark 5.1. The conditions (f1p) − (f3p) are straightforward to check. To
prove the condition (f4p), just integrate by parts to obtain

fp(s)s
Fp(s)

=
f(s)|s|p−1s

F (s)|s|p−1 − (p − 1)
∫ s

0
F (σ)

|σ|2−p dσ
=

f(s)s

F (s) − (p − 1) 1
|s|p−1

∫ s

0
F (σ)

|σ|2−p dσ
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when s > 0. Hence,

fp(s)s
Fp(s)

≥ f(s)s
F (s)

≥ μ

for s large enough.

Problem (5.42) has been studied in [12] using the lower and upper–
solutions method. Nevertheless, we need to obtain a solution applying the
Mountain Pass Theorem to get estimates independent of p and thus be able
to pass to the limit as p → 1.

In order to get a nontrivial solution to (5.42), we work in the space
D1,p

0,a(Ω) that is defined in Sect. 2.1. Moreover, the functions of this space
satisfy the following Caffarelli–Kohn–Nirenberg inequality.

Theorem 5.2. Let 0 < a < N−p̄
p̄ , 0 < θ ≤ 1 and a < b < a + 1. Then there

exists a constant CCKN > 0 such that the following inequality holds for all
u ∈ D1,p

0,a(Ω)
(∫

Ω

1
|x|αrθp

|u|rθpdx

) 1
rθp ≤ CCKN

(∫
Ω

1
|x|ap

|∇u|pdx

) θ
p

(∫
Ω

|u|dx

)1−θ

,

where α = θb and rθp = Np
θN−p[θ(1+a−b)−N(1−θ)] .

Proof. The proof follows as that one of Theorem 3.1, with the difference that

ρε ∗ ũ → ũ in D1,p
0,a(Ω) as ε → 0, (5.43)

as showed in Theorem 2.5 of [27]. �

Thanks to this version of the Caffarelli–Kohn–Nirenberg inequality and
using the arguments of the proofs of Theorems 3.2 and 3.3, we can show the
following embedding result. Probably this result already has been proved in
the literature (for a related result, see [36, Theorem 2.1]). However, we state
it here for the sake of completeness.

Theorem 5.3. Let 0 < a < N−p
p , a < b < a + 1 and rp = r1p = Np

N−p(1+a−b) .
Then the embedding

D1,p
0,a(Ω) ↪→ Lq

b(Ω)

is continuous for all q ∈ [1, rp] and compact for all q ∈ [1, rp).

The functional associated to problem (5.42) is given by

Jp(u) =
1
p

∫
Ω

1
|x|ap

|∇u|pdx −
∫

Ω

1
|x|b Fp(u)dx for all u ∈ D1,p

0,a(Ω).

By the conditions (f2p), (f3p), (f4p) and the Theorem 5.3, the functional Jp

satisfies the geometric conditions of the Mountain Pass Theorem (see [35]),
which imply that there exists a (PS)c sequence (wn)n∈N in D1,p

0,a(Ω), i.e.,

Jp(wn) → cp and J ′
p(wn) → 0, as n → ∞,
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where

cp = inf
γ∈Γ

max
t∈[0,1]

Jp(γ(t))

and

Γ = {γ ∈ C([0, 1],D1,p
0,a(Ω)); γ(0) = 0, Jp(γ(1)) < 0}.

Well–known arguments can be used to show that (wn)n∈N is a bounded
sequence in D1,p

0,a(Ω) and consequently, that there exists wp ∈ D1,p
0,a(Ω) in such

a way that

wn → wp in D1,p
0,a(Ω), as n → ∞.

Since Jp ∈ C1(D1,p
0,a(Ω)) the previous convergence implies that

Jp(wp) = cp and J ′
p(wp) = 0

and consequently wp is a nontrivial solution in D1,p
0,a(Ω) to problem (5.42).

Once we have got the family of approximate solutions (wp)1<p≤p̄, our
main concern is to get bounds of this family which do not depend on p. To
this end, let us consider the functional Ip : D1,p

0,a(Ω) → R defined by

Ip(u) =
1
p

∫
Ω

1
|x|ap

|∇u|pdx +
p − 1

p
|Ω|.

It is straightforward to see that p 	→ Ip(u) is a nondecreasing function, for
every u ∈ W 1,p

0 (Ω, |x|−a). Indeed, let 1 < p1 < p2 < p and note that, by
Young’s inequality,

Ip1(u) =
1
p1

∫
Ω

1
|x|ap1

|∇u|p1dx +
p1 − 1

p1
|Ω|

≤ 1
p1

(
p1

p2

∫
Ω

1
|x|ap2

|∇u|p2dx +
p2 − p1

p2
|Ω|

)
+

p1 − 1
p1

|Ω|
= Ip2(u).

Moreover, the critical points of Jp are the same of those of u 	→ Ip(u) −∫
Ω

1
|x|b Fp(u)dx.

Next, we show that there exists e ∈ C∞
c (Ω) such that

Jp(e) < 0, for all 1 < p ≤ p̄.

Fix a nontrivial φ ∈ C∞
c (Ω) such that φ ≥ 0 and ‖φ‖∞ ≤ 1. This fact leads to∫

Ω

1
|x|b |φ|p̄dx ≤

∫
Ω

1
|x|b |φ|pdx ≤

∫
Ω

1
|x|b |φ| dx (5.44)

for every 1 < p ≤ p̄. Moreover, the Lebesgue Dominated Convergence Theorem
implies

lim
p→1+

∫
Ω

1
|x|b |φ|pdx =

∫
Ω

1
|x|b |φ| dx

and, as a consequence, we may assume that
1
2

∫
Ω

1
|x|b |φ| dx <

∫
Ω

1
|x|b |φ|p̄dx . (5.45)
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Analogously, there is no loss of generality in assuming that∫
Ω

1
|x|ap

|∇φ|pdx < 2
∫

Ω

1
|x|a |∇φ| dx (5.46)

for every 1 < p ≤ p̄.
Now let t > 1. Then, owing to lim

s→+∞ f(s) = +∞, given

K = 16

∫
Ω

1
|x|a |∇φ| dx∫

Ω
1

|x|b |φ| dx
, (5.47)

we can find M > 0 such that f(s) > K, and consequently fp(s) > Ksp−1, for
all s > M . Hence, if s > M , then

Fp(s) >

∫ s

M

f(s)|s|p−1ds > K
sp

p
− K

Mp

p
> K

sp

p
− K(1 + M)p̄ .

Denoting K1 = K(1 + M)p̄
∫
Ω

1
|x|b dx and taking t large enough such that

1
2

∫
Ω

1
|x|b |φ|p̄dx <

∫
{φ>M/t}

1
|x|b |φ|p̄dx , (5.48)

we deduce∫
Ω

1
|x|b Fp(tφ) dx ≥

∫
{φ>M/t}

1
|x|b Fp(tφ) dx > K

tp

p

∫
{φ>M/t}

1
|x|b |φ|pdx − K1

≥ K
tp

p

∫
{φ>M/t}

1
|x|b |φ|p̄dx − K1 ≥ K

tp

2p

∫
Ω

1
|x|b |φ|p̄dx − K1

> K
tp

4p

∫
Ω

1
|x|b |φ| dx − K1 = 4

tp

p

∫
Ω

1
|x|a |∇φ| dx − K1 ,

where have also used (5.47). Therefore, from (5.46)

Ip(tφ) −
∫

Ω

1
|x|b Fp(tφ)dx

≤ tp

p

∫
Ω

1
|x|ap

|∇φ|p dx − 4
tp

p

∫
Ω

1
|x|a |∇φ| dx + K1

≤ K1 − 2
tp

p

∫
Ω

1
|x|a |∇φ| dx

≤ K1 − t

∫
Ω

1
|x|a |∇φ| dx,

since p < 2 and t > 1. Thus, choosing t large enough, we find e = tφ satisfying

Jp(e) ≤ Ip(e) −
∫

Ω

1
|x|b Fp(e)dx < 0, for all 1 < p ≤ p̄. (5.49)

Since e does not depend on p, thanks to the Mountain Pass Theorem, we
know that wp satisfies

Ip(wp) −
∫

Ω

1
|x|b Fp(wp)dx = inf

γ∈Γp

max
t∈[0,1]

(
Ip(γ(t)) −

∫
Ω

1
|x|b Fp(γ(t))dx

)
,
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where

Γp = {γ ∈ C([0, 1],D1,p
0,a(Ω)) : γ(0) = 0, γ(1) = e}.

5.2. Estimate of the family {wp}
We claim that the sequence

(
Ip(wp) − ∫

Ω
1

|x|b Fp(wp)dx
)

1<p<p̄
is bounded by

a constant which does not depend on p. Indeed, let 1 < p1 < p2 < p̄ and
let us apply the monotonicity of Ip and the fact that Γp2 ⊂ Γp1 (because
D1,p2

0,a (Ω) ⊂ D1,p1
0,a (Ω)). Then

Ip1(wp1) −
∫

Ω

1
|x|b Fp1(wp1)dx = inf

γ∈Γp1

max
t∈[0,1]

(
Ip1(γ(t)) −

∫
Ω

1
|x|b Fp1(γ(t))dx

)

≤ inf
γ∈Γp2

max
t∈[0,1]

(
Ip1(γ(t)) −

∫
Ω

1
|x|b Fp1(γ(t))dx

)

≤ inf
γ∈Γp2

max
t∈[0,1]

(
Ip2(γ(t)) −

∫
Ω

1
|x|b Fp1(γ(t))dx

)
.

It yields

Ip1(wp1) −
∫

Ω

1
|x|b Fp1(wp1)dx

≤ inf
γ∈Γp2

max
t∈[0,1]

Ip2(γ(t)) −
∫

Ω

1
|x|b Fp2(γ(t))dx

+
∫

Ω

1
|x|b Fp2(γ(t))dx −

∫
Ω

1
|x|b Fp1(γ(t))dx

≤ Ip2(wp2) −
∫

Ω

1
|x|b Fp2(wp2)

+ inf
γ∈Γp2

max
t∈[0,1]

(∫
Ω

1
|x|b |Fp2(γ(t))|dx +

∫
Ω

1
|x|b |Fp1(γ(t))|dx

)

≤ Ip2(wp2) −
∫

Ω

1
|x|b Fp2(wp2)

+ max
t∈[0,1]

(∫
Ω

1
|x|b |Fp2(γ0(t))|)dx +

∫
Ω

1
|x|b |Fp1(γ0(t))|dx

)
,

where γ0(t) = te. Now, for 1 < p < p̄, it is straightforward to see that∫
Ω

1
|x|b Fp(te)dx ≤

∫
Ω

1
|x|b F (te)|te|p−1dx ≤ (‖e‖∞ + 1)p̄−1

∫
Ω

1
|x|b F (te)dx

and so

max
t∈[0,1]

(∫
Ω

1
|x|b |Fp2(γ0(t))|)dx +

∫
Ω

1
|x|b |Fp1(γ0(t))|dx

)

≤ 2(1 + ‖e‖∞)p̄−1 max
t∈[0,1]

∫
Ω

1
|x|b F (te)dx.
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It follows that if 1 < p < p̄, then

Ip(wp) −
∫

Ω

1
|x|b Fp(wp)dx

≤ Ip̄(wp̄) −
∫

Ω

1
|x|b Fp̄(wp̄)dx + 2(1 + ‖e‖∞)p̄−1 max

t∈[0,1]

∫
Ω

1
|x|b F (te)dx

and the claim is proved. Thus, there exists C > 0 such that

Jp(wp) =
1
p

∫
Ω

1
|x|ap

|∇wp|pdx −
∫

Ω

1
|x|b Fp(wp)dx ≤ C, for all p ∈ (1, p̄)

(5.50)
where the constant C is independent of p.

Let Ωp = {x ∈ Ω : |wp(x)| ≤ s0}, for any p ∈ (1, p̄). Then, by (f3p), we
have

|Fp(s)| ≤
∣∣∣∣
∫ s

0

|fp(σ)| dσ

∣∣∣∣ ≤ c1|s| +
c2

q̄
|s|q̄

and so∫
Ωp

1
|x|b Fp(wp)dx ≤ c1

∫
Ωp

1
|x|b |wp|dx +

c2

q̄

∫
Ωp

1
|x|b |wp|q̄dx

≤ c1

∫
Ω

1
|x|b s0dx +

c2

q̄

∫
Ω

1
|x|b sq̄

0dx = C1. (5.51)

By the condition (f4p) and since wp is a solution of (5.42), it holds∫
Ω\Ωp

1
|x|b Fp(wp) dx ≤ 1

μ

∫
Ω\Ωp

1
|x|b fp(wp)wp dx

=
1
μ

∫
Ω

1
|x|ap

|∇wp|p dx − 1
μ

∫
Ωp

1
|x|b fp(wp)wp dx. (5.52)

On the other hand, note that condition (f3p) also implies

−
∫

Ωp

1
|x|b fp(wp)wpdx ≤ c1s0

∫
Ω

1
|x|b dx + c2s

q̄
0

∫
Ω

1
|x|b dx = C2 (5.53)

Thus, by (5.52) and (5.53), we get∫
Ω\Ωp

1
|x|b Fp(wp)dx ≤ 1

μ

∫
Ω

1
|x|ap

|∇wp|pdx + C2. (5.54)

Gathering together (5.50), (5.51) and (5.52), we have(
1
p

− 1
μ

)∫
Ω

1
|x|ap

|∇wp|pdx ≤ C + C1 + C2, ∀p ∈ (1, p̄).

Moreover, since 1 < p ≤ p̄ < μ by the last inequality we have that there exists
C̃ > 0 independent of p such that∫

Ω

1
|x|ap

|∇wp|pdx ≤ C̃, ∀p ∈ (1, p̄). (5.55)
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Now, using the previous estimate, Young and Hölder’s inequalities we
have ∫

Ω

1
|x|ap

|∇wp|dx ≤ 1
p

∫
Ω

1
|x|ap

|∇wp|pdx +
p − 1

p

∫
Ω

1
|x|ap

dx

≤ 1
p

∫
Ω

1
|x|ap

|∇wp|pdx +
(∫

Ω

1
|x|ap̄

dx

) p
p̄

|Ω| p̄−p
p̄

≤ C̃ +
(∫

Ω

1
|x|ap̄

dx + 1
)

(|Ω| + 1) = Ĉ , (5.56)

where Ĉ is a constant independent of p.

5.3. Convergence of (wp)p
Recalling that wp

∣∣
∂Ω

= 0, it follows from (5.56) that the sequence {wp}1<p<p̄

is bounded in BVa(Ω). Then, up to a subsequence, there exists w such that,
by Theorem 3.3,

wp → w in Lq
b(Ω), (5.57)

for all q ∈
[
1, N

N−(1+a−b)

)
as well as, by (2.9),

wp → w in Ls(Ω), (5.58)

for all s ∈
[
1, N

N−1

)
. Up to a further subsequence, by [11, Theorem 4.9], we

may also assume
wp(x) → w(x) a. e. x ∈ Ω . (5.59)

and that there exists g ∈ Lq
b(Ω), 1 ≤ q < N

N−(1+a−b) , such that

|wp(x)| ≤ g(x) a. e. x ∈ Ω (5.60)

holds for all p ∈ (1, p̄]. Finally, the lower semicontinuity of the functional
u 	→ ∫

Ω
1

|x|a |Du| guarantees that w ∈ BVa(Ω).

5.4. Boundedness of the limit

Let k ≥ 0 and let wp ∈ D1,p
0,a(Ω) be a solution of problem (5.42). Define

Ak,p = {x ∈ Ω; |wp(x)| ≥ k a. e. in Ω}.

Lemma 5.4. Let p > 1 be small enough. For each ε > 0 there exists k0 > 0
(which does not depend on p) such that∫

Ak,p

1
|x|b (1 + |wp|q̄−1)

N
1+a−b dx < ε for all k ≥ k0,

where q̄ is as in (f3p).

Proof. Note that∫
Ak,p

1
|x|b dx ≤ 1

k
N

N−(1+a−b)

∫
Ak,p

1
|x|b |wp|

N
N−(1+a−b) dx. (5.61)



57 Page 26 of 40 J. C. O. Chata, M. T. O. Pimenta and S. S. de León NoDEA

Now we denote α = (q̄−1)[N−(1+a−b)]
1+a−b and l = N

1+a−b , which satisfy 0 < α < 1
and l > 1. Using (5.61) and Hölder’s inequality, we obtain

∫
Ak,p

1

|x|b (1 + |wp|q̄−1
)
l
dx

≤ 2
l−1

(∫
Ak,p

1

|x|b dx +

∫
Ak,p

1

|x|b |wp|(q̄−1)l
dx

)

≤ 2
l−1

(∫
Ak,p

1

|x|b dx +

(∫
Ak,p

1

|x|b |wp|
N

N−(1+a−b) dx

)α (∫
Ak,p

1

|x|b dx

)1−α)

≤ 2
l−1

(
1

k
N

N−(1+a−b)

∫
Ak,p

1

|x|b |wp|
N

N−(1+a−b) dx

)

+2
l−1

(∫
Ak,p

1

|x|b |wp|
N

N−(1+a−b) dx

)α (
1

k
N

N−(1+a−b)

∫
Ak,p

1

|x|b |wp|
N

N−(1+a−b) dx

)1−α

≤ 2
l−1

(
1

k
N

N−(1+a−b)

+
1

k
N(1−α)

N−(1+a−b)

) ∫
Ak,p

1

|x|b |wp|
N

N−(1+a−b) dx

Hence, we have got∫
Ak,p

1
|x|b (1 + |wp|q̄−1)ldx ≤ ω(k)

∫
Ω

1
|x|b |wp|

N
N−(1+a−b) dx (5.62)

where ω(k) stands for a quantity independent on p that tends to 0 as k → +∞.
On the other hand, by the Caffarelli–Kohn–Nirenberg inequality, the Hölder
inequality and the estimate (5.55) we obtain

∫
Ω

1
|x|b |wp|

N
N−(1+a−b) dx ≤ C

N
N−(1+a−b)

CKN

(∫
Ω

1
|x|a |∇wp|dx

) N
N−(1+a−b)

≤ C
N

N−(1+a−b)

CKN C̃
N

N−(1+a−b) (5.63)

due to (5.56).
Therefore using (5.63) in (5.62) we get∫

Ak,p

1
|x|b (1 + |wp|q̄−1)ldx ≤ ω(k)C

N
N−(1+a−b)

CKN C̃
N

N−(1+a−b) ,

which tends to 0 as k → ∞. �

Now, let us deduce from Lemma 5.4 that w ∈ L∞(Ω). To this end, given
k > 0, we define the auxiliary function Gk : R → R as

Gk(s) =

⎧⎨
⎩

s − k if s > k,
0 if |s| ≤ k,

s + k if s < −k.
(5.64)

Choosing Gk(wp) as a test function in problem (5.42), we get∫
Ω

1
|x|ap

|∇Gk(wp)|pdx =
∫

Ω

1
|x|b fp(wp)Gk(wp)dx.
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Set 1∗
a = N

N−(1+a−b) . Then the previous identity, Caffarelli–Kohn–Nirenberg’s,
Young’s and Hölder’s inequalities and the condition (f3p) lead to

(∫
Ω

1
|x|b |Gk(wp)|1∗

adx

) 1
1∗

a

≤ C
b(1∗

a−1)
1∗

a

Ω

(∫
Ω

1
|x|b1∗

a
|Gk(wp)|1∗

adx

) 1
1∗

a

≤ C

∫
Ω

1
|x|a |∇Gk(wp)|dx

≤ C

p

∫
Ω

1
|x|ap

|∇Gk(wp)|pdx +
C(p − 1)

p
|Ω|

=
C

p

∫
Ω

1
|x|b fp(wp)Gk(wp)dx +

C(p − 1)
p

|Ω|

≤ C

∫
Ω

1
|x|b (1 + |wp|q̄−1)|Gk(wp)|dx +

C(p − 1)
p

|Ω|

≤ C

(∫
Akp

1
|x|b (1 + |wp|q̄−1)

N
1+a−b

) 1+a−b
N (∫

Ω

1
|x|b |Gk(wp)|1∗

adx

) 1
1∗

a

+
C(p − 1)

p
|Ω| (5.65)

On the other hand, by Lemma 5.4 there exists k0 ∈ N such that∫
Ak,p

1
|x|b (1 + |wp|q̄−1)

N
1+a−b dx <

1

(2C)
N

1+a−b

for all k ≥ k0. (5.66)

Using (5.66) in (5.65) we get
(∫

Ω

1
|x|b |Gk(wp)|1∗

adx

) 1
1∗

a ≤ 2C(p − 1)
p

|Ω|. (5.67)

Since wp(x) → w(x) a. e. in Ω when p → 1+, Fatou’s Lemma implies∫
Ω

1
|x|b |Gk(w)|1∗

adx = 0 for all k ≥ k0.

Therefore ‖w‖∞ ≤ k0.

5.5. Existence of the vector field

We begin by using the notation of Remark 2.1 and observing that (5.55) yields

mp
a

∫
Ω

|∇wp|p dx ≤ C̃ ∀p ∈ (1, p̄)

and then ∫
Ω

|∇wp|p dx ≤ C̃

(
1 +

1
ma

)p̄

∀p ∈ (1, p̄) .
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So, we may apply the same argument than that in [30, Theorem 3.5.] and
obtain a subsequence (not relabeled) and z ∈ L∞(Ω;RN ) satisfying ‖z‖∞ ≤ 1
and

|∇wp|p−2∇wp ⇀ z weakly in Ls(Ω;RN ) , for all 1 ≤ s < ∞ . (5.68)

In order to pass to the limit in the following stages, these weak conver-
gences must slightly be improved. Fix 1 < s < ∞ such that 1 < s′ < N

a , and
take p̄ small enough to have 1 < s′ < N

ap̄ , so that
∫
Ω

1
|x|ap̄s′ dx < ∞. Since

1
|x|aps′ ≤ max

{
1

|x|ap̄s′ , 1
}

for all 1 < p < p̄, Lebesgue Convergence Dominated Theorem implies
∫

Ω

∣∣∣∣ 1
|x|ap

− 1
|x|a

∣∣∣∣
s′

dx → 0 as p → 1+. (5.69)

Thus, the convergences 1
|x|ap → 1

|x|a strongly in Ls′
(Ω) and |∇wp|p−2∇wp ⇀ z

weakly in Ls(Ω;RN ) lead to

1
|x|ap

|∇wp|p−2∇wp ⇀
1

|x|a z weakly in L1(Ω;RN ). (5.70)

5.6. w satisfies condition (1) of Definition 4.9

Let ϕ ∈ C∞
c (Ω) and take it as test function in (5.42) to obtain∫

Ω

1
|x|ap

|∇wp|p−2∇wp · ∇ϕdx =
∫

Ω

1
|x|b fp(wp)ϕdx. (5.71)

Our aim is to let p → 1+ in (5.71). On the left hand side it is enough to apply
(5.70), while in the right hand side, just observe that

fp(wp(x)) → f(w(x)) a. e. x ∈ Ω

due to (5.59). Moreover, by (f3p) and Young’s inequality, we get

|fp(wp(x))| ≤ c1 + c2|wp(x)|q̄−1

≤ c1 + c2g(x)q̄−1

≤ c1 +
1
q̄
cq̄
2 +

q̄ − 1
q̄

g(x)q̄

and g ∈ Lq̄
b(Ω). Hence, the Lebesgue Dominated Convergence Theorem implies

lim
p→1+

∫
Ω

1
|x|b fp(wp)ϕdx =

∫
Ω

1
|x|b f(w)ϕdx. (5.72)

Therefore, letting p → 1+ in (5.71), we obtain∫
Ω

1
|x|a z · ∇ϕdx =

∫
Ω

1
|x|b f(w)ϕdx (5.73)

and thus item (1) of Definition 4.9 is verified.
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5.7. w satisfies condition (2) of Definition 4.9

In this subsection, we show that the identity(
1

|x|a z,Dw

)
=

1
|x|a |Dw|,

holds as Radon measures.
Firstly note that we may apply Corollary 4.6 (since ‖z‖∞ ≤ 1) getting∫

Ω

(
1

|x|a z,Dw

)
≤

∫
Ω

∣∣∣∣
(

1
|x|a z,Dw

)∣∣∣∣ ≤
∫

Ω

1
|x|a |Dw|.

Now let us check the opposite inequality, i. e.,〈(
1

|x|a z,Dw

)
, ϕ

〉
≥

〈
1

|x|a |Dw|, ϕ
〉

, (5.74)

for all ϕ ∈ C1
c (Ω) such that ϕ ≥ 0.

Fix 0 ≤ ϕ ∈ C1
c (Ω) and choose k > ‖w‖∞. Taking Tk(wp)ϕ ∈ D1,p

0,a(Ω) as
test function in (5.42), we get∫

Ω

1
|x|ap

ϕ|∇Tk(wp)|p dx +
∫

Ω

1
|x|ap

Tk(wp)|∇wp|p−2∇wp · ∇ϕdx

=
∫

Ω

1
|x|b fp(wp)Tk(wp)ϕdx (5.75)

Moreover, applying Young’s inequality, one deduces∫
Ω

1
|x|a ϕ|∇Tk(wp)|dx ≤ 1

p

∫
Ω

1
|x|ap

|∇Tk(wp)|pϕdx +
p − 1

p

∫
Ω

ϕdx

≤ −1
p

∫
Ω

1
|x|ap

Tk(wp)|∇wp|p−2∇wp · ∇ϕdx +
1
p

∫
Ω

1
|x|b fp(wp)Tk(wp)ϕdx

+
p − 1

p

∫
Ω

ϕdx . (5.76)

Our next objective is to let p → 1+. On the left hand side, since Tk(wp) →
Tk(w) in L1(Ω), the lower semicontinuity of (2.11) may be applied:∫

Ω

1
|x|a ϕ|DTk(w)| ≤ lim inf

p→1

∫
Ω

1
|x|a ϕ|∇Tk(wp)|dx . (5.77)

We turn to analyze the right hand side of (5.76). The convergence of the first
integral is a consequence of (5.59) and (5.70). Thus,∫

Ω

1
|x|a Tk(w)z · ∇ϕdx = lim

p→1

∫
Ω

1
|x|ap

Tk(wp)|∇wp|p−2∇wp · ∇ϕdx . (5.78)

We deal with the second integral applying the Lebesgue Dominated Con-
vergence Theorem as in the previous subsection. So, we obtain∫

Ω

1
|x|b f(w)Tk(w)ϕdx = lim

p→1

∫
Ω

1
|x|b fp(wp)Tk(wp)ϕdx . (5.79)

The last term on the right hand side, obviously, tends to 0.
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Therefore, from (5.77), (5.78) and (5.79), inequality (5.76) becomes∫
Ω

1
|x|a ϕ|DTk(w)| +

∫
Ω

1
|x|a Tk(w)z · ∇ϕdx ≤

∫
Ω

1
|x|b f(w)Tk(w)ϕdx.

Our choice of k leads to∫
Ω

1
|x|a ϕ|Dw| +

∫
Ω

1
|x|a wz · ∇ϕdx ≤

∫
Ω

1
|x|b f(w)wϕdx ,

so that (5.73) implies∫
Ω

1
|x|a ϕ|Dw| ≤ −

∫
Ω

wϕdiv
(

1
|x|a z

)
−

∫
Ω

1
|x|a wz · ∇ϕdx

=
〈(

1
|x|a z,Dw

)
, ϕ

〉
.

Thus (5.74) holds.

5.8. w satisfies condition (3) of Definition 4.9

It only remains to check

[z, ν] ∈ sign(−w) on ∂Ω. (5.80)

It is equivalent to show that∫
∂Ω

(
1

|x|a |w| + w
1

|x|a [z, ν]
)

dHN−1 = 0. (5.81)

Indeed, ‖z‖∞ ≤ 1 yields

− w

[
1

|x|a z, ν

]
≤ 1

|x|a ‖z‖∞|w| HN−1 − a. e. on ∂Ω (5.82)

and so the integrand is nonnegative. Then (5.81) implies 1
|x|a |w|+w 1

|x|a [z, ν] =
0 and it follows from (5.82) that (5.80) holds. Actually, due to the nonnega-
tiveness of the integrand, it is enough to check∫

∂Ω

(
1

|x|a |w| + w
1

|x|a [z, ν]
)

dHN−1 ≤ 0. (5.83)

In order to do so, we take wp as a test function in (5.42) obtaining∫
Ω

1
|x|ap

|∇wp|p dx =
∫

Ω

1
|x|b fp(wp)wp dx .

Using Young’s inequality and the boundary condition wp

∣∣
∂Ω

= 0, we get

p

∫
Ω

1
|x|a |∇wp| dx + p

∫
∂Ω

1
|x|a |wp| dHN−1 ≤

∫
Ω

1
|x|ap

|∇wp|p dx + (p − 1)|Ω|

=
∫

Ω

1
|x|b fp(wp)wp dx + (p − 1)|Ω|. (5.84)
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Our aim is to let p → 1+ again. The lower semicontinuity of the functional
in (2.10) gives∫

Ω

1
|x|a |Dw| +

∫
∂Ω

1
|x|a |w| dHN−1

≤ lim inf
p→1+

(∫
Ω

1
|x|a |∇wp| dx +

∫
∂Ω

1
|x|a |wp| dHN−1

)
. (5.85)

On the other hand, we may apply the Lebesgue Dominated Convergence The-
orem on the right hand side of (5.84), owing to

fp(wp(x))wp(x) → f(w(x))w(x) a. e. x ∈ Ω

and the following consequence of condition (f3p):

|fp(wp(x))wp(x)| ≤ c1|wp(x)| + c2|wp(x)|q̄−1|wp(x)|
≤ c3 + c4g(x)q̄ .

Thus, ∫
Ω

1
|x|b f(w)w dx = lim

p→1

∫
Ω

1
|x|b fp(wp)wp dx (5.86)

and the remainder term tends to 0.
Consequently, using (5.85) and (5.86) in (5.84) we get∫

Ω

1
|x|a |Dw| +

∫
∂Ω

1
|x|a |w|dHN−1 ≤

∫
Ω

1
|x|b f(w)w dx. (5.87)

Applying (5.73) and Green’s formula (Theorem 4.7), we arrive at∫
Ω

1
|x|b f(w)wdx = −

∫
Ω

w div
(

1
|x|a z

)
dx

= −
∫

∂Ω

w

[
1

|x|a z, ν

]
dHN−1 +

∫
Ω

1
|x|a (z,Dw)

= −
∫

∂Ω

w

[
1

|x|a z, ν

]
dHN−1 +

∫
Ω

1
|x|a |Dw|. (5.88)

Gathering together (5.87) and (5.88), we obtain∫
∂Ω

w

[
1

|x|a z, ν

]
dHN−1 +

∫
Ω

1
|x|a |w|dHN−1 ≤ 0, (5.89)

and we are done.
Therefore, since w satisfies conditions (1), (2) and (3) of Definition 4.9,

we conclude that w is a solution to problem (1.2).

5.9. w is a nontrivial solution of (1.2)

Now, what is left to do is to show that w �= 0. In order to do so, we should
introduce the energy functional Φ : BVa(Ω) → R given by

Φ(u) =
∫

Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1 −

∫
Ω

1
|x|b F (u)dx.
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First of all, let us prove that

lim
p→1+

(
Ip(wp) −

∫
Ω

1
|x|b Fp(wp)dx

)
= Φ(w). (5.90)

Indeed, since w satisfies (1), (2) and (3) in Definition 4.9 and wp satisfies
(5.42), it follows from Remark 4.8, (5.57), (f3p) and the Lebesgue Dominated
Convergence Theorem that, as p → 1+

‖w‖BVa(Ω),1 =
∫

Ω

1
|x|a |Dw| +

∫
∂Ω

1
|x|a |w|dHN−1

=
∫

Ω

(
1

|x|a z,Dw

)
−

∫
∂Ω

1
|x|a w [z, ν] dHN−1

= −
∫

Ω

w div
(

1
|x|a z

)
dx

=
∫

Ω

1
|x|b f(w)wdx

=
1
p

∫
Ω

fp(wp)wpdx + op(1)

=
1
p

∫
Ω

1
|x|ap

|∇wp|pdx + op(1). (5.91)

Moreover, again by (f3p), (5.57) and the Lebesgue Dominated Convergence
Theorem, as p → 1+, we have that∫

Ω

1
|x|b F (w)dx =

∫
Ω

1
|x|b Fp(wp)dx + op(1). (5.92)

Then, (5.91) and (5.92) imply in (5.90).
We remark that, by (f1) and (f2), given ε > 0, we may find δ > 0

satisfying

|f(s)| < ε ∀|s| < δ

so that (f3) implies that there exists a positive constant C̃ε > 0 such that

|f(s)| < ε + C̃ε|s|q−1 ∀s ∈ R .

Integrating this inequality, we deduce

|F (s)| ≤ ε|s| + Cε|s|q ∀s ∈ R , (5.93)

for certain constant Cε > 0. Thus, by Theorem 3.2,

Φ(u) = ‖u‖BVa(Ω),1 −
∫

Ω

1
|x|b F (u) dx

≥ ‖u‖BVa(Ω),1 − ε

∫
Ω

1
|x|b |u| dx − Cε

∫
Ω

1
|x|b |u|q dx

≥ (1 − εC1)‖u‖BVa(Ω),1 − CεCq‖u‖q
BVa(Ω),1.
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Let us consider ε > 0 small enough such that 1−εC1 > 1/2. So, if ‖u‖BVa(Ω),1 ≤

ρ, where 0 < ρ <

(
(1 − εC1) − 1/2

CεCq

) 1
q−1

, then

Φ(u) ≥ ‖u‖BVa(Ω),1

2
. (5.94)

On the other hand, for all 1 < p < p̄, Young’s inequality implies that
Ip(u)−∫

Ω
1

|x|b Fp(u)dx ≥ Φ(u)+op(1). Then, for all γ ∈ Γp, from the continuity
of t 	→ Ip(γ(t)) − ∫

Ω
1

|x|b Fp(γ(t))dx and from the fact that
Ip(e) − ∫

Ω
1

|x|b Fp(e)dx < 0, it follows that there exists t0 ∈ [0, 1] such that
‖γ(t0)‖BVa(Ω),1 = ρ. Then,

Ip(wp) −
∫

Ω

1
|x|b Fp(wp) = inf

γ∈Γp

max
t∈[0,1]

(
Ip(γ(t)) −

∫
Ω

1
|x|b|Fp(γ(t))dx

)
≥ ρ

2
.

Hence, from the last inequality and (5.90), it follows that

Φ(w) > 0

and then w is a nontrivial solution of (1.2). It remains to prove that w is a
nonnegative solution of (1.2), but Corollary 4.12 does the job. This finishes
the proof of Theorem 1.4.

As a consequence of Proposition 4.13, we deduce the following result.

Corollary 5.5. If u ∈ BVa(Ω) ∩ L∞(Ω) and 1
|x|b f(w) ∈ ∂‖u‖BV (Ω),1, then u is

a solution to problem (1.2).

6. Existence by variational methods

First of all, let us consider the energy functional Φ : BVa(Ω) → R, given by

Φ(u) =
∫

Ω

1
|x|a |Du| +

∫
∂Ω

1
|x|a |u|dHN−1 −

∫
Ω

1
|x|b F (u)dx

= Ja(u) − Fb(u),

where

Ja(u) = ‖u‖BVa(Ω),1

and

Fb(u) =
∫

Ω

1
|x|b F (u)dx.

It is straightforward to see that Fb is a smooth functional. Moreover,
by the same arguments of [8], it is possible to show that the functional Ja

admits some directional derivatives. More specifically, given u ∈ BVa(Ω), for
all v ∈ BVa(Ω) such that (Dv)s is absolutely continuous with respect to (Du)s,
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(Dv)a vanishes a.e. on the set {x ∈ Ω : (Du)a(x) = 0} and v ≡ 0, HN−1−a.e.
on {x ∈ ∂Ω : u(x) = 0}, it follows that

J ′
a(u)v =

∫
Ω

1
|x|a

(Du)a(Dv)a

|(Du)a| dx

+
∫

Ω

1
|x|a

Du

|Du| (x)
Dv

|Dv| (x)|(Dv)|s +
∫

∂Ω

1
|x|a sgn(u)vdHN−1.

(6.95)

In particular, note that, for all u ∈ BVa(Ω),

J ′
a(u)u = Ja(u). (6.96)

Then, the directional derivatives Φ′(u)u exist and

Φ′(u)u = ‖u‖BVa(Ω),1 −
∫

Ω

1
|x|b f(u)udx. (6.97)

Note that Φ can we written as the difference between a Lipschitz and a
smooth functional in BVa(Ω). Taking into account the theory of subdifferen-
tials of Clarke (see [16,17]) , we say that w ∈ BVa(Ω) is a critical point of Φ if
0 ∈ ∂Φ(w), where ∂Φ(w) denotes the generalized gradient of Φ in w. It follows
that this is equivalent to F ′(w) ∈ ∂Ja(w) and, since Ja is convex, this can be
written as

Ja(v) − Ja(w) ≥ F ′(w)(v − w), ∀v ∈ BVa(Ω). (6.98)

Henceforth, every w ∈ BVa(Ω) such that (6.98) holds is going to be called a
critical point of Φ.

Let us prove that Φ satisfies the first geometric condition of the Mountain
Pass Theorem (see [22]). Note again (see inequality (5.93)) that, by (f1), (f2)
and (f3), it follows that for all ε > 0, there exists Aε > 0 such that

|F (s)| ≤ ε|s| + Aε|s|q, ∀s ∈ R. (6.99)

Note also that, by (6.99) and the embeddings of BVa(Ω) (see Theorem
3.2), it follows that

Φ(u) = ‖u‖BVa(Ω),1 −
∫

Ω

1
|x|b F (u)dx

≥ ‖u‖BVa(Ω),1 − ε‖u‖L1
b(Ω) − Aε‖u‖q

Lq
b(Ω)

= ‖u‖BVa(Ω),1

(
1 − εC − c3‖u‖q−1

BVa(Ω),1

)
≥ α,

for all u ∈ BVa(Ω), such that ‖u‖BVa(Ω),1 = ρ, where 0 < ε < 1 is fixed,

0 < ρ <

(
1 − εC

c3

) 1
q−1

and α = ρ(1 − εC − c3ρ
q−1).

Now let us check that Φ satisfies the second geometric condition of the
Mountain Pass Theorem. Recall (see Remark 1.2) that condition (f4) implies
that there exists constants d1, d2 > 0 such that

F (s) ≥ d1|s|μ − d2, ∀s ∈ R. (6.100)
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Let φ ∈ C∞
c (Ω) be nontrivial and nonnegative and let t > 0. Since μ > 1,

it follows that

Φ(tφ) ≤ t‖φ‖BVa(Ω),1 − d1t
μ‖φ‖μ

LμΩ + d2|supp(φ)| → −∞,

as t → +∞, and so we can choose e ∈ BVa(Ω) such that Φ(e) < 0.
Then, the Mountain Pass Theorem (see [22, Theorem 4.1]) implies that

there exist sequences τn → 0 and (wn) ⊂ BVa(Ω) satisfying the following
conditions

(1)
lim

n→∞ Φ(wn) = c (6.101)

where c is given by

c = inf
γ∈Γ

sup
t∈[0,1]

Φ(γ(t))

and Γ = {γ ∈ C0([0, 1], BVa(Ω)); γ(0) = 0 and γ(1) = φ}.
(2)

‖v‖BVa(Ω),1 − ‖wn‖BVa(Ω),1

≥
∫

Ω

1
|x|b f(wn)(v − wn)dx − τn‖v − wn‖BVa(Ω),1, (6.102)

for all v ∈ BVa(Ω).

Let us prove that the sequence (wn) is bounded in BVa(Ω). First of all,
note that by taking v = wn + twn in (6.102), dividing by t and letting t → 0±,
we have that∫

Ω

1
|x|b f(wn)wndx − τn‖wn‖BVa(Ω),1 ≤ ‖wn‖BVa(Ω),1

≤
∫

Ω

1
|x|b f(wn)wndx + τn‖wn‖BVa(Ω),1. (6.103)

Then, by (f4) and (6.103), note that

c + on(1) ≥ Φ(wn)

= ‖wn‖BVa(Ω),1 −
∫

Ω∩[wn≤s0]

1
|x|b F (wn)dx −

∫
Ω∩[wn>s0]

1
|x|b F (wn)dx

≥ ‖wn‖BVa(Ω),1 − C − 1
μ

∫
Ω∩[wn>s0]

1
|x|b f(wn)wndx

≥ ‖wn‖BVa(Ω),1 − C − 1
μ

∫
Ω

1
|x|b f(wn)wndx

≥
(

1 − 1
μ

− τn

μ

)
‖wn‖BVa(Ω),1 − C

≥ C‖wn‖BVa(Ω),1 − C + on(1),

for some C > 0 uniform in n ∈ N. Then it follows that (wn) is bounded in
BVa(Ω).
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By the boundedness of (wn) ⊂ BVa(Ω) and Theorem 3.3, we find w ∈
BVa(Ω) such that

wn → w in Lr(Ω) for all r ∈
[
1,

N

N − (1 + a − b)

)
. (6.104)

Then, by (6.104) and the lower semicontinuity of Ja with respect to the
L1(Ω) convergence, calculating the lim sup on both sides of (6.102), it yields
that w satisfies (6.98). Moreover, by taking v = w+tw in (6.98) and considering
the sign of t, we obtain

‖w‖BVa(Ω),1 =
∫

Ω

1
|x|b f(w)wdx. (6.105)

On the other hand, taking the limit as n → +∞ in (6.103), it follows that

‖wn‖BVa(Ω),1 =
∫

Ω

1
|x|b f(wn)wndx + on(1). (6.106)

Hence, from (6.104), (6.105), (6.106) and the Lebesgue Dominated Conver-
gence Theorem, it follows that

c = Φ(w)

and then w is a nontrivial critical point of Φ.
Our next concern is to check that w ∈ L∞(Ω). To this end, consider k > 0

and the function Gk(s) defined in (5.64). Taking v = w ± Gk(w) in (6.98), it
yields

±
∫
Ω

1

|x|b f(w)Gk(w) dx ≤ ‖w ± Gk(w)‖BVa(Ω),1 − ‖w‖BVa(Ω),1 ≤ ‖Gk(w)‖BVa(Ω),1

and we infer that

‖Gk(w)‖BVa(Ω),1 =
∫

Ω

1
|x|b f(w)Gk(w)dx.

Setting 1∗
a = N

N−(1+a−b) again and reasoning as in Sect. 5.4, we obtain

(∫
Ω

1
|x|b |Gk(w)|1∗

adx

) 1
1∗

a

≤ C

(∫
{|w|≥k}

1
|x|b (1 + |w|q−1)

N
1+a−b dx

) 1+a−b
N (∫

Ω

1
|x|b |Gk(w)|1∗

adx

) 1
1∗

a

.

Since

lim
k→∞

∫
{|w|≥k}

1
|x|b (1 + |w|q−1) dx = 0,

we may find k0 > 0 such that

C

(∫
{|w|≥k0}

1
|x|b (1 + |w|q−1 dx)

N
1+a−b

) 1+a−b
N

< 1
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and then (∫
Ω

1
|x|b |Gk(w)|1∗

adx

) 1
1∗

a

= 0

holds. Therefore, Gk0(w) = 0 and so |w| ≤ k0.
As a consequence of Corollary 5.5, since w ∈ BVa(Ω) ∩ L∞(Ω) satisfies

(6.98), it also satisfies all the conditions of Definition 4.9 and, moreover, it is
nonnegative thanks to Corollary 4.12.

It just remains to justify that w is a ground-state solution, i.e., that w
has the lowest energy level among all nontrivial bounded variation solutions.
In order to prove it, we have to recall [23], where it is proved that we can
define the Nehari set associated to Φ, given by

N =
{

u ∈ BVa(Ω)\{0} : ‖u‖BVa(Ω),1 =
∫

Ω

1
|x|b f(u)udx

}
.

It can be proven as in [23] that N is a set which contains all nontrivial bounded
variation solutions of (1.2). Then, if we manage to prove that the solution w
is such that Φ(w) = infN Φ, then w would have the lowest energy level among
the nontrivial solutions.

By using the same kind of arguments that Rabinowitz in [33], which
consists in studying the map t 	→ Φ(tv) and verifying that it has a unique
maximum point tv > 0, which is such that tvv ∈ N ((f5) is mandatory to
prove the uniqueness); in the light of (f1)− (f5), one can see that N is radially
homeomorphic to the unit sphere in BVa(Ω) and also that the minimax level
c satisfies

c = inf
v∈BVa(Ω)\{0}

max
t>0

Φ(tv) = inf
v∈N

Φ(v).

Since w is such that Φ(w) = c, it follows that w is a solution which has the
lowest energy among all the nontrivial ones.
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