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Abstract. We consider a class of stochastic evolution equations that in-
clude in particular the stochastic Camassa–Holm equation. For the ini-
tial value problem on a torus, we first establish the local existence and
uniqueness of pathwise solutions in the Sobolev spaces Hs with s > 3/2.
Then we show that strong enough nonlinear noise can prevent blow-up al-
most surely. To analyze the effects of weaker noise, we consider a linearly
multiplicative noise with non-autonomous pre-factor. Then, we formu-
late precise conditions on the initial data that lead to global existence of
strong solutions or to blow-up. The blow-up occurs as wave breaking. For
blow-up with positive probability, we derive lower bounds for these prob-
abilities. Finally, the blow-up rate of these solutions is precisely analyzed.
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1. Introduction

The Dullin–Gottwald–Holm (DGH) equation is a third-order dispersive evolu-
tion equation given by

ut − α2uxxt + c0ux + 3uux + γuxxx

= α2 (2uxuxx + uuxxx) in (0,∞) × R. (1.1)

It was derived by Dullin et al. in [20] as a model governing planar solutions
to Euler’s equations in the shallow–water regime. The unknown u = u(t, x) in
(1.1) stands for the longitudinal velocity component and α2, γ and c0 are some
physical parameters.

The DGH equation (1.1) embeds two different integrable soliton equa-
tions. When α = 0, (1.1) reduces to the Korteweg–de–Vries (KdV) equation

ut + c0ux + 3uux + γuxxx = 0, (1.2)

while (1.1) equals to the following Camassa–Holm (CH) equation for the
choices γ = 0 and α = 1,

ut − uxxt + c0ux + 3uux = 2uxuxx + uuxxx. (1.3)

Both (1.2) and (1.3) have been studied widely in the literature. We notice
that the CH equation exhibits two interesting phenomenon, namely (peaked)
soliton interaction and wave breaking (the solution remains bounded but its
slope becomes unbounded in finite time, cf. [12]), while the KdV equation does
not model breaking waves [35] (when c0 = 0, (1.2) admits a smooth soliton).
For the CH equation, wave breaking and the necessary and sufficient criterion
for the occurrence of breaking waves in the Cauchy problem with smooth ini-
tial data have been analyzed [10,12,13,43]. As pointed out in [11,14,15], the
essential feature of the CH equation is the occurrence of traveling waves with
a peak at their crest, exactly like that the governing equations for water waves
admit the so-called Stokes waves of the greatest height. Bressan&Constantin
[5,6] developed a new approach to the analysis of the CH equation, and
proved the existence of a global conservative and dissipative solutions. Later,
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Holden&Raynaud [31,32] also obtained global conservative and dissipative
solutions using a Lagrangian point of view.

Combining the linear dispersion of the KdV equation with the non-
local dispersion of the CH equation, the DGH equation (1.1) preserves its
bi-Hamiltonian structure, is completely integrable (via the inverse scattering
transform method [20]) and admits also soliton solutions.

Here, we are interested in stochastic variants of the DGH equation to
model energy consuming/exchanging mechanisms in (1.1) that are driven by
external stochastic influences. Adding multiplicative noise has also been con-
nected to the prevailing hypotheses that the onset of turbulence in fluid models
involves randomness, cf. [7,21,39]. Precisely, our stochastic evolution equation
is rewritten as

ut − α2uxxt + c0ux + 3uux + γuxxx − Ẇ (1 − α2∂2
xx)h(t, u)

= α2 (2uxuxx + uuxxx) , (1.4)

where W is a standard 1-D Brownian motion and h = (t, u) is a typically
nonlinear function. We notice that the deterministic counterpart of (1.4) is
the weakly dissipative CH equation

ut − uxxt + 3uux + λ(1 − ∂2
xx)h(t, u) = 2uxuxx + uuxxx, λ > 0. (1.5)

Equation (1.5) has been introduced and studied for h(t, u) = u in [40,53], In
(1.5), the operator λ(1 − ∂2

xx) is linear and only models the (weak) energy
dissipation. In order to model more general random energy exchanges, we
consider the possibly nonlinear noise term −Ẇ (1 − α2∂2

xx)h(t, u) in (1.4).
To compare our model with deterministic weakly dissipative CH type

equations (see [40,52,53] and the references therein), we focus our attention
on the case that α �= 0. For convenience, we assume α = 1 in this paper. When
α = 1, applying the operator (1 − ∂2

xx)−1 to (1.4) gives rise to the following
nonlocal equation

du +
[
(u − γ) ∂xu + (1 − ∂2

xx)−1∂x

(
u2+

1
2
u2

x+(c0+γ) u

)]
dt=h(t, u)dW.

(1.6)

In (1.6), the operator (1 − ∂2
xx)−1 in torus T = R/2πZ is understood as⎧⎪⎨

⎪⎩

[
(1 − ∂2

xx)−1f
]
(x) = [GT ∗ f ](x), ∀ f ∈ L2(T),

GT =
cosh(x − 2π

[
x
2π

]− π)
2 sinh(π)

,
(1.7)

where [x] stands for the integer part of x. Here we remark that for additive
noise, (1.6) has been studied in [42]. In this paper we will consider a more
general context with noise driven by a cylindrical Wiener process W, rather
than a standard Brownian motion W . It is assumed that W is defined on
an auxiliary Hilbert space U which is adapted to a right-continuous filtration
{Ft}t≥0, see Sect. 2 for more details.

With the above notations, the first goal of the present paper is to analyze
the existence and uniqueness of pathwise solutions and to determine possible
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blow-up criterion for the periodic boundary value problem

{
du + [(u − γ) ∂xu + F (u)] dt = h(t, u) dW, x ∈ T = R/2πZ, t > 0,

u(ω, 0, x) = u0(ω, x), x ∈ T,
(1.8)

where F (u) = F1(u) + F2(u) + F3(u) and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1(u) = (1 − ∂2
xx)−1∂x

(
u2
)
,

F2(u) = (1 − ∂2
xx)−1∂x

(
1
2
u2

x

)
,

F3(u) = (1 − ∂2
xx)−1∂x ((c0 + γ) u) .

(1.9)

Under generic assumptions on h(t, u), we will show that (1.8) has a local unique
pathwise solution (see Theorem 2.1 below). Here we remark that Chen et al.
in [9] have considered the stochastic CH equation with additive noise. For the
linear multiplicative noise case, we refer to [48] for the stochastic CH equation,
and to [8] for a stochastic modified CH equation.

For stochastic nonlinear evolution equations, the noise effect is a crucial
question to study. Can the noise prevent blow-up or does it even drive the
formation of singularities? For example, it is known that the well-posedness
of linear stochastic transport equations with noise can be established under
weaker hypotheses than its deterministic counterpart (cf. [22,24]). For stochas-
tic scalar conservation laws, noise on the flux may bring some regularization
effects [27], and it may also trigger the discrete entropy dissipation in the
numerical schemes for conservation laws such that the schemes enjoy some
stability properties not present in the deterministic case [37]. Moreover, we
refer to [29,36,46,48] for the dissipation of energy caused by the linear multi-
plicative noise.

However, most existing results on the regularization effects by noise for
transport type equations are for linear equations or restricted to linear grow-
ing noise. Much less is known concerning the cases of nonlinear equations
with nonlinear noises. Indeed, the interplay between regularization provided
by noise and the nonlinearities of the governing equation is more complicated.
For example, singularities can be prevented in some cases (cf. [25]: coalescence
of vortices disappears in stochastic 2-D Euler equations). On the other hand, it
is known that noise does not prevent shock formation in the Burgers equation,
see [23].

Therefore the second goal of this work is to study the case of strong non-
linear noise and consider its effect. As we will see in (2.5) below, for the solution
to (1.8), its Hs-norm blows up if and only if its W 1,∞-norm blows up. This
suggests choosing a noise coefficient involving the W 1,∞-norm of u. Therefore
in this work we consider the case that h(t, u) dW = a (1 + ‖u‖W 1,∞)θ

u dW ,
where θ > 0, a ∈ R and W is a standard 1-D Brownian motion. We will try to
determine the range of θ and a such that the solution to the following problem
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exists globally in time:{
du + [(u − γ)ux + F (u)] dt = a (1 + ‖u‖W 1,∞)θ

u dW, x ∈ T, t > 0,

u(ω, 0, x) = u0(ω, x), x ∈ T.

(1.10)

As is shown in Theorem 2.2 below, if the noise is strong enough (either θ > 1/2,
a �= 0 or θ = 1/2, a2 � 1), then the global existence holds true for (1.10) almost
surely. This result justifies the idea that large nonlinear noise can actually
prevent blow-up.

On the other hand, as put forward by e.g. Whitham in [51], the wave
breaking phenomenon is one of the most intriguing long-standing problems of
water wave theory. For the deterministic CH type equations, the wave breaking
phenomenon has been extensively studied, see [12,13,43] for example. Partic-
ularly, for equations with dissipation term λ(u − uxx), we refer to [53] for
the phenomenon of wave breaking. When random noise is involved, as far as
we know, we can only refer to [17,49] for wave breaking. In [17] the authors
proved that temporal stochasticity (in the sense of Stratonovich) in the diffeo-
morphic flow map for the stochastic CH equation does not prevent the wave
breaking process. In [49], wave breaking in the stochastic CH equation with
multiplicative Itô noise is considered.

Thus, the third goal of this paper is to consider noise effects associated
with the phenomenon of wave breaking. Due to Theorem 2.2, we see that if
wave breaking occurs, the noise term does not grow fast. Hence we consider
θ = 0 in (1.10) but introduce a non-autonomous pre-factor depending on time
t. Precisely, we consider the DGH equation with linear multiplicative noise
given by {

du + [(u − γ)∂xu + F (u)] dt = b(t)u dW, x ∈ T, t > 0,

u(ω, 0, x) = u0(ω, x), x ∈ T.
(1.11)

This case can be formally reformulated as the following stochastic evolution
equation when s > 3

ut − uxxt + c0ux + 3uux + γuxxx = 2uxuxx + uuxxx + b(t)(u − uxx)Ẇ .
(1.12)

When c0+γ = 0, we give two conditions on the initial data that guarantee
the global existence of the solutions. Besides, we also estimate the probability
that the solution breaks and describe its breaking rate. See Theorems 2.3-2.7
for the statements.

The precise statements of all the results above can be found in Sect. 2
jointly with the necessary assumptions on the noise coefficient.

2. Definitions, assumptions and main results

We begin by introducing some notations. L2(T) is the usual space of square–
integrable functions on T. For s ∈ R, Ds = (1−∂2

xx)s/2 is defined by D̂sf(k) =
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(1+k2)s/2f̂(k), where ĝ is the Fourier transform of g. The Sobolev space Hs(T)
is defined as

Hs(T) � {f ∈ L2(T) : ‖f‖2Hs(T) =
∑
k∈Z

(1 + k2)s|f̂(k)|2 < ∞},

and the inner product (f, g)Hs is (f, g)Hs :=
∑

k∈Z
(1 + k2)sf̂(k) · ĝ(k) =

(Dsf,Dsg)L2 . When the function space refers to T, we will drop T if there
is no ambiguity. We will use � to denote estimates that hold up to some
universal deterministic constant which may change from line to line but whose
meaning is clear from the context. For linear operators A and B, we denote
[A,B] = AB − BA.

We briefly recall some aspects of the theory of infinite dimensional sto-
chastic analysis which we will use below. We refer the readers to [18,26,33] for
an extended treatment of this subject.

We call S = (Ω,F ,P, {Ft}t≥0,W) a stochastic basis, where {Ft}t≥0

is a right-continuous filtration on (Ω,F) such that {F0} contains all the P-
negligible subsets and W(t) = W(ω, t)(ω ∈ Ω) is a cylindrical Wiener process
adapted to {Ft}t≥0. More precisely, we consider a separable Hilbert space U
as well as a larger Hilbert space U0 such that the embedding U ↪→ U0 is
Hilbert–Schmidt. Therefore we define

W =
∞∑

k=1

Wkek ∈ C([0,∞);U0) P − a.s.,

where {Wk}k≥1 is a sequence of mutually independent 1-D Brownian motions
and {ek}k∈N is a complete orthonormal basis of U .

For a predictable stochastic process G taking values in the space of
Hilbert–Schmidt operators from U to Hs, denoted by L2(U ;Hs), the Itô sto-
chastic integral

∫ τ

0

GdW =
∞∑

k=1

∫ τ

0

GekdWk

is well defined (see [18,44] for example). Remember that

G ∈ L2(U ;Hs) ⇐⇒ ‖G‖2L2(U ;Hs) =
∞∑

k=1

‖Gek‖2Hs < ∞.

The stochastic integral
∫ t

0
G dW is an Hs-valued square–integrable martingale.

In our case we have the Burkholder-Davis-Gundy inequality

E

(
sup

t∈[0,T ]

∥∥∥∥
∫ t

0

G dW
∥∥∥∥

p

Hs

)
≤ C(p, s)E

(∫ T

0

‖G‖2L2(U ;Hs) dt

) p
2

, p ≥ 1.

(2.1)

2.1. Definitions of the solutions

We now precise the notion of pathwise solutions to (1.8).
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Definition 2.1. [Pathwise solutions] Let S = (Ω,F ,P, {Ft}t≥0,W) be a fixed
stochastic basis. Let s > 3/2 and u0 be an Hs-valued F0 measurable random
variable.
(1) A local pathwise solution to (1.8) is a pair (u, τ), where τ is a stopping

time satisfying P{τ > 0} = 1 and u : Ω×[0,∞) → Hs is an Ft predictable
Hs-valued process satisfying

u(· ∧ τ) ∈ C([0,∞);Hs) P − a.s.,

and for all t > 0,

u(t ∧ τ) − u(0) +
∫ t∧τ

0

[(u − γ)∂xu + F (u)] dt′ =
∫ t∧τ

0

h(t′, u)dW P − a.s.

(2) Local pathwise solutions are said to be pathwise unique, if given any
two pairs of local pathwise solutions (u1, τ1) and (u2, τ2) with P {u1(0) =
u2(0)} = 1, we have

P {u1(t, x) = u2(t, x), ∀ (t, x) ∈ [0, τ1 ∧ τ2] × T} = 1.

(3) Additionally, (u, τ∗) is called a maximal solution to (1.8) if τ∗ > 0 almost
surely and if there is an increasing sequence τn → τ∗ such that for any
n ∈ N, (u, τn) is a pathwise solution to (1.8) and on the set {τ∗ < ∞},

sup
t∈[0,τn]

‖u‖Hs ≥ n.

(4) If τ∗ = ∞ almost surely, then we say that the pathwise solution exists
globally.

2.2. Assumptions

Next, we prescribe some conditions on the noise coefficient h in (1.8) and on
b in (1.12).

Assumption 2.1. Let s > 1/2. We assume that h : [0,∞) × Hs � (t, u) �→
h(t, u) ∈ L2(U ;Hs) is continuous in (t, u). Moreover, we assume the following:

• There is a non-decreasing locally bounded function f(·) : [0,∞) → [0,∞)
such that for any t > 0,

‖h(t, u)‖L2(U ;Hs) ≤ f(‖u‖W 1,∞)‖u‖Hs . (2.2)

Particularly, in the additive noise case, we assume h : [0,∞) × T �
(t, x) �→ h(t, x) ∈ L2(U ;Hs) is continuous meaning that (2.2) reduces
to ‖h(t, x)‖L2(U ;Hs) ≤ C for some C > 0.

• There is a non-decreasing locally bounded function q(·) : [0,∞) → [0,∞),
such that for any t > 0,

sup
‖u‖Hs ,‖v‖Hs ≤N

{
1{u�=v}

‖h(t, u) − h(t, v)‖L2(U;Hs)

‖u − v‖Hs

}
≤ q(N), N ≥ 1. (2.3)

After the regularization effect of strong noise is established in Theorem
2.2, to analyze the effect of noise on the regularity of pathwise solutions, we
restrict ourselves to the linear-noise case (1.12) imposing the following bounds
on the coefficient b.
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Assumption 2.2. When considering (1.12) with non-autonomous linear noise
b(t)u dW , we assume that there are constants b∗, b∗ > 0 such that 0 < b∗ ≤
b2(t) ≤ b∗ for all t.

Remark 2.1. Let us give some brief explanations for the assumptions.
• The function h : [0,∞) × Hs � (t, u) �→ h(t, u) ∈ L2(U ;Hs) is required

to be continuous in (t, u). This will be essential to pass to the limit when
establishing the existence of a martingale solution as an intermediate
step, cf. [3,48,49].

• The uniform-in-time assumption (2.2) bounds the growth of the L2(U ;
Hs)-norm of the noise coefficient in terms of a product of a nonlinear
function of the W 1,∞-norm and the Hs-norm. This allows us to control
the W 1,∞-norm by some cut-off later.

• Formula (2.3) ensures local Lipschitz continuity in Hs, which will be used
to obtain (local) existence and uniqueness.

• Let us outline that we will use a Girsanov-type transformation to study
(1.11) (see Remark 2.6 and Sect. 6). The assumption b2(t) ≤ b∗ is used
to guarantee that such transformation is well-defined and the condition
b(t) �= 0, t ≥ 0 is needed to establish certain estimates for the Girsanov-

type process e
∫ t
0 b(t′)dWt′−∫ t

0
b2(t′)

2 dt′
(see Lemma 3.7). In Theorem 2.3, the

condition 0 < b∗ ≤ b2(0) is used to bound the initial data, cf. (2.7).

2.3. Main results and remarks

Now we present our results. For the general case (1.8), we have the following
local existence result which moreover relates the possible blow-up in the Hs-
norm to simultaneous blow up in the W 1,∞-norm.

Theorem 2.1. (Maximal solutions) Let s > 3/2, c0, γ ∈ R and let h(t, u) satisfy
Assumption 2.1. For a given stochastic basis S = (Ω,F ,P, {Ft}t≥0,W) and
an Hs-valued F0 measurable random variable u0 satisfying E‖u0‖2Hs < ∞, the
initial value problem (1.8) admits a local unique pathwise solution (u, τ) in the
sense of Definition 2.1 with

u(· ∧ τ) ∈ L2 (Ω;C ([0,∞);Hs)) . (2.4)

Besides, (u, τ) can be extended to a unique maximal solution (u, τ∗) in the
sense of Definition 2.1 and the following blow-up criterion holds true:

1{lim supt→τ∗ ‖u(t)‖Hs=∞} = 1{lim supt→τ∗ ‖u(t)‖W1,∞=∞} P − a.s. (2.5)

Remark 2.2. For the proof of Theorem 2.1 one can follow the ideas in e.g.
[2–4,16,19,29,48] by constructing a sequence of approximations for a problem
with cut-off for the W 1,∞-norm. Such a cut-off implies at-most linear growth of
u and guarantees the global existence of an approximate solution. Otherwise
we have to find a positive lower bound for the lifespan of the approximate
solutions, which is a priori not clear. Besides, with the cut-off, one can close
the a priori L2(Ω;Hs) estimate by splitting E(‖u‖2Hs‖u‖W 1,∞).

Turning to noise-driven regularization effects, the blow-up criterion (2.5)
suggests relating the noise coefficient to the W 1,∞-norm of u. Therefore we
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consider (1.10) with scalable noise impact, i.e., we assume h(t, u) = a(1 +
‖u‖)θ

W 1,∞u for some θ > 0 and a ∈ R. When a and θ satisfy certain strength-
conditions, the noise term counteracts the formation of singularities and we
have

Theorem 2.2. (Global existence for strong nonlinear noise) Let S = (Ω,F ,P,
{Ft}t≥0,W ) be a fixed stochastic basis. Let s > 5

2 , c0, γ ∈ R and u0 ∈ Hs

be an Hs-valued F0-measurable random variable with E‖u0‖2Hs < ∞. Assume
that θ and a satisfy

either a ∈ R\{0}, θ >
1
2

or a2 > 2Q, θ =
1
2
, (2.6)

where Q = Q(s, c0, γ) is a constant that will be specified in Lemma 3.5. Then
the corresponding maximal solution (u, τ∗) to (1.10) satisfies

P {τ∗ = ∞} = 1.

Theorem 2.2 implies that blow-up of pathwise solutions might only be
observed if the noise is weak. To detect such noise, we analyze the simpler
ansatz h(t, u) = b(t)u as in (1.11). Even in this linear noise case the situation
is quite subtle allowing for global existence as well as blow-up of solutions. For
global existence, we can identify two cases.

Theorem 2.3. (Global existence for weak noise I) Let s > 3/2. Assume c0+γ =
0. Let b(t) satisfy Assumption 2.2 and S = (Ω,F ,P, {Ft}t≥0,W ) be a fixed
stochastic basis. Assume u0 is an Hs-valued F0 measurable random variable
satisfying E‖u0‖2Hs < ∞. Let K = K(s) > 0 be a constant such that the
embedding ‖ · ‖W 1,∞ < K‖ · ‖Hs holds. Then there is a C = C(s) > 1 such that
for any R > 1 and λ1 > 2, if

‖u0‖Hs <
b∗

CKλ1R
P − a.s., (2.7)

then (1.11) has a maximal solution (u, τ∗) satisfying for any λ2 > 2λ1
λ1−2 the

estimate

P

{
‖u(t)‖Hs <

b∗
CKλ1

e− ((λ1−2)λ2−2λ1)
2λ1λ2

∫ t
0 b2(t′)dt′

for all t > 0
}

≥1 −
(

1
R

)2/λ2

.

(2.8)

Theorem 2.4. (Global existence for weak noise II) Let c0+γ = 0 and s > 3. Let
b(t) satisfy Assumption 2.2 and S = (Ω,F ,P, {Ft}t≥0,W ) be a fixed stochastic
basis. Assume u0 is an Hs-valued F0 measurable random variable satisfying
E‖u0‖2Hs < ∞. If u0 satisfies

P
{
(1 − ∂2

xx)u0(x) > 0, ∀ x ∈ T
}

= p,

P
{
(1 − ∂2

xx)u0(x) < 0, ∀ x ∈ T
}

= q,

for some p, q ∈ [0, 1], then the corresponding maximal solution (u, τ∗) to (1.11)
satisfies

P{τ∗ = ∞} ≥ p + q.
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Remark 2.3. Theorem 2.3 provides a global existence result for initial data
with bounded Hs-norm depending on the strength of the noise. This result
can not be observed in the deterministic case because 0 < b∗ ≤ b2(t) is re-
quired (see Assumption 2.2). On the other hand, since the proof of Theorem
2.4 relies on the analysis of a PDE with random coefficient (see (6.2) below),
the deterministic case can be included by formally letting the random coef-
ficient be 1. Therefore, in this sense, Theorem 2.4 covers the corresponding
deterministic result, cf. [13,41]. Indeed, by letting β ≡ 1 in (6.2) and taking
(p, q) = (1, 0) or (p, q) = (0, 1) in Theorem 2.4, we obtain the global existence
for the deterministic DGH equation.

According to (2.5) in Theorem 2.1, a blow-up comes along with an ex-
plosion of the W 1,∞-norm. For the special noise in (1.11) we can improve the
result by showing that a blow-up is related to the first spatial derivative only
and corresponds to the wave-breaking phenomenon with exploding negative
slope.

Theorem 2.5. (Blow-up scenario) Let c0 + γ = 0, s > 3 and Assumption 2.2
be satisfied. Let S = (Ω,F ,P, {Ft}t≥0,W ) be fixed in advance. Let (u, τ∗) be
the unique maximal solution to (1.11) starting from an F0 measurable random
variable u0 ∈ L2(Ω;Hs). Then the singularities can arise only in the form of
wave breaking, i.e.,

P {‖u(t)‖L∞ � A‖u0‖H1 < ∞, ∀ t > 0} = 1, (2.9)

where A = A(ω) = supt>0 e
∫ t
0 b(t′) dWt′−∫ t

0
b2(t′)

2 dt′
< ∞ P − a.s., and

1{lim supt→τ∗ ‖u(t)‖Hs=∞} = 1{lim inft→τ∗ [minx∈T ux(t,x)]=−∞} P − a.s. (2.10)

Still we have not identified initial data for (1.11) that lead to a blow-up.
A precise condition in terms of probability is given in the next theorem. To
formulate it, we introduce the number λ > 0 such that for any f ∈ H3, the
estimate

max
x∈T

f2(x) ≤ λ‖f‖2H1 (2.11)

holds.

Theorem 2.6. (Wave breaking and its probability) Let S = (Ω,F ,P, {Ft}t≥0,
W ) be a fixed stochastic basis, c0 + γ = 0 and s > 3. Let Assumption 2.2 be
verified and let u0 ∈ L2(Ω;Hs) be F0 measurable. If for some c ∈ (0, 1),

min
x∈T

∂xu0(x) < −1
2

√
(b∗)2

c2
+ 4λ‖u0‖2H1 − b∗

2c
P − a.s.,

where b∗ is given in Assumption 2.2 and λ is given in (2.11), then the maximal
solution (u, τ∗) to (1.11) (or (1.12), equivalently) satisfies

P {τ∗ < ∞} ≥ P

{
e
∫ t
0 b(t′) dWt′ > c, ∀ t > 0

}
> 0.

By Theorem 2.5, we have P {u breaks in finite time} ≥ P

{
e
∫ t
0 b(t′) dWt′ > c,

∀ t > 0
}

> 0.
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Remark 2.4. Whereas Theorem 2.3 provides a global existence result, Theo-
rem 2.6 detects the formation of singularities in finite time under certain con-
ditions on the initial data. We stress that these two conditions are mutually
exclusive. In Theorem 2.3 we suppose ‖u0‖Hs ≤ b∗

CKλ1R with C > 1, λ1 > 2 and
R > 1 almost surely. Then u satisfies (2.8). In Theorem 2.6 we suppose for some

c ∈ (0, 1) that minx∈T ∂xu0(x) < − 1
2

√
(b∗)2

c2 + 4λ‖u0‖2H1 − b∗
2c < − b∗

2c almost
surely holds. But this means ‖u0‖Hs > 1

K ‖u0‖W 1,∞ ≥ 1
K |minx∈T ∂xu0(x)| >

b∗
2cK > b∗

CKλ1R .

We conclude this section with a result refining Theorem 2.5. It is possible
to quantify the blow-up rate.

Theorem 2.7. (Wave breaking rate) Let the conditions in Theorem 2.5 hold
true. Then

lim
t→τ∗

(
min
x∈T

[ux(t, x)]

∫ τ∗

t

β(t′) dt′
)

= −2β(τ∗) a.e. on {τ∗ < ∞}, (2.12)

where

β(ω, t) = e
∫ t
0 b(t′)dWt′ −∫ t

0
b2(t′)

2 dt′
.

Remark 2.5. As a corollary of Theorems 2.5 and 2.7, we have that as long as
singularities occurs, they can arise only in the form of wave breaking and the
breaking rate is given by (2.12). This result is optimal in the sense that it is
consistent with the result for the corresponding deterministic case. Indeed, for
the deterministic DGH equation (cf. [41, Theorem 4.2]), the blow-up rate is

lim
t→τ∗

(
min
x∈T

[ux(t, x)](τ∗ − t)
)

= −2.

Formally, since the deterministic DGH equation can be viewed as (6.2) with
β ≡ 1, we see that the blow-up estimate (2.12) coincides with the above
deterministic result when β ≡ 1.

Remark 2.6. Let us make a comment on the idea for the subsequent analysis
of (1.11), which is motivated by [29,46,48]. By introducing the Girsanov-type
transformation

v =
1

β(ω, t)
u, β(ω, t) = e

∫ t
0 b(t′)dWt′−∫ t

0
b2(t′)

2 dt′
,

we obtain an equation for v (see Sect. 6 for the detailed calculation), namely

vt + βvvx − γvx + β(1 − ∂2
xx)−1∂x

(
v2 +

1
2
v2

x

)
+ (c0 + γ)(1 − ∂2

xx)−1∂xv = 0.

Although the above equation for v does not depend on a stochastic integral on
v itself, to extend the deterministic results to the stochastic setting, we need to
overcome a few technical difficulties since the system is not only random but
also non-autonomous (see e.g., (6.6), (6.8) and (6.10)). With the help of certain
estimates and asymptotic limits of Girsanov-type processes (see Lemma 3.7),
we are able to apply the energy estimate pathwisely (for a.e. ω ∈ Ω) to study
the global existence and possible blow-up of solutions.
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We outline the rest of the paper. In the next section, we briefly recall
some relevant preliminaries. In Sect. 4, we prove Theorem 2.1. For the large
noise case, we prove Theorem 2.2 in Sect. 5. For the non-autonomous linear
multiplicative noise case, we consider the global existence, decay, wave breaking
and the blow-up rate of the pathwise solutions and prove Theorems 2.3, 2.4,
2.6 and 2.7 in Sect. 6.

3. Preliminary results

We summarize some auxiliary results, which will be used to prove our main
results from Sect. 2. Define the regularizing operator Tε on T as

Tεf(x) := (1 − ε2Δ)−1f(x) =
∑
k∈Z

(
1 + ε2|k|2)−1

f̂(k) eixk, ε ∈ (0, 1).

(3.1)

Since Tε can be characterized by its Fourier multipliers, it is easy to see

[Ds, Tε] = 0, (3.2)

(Tεf, g)L2 = (f, Tεg)L2 , (3.3)

‖Tεu‖Hs ≤ ‖u‖Hs . (3.4)

Furthermore, we have

Lemma 3.1. ([49]) Let f, g : T → R such that g ∈ W 1,∞ and f ∈ L2. Then for
some C > 0,

‖[Tε, g]fx‖L2 ≤ C‖g‖W 1,∞‖f‖L2 .

The following estimates are classical for Sobolev spaces.

Lemma 3.2. ([34]) Let s > 1. There is a Cs > 0 such that for all f ∈ Hs ∩
W 1,∞, g ∈ Hs−1 ∩ L∞ we have

‖ [Ds, f ] g‖L2 ≤ Cs

(‖Dsf‖L2‖g‖L∞ + ‖∂xf‖L∞‖Ds−1g‖L2

)
.

Lemma 3.3. ([34]) Let s > 0, then there is a Cs > 0 such that we have for all
f, g ∈ Hs ∩ L∞ the estimate

‖fg‖Hs ≤ Cs

(‖f‖Hs‖g‖L∞ + ‖f‖L∞‖g‖Hs

)
.

Specifically, for our problem (1.8), we have introduced the nonlocal term
F (·) in (1.9). Using the Moser estimate from Lemma 3.3, we can obtain the
next statement on F (·) (see [50]).

Lemma 3.4. For F (·) defined in (1.9) and for any v, v1, v2 ∈ Hs with s > 1/2,
we have

‖F (v)‖Hs � (‖v‖L∞ + ‖∂xv‖L∞ + (c0 + γ)) ‖v‖Hs , s > 3/2

‖F (v1) − F (v2)‖Hs � (‖v1‖Hs + ‖v2‖Hs + (c0 + γ)) ‖v1 − v2‖Hs , s > 3/2

‖F (v1) − F (v2)‖Hs � (‖v1‖Hs+1 + ‖v2‖Hs+1 + (c0 + γ)) ‖v1 − v2‖Hs ,

3/2 ≥ s > 1/2.
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The following estimate will be used in the proof of the blow-up criterion
(2.5) and of Theorem 2.2.

Lemma 3.5. Let s > 3/2, c0, γ ∈ R. Let F (·) and Tε be given in (1.9) and
(3.1), respectively. There is a constant Q = Q(s, c0, γ) > 0 such that for all
ε > 0,

|(Tε [(u − γ)ux] , Tεu)Hs | + |(TεF (u), Tεu)Hs | ≤ Q (1 + ‖u‖W 1,∞) ‖u‖2Hs .

Proof. We first notice that

(Tε [(u − γ)ux] , Tεu)Hs =
∫
T

DsTε [(u − γ)ux] · DsTεu dx

=
∫
T

DsTε [uux] · DsTεu dx.

Due to (3.2) and (3.3), we commute the operator to derive

(DsTε [uux] ,DsTεu)L2

=
(
[Ds, u] ux,DsT 2

ε u
)
L2 + ([Tε, u]Dsux,DsTεu)L2 + (uDsTεux,DsTεu)L2 .

Then it follows from Lemmas 3.1 and 3.2, integration by parts, (3.4) and
Hs ↪→ W 1,∞ that

|(Tε [(u − γ)ux] , Tεu)Hs | � ‖u‖W 1,∞‖u‖2Hs .

Using Lemma 3.4 and (3.4) directly, we have

|(TεF (u), Tεu)Hs | � (‖u‖W 1,∞ + (c0 + γ)) ‖u‖2Hs .

Combining the above two inequalities gives rise to the desired estimate of the
lemma. �

The following lemma has been established for the real-line case in [12]
and [10], respectively. They hold likewise for x ∈ T, using the periodicity on
T.

Lemma 3.6. Let T > 0 and u ∈ C1([0, T );H2(T)). Then given any t ∈ [0, T ),
there is at least one point z(t) with

M(t) := min
x∈T

[ux(t, x)] = ux(t, z(t)).

Moreover, the function M = M(t) is almost everywhere differentiable on (0, T )
with

d
dt

M(t) = utx(t, z(t)) a.e. on (0, T ).

We conclude this preparatory section with some results from [47], which
are needed to establish the theorems on global existence.

Lemma 3.7. Let Assumption 2.2 hold true and assume that a(t) ∈ C([0,∞))
is a bounded function. For

X = e
∫ t
0 b(t′) dWt′+

∫ t
0 a(t′)− b2(t′)

2 dt′

the following properties hold true.
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(i) Let φ(t) :=
∫ t

0
b2(t′) dt′ with inverse φ−1(t). If

lim sup
t→∞

1√
2t log log t

(∫ φ−1(t)

0

a(t′) dt′ − t

2

)
< −1,

then

lim
t→∞ X(t) = 0 P − a.s.

If

lim inf
t→∞

1√
2t log log t

(∫ φ−1(t)

0

a(t′) dt′ − t

2

)
> 1,

then

lim
t→∞ X(t) = ∞ P − a.s.

(ii) Let a(t) = λb2(t) with λ < 1
2 and τR = inf{t ≥ 0 : X(t) > R} with R > 1,

then

P (τR = ∞) ≥ 1 −
(

1
R

)1−2λ

.

4. Proof of Theorem 2.1

We consider the initial value problem (1.8). The proof of existence and unique-
ness of pathwise solutions can be carried out by standard procedures used in
many works, see [2,3,28,29,47–49] for more details. Therefore we only give a
sketch.

(1) Firstly, one constructs a suitable approximation scheme using a cut-off
function to control the W 1,∞-norm (arising from (u − γ)ux, (2.2) and
Lemma 3.4). With such cut-off, both the drift and diffusion coefficients
in the problem become locally Lipschitz continuous and grow linearly in
u (cf. [47–49]). Thus the approximation solutions exist globally. Besides,
such cut-off enables us to close the a priori L2(Ω;Hs) estimate by splitting
E(‖u‖2Hs‖u‖W 1,∞). Therefore by using Lemma 3.2 and (2.2), uniform
estimates for the approximation solutions can be established. We refer
the readers to [48,49] for some closely related models;

(2) Secondly, by the uniform estimates, one obtains the tightness of the dis-
tributions of the approximation solution in P

(
C([0, T ];Hs−1)

)
, where

P
(
C([0, T ];Hs−1)

)
is the collection of Borel probability measures on

C([0, T ];Hs−1). We refer to [45,48,49] for example. Applying the prob-
abilistic compactness arguments, i.e., the Prokhorov theorem and the
Skorokhod theorem, and using some technical convergence results as in
[1–3,19], one verifies the existence of a martingale solution in Hs with
s > 3. In this step s > 3 is an intermediate requirement because the
convergence is in Hs−1 and we need to control the W 1,∞-norm by the
embedding Hs−1 ↪→ W 1,∞;
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(3) Thirdly, by Lemma 3.4 and (2.3), one can show that pathwise uniqueness
holds. Then the Gyöngy–Krylov characterization of the convergence in
probability (see [30]) can be applied to show the existence and uniqueness
of a pathwise solution in Hs with s > 3, cf. [3,29,49];

(4) Finally, mollifying initial data, analyzing the convergence and employing
the argument as in [28,29,48,49] lead to a local pathwise solution (u, τ)
to (1.6) with u(· ∧ τ) ∈ L2 (Ω;C ([0,∞);Hs)) for u0 ∈ L2(Ω;Hs) with
s > 3/2.

To finish the proof of Theorem 2.1, we only need to verify the blow-up
criterion (2.5). Motivated by [16,47], we first consider, in next lemma, the
relationship between the explosion time of ‖u(t)‖Hs and the explosion time
of ‖u(t)‖W 1,∞ for (1.8). The results of the lemma will not only immediately
imply the blow-up criterion (2.5) but also be used in the next sections.

Lemma 4.1. Let (u, τ∗) be the unique maximal solution to (1.8). Then the
real-valued stochastic process ‖u‖W 1,∞ is also Ft-adapted. Besides, for any
m,n ∈ N, define

τ1,m = inf {t ≥ 0 : ‖u(t)‖Hs ≥ m} , τ2,n = inf {t ≥ 0 : ‖u(t)‖W 1,∞ ≥ n} .

For τ1 = lim
m→∞ τ1,m and τ2 = lim

n→∞ τ2,n, we have then

τ1 = τ2 P − a.s.

Proof. To begin with, since u(·∧ τ) ∈ C([0,∞);Hs) almost surely, we see that
for any t ∈ [0, τ ],

[u(t)]−1(Y ) = [u(t)]−1(Hs ∩ Y ), ∀ Y ∈ B(W 1,∞).

Therefore u(t), as a W 1,∞-valued process, is also Ft-adapted. Moreover, the
embedding Hs ↪→ W 1,∞ for s > 3/2 means that there is a K = K(s) > 0 such
that ‖ · ‖W 1,∞ < K‖ · ‖Hs . Then for every m ∈ N,

sup
t∈[0,τ1,m]

‖u(t)‖W 1,∞ ≤ K sup
t∈[0,τ1,m]

‖u(t)‖Hs ≤ ([K] + 1)m,

where [K] means the integer part of K. Consequently, τ1,m ≤ τ2,([K]+1)m ≤ τ2
almost surely, which means that τ1 ≤ τ2 P − a.s. Now we only need to prove
the contrary inequality. Let n, k ∈ N, one has{

sup
t∈[0,τ2,n∧k]

‖u(t)‖Hs < ∞
}

=
⋃

m∈N

{
sup

t∈[0,τ2,n∧k]

‖u(t)‖Hs < m

}

⊂
⋃

m∈N

{τ2,n ∧ k ≤ τ1,m} .

Notice that ⋃
m∈N

{τ2,n ∧ k ≤ τ1,m} ⊂ {τ2,n ∧ k ≤ τ1} .



5 Page 16 of 34 C. Rohde and H. Tang NoDEA

If P {τ2,n ∧ k ≤ τ1} = 1 for all n, k ∈ N, then we have

P {τ2 ≤ τ1} = P

{⋂
n∈N

{τ2,n ≤ τ1}
}

= P

⎧⎨
⎩
⋂

n,k∈N

{τ2,n ∧ k ≤ τ1}
⎫⎬
⎭ = 1. (4.1)

To this end, we only need to prove

P

{
sup

t∈[0,τ2,n∧k]

‖u(t)‖Hs < ∞
}

= 1, ∀ n, k ∈ N. (4.2)

Consider first E supt∈[0,τ2,n∧k] ‖u(t)‖2Hs . We cannot estimate this expectation
using the Itô formula directly. Indeed, the Itô formula in a Hilbert space ([18,
Theorem 4.32] or [26, Theorem 2.10]) requires ((u − γ) ux, u)Hs to be well-
defined and the Itô formula under a Gelfand triplet ([38, Theorem I.3.1] or
[44, Theorem 4.2.5]) requires the dual product Hs−1〈(u − γ) ux, u〉Hs+1 to be
well-defined. In our case we only have u ∈ Hs and (u − γ) ux ∈ Hs−1 such
that neither requirement is fulfilled. Therefore we utilize the mollifier operator
Tε defined in (3.1). We first apply Tε to (1.8), and then use the Itô formula for
‖Tεu‖2Hs = ‖DsTεu‖2L2 to deduce that for any n, k > 1 and t ∈ [0, τ2,n ∧ k],

‖Tεu(t)‖2Hs − ‖Tεu(0)‖2Hs = 2
∞∑

k=1

∫ t

0

(DsTεh(t′, u)ek,DsTεu)L2 dWk

− 2
∫ t

0

(DsTε [(u − γ)∂xu] ,DsTεu)L2 dt′

− 2
∫ t

0

(DsTεF (u),DsTεu)L2 dt′

+
∫ t

0

∞∑
k=1

‖DsTεh(t′, u)ek‖2L2 dt′

=:
∞∑

k=1

∫ t

0

L1,k dWk +
4∑

i=2

∫ t

0

Li dt′.

On account of the Burkholder-Davis-Gundy inequality (2.1), for the expecta-
tion of the Hs-norm of Tεu, we arrive at

E sup
t∈[0,τ2,n∧k]

‖Tεu(t)‖2Hs ≤ E‖Tεu0‖2Hs + CE

(∫ τ2,n∧k

0

∞∑
k=1

|L1,k|2dt

) 1
2

+
4∑

i=2

E

∫ τ2,n∧k

0

|Li|dt.

We can infer from (3.4) and Assumption 2.1 that
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E

(∫ τ2,n∧k

0

∞∑
k=1

|L1,k|2dt

) 1
2

≤ 1
2
E sup

t∈[0,τ2,n∧k]

‖Tεu‖2Hs + Cf2(n)
∫ k

0

(
1 + E‖u‖2Hs

)
dt.

For L2 and L3, we use Lemma 3.5 to find

E

∫ τ2,n∧k

0

|L2| + |L3| dt ≤ C(1 + n)
∫ k

0

(
1 + E‖u‖2Hs

)
dt.

Similarly, it follows from the assumption (2.2) that

E

∫ τ2,n∧k

0

|L4| dt ≤ Cf2(n)
∫ k

0

(
1 + E‖u‖2Hs

)
dt.

If we combine the above estimates and use (3.4), we are led for some constant
C = Cn > 0 depending on n to

E sup
t∈[0,τ2,n∧k]

‖Tεu(t)‖2Hs ≤ 2E‖u0‖2Hs +Cn

∫ k

0

(
1+E sup

t′∈[0,t∧τ2,n]

‖u(t′)‖2Hs

)
dt.

Since the right hand side of the last estimate does not depend on ε, and Tεu
tends to u in C ([0, T ];Hs) for any T > 0 almost surely as ε → 0, one can send
ε → 0 to obtain

E sup
t∈[0,τ2,n∧k]

‖u(t)‖2Hs ≤ 2E‖u0‖2Hs + Cn

∫ k

0

(
1 + E sup

t′∈[0,t∧τ2,n]

‖u(t′)‖2Hs

)
dt.

Then Grönwall’s inequality shows that for each n, k ∈ N, there is a constant
C = C(n, k, u0) > 0 such that

E sup
t∈[0,τ2,n∧k]

‖u(t)‖2Hs < C(n, k, u0),

which gives (4.2). �

We finish the section with the proof of the blow-up criterion in Theorem
(2.1).

Proof of (2.5). Let τ1,m, τ2,n, τ1 and τ2 be given in Lemma 4.1. If u is the
unique pathwise solution with maximal existence time τ∗, for fixed m,n > 0,
even if P{τ1,m = 0} or P{τ2,n = 0} is larger than 0, for a.e. ω ∈ Ω, there is
m > 0 or n > 0 such that τ1,m, τ2,n > 0. By continuity of ‖u(t)‖Hs and the
uniqueness of u, it is easy to check that τ1 = τ2 = τ∗. Consequently, we obtain
the desired blow-up criterion.

5. Proof of Theorem 2.2: strong nonlinear noise

To begin with, we note the following algebraic inequality.
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Lemma 5.1. Let c,M > 0. Assume

either η > 1, a, b > 0 or η = 1, b > a > 0.

There is a C > 0 such that for all 0 ≤ x ≤ My < ∞,

a(1 + x)y2 + b(1 + x)ηy2

1 + y2
− 2b(1 + x)ηy4

(1 + y2)2
+

c(1 + x)ηy4

(1 + y2)2(1 + log(1 + y2))
≤ C.

Proof. Since My ≥ x, we have

a(1 + x)y2 + b(1 + x)ηy2

1 + y2
− 2b(1 + x)ηy4

(1 + y2)2
+

c(1 + x)ηy4

(1 + y2)2(1 + log(1 + y2))

≤ a(1 + x) + b(1 + x)η − 2b(1 + x)η

(
x
M

)4
(
1 +

(
x
M

)2)2 +
c(1 + x)η(

1+log
(
1+
(

x
M

)2)) .

When η > 1 and a, b > 0 or η = 1 and b > a > 0, the latter expression tends
to −∞ for x → +∞, which implies the statement of the lemma. �

We are now ready to prove Theorem 2.2 following [45] to large extent.

Proof of Theorem 2.2. Assume s > 5/2 and let u0 be an Hs-valued F0-measur-
able random variable with E‖u0‖2Hs < ∞. Let h(t, u) = h(u) = a

(1 + ‖u‖W 1,∞)θ
u with θ ≥ 1/2 and a �= 0.

For r > 3/2, the embedding Hr ↪→ W 1,∞ implies that we have for any
u, v ∈ Hr the estimate

sup
‖u‖Hr ,‖v‖Hr ≤N

{
1{u�=v}

‖h(u) − h(v)‖Hr

‖u − v‖Hr

}
≤ q(N), N ≥ 1.

This means that one can establish the pathwise uniqueness for (1.10) in Hr

with r > 3/2. Hence, in the same way as proving Theorem 2.1, one can show
that (1.10) admits a unique pathwise solution u in Hs with s > 5/2 and
maximal existence time τ∗. We recall the definition of the mollifier Tε from
Sect. 3 and define

τm = inf {t ≥ 0 : ‖u(t)‖Hs ≥ m} .

Applying the Itô formula to ‖Tεu(t)‖2Hs gives

d‖Tεu‖2Hs = 2a (1 + ‖u‖W 1,∞)θ (Tεu, Tεu)Hs dW −2 (Tε [(u−γ)ux] , Tεu)Hs dt

− 2 (TεF (u), Tεu)Hs dt + a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖2Hsdt.

Again, using Itô formula to log(1 + ‖Tεu‖2Hs) yields

d log(1 + ‖Tεu‖2Hs)

=
2a (1 + ‖u‖W 1,∞)θ

1 + ‖Tεu‖2Hs

(Tεu, Tεu)Hs dW

− 1
1 + ‖Tεu‖2Hs

{2 (Tε [(u − γ)ux] , Tεu)Hs + 2 (TεF (u), Tεu)Hs} dt

+
a2 (1 + ‖u‖W 1,∞)2θ

1 + ‖Tεu‖2Hs

‖Tεu‖2Hsdt − 2
a2 (1 + ‖u‖W 1,∞)2θ

(1 + ‖Tεu‖2Hs)2
‖Tεu‖4Hsdt.
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Lemma 3.5 and (3.4) imply that there is a Q = Q(s, c0, γ) > 0 such that for
any t > 0 we have

E log
(
1 + ‖Tεu(t ∧ τm)‖2Hs

)− E log
(
1 + ‖Tεu0‖2Hs

)

= E

∫ t∧τm

0

1
1 + ‖Tεu‖2Hs

{−2 (Tε[(u − γ)ux], Tεu)Hs

−2 (TεF (u), Tεu)Hs} dt′

+ E

∫ t∧τm

0

1
1 + ‖Tεu‖2Hs

a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖2Hs dt′

− E

∫ t∧τm

0

2
(1 + ‖Tεu‖2Hs)2

a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs dt′

≤ E

∫ t∧τm

0

[
1

1 + ‖Tεu‖2Hs

{
2Q (1 + ‖u‖W 1,∞) ‖u‖2Hs + a2 (1 + ‖u‖W 1,∞)2θ

‖Tεu‖2Hs

}]
dt′

− E

∫ t∧τm

0

1
(1 + ‖Tεu‖2Hs)2

2a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs dt′.

Notice that for any T > 0, Tεu tends to u in C ([0, T ];Hs) almost surely
as ε → 0. Then, by (3.4) and the dominated convergence theorem, the last
estimate leads to

E log
(
1 + ‖u(t ∧ τm)‖2Hs

)− E log(1 + ‖u0‖2Hs)

= lim
ε→0

(
E log

((
1 + ‖Tεu(t ∧ τm)‖2Hs

))− E log
((

1 + ‖Tεu0‖2Hs

)))

≤ lim
ε→0

E

∫ t∧τm

0

1
1 + ‖Tεu‖2Hs

{
2Q (1 + ‖u‖W 1,∞) ‖u‖2Hs

+a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖2Hs

}
dt′

− lim
ε→0

E

∫ t∧τm

0

1
(1 + ‖Tεu‖2Hs)2

2a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs dt′

= E

∫ t∧τm

0

2Q (1 + ‖u‖W 1,∞) ‖u‖2Hs + a2 (1 + ‖u‖W 1,∞)2θ ‖u‖2Hs

1 + ‖u‖2Hs

dt′

− E

∫ t∧τm

0

2a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2
dt′.

Since we have assumed (2.6), Lemma 5.1 immediately shows that there are
constants K1,K2 > 0 such that

E log
(
1 + ‖u(t ∧ τm)‖2Hs

)− E log
(
1 + ‖u0‖2Hs

)

≤ E

∫ t∧τm

0

K1 − K2
a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2 (1 + log(1 + ‖u‖2Hs))
dt′,
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which means that for some C(u0,K1,K2, t) > 0,

E

∫ t∧τm

0

a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2 (1 + log(1 + ‖u‖2Hs))
dt′ ≤ C(u0,K1,K2, t) < ∞,

(5.1)

and

E

∫ t∧τm

0

∣∣∣∣∣K1 − K2
a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2 (1 + log(1 + ‖u‖2Hs))

∣∣∣∣∣ dt′

≤ C(u0,K1,K2, t) < ∞. (5.2)

Next, we notice that there is a function δ : [0,∞) → [0,∞) with δ(ε) → 0
when ε → 0 such that

2Q (1 + ‖u‖W 1,∞) ‖u‖2Hs + a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖2Hs

1 + ‖Tεu‖2Hs

− 2a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs

(1 + ‖Tεu‖2Hs)2

≤ 2Q (1 + ‖u‖W 1,∞) ‖u‖2Hs + a2 (1 + ‖u‖W 1,∞)2θ ‖u‖2Hs

1 + ‖u‖2Hs

− 2a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2
+ δ(ε)

holds. Therefore, for any T > 0, by using Lemma 5.1, the Burkholder-Davis-
Gundy inequality (2.1) and (5.2), we find that

E sup
t∈[0,T∧τm]

log
(
1 + ‖Tεu‖2Hs

)− E log
(
1 + ‖Tεu0‖2Hs

)

≤ CE

(∫ T∧τm

0

a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs

(1 + ‖Tεu‖2Hs)
2 dt

) 1
2

+ E

∫ T∧τm

0

∣∣∣∣∣K1 − K2
a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2 (1 + log(1 + ‖u‖2Hs))
+ δ(ε)

∣∣∣∣∣ dt

≤ 1
2
E sup

t∈[0,T∧τm]

(
1 + log(1 + ‖Tεu‖2Hs)

)

+ CE

∫ T∧τm

0

a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs

(1 + ‖Tεu‖2Hs)
2 (1 + log(1 + ‖Tεu‖2Hs))

dt

+ K1T + E

∫ T∧τm

0

K2
a2 (1 + ‖u‖W 1,∞)2θ ‖u‖4Hs

(1 + ‖u‖2Hs)2 (1 + log(1 + ‖u‖2Hs))
dt + δ(ε)T

≤ 1
2
E sup

t∈[0,T∧τm]

(
1 + log(1 + ‖Tεu‖2Hs)

)

+ CE

∫ T∧τm

0

a2 (1 + ‖u‖W 1,∞)2θ ‖Tεu‖4Hs

(1 + ‖Tεu‖2Hs)
2 (1 + log(1 + ‖Tεu‖2Hs))

dt
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+ C(u0,K1,K2, T ) + δ(ε)T.

Thus, we use the dominated convergence theorem, Fatou’s lemma and (5.1) to
obtain finally

E sup
t∈[0,T∧τm]

log
(
1 + ‖u‖2Hs

) ≤ C(u0,K1,K2, T ).

Since log(1 + x) is continuous and increasing for x > 0, we have that for any
m ≥ 1,

P{τ∗ < T} ≤ P{τm < T} ≤ P

{
sup

t∈[0,T ]

log(1 + ‖u‖2Hs) ≥ log(1 + m2)

}

≤ C(u0,K1,K2, T )
log(1 + m2)

.

Letting m → ∞ forces P{τ∗ < T} = 0 for any T > 0, which means P{τ∗ =
∞} = 1. �

6. Proofs of Theorems 2.3–2.7: non-autonomous linear noise
case

In this section, we study (1.12) with linear noise. Depending on the strength
of the noise in (1.12), we provide either the global existence of pathewise
solutions or the precise blow-up scenarios for the maximal pathwise solution.
As discussed in Remark 2.6, we rely on the Girsanov-type transform

v =
1

β(ω, t)
u, β(ω, t) = e

∫ t
0 b(t′)dWt′−∫ t

0
b2(t′)

2 dt′
. (6.1)

We first collect some properties of v.

Proposition 6.1. Let s > 3/2, α = 1 and h(t, u) = b(t)u such that b(t) satisfies
Assumption 2.2. Let S = (Ω,F ,P, {Ft}t≥0,W ) be fixed in advance. If u0(ω, x)
is an Hs-valued F0 measurable random variable with E‖u0‖2Hs < ∞ and (u, τ∗)
is the corresponding unique maximal solution to (1.11), then for any c0, γ ∈ R

and for t ∈ [0, τ∗), the process v defined by (6.1) solves the following problem
on T almost surely,
⎧⎨
⎩

vt + βvvx−γvx+β(1 − ∂2
xx)−1∂x

(
v2+

1
2
v2

x

)
+(c0+γ)(1 − ∂2

xx)−1∂xv=0,

v(ω, 0, x) = u0(ω, x).

(6.2)

Moreover, we have v ∈ C ([0, τ∗);Hs)∩C1([0, τ∗);Hs−1) P−a.s. and, if s > 3,
then it holds

P
{‖v(t)‖H1 = ‖u0‖H1 for all t ≥ 0

}
= 1. (6.3)
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Proof. Since b(t) satisfies Assumption 2.2, h(t, u) = b(t)u satisfies Assumption
2.1. Consequently, Theorem 2.1 implies that (1.11) (that is (1.8) with h(t, u) =
b(t)u) has a unique maximal solution (u, τ∗).

A direct computation with the Itô formula yields

d
1
β

= −b(t)
1
β

dW + b2(t)
1
β

dt.

Therefore we arrive at

dv =
1

β
[− [(u − γ) ∂xu + F (u)] dt + b(t)u dW ]

+ u

[
−b(t)

1

β
dW + b2(t)

1

β
dt

]
− b2(t)

1

β
u dt

=
1

β
[− ((u − γ) ∂xu + F (u)) dt]

=

{
−βvvx + γvx − β(1 − ∂2

xx)−1∂x

(
v2 +

1

2
v2
x

)
− (c0 + γ)(1 − ∂2

xx)−1vx

}
dt,

(6.4)

which is (6.2)1. Since v(0) = u0(ω, x), we see that v satisfies (6.2). Moreover,
Theorem 2.1 implies u ∈ C ([0, τ∗);Hs) P− a.s., so is v. Besides, from Lemma
3.4 and (6.2)1, we see that for a.e. ω ∈ Ω, vt = γvx −βvvx −β(F1(v)+F2(v))−
F3(v) ∈ C([0, τ∗);Hs−1). Hence v ∈ C1

(
[0, τ∗);Hs−1

)
P − a.s.

Notice that if s > 3, (6.2)1 is equivalent to

vt − vxxt + c0vx + γvxxx + 3βvvx = 2βvxvxx + βvvxxx. (6.5)

Multiplying both sides of (6.5) by v and then integrating the resulting equation
on x ∈ T, we see that for a.e. ω ∈ Ω and for all t > 0,

d
dt

∫
T

(
v2 + v2

x

)
dx = 0,

which implies (6.3). �

6.1. Theorem 2.3: global existence for weak noise I

Now we prove the first global existence result, which is motivated by [29,46–
48].

Proof of Theorem 2.3. To begin with, we apply the operator Ds to (6.4), mul-
tiply both sides of the resulting equation by Dsv and integrate over T to obtain
for a.e. ω ∈ Ω

1
2

d
dt

‖v(t)‖2Hs = γ

∫
T

Dsv · Dsvx dx − β(ω, t)
∫
T

Dsv · Ds [vvx] dx

− β(ω, t)
∫
T

Dsv · DsF (v) dx

= − β(ω, t)
∫
T

Dsv · Ds [vvx] dx

− β(ω, t)
∫
T

Dsv · DsF (v) dx.
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Using Lemma 3.2, integration by parts and Lemma 3.4, we conclude that there
is a C = C(s) > 1 such that for a.e. ω ∈ Ω we have

d
dt

‖v(t)‖2Hs ≤ Cβ(t) ‖v‖W 1,∞‖v‖2Hs ,

where β is given in (6.1) (If necessary, Tε can be used as in Lemma 4.1). Then

w = e− ∫ t
0 b(t′)dWt′ u = e− ∫ t

0
b2(t′)

2 dt′
v satisfies

d
dt

‖w(t)‖Hs +
b2(t)

2
‖w(t)‖Hs

≤ Cα(ω, t)‖w(t)‖W 1,∞‖w(t)‖Hs , α(ω, t) = e
∫ t
0 b(t′)dWt′ .

Let R > 1 and λ1 > 2. Assume ‖u0‖Hs < b∗
CKλ1R < b∗

CKλ1
almost surely and

define

τ1 = inf
{

t > 0 : α(ω, t)‖w‖W 1,∞ = ‖u‖W 1,∞ >
b2(t)
Cλ1

}
. (6.6)

Then it follows from the embedding ‖u(0)‖W 1,∞ ≤ K‖u(0)‖Hs < b∗
Cλ1

that
P{τ1 > 0} = 1, and for t ∈ [0, τ1),

d
dt

‖w(t)‖Hs +
(λ1 − 2)b2(t)

2λ1
‖w(t)‖Hs ≤ 0.

The above inequality and w = e− ∫ t
0 b(t′)dWt′ u imply that for a.e. ω ∈ Ω, for

any λ2 > 2λ1
λ1−2 and for t ∈ [0, τ1),

‖u(t)‖Hs ≤ ‖w0‖Hse
∫ t
0 b(t′)dWt′−∫ t

0
(λ1−2)b2(t′)

2λ1
dt′

= ‖u0‖Hse
∫ t
0 b(t′) dWt′−∫ t

0
b2(t′)

λ2
dt′

e− ((λ1−2)λ2−2λ1)
2λ1λ2

∫ t
0 b2(t′) dt′

. (6.7)

Define the stopping time

τ2 = inf
{

t > 0 : e
∫ t
0 b(t′)dWt′ −∫ t

0
b2(t′)

λ2
dt′

> R

}
. (6.8)

Notice that P{τ2 > 0} = 1. From (6.7), we have that almost surely

‖u(t)‖Hs <
b∗

CKλ1R
× R × e− ((λ1−2)λ2−2λ1)

2λ1λ2

∫ t
0 b2(t′) dt′

=
b∗

CKλ1
e− ((λ1−2)λ2−2λ1)

2λ1λ2

∫ t
0 b2(t′) dt′ ≤ b∗

CKλ1
, t ∈ [0, τ1 ∧ τ2). (6.9)

By Assumption 2.2, (6.9) and (6.6), we find that on [0, τ1 ∧ τ2),

‖u(t)‖W 1,∞ ≤ K‖u(t)‖Hs ≤ b∗
Cλ1

≤ b2(t)
Cλ1

P − a.s.,

which means

P{τ1 ≥ τ2} = 1. (6.10)

Therefore it follows from (6.9) that

P

{
‖u(t)‖Hs <

b∗
CKλ1

e− ((λ1−2)λ2−2λ1)
2λ1λ2

∫ t
0 b2(t′) dt′

for all t > 0
}

≥ P{τ2 = ∞}.
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We apply (ii) in Lemma 3.7 to find that

P{τ2 = ∞} > 1 −
(

1
R

)2/λ2

,

which completes the proof. �

6.2. Theorem 2.4: global existence for weak noise II

Let β(ω, t) be given as in (6.1). With Proposition 6.1 at hand, we can proceed
to prove Theorem 2.4. We see that for a.e. ω ∈ Ω, the transform v(ω, t, x)
solves (6.2) on [0, τ∗). Moreover, since Hs ↪→ C2 for s > 3, we have v, vx ∈
C1 ([0, τ∗) × T). Then for a.e. ω ∈ Ω, for any x ∈ T and c0, γ ∈ R, the problem⎧⎨

⎩
dq(ω, t, x)

dt
= β(ω, t)v(ω, t, q(ω, t, x)) − γ, t ∈ [0, τ∗),

q(ω, 0, x) = x, x ∈ T,
(6.11)

has a unique solution q(ω, t, x) such that q(ω, t, x) ∈ C1([0, τ∗) × T) for a.e
ω ∈ Ω. Moreover, differentiating (6.11) with respect to x yields that for a.e.
ω ∈ Ω, ⎧⎨

⎩
dqx(ω, t, x)

dt
= β(ω, t)vx(ω, t, q)qx, t ∈ [0, τ∗),

qx(ω, 0, x) = 1, x ∈ T.

For a.e. ω ∈ Ω, we solve the above equation to obtain

qx(ω, t, x) = exp
(∫ t

0

β(ω, t′)vx(ω, t′, q(ω, t′, x)) dt′
)

.

Thus for a.e. ω ∈ Ω, qx > 0, (t, x) ∈ [0, τ∗) ×T. On the other hand, if v solves
(6.2) (or equivalently (6.5)) P−a.s., then the momentum variable V = v−vxx

satisfies

Vt + c0vx + βvVx + 2βV vx + γvxxx = 0 P − a.s. (6.12)

Particularly, if c0 + γ = 0, (6.12) becomes

Vt + c0vx + βvVx + 2βV vx + γvxxx = Vt − γVx + βvVx + 2βV vx = 0 P − a.s.,

which means
d
dt

[
V (ω, t, q(ω, t, x))q2x(ω, t, x)

]
=q2x [Vt + βvVx − γVx + 2βV vx] = 0 P − a.s.

This, and qx(ω, 0, x) = 1 imply that

V (ω, t, q(ω, t, x))q2x(ω, t, x) = V0(ω, x).

Consequently, we have sign(V ) = sign(V0). Besides, since v = GT ∗ V with
GT > 0 given in (1.7), we have sign(v) = sign(V ). Summarizing the above
analysis, we have the following result:

Lemma 6.1. Assume c0 + γ = 0 and s > 3. Let V0(ω, x) = (1 − ∂2
xx)u0(ω, x)

and V (ω, t, x) = v(ω, t, x) − vxx(ω, t, x), where v(ω, t, x) solves (6.2) on [0, τ∗)
P − a.s. Then for a.e. ω ∈ Ω,

sign(v) = sign(V ) = sign(V0), (t, x) ∈ [0, τ∗) × T.
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The next step is to control ‖u(ω, t)‖W 1,∞ . In combination with (2.5), we
will then directly verify Theorem 2.4.

Lemma 6.2. Let all the conditions as in the statement of Proposition 6.1 hold
true. Let V and V0 be defined in Lemma 6.1. If additionally we have c0+γ = 0
and

P{V0(ω, x) > 0, ∀ x ∈ T} = p, P{V0(ω, x) < 0, ∀ x ∈ T} = q,

for some p, q ∈ [0, 1], then the maximal solution (u, τ∗) of (1.12) satisfies

P

{
‖ux(ω, t)‖L∞ ≤ ‖u(ω, t)‖L∞ � β(ω, t)‖u0‖H1 , ∀ t ∈ [0, τ∗)

}
≥ p + q.

Proof. Using (1.7), one can derive (see [48]) that for a.e. ω ∈ Ω, and for all
(t, x) ∈ [0, τ∗) × T,

[v + vx] (ω, t, x) =
1

2 sinh(π)

∫ 2π

0

e(x−y−2π[ x−y
2π ]−π)V (ω, t, y) dy, (6.13)

[v − vx] (ω, t, x) =
1

2 sinh(π)

∫ 2π

0

e(y−x+2π[x−y
2π ]+π)V (ω, t, y) dy. (6.14)

Then one can employ (6.13), (6.14) and Lemma 6.1 to obtain that for a.e.
ω ∈ Ω and for all (t, x) ∈ [0, τ∗) × T,

{
−v(ω, t, x) ≤ vx(ω, t, x) ≤ v(ω, t, x), if V0(ω, x) = (1 − ∂2

xx)u0(ω, x) > 0,

v(ω, t, x) ≤ vx(ω, t, x) ≤ −v(ω, t, x), if V0(ω, x) = (1 − ∂2
xx)u0(ω, x) < 0.

(6.15)

Notice that

{V0(ω, x) > 0} ∩ {V0(ω, x) < 0} = ∅. (6.16)

Combining (6.15) and (6.16) yields

P

{
|vx(ω, t, x)| ≤ |v(ω, t, x)|, ∀ (t, x) ∈ [0, τ∗) × T

}
≥ p + q. (6.17)

In view of H1 ↪→ L∞, (6.3) and (6.17), we arrive at

P

{
‖vx(ω, t)‖L∞ ≤ ‖v(ω, t)‖L∞ � ‖v(ω, t)‖H1

= ‖u0‖H1 , ∀ t ∈ [0, τ∗)
}

≥ p + q.

Via (6.1), we obtain the desired estimate. �

Proof of Theorem 2.4. Let (u, τ∗) be the maximal solution to (1.12). Then
Lemma 6.2 implies that

P

{
‖u‖W 1,∞ � 2β(ω, t)‖u0‖H1 , ∀ t ∈ [0, τ∗)

}
≥ p + q.

It follows from (i) in Lemma 3.7 that supt>0 β(ω, t) < ∞ P−a.s. Then we can
infer from (2.5) that P{τ∗ = ∞} ≥ p+q. That is to say, P {u exists globally} ≥
p + q. �
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6.3. Theorem 2.5: blow-up scenario

Proof of Theorem 2.5. Recall (6.1). By (i) in Lemma 3.7, A = A(ω) =
supt>0 β(ω, t) < ∞ P − a.s. Then we can first infer from H1 ↪→ L∞ and
(6.3) that for all t > 0,

sup
t>0

‖u‖L∞ � A‖u0‖H1 < ∞ P − a.s.,

which is (2.9). Now we prove (2.10). Let

Ω1 =
{

lim sup
t→τ∗

‖u(t)‖Hs = ∞
}

and Ω2 =
{

lim inf
t→τ∗

[
min
x∈T

ux(t, x)
]

= −∞
}

.

By the previously proven blow-up criterion in Theorem 2.1, we have that for
a.e. ω ∈ Ω2, ω ∈ Ω1. Now we prove that for a.e. ω ∈ Ω1, ω ∈ Ω2. Suppose not.
Then there is a positive random variable K = K(ω) < ∞ almost surely such
that

ux(ω, t, x) > −K, (t, x) ∈ [0, τ∗(ω)) × T P − a.s.

Using (6.12), (6.1) and integration by parts, we find that

d
dt

∫
T

V 2 dx = 2
∫
T

V [−βvVx − 2βV vx + γVx] dx

= −4β

∫
T

V 2vx dx − 2β

∫
T

V Vxv dx

= −3β

∫
T

V 2vx dx ≤ 3K

∫
T

V 2 dx, t ∈ [0, τ∗) P − a.s.,

which yields that

‖V ‖L2 � e3Kt‖V (0)‖L2 < ∞, t ∈ [0, τ∗) P − a.s.

Combining the above estimate, (6.1) and A(ω) = supt>0 β(ω, t) < ∞ P − a.s.
(cf. (i) in Lemma 3.7), we have that

‖u(t)‖H2 � β(t)eKt‖u(0)‖H2 < ∞, t ∈ [0, τ∗) P − a.s.

By the embedding H2 ↪→ W 1,∞ and the blow-up criterion in Theorem 2.1,
almost surely we have that ‖u(t)‖Hs can be extended beyond τ∗. Therefore
we obtain a contradiction and hence ω ∈ Ω2. Therefore we obtain (2.10). �

6.4. Theorem 2.6: wave breaking and its probability

The proof of Theorem 2.6 relies on certain properties of the solution v to the
problem (6.2).

Proposition 6.2. Let S = (Ω,F ,P, {Ft}t≥0,W ) be a fixed stochastic basis, let
b(t) satisfy Assumption 2.2, c0 + γ = 0, s > 3 and u0 = u0(x) ∈ Hs be an Hs-
valued F0 measurable random variable with E‖u0‖2Hs < ∞. Let (u, τ∗) be the
maximal solution to (1.11) with initial random variable u0. Recall the process
β given in (6.1) and the constant λ as in Eq. (2.11). Let N = λ

2 ‖u0‖2H1 < ∞.
Then for v, defined by (6.1), we have that

M(ω, t) := min
x∈T

[vx(ω, t, x)] (6.18)
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satisfies the following estimate almost surely:
d
dt

M(t) ≤βN − β
1
2
M2(t) a.e. on (0, τ∗). (6.19)

Moreover, if M(0) < −
√

2N almost surely, then

M(t) ≤ −
√

2N, ∀ t ∈ [0, τ∗) P − a.s., (6.20)

and M is non-increasing on [0, τ∗) P − a.s.

Proof. For any v ∈ H1, it is easy to see that, cf. [10],

GT ∗
(

v2 +
1
2
v2

x

)
(x) ≥ 1

2
v2. (6.21)

Using (1.9), (1.7), (6.4) and (6.1), we find for c0 + γ = 0 that

vtx − γvxx + βvvxx = βv2 − β
1
2
v2

x − βGT ∗
(

v2 +
1
2
v2

x

)
, t ∈ [0, τ∗) P − a.s.

(6.22)

By Proposition 6.1, v(ω, t, x) ∈ C1([0, τ∗);Hs−1) with s > 3 almost surely.
To apply Lemma 3.6 for each path, we recall (6.18) and let z(ω, t) be a point
where the infimum of vx is attained as in Lemma 3.6. Then for a.e. ω ∈ Ω,
vxx(t, z(ω, t)) = 0. Moreover, Lemma 3.6 also implies that for a.e. ω ∈ Ω, the
path of M(ω, t) is locally Lipschitz.

Then for almost all t ∈ [0, τ∗), evaluating (6.22) in (t, z(t)) with using
Lemma 3.6 yields for a.e. ω ∈ Ω,

d
dt

M(t) = βv2(t, z(t))

−β
1
2
M2(t) − βGT ∗

(
v2 +

1
2
v2

x

)
(t, z(t)) a.e. on (0, τ∗). (6.23)

Since E‖u0‖Hs < ∞, N = λ
2 ‖u0‖2H1 < ∞ P − a.s. Applying (6.21), (2.11) and

(6.3) in the above equation gives that for a.e. ω ∈ Ω,
d
dt

M(t) ≤ β
1
2
v2(t, z(t)) − β

1
2
M2(t)

≤ β
λ

2
‖v(t)‖2H1 − β

1
2
M2(t)

= βN − β
1
2
M2(t) a.e. on (0, τ∗),

which is (6.19). In order to show (6.20), we define τ as

τ(ω) := inf
{

t > 0 : M(ω, t) > −
√

2N
}

∧ τ∗.

If M(0) < −√
2N , then P{τ > 0} = 1. Now we only need to show that

P{τ(ω) = τ∗(ω)} = 1. (6.24)

Actually, failure of (6.24) would ensure the existence of a set Ω′ ⊆ Ω such
that P{Ω′} > 0 and 0 < τ(ω′) < τ∗(ω′) for a.e. ω′ ∈ Ω′. In view of the time
continuity of M (recall Lemma 3.6), we find that M(ω′, τ(ω′)) = −√

2N. From
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(6.19) we have that M(ω′, t) is non-increasing for t ∈ [0, τ(ω′)). Hence by the
continuity of the path of M(ω′, t) again, we see that M(ω′, τ(ω′)) ≤ M(0) <

−√
2N , which is a contradiction. Hence (6.24) is true and so is (6.20). �

Proposition 6.3. Let all the conditions as in Proposition 6.2 hold true. Let
0 < c < 1 and

Ω∗ =
{

ω : β(t) ≥ ce− b∗
2 t for all t

}
.

If M(0) < −1
2

√
(b∗)2

c2
+ 8N − b∗

2c
almost surely, then for a.e. ω ∈ Ω∗,

τ∗(ω) < ∞.

Proof. We rewrite (6.19) as

d
dt

M(t) ≤ −β

2

(
1 − 2N

M2(0)

)
M2(t)

− βN

M2(0)
M2(t) + βN a.e. on (0, τ∗) P − a.s.

Due to Proposition 6.2, we have

d
dt

M(t) ≤ − β(t)
2

(
1 − 2N

M2(0)

)
M2(t) −

(
M2(t)
M2(0)

− 1
)

β(t)N

≤ − β(t)
2

(
1 − 2N

M2(0)

)
M2(t) a.e. on (0, τ∗) P − a.s.

Since M(t) is locally Lipschitz continuous in t and satisfies (6.20), 1
M(t) is also

locally Lipschitz continuous in t almost surely. Therefore an integration leads
to

1
M(t)

− 1
M(0)

≥
(

1 − 2N

M2(0)

)∫ t

0

β(t′)
2

dt′, t ∈ (0, τ∗) P − a.s.,

which together with (6.20) means that for a.e. ω ∈ Ω∗,

− 1
M(0)

≥
(

1
2

− N

M2(0)

)∫ τ∗

0

β(t) dt ≥
(

1
2

− N

M2(0)

)(
2c

b∗ − 2c

b∗ e− b∗
2 τ∗
)

.

Recall that M(0) < −1
2

√
(b∗)2

c2
+ 8N − b∗

2c
almost surely. We finally arrive at

(
1
2

− N

M2(0)

)
2c

b∗ e− b∗
2 τ∗ ≥ 2c

b∗

(
1
2

− N

M2(0)

)
+

1
M(0)

> 0 a.e. on Ω∗.

Therefore we have τ∗ < ∞ a.e. on Ω∗. �

Proof of Theorem 2.6. Proposition 6.3 implies that

P {τ∗ < ∞} ≥ P

{
β(t) ≥ ce− b∗

2 t for all t
}

.

Since b2(t) < b∗ for all t > 0, we have{
e
∫ t
0 b(t′)dWt′ > c for all t

}
⊆
{

β(t) ≥ ce− b∗
2 t for all t

}
.
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Therefore we arrive at

P {τ∗ < ∞} ≥ P

{
e
∫ t
0 b(t′)dWt′ > c for all t

}
> 0,

which gives the desired estimate in Theorem 2.6. �

6.5. Theorem 2.7: wave breaking rate

As the last contribution of the paper, we prove Theorem 2.7, which provides
a precise bound on the wave breaking rate.

Proof of Theorem 2.7. Recalling (6.23), we have that almost surely

−β

∥∥∥∥GT ∗
(

v2 +
1
2
v2

x

)∥∥∥∥
L∞

≤ d
dt

M(t) + β
1
2
M2(t) ≤ β‖v‖2L∞ a.e. on (0, τ∗).

Using ‖GT‖L∞ < ∞ and (6.3), we have∥∥∥∥GT ∗
(

v2 +
1
2
v2

x

)∥∥∥∥
L∞

�
∥∥∥∥v2 +

1
2
v2

x

∥∥∥∥
L1

� ‖v‖2H1 = ‖u0‖2H1 .

Therefore there is a constant C > 0 such that

−Cβ‖u0‖2H1 ≤ d
dt

M(t) + β
1
2
M2(t) ≤ Cβ‖u0‖2H1 a.e. on (0, τ∗). (6.25)

Let ε ∈ (0, 1
2 ) and K = C‖u0‖2H1 . Since lim inft→τ∗ M(t) = −∞ a.e. on

{τ∗ < ∞} and K < ∞ almost surely (cf. Theorem 2.5), for a.e. ω ∈ Ω, there
is some t0 = t0(ω, ε) ∈ (0, τ∗) with M(t0) < 0 and M2(t0) > K

ε . Similar to the
proof of (6.20), we have that for a.e. ω ∈ {τ∗ < ∞},

M2(t) >
K

ε
, t ∈ [t0, τ∗). (6.26)

A combination of (6.25) and (6.26) enables us to infer that for a.e. ω ∈ {τ∗ <
∞},

β
K

M2(t)
+

β

2
> −

d
dtM(t)
M2(t)

> −β
K

M2(t)
+

β

2
a.e. on (t0, τ∗).

Since for a.e. ω ∈ {τ∗ < ∞}, the path of M is locally Lipschitz in t and satisfies
(6.26), 1

M is also locally Lipschitz.
Then we integrate the above estimate on (t, τ∗) to derive that for a.e.

ω ∈ {τ∗ < ∞},(
1
2

+ ε

)∫ τ∗

t

β(t′) dt′ ≥ − 1
M(t)

≥
(

1
2

− ε

)∫ τ∗

t

β(t′) dt′, t0 < t < τ∗.

Therefore we can infer from (6.1) and (6.18) that for a.e. ω ∈ {τ∗ < ∞},

1
1
2 + ε

≤ −min
x∈T

[ux(ω, t, x)]β−1(t)
∫ τ∗

t

β(t′) dt′ ≤ 1
1
2 − ε

, t0 < t < τ∗.

Since ε ∈ (0, 1
2 ) is arbitrary, we obtain that for β(ω, t) = e

∫ t
0 b(t′) dWt′−∫ t

0
b2(t′)

2 dt′
,

lim
t→τ∗

(
min
x∈T

[ux(t, x)]
∫ τ∗

t

β(t′) dt′
)

= −2β(τ∗) a.e. on {τ∗ < ∞},
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which completes the proof. �
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