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Abstract. We identify a class of measure-valued solutions of the barotropic
Euler system on a general (unbounded) spatial domain as a vanishing vis-
cosity limit for the compressible Navier–Stokes system. Then we establish
the weak (measure-valued)–strong uniqueness principle, and, as a corol-
lary, we obtain strong convergence to the Euler system on the lifespan of
the strong solution.
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1. Introduction

We consider the compressible Euler system with damping

∂t� + divx m = 0, (1)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp(�) + am = 0; (2)

here � = �(t, x) denotes the density, m = m(t, x) the momentum - with the
convection that the convective term is equal to zero whenever � = 0 - and
p = p(�) the pressure. The term am, with a ≥ 0, represents “friction”. We will
study the system on the set (t, x) ∈ (0, T ) × Ω, where T > 0 is a fixed time,
Ω ⊆ R

N with N = 2, 3, can be a bounded or unbounded domain, along with
the boundary condition

m · n|∂Ω = 0, (3)
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for all t ∈ [0, T ]; if Ω is unbounded, we impose the condition at infinity

� → �, m → 0 as |x| → ∞, (4)

with a constant � ≥ 0. We also consider the following initial data

�(0, ·) = �0, m(0, ·) = m0, (5)

with �0 ≥ 0. We finally assume that the pressure p is given by the isentropic
state equation

p(�) = A�γ , (6)

where γ > 1 is the adiabatic exponent and A > 0 is a constant.
Our goal is to identify a class of generalized - dissipative measure valued

(DMV) solutions - for the Euler system (1), (2) as a vanishing viscosity limit
of the Navier–Stokes equations. More specifically, we start considering the set

ΩR = Ω ∩ BR, BR = {x ∈ R
N : |x| < R},

where we assume ΩR to be at least a Lipschitz domain, and we consider the
Navier–Stokes system:

∂t�R + divx(�RuR) = 0, (7)

∂t(�RuR) + divx(�RuR ⊗ uR) + ∇xp(�R) =
1

R
divx S(∇xuR) − a�RuR; (8)

now uR = uR(t, x) is the velocity and SR = S(∇xuR) is the viscous stress,
which we assume to be a linear function of the velocity gradient, more specif-
ically to satisfy the Newton’s rheological law

SR = S(∇xuR) = μ

(
∇xuR + ∇T

x uR − 2
N

(divx uR)I
)

+ η(divx uR)I, (9)

where μ > 0, η ≥ 0 are constants. Introducing λ = η − 2
N μ we also have

S(∇xuR) = μ(∇xuR + ∇T
x uR) + λ(divx uR)I, μ > 0, λ ≥ − 2

N
μ. (10)

As our goal is to perform the vanishing viscosity limit for the Navier–
Stokes system, we impose the complete slip boundary conditions on ∂Ω:

uR · n|∂Ω = 0, (SR · n) × n|∂Ω = 0, (11)

and the no–slip boundary conditions on ∂BR:

uR|∂BR
= 0, (12)

for all t ∈ [0, T ]. Conditions (11) and (12) may be compatible but they do
not give rise to any extra analytical problem assuming that ∂BR ∩ ∂Ω = ∅
for R large enough, meaning that ∂Ω is a compact set. That is Ω is either (i)
bounded, or (ii) exterior domain, or (iii) Ω = R

N . For the sake of simplicity,
we restrict ourselves to these three cases.

Finally, we impose the initial conditions independent of R:

�R(0, ·) = �0, (�RuR)(0, ·) = m0 in ΩR, (13)

where �0,m0 are the initial conditions of the Euler system as in (5).
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The strategy of identifying the vanishing viscosity limit with a measure-
valued solution to the Euler system can be seen as the “compressible” counter-
part of the pioneering work from Di Perna and Majda [4] in the incompressible
case. The compressible case was treated by Sueur [18] on a bounded domain
by means of the relative energy method. Our goal is to propose an alternative
approach based on the concept of dissipative measure-valued solutions and
extend the result to a more general class of domains. A similar limit problem
was also considered by Březina and Mácha [2] on the flat torus, where the
starting system is the compressible Navier–Stokes one with some extra terms
modelling non–local interaction forces, and by Chen and Glimm [3] on the
whole domain R

3, with a Kolmogorov–type hypothesis. Notice that the con-
cept of dissipative measure-valued solution is of independent interest and has
been used recently in the analysis of convergence of certain numerical schemes,
see [9].

The paper is organized as follows. In Sect. 2 we show that the solu-
tions of the Navier–Stokes system converge to the measure-valued solution of
the Euler system with damping in the zero viscosity limit, cf. Theorem 2.3.
Sect. 3 is devoted to the proof of the weak-strong uniqueness principle for
the Euler system with damping, i.e., if the system admits a solution in the
classical sense then it must coincide with the measure-valued solution em-
anating from the same initial data, cf. Theorem 3.3. Despite of the stan-
dard Euler system, the linear damping term guarantees the existence of a
strong solution and therefore the result can be applied to concrete examples,
cf. [15,16] in the case of a bounded domain, and [12,13,17] for the whole
domain. Finally, combining the two main results of the previous sections,
we can conclude in Sect. 4 that solutions of the Navier–Stokes system con-
verge to smooth solution of the Euler system as long as the latter exists, cf.
Theorem 4.1.

2. From the Navier–Stokes to the Euler system

2.1. Weak formulation

Choosing a constant background density � ≥ 0, the Navier–Stokes system (7),
(8) can be rewritten as

∂t(�R − �) + divx(�RuR) = 0, (14)
∂t(�RuR) + divx(�RuR ⊗ uR) + ∇x[p(�R) − p(�)]

=
1
R

divx S(∇xuR) − a�RuR. (15)

If we multiply both equations (7), (8) by test functions and integrate
over the domain ΩR, knowing that the densities �R and the momenta �RuR

are weakly continuous in time, we get the weak formulation of our problem:
[∫

ΩR

(�R − �)ϕ(t, ·)dx

]t=τ

t=0

=
∫ τ

0

∫
ΩR

[(�R − �)∂tϕ + �RuR · ∇xϕ]dxdt, (16)
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for any τ ∈ [0, T ) and all ϕ ∈ C1
c ([0, T ] × ΩR), and

[∫
ΩR

�RuR · ϕ(t, ·)dx

]t=τ

t=0

=
∫ τ

0

∫
ΩR

(�RuR · ∂tϕ + �RuR ⊗ uR : ∇xϕ) dxdt

+
∫ τ

0

∫
ΩR

[p(�R) − p(�)]divxϕdxdt

−
∫ τ

0

∫
ΩR

[
1
R
S(∇xuR) : ∇xϕ + a�RuR · ϕ

]
dxdt,

(17)
for any τ ∈ [0, T ) and all ϕ ∈ C1

c ([0, T ] × Ω ∩ BR;RN ) with ϕ · n|∂Ω = 0.
Multiplying (8) by u and introducing the pressure potential P as the

solution of the equation

�P ′(�) − P (�) = p(�),

which, for instance, in our case can be taken as

P (�) = �

∫ �

�

p(z)
z2

dz

(notice in particular that P (�) = 0), we get the energy equality

d

dt

∫
ΩR

[
1
2
�R|uR|2 + P (�R)

]
dx + a

∫
ΩR

�R|uR|2dx

+
1
R

∫
ΩR

S(∇xuR) : ∇xuRdx = 0. (18)

Integrating the first equation over ΩR along with conditions (11), (12), we get

d

dt

∫
ΩR

(�R − �)dx = 0 ⇒ d

dt

∫
ΩR

P ′(�)(�R − �)dx = 0.

Since P (�) = 0, we can rewrite (18) as

d

dt

∫
ΩR

[
1
2
�R|uR|2 + P (�R) − P ′(�)(�R − �) − P (�)

]
dx

+a

∫
ΩR

�R|uR|2dx +
1
R

∫
ΩR

S(∇xuR) : ∇xuRdx = 0,

from which the energy inequality follows∫
ΩR

[
1
2
�R|uR|2 + P (�R) − P ′(�)(�R − �) − P (�)

]
(τ, ·)dx

+a

∫ τ

0

∫
ΩR

�R|uR|2dxdt +
1
R

∫ τ

0

∫
ΩR

S(∇xuR) : ∇xuRdxdt

≤
∫

ΩR

[
1
2

|m0|2
�0

+ P (�0) − P ′(�)(�0 − �) − P (�)
]

dx,

(19)

for a.e. τ ∈ [0, T ]. For more details see [7], Section 4.2.
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2.2. Existence of Weak Solutions

To guarantee the existence of weak solutions, we can now use the following
result.

Theorem 2.1. Let ΩR ⊂ R
N be a Lipschitz domain with compact boundary

ΩR = Ω ∩ BR, ∂Ω ∩ ∂BR = ∅, and let T > 0 be arbitrary. Suppose that the
initial data satisfy

�0 ∈ Lγ(ΩR), �0 ≥ 0 a.e. in ΩR,
|(�u)0|2

�0
∈ L1(ΩR).

Let the pressure p satisfy (6) with

γ >
N

2
.

Then the Navier–Stokes system (7)–(13) admits a weak solution [�R,uR] in
(0, T ) × ΩR such that

1. the density �R = �R(t, x) is a non-negative function a.e. in (0, T ) × ΩR

and satisfies

�R ∈ Cweak([0, T ];Lγ(ΩR));

the velocity uR = uR(t, x) satisfies

uR ∈ L2(0, T ;W 1,2(ΩR;RN )), uR · n|∂Ω = 0, uR|∂BR
= 0;

the momentum �RuR = (�RuR)(t, x) satisfies

�RuR ∈ Cweak([0, T ];L
2γ

γ+1 (ΩR;RN ));

2. the weak formulations of the continuity equation (16) and of the momen-
tum balance (17) are satisfied in (0, T ) × ΩR;

3. the energy inequality (19) holds for a.e. τ ∈ [0, T ].

The proof follows the same line as in [6], Theorem 7.1. The fact that the
boundary conditions are different on ∂Ω and ∂BR does not present any extra
difficulty as the closures of these two components of the boundary are disjoint.

2.3. Limit passage

Starting from the family {�R−�,mR = �RuR}R>0 of dissipative weak solutions
to the reformulated Navier–Stokes system (14), (15) with the same initial data
(13), and extending uR to be zero and �R as � outside BR, we can now replace
ΩR by Ω in the previous integrals (16), (17) and (19); more precisely, from
now on we will consider

[∫
Ω

(�R − �)ϕ(t, ·)dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[(�R − �)∂tϕ + �RuR · ∇xϕ]dxdt, (20)
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for any τ ∈ [0, T ) and all ϕ ∈ C1
c ([0, T ] × Ω),[∫

Ω

�RuR · ϕ(t, ·)dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[�RuR · ∂tϕ + �RuR ⊗ uR : ∇xϕ + (p(�R) − p(�))divxϕ] dxdt

−
∫ τ

0

∫
Ω

[
1
R
S(∇xuR) : ∇xϕ + a�RuR · ϕ

]
dxdt

(21)
for any τ ∈ [0, T ) and all ϕ ∈ C1

c ([0, T ] × Ω;RN ), ϕ · n|∂Ω = 0, and∫
Ω

[
1
2
�R|uR|2 + P (�R) − P ′(�)(�R − �) − P (�)

]
(τ, ·)dx

+ a

∫ τ

0

∫
Ω

�R|uR|2dxdt +
1
R

∫ τ

0

∫
ΩR

S(∇xuR) : ∇xuRdxdt

≤
∫

Ω

[
1
2

|m0|2
�0

+ P (�0) − P ′(�)(�0 − �) − P (�)
]

dx,

(22)

for a.e. τ ∈ [0, T ]. Note that this is correct for R large enough as the test
functions are compactly supported in ΩR.

Now, we suppose that the initial data have been chosen on Ω in such a
way that the initial energy is finite:∫

Ω

[
1
2

|m0|2
�0

+ P (�0) − P ′(�)(�0 − �) − P (�)
]

dx ≤ E0. (23)

We then easily deduce from the energy inequality (22) that

ess sup
t∈(0,T )

‖√
�RuR(t, ·)‖L2(Ω;RN ) ≤ c(E0), (24)

ess sup
t∈(0,T )

‖(P (�R) − P ′(�)(�R − �) − P (�))(t, ·)‖L1(Ω) ≤ c(E0), (25)

1
R

∫ T

0

∫
Ω

S(∇xuR) : ∇xuRdxdt ≤ c(E0), (26)

where the bounds are independent of R. Next, from (26), we can deduce that

1
R

∫ T

0

‖S(∇xuR)(t, ·)‖2
L2(Ω;RN ×RN )dt ≤ c(E0). (27)

We can now use the relation

P (�) − P ′(�)(� − �) − P (�) ≥ c(�)

{
(� − �)2 for �

2 < � < 2�

(1 + �γ) otherwise,

with a positive constant c(�) (see [8]). More precisely, following [10], Section
4.7, we introduce the decomposition of an integrable function hR:

hR = [hR]ess + [hR]res,

where

[hR]ess = χ(�R)hR, [hR]res = (1 − χ(�R))hR,
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χ ∈ C∞
c (0,∞), 0 ≤ χ ≤ 1, χ(r) = 1 for r ∈

[
�

2
, 2�

]
.

Then we have
ess sup
t∈(0,T )

‖[�R − �]ess(t, ·)‖L2(Ω)

= ess sup
t∈(0,T )

∫
Ω

(�R − �)2χ(�R)(t, ·)dx

≤ 1
c(�)

ess sup
t∈(0,T )

‖(P (�R) − P ′(�)(�R − �) − P (�))(t, ·)‖L1(Ω)

≤ c(E0)

(28)

and
ess sup
t∈(0,T )

‖[�R − �]res(t, ·)‖Lγ(Ω)

= ess sup
t∈(0,T )

∫
Ω

|�R − �|γ(1 − χ(�R))(t, ·)dx

� ess sup
t∈(0,T )

∫
Ω

(1 + �γ)(1 − χ(�R))(t, ·)dx

≤ 1
c(�)

ess sup
t∈(0,T )

‖(P (�R) − P ′(�)(�R − �) − P (�))(t, ·)‖L1(Ω)

≤ c(E0),

(29)

where � means modulo a multiplication constant. In particular this implies
that

[�R − �]ess
∗
⇀ f�−� in L∞(0, T ;L2(Ω)),

[�R − �]res
∗
⇀ g�−� in L∞(0, T ;Lγ(Ω));

passing to suitable subsequences as the case may be; defining
� − � := f�−� + g�−�, we have that

�R − �
∗
⇀ � − � in L∞(0, T ;L2 + Lγ(Ω)).

We can repeat the same procedure for the momenta; indeed, using (24) we
obtain

ess sup
t∈(0,T )

‖[�RuR]ess(t, ·)‖L2(Ω) = ess sup
t∈(0,T )

∫
Ω

�R · �R|uR|2χ(�R)(t, ·)dx

≤ 2� ess sup
t∈(0,T )

‖√
�RuR(t, ·)‖L2(Ω)

≤ c(E0);

(30)

we also have

ess sup
t∈(0,T )

‖[
√

�R]res(t, ·)‖L2γ(Ω) = ess sup
t∈(0,T )

∫
Ω

�γ
R(1 − χ(�R))(t, ·)dx

≤ ess sup
t∈(0,T )

∫
Ω

(�γ
R + 1)(1 − χ(�R))(t, ·)dx
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≤ c(E0),

which, together with (24) and Hölder’s inequality with p = γ + 1, gives
ess sup
t∈(0,T )

‖[�RuR]res(t, ·)‖
L

2γ
γ+1 (Ω)

≤ ess sup
t∈(0,T )

‖[
√

�R]res(t, ·)‖L2γ(Ω)‖√
�RuR(t, ·)‖L2(Ω)

≤ c(E0).

(31)
Then we obtain

�RuR
∗
⇀ m in L∞(0, T ;L2 + L

2γ
γ+1 (Ω)),

passing to suitable subsequences as the case may be. In a similar way we have

ess sup
t∈(0,T )

‖[p(�R) − p(�)]ess(t, ·)‖L2(Ω) = ess sup
t∈(0,T )

∫
Ω

|p(�R) − p(�)|2χ(�R)(t, ·)dx

≤ p′(2�) ess sup
t∈(0,T )

‖[�R − �]ess(t, ·)‖L2(Ω)

≤ c(E0),

and

ess sup
t∈(0,T )

‖[p(�R) − p(�)]res(t, ·)‖L1(Ω)

= A ess sup
t∈(0,T )

∫
Ω

|�γ
R − �γ |(1 − χ(�R))(t, ·)dx

≤ Amax{�γ , 1} ess sup
t∈(0,T )

∫
Ω

(1 + �γ
R)(1 − χ(�R))(t, ·)dx

≤ c(E0).

Furthermore, noticing that

|�RuR ⊗ uR| � 1
2
�R|uR|2,

from (24) we deduce that also the convective terms are uniformly bounded in
the non-reflexive space L1((0, T ) × Ω), or better, in L∞(0, T ;L1(Ω)).

There are two disturbing phenomena that may occur to bounded se-
quences in L1: oscillations and concentrations. The idea is then to see L1((0, T )
×Ω) as embedded in the space of bounded Radon measures M([0, T ]×Ω) - that

happens to be the dual to the separable space C0([0, T ]×Ω) = Cc([0, T ] × Ω)
‖·‖∞

- through the identification

μf (ϕ) =
∫ T

0

∫
Ω

fϕdxdt, for all ϕ ∈ C0([0, T ] × Ω),

if f ∈ L1((0, T ) × Ω).
Accordingly, we may assume

�R − �
∗
⇀ � − � in L∞(0, T ;L2 + Lγ(Ω));

�RuR
∗
⇀ m in L∞(0, T ;L2 + L

2γ
γ+1 (Ω));

μp(�R)−p(�)
∗
⇀ μ{p}−p(�) in M([0, T ] × Ω);
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μ�RuR⊗uR

∗
⇀ μ{M} in M([0, T ] × Ω;RN × R

N );

μ 1
2�R|u|2+P (�R)−P ′(�)(�R−�)−P (�)

∗
⇀ μ{E} in M([0, T ] × Ω),

passing to suitable subsequences as the case may be. The notation μ{p}−p(�)

means that

〈μp(�R)−p(�);ϕ〉 =
∫ T

0

∫
Ω

[p(�R) − p(�)]ϕdxdt →
∫ T

0

∫
Ω

[{p} − p(�)]ϕdxdt

= 〈μ{p}−p(�);ϕ〉
as R → ∞, for every ϕ ∈ Cc([0, T ] × Ω); the same holds for the other conver-
gences.

We can now let R → ∞ in the weak formulation of our initial problem
(14), (15); notice that the R-dependent viscous stress tensor vanishes. Indeed,
using (27) and Hölder’s inequality we get∣∣∣∣∣

1
R

∫ T

0

∫
Ω

S(∇xuR) : ∇xϕ dxdt

∣∣∣∣∣
≤ 1√

R

∥∥∥∥ 1√
R
S(∇xuR)

∥∥∥∥
L2((0,T )×Ω)

‖∇xϕ‖L2((0,T )×Ω)

≤ c(E0)√
R

‖∇xϕ‖L2((0,T )×Ω) .

Then we get ∫ T

0

∫
Ω

[(� − �)∂tϕ + m · ∇xϕ]dxdt = 0,

for every ϕ ∈ C1
c ((0, T ) × Ω), and

∫ T

0

∫
Ω

[m · ∂tϕ + {M} : ∇xϕ + ({p} − p(�))divxϕ − am · ϕ] dxdt = 0,

for every ϕ ∈ C1
c ((0, T ) × Ω;RN ). We can equivalently write

∫ T

0

∫
Ω

[�∂tϕ + m · ∇xϕ]dxdt = 0,

for every ϕ ∈ C1
c ((0, T ) × Ω), and

∫ T

0

∫
Ω

[m · ∂tϕ + {M} : ∇xϕ + {p}divxϕ − am · ϕ] dxdt = 0,

for every ϕ ∈ C1
c ((0, T ) × Ω;RN ).

As a matter of fact, the limit for �R − � can be strengthened to

�R − � → � − � in Cweak([0, T ];L2 + Lγ(Ω)); (32)

the same holds for the limit of �RuR:

�RuR → m in Cweak([0, T ];L2 + L
2γ

γ+1 (Ω;RN )). (33)
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We can then rewrite the last two integral equations as∫
Ω

�ϕ(τ, ·)dx −
∫

Ω

�ϕ(0, ·)dx =
∫ τ

0

∫
Ω

[�∂tϕ + m · ∇xϕ]dxdt, (34)

for any τ ∈ [0, T ) and any ϕ ∈ C1
c ([0, T ] × Ω) and∫

Ω

m · ϕ(τ, ·)dx −
∫

Ω

m · ϕ(0, ·)dx

=
∫ τ

0

∫
Ω

[m · ∂tϕ + {M} : ∇xϕ + {p}divxϕ − am · ϕ] dxdt, (35)

for any τ ∈ [0, T ) and any ϕ ∈ C1
c ([0, T ] × Ω;RN ), ϕ · n|∂Ω = 0.

Finally, using the generalization of the concept of Lebesgue point to
Radon measures, we can deduce from the energy inequality (22)

∫
Ω

{E}(τ, ·)dx + a

∫ τ

0

∫
Ω

trace{M}dxdt ≤
∫

Ω

{E}(0, ·)dx, (36)

for a.e. τ ∈ (0, T ), where
∫

Ω

{E}(τ, ·)dx = lim
δ→0

1
2δ

∫ τ+δ

τ−δ

∫
Ω

{E}dxdt.

Equations (34), (35), and (36) form a suitable platform for introducing
the measure-valued solutions of the Euler system. The exact definition requires
the concept of Young measure; the interested reader can find all the details in
the Appendix A.

2.4. Dissipative measure-valued solution for the compressible Euler system
with damping

Motivated by the discussion in Appendix A, we are ready to introduce the
concept of dissipative measure-valued solution to the compressible Euler sys-
tem with damping. It can be seen as a generalization of a similar concept
introduced by Gwiazda et al. [11]. While the definition in [11] is based on the
description of concentrations via the Alibert–Bouchitté defect measures [1],
our approach is motivated by [5], where the mere inequality (40) is required
postulating the domination of the concentrations by the energy dissipation de-
fect. This strategy seems to fit better the studies of singular limits on general
physical domains performed in the present paper.

Definition 2.2. A parametrized family of probability measures

νt,x : (t, x) ∈ (0, T ) × Ω → P([0,∞) × R
N ),

ν ∈ L∞
weak((0, T ) × Ω;P([0,∞) × R

N )),

is a dissipative measure-valued solution of the problem (1), (2) with the initial
condition {ν0,x}x∈Ω if
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1. the integral identity∫
Ω

〈ντ,x; �〉ϕdx −
∫

Ω

〈ν0,x; �〉ϕdx =
∫ τ

0

∫
Ω

[〈νt,x; �〉∂tϕ + 〈νt,x;m〉 · ∇xϕ]dxdt

+
∫ τ

0

∫
Ω

∇xϕ · dμc (37)

holds for all τ ∈ [0, T ), and for all ϕ ∈ C1
c ([0, T ] × Ω), where μc ∈

M([0, T ] × Ω;RN ) is a vector–valued measure;
2. the integral identity∫
Ω

〈ντ,x;m〉 · ϕ(τ, ·)dx −
∫

Ω

〈ν0,x;m〉 · ϕ(0, ·)dx

=
∫ τ

0

∫
Ω

[
〈νt,x;m〉 · ∂tϕ +

〈
νt,x;

m ⊗ m

�

〉
: ∇xϕ

]
dxdt

+
∫ τ

0

∫
Ω

[〈νt,x; p(�)〉divx ϕ − a〈νt,x;m〉 · ϕ] dxdt +
∫ τ

0

∫
Ω

∇xϕ : dμm,

(38)
holds for all τ ∈ [0, T ) and for all ϕ ∈ C1

c ([0, T ]×Ω;RN ), ϕ ·n|∂Ω, where
μm ∈ M([0, T ] × Ω;RN × R

N ) is a tensor–valued measure; both μc, μm

are called concentration measures;
3. the following inequality∫

Ω

〈
ντ,x;

1
2

|m|2
�

+ P (�) − P ′(�)(� − �) − P (�)
〉

dx

+ a

∫ τ

0

∫
Ω

〈
νt,x;

|m|2
�

〉
dxdt + D(τ)

≤
∫

Ω

〈
ν0,x;

1
2

|m|2
�

+ P (�) − P ′(�)(� − �) − P (�)
〉

dx,

(39)

holds for a.e. τ ∈ (0, T ), where D ∈ L∞(0, T ), D ≥ 0 is called dissipation
defect of the total energy;

4. there exists a constant C > 0 such that∫ τ

0

∫
Ω

d|μc| +
∫ τ

0

∫
Ω

d|μm| ≤ C

∫ τ

0

D(t)dt, (40)

for a.e. τ ∈ (0, T ).

Now, summarizing the discussion concerning the vanishing viscosity limit
of the Navier–Stokes system, we can state the first result of the present paper.

Theorem 2.3. Let Ω ⊂ R
N , N = 2, 3 be a domain with compact Lipschitz

boundary and � ≥ 0 be a given far field density if Ω is unbounded. Suppose
that γ > N

2 and let �R, uR be a family of weak solutions to the Navier–Stokes
system (7) – (12) in

(0, T ) × ΩR, ΩR = Ω ∩ BR.

Let the corresponding initial data �0, u0 be independent of R satisfying

�0 ≥ 0,

∫
Ω

[
1
2
�0|u0|2 + P (�0) − P ′(�)(�0 − �) − P (�)

]
dx ≤ E0.
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Then the family {�R,mR = �RuR}R>0 generates, as R → ∞, a Young
measure {νt,x}t∈(0,T );x∈Ω which is a dissipative measure-valued solution of the
Euler system with damping (1), (2).

3. Weak-strong uniqueness

Our next goal is to show that the dissipative measure-valued solutions in-
troduced in the previous section satisfy an extended version of the energy
inequality (39) known as relative energy inequality.

We introduce the relative energy functional :

E(ν = νt,x(�,m)|r,U)

=
∫

Ω

〈
νt,x;

1
2�

(|m − �U|2) + P (�) − P ′(r)(� − r) − P (r)
〉

dx,

If � �→ p(�) is strictly increasing in (0,∞), which is true in our case, then the
pressure potential P is strictly convex; indeed

P ′′(�) =
p′(�)

�
> 0.

For a differentiable function this is equivalent in saying that the function lies
above all of its tangents:

P (�) ≥ P ′(r)(� − r) + P (r)

for all �, r ∈ (0,∞), and the equality holds if and only if � = r. Thus, we
deduced that E ≥ 0, where equality holds if and only if

νt,x = δr(t,x),r(t,x)U(t,x) for a.e. (t, x) ∈ (0, T ) × Ω.

We can now prove the following

Theorem 3.1. Let [r,U] be a strong solution of the compressible Euler system
with damping with compactly supported initial data so that U ∈ C∞

c ([0, T ] ×
Ω;RN ), where in particular U·n|∂Ω = 0, and r−� ∈ C∞

c ([0, T ]×Ω) with r > 0.
Let {νt,x}(t,x)∈(0,T )×Ω be a dissipative measure-valued solution of the same
system (in terms of the density � and the momentum m), with a dissipation
defect D and such that

ν0,x = δr(0,x),(rU)(0,x) for a.e. x ∈ Ω. (41)

Then D = 0 and

νt,x = δr(t,x),(rU)(t,x) for a.e. (t, x) ∈ (0, T ) × Ω.

Remark 3.2. Note that we must have � > 0 if Ω is unbounded.

Proof. It is enough to prove that E(τ) = 0 for all τ ∈ (0, T ). We can take U
as a test function in the momentum equation (38) to obtain
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[∫
Ω

〈νt,x;m〉 · Udx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[
〈νt,x;m〉 · ∂tU +

〈
νt,x;

m ⊗ m

�

〉
: ∇xU

]
dxdt

+
∫ τ

0

∫
Ω

〈νt,x; p(�)〉divxU dxdt − a

∫ τ

0

∫
Ω

〈νt,x;m〉 · U dxdt

+
∫ τ

0

∫
Ω

∇xU : dμm;

and 1
2 |U|2 as a test function in the continuity equation (37) to get

[
1
2

∫
Ω

〈νt,x; �〉|U|2dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[〈νt,x; �〉U · ∂tU + 〈νt,x;m〉 · ∇xU · U]dxdt

+
∫ τ

0

∫
Ω

U · ∇xU · dμc.

Finally, take P ′(r) − P ′(�) as test function in (37) to get
[∫

Ω

〈νt,x; �〉(P ′(r)(t, ·) − P ′(�))dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[〈νt,x; �〉∂tP
′(r) + 〈νt,x;m〉 · ∇xP ′(r)] dxdt

+
∫ τ

0

∫
Ω

∇xP ′(r) · dμc.

Then, from the energy inequality (39), summing up all these terms we get
[∫

Ω

〈
νt,x;

1
2�

|m − �U|2 + P (�) − �P ′(r) + �P (�)
〉

dx

]t=τ

t=0

+ a

∫ τ

0

∫
Ω

〈
νt,x;

m

�
· (m − �U)

〉
dxdt + D(τ)

≤
∫ τ

0

∫
Ω

〈νt,x; �U − m〉 · [∂tU + ∇xU · U]dxdt

+
∫ τ

0

∫
Ω

〈
νt,x;

(m − �U) ⊗ (�U − m)
�

〉
: ∇xUdxdt

−
∫ τ

0

∫
Ω

〈νt,x; p(�)〉divx Udxdt

−
∫ τ

0

∫
Ω

[〈νt,x; �〉∂tP
′(r) + 〈νt,x;m〉 · ∇xP ′(r)]dxdt

−
∫ τ

0

∫
Ω

∇xU : dμm +
∫ τ

0

∫
Ω

U · ∇xU · dμc −
∫ τ

0

∫
Ω

∇xP ′(r) · dμc.

Notice that the term

m

�
· (m − �U) =

|m|2
�

− m · U
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is well-defined and integrable. We have

P (�)−�P ′(r)+�P (�) = P (�)−P ′(r)(�−r)−P (r)− [rP ′(r)−P (r)−�P ′(�)],

where, since P (�) = 0,

rP ′(r) − P (r) − �P ′(�) = p(r) − p(�).

Then [∫
Ω

〈νt,x; p(r) − p(�)〉dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

〈νt,x; ∂t(p(r) − p(�))〉dxdt

=
∫ τ

0

∫
Ω

〈νt,x; ∂tp(r)〉dxdt

and, using the relation p′(r) = rP ′′(r) along with the fact that∫
Ω

divx[p(r)U]dx =
∫

∂Ω

p(r)U · ndx = 0,

we can deduce that∫
Ω

〈νt,x; ∂tp(r)〉dx =
∫

Ω

〈νt,x; r∂tP
′(r) + divx[p(r)U]〉dx

=
∫

Ω

〈νt,x; r∂tP
′(r) + r∇xP ′(r) · U + p(r) divx U〉dx.

(42)

We obtain the relative energy inequality :

[E(ν|r,U)]t=τ
t=0 + a

∫ τ

0

∫
Ω

〈
νt,x;

m

�
· (m − �U)

〉
dxdt + D(τ)

≤
∫ τ

0

∫
Ω

〈νt,x; �U − m〉 · [∂tU + ∇xU · U]dxdt

+
∫ τ

0

∫
Ω

〈
νt,x;

(m − �U) ⊗ (�U − m)
�

〉
: ∇xUdxdt

−
∫ τ

0

∫
Ω

〈νt,x; p(�) − p(r)〉divx Udxdt

−
∫ τ

0

∫
Ω

[〈νt,x; (� − r)∂tP
′(r) + (m − rU) · ∇xP ′(r)〉dxdt

−
∫ τ

0

∫
Ω

∇xU : dμm +
∫ τ

0

∫
Ω

U · ∇xU · dμc −
∫ τ

0

∫
Ω

∇xP ′(r) · dμc.

(43)
Now we can use the fact that [r,U] is a strong solution: from the momentum
equation we can deduce that

∂tU + U · ∇xU = −1
r
∇xp(r) − aU = −P ′′(r)∇xr − aU = −∇xP ′(r) − aU;

substituting, we get

[E(ν|r,U)]t=τ
t=0 + a

∫ τ

0

∫
Ω

〈
νt,x;

1
2�

|m − �U|2
〉

dxdt + D(τ)

≤
∫ τ

0

∫
Ω

〈
νt,x;

(m − �U) ⊗ (�U − m)
�

〉
: ∇xUdxdt
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−
∫ τ

0

∫
Ω

〈νt,x; p(�) − p(r)〉divx Udxdt

−
∫ τ

0

∫
Ω

[〈νt,x;P ′′(r)(� − r)[∂tr + ∇xr · U]〉dxdt

−
∫ τ

0

∫
Ω

∇xU : dμm +
∫ τ

0

∫
Ω

U · ∇xU · dμc −
∫ τ

0

∫
Ω

∇xP ′(r) · dμc.

From the continuity equation we also have

∂tr + ∇xr · U = −r divx U,

and thus, knowing that rP ′′(r) = p′(r), we get

[E(ν|r,U)]t=τ
t=0 + a

∫ τ

0

∫
Ω

〈
νt,x;

1
2�

|m − �U|2
〉

dxdt + D(τ)

≤
∫ τ

0

∫
Ω

〈
νt,x;

(m − �U) ⊗ (�U − m)
�

〉
: ∇xUdxdt

−
∫ τ

0

∫
Ω

〈νt,x; p(�) − p′(r)(� − r) − p(r)〉divx Udxdt

−
∫ τ

0

∫
Ω

∇xU : dμm +
∫ τ

0

∫
Ω

U · ∇xU · dμc −
∫ τ

0

∫
Ω

∇xP ′(r) · dμc.

Finally, using the fact that the initial data are the same and thus E(ν|r,U)(0) =
0, we end up to

E(ν|r,U)(τ) + a

∫ τ

0

∫
Ω

〈
νt,x;

1

2�
|m − �U|2

〉
dxdt + D(τ)

≤
∫ τ

0

∫
Ω

〈
νt,x;

∣∣∣∣ (m − �U) ⊗ (�U − m)

�

∣∣∣∣
〉

|∇xU|dxdt

+

∫ τ

0

∫
Ω

〈νt,x; |p(�) − p′(r)(� − r) − p(r)|〉| divx U|dxdt

+

∫ τ

0

∫
Ω

|∇xU| · d|μm| +

∫ τ

0

∫
Ω

|U · ∇xU| · d|μc| +

∫ τ

0

∫
Ω

|∇xP ′(r)| · d|μc|.

Since U and P ′(r) − P (�) have compact support we can control the terms
|∇xU|, |divx U|, |U ·∇xU| and |∇xP ′(r)| by some constants. It is also obvious
that there exist a constant c1 such that∣∣∣∣ (m − �U) ⊗ (�U − m)

�

∣∣∣∣ ≤ c1

2�
|m − �U|2,

and a constant c2 such that

|p(�) − p′(r)(� − r) − p(r)| ≤ c2(P (�) − P ′(r)(� − r) − P (r)).

Thus

E(�,m|r,U)(τ) + D(τ) ≤ c

∫ τ

0

[E(�,m|r,U)(t) + D(t)] dt.

By Gronwall lemma we obtain

E(�,m|r,U)(τ) + D(τ) ≤ 0 for all τ ∈ (0, T ).

But since E ,D ≥ 0 this implies D(τ) = 0 and E(τ) = 0 for all τ ∈ (0, T ). �
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3.1. Density argument

Notice that the relative energy inequality (43) is true for general functions r −
� ∈ C∞

c ([0, T ]×Ω), U ∈ C∞
c ([0, T ]×Ω;RN ), not necessarily strong solutions to

the Euler system. Then, using a density argument, we can prove the following
result.

Theorem 3.3. Let [r,U] be a strong solution of the compressible Euler sys-
tem with damping such that U ∈ C([0, T ];HM (Ω;RN )), M > N

2 + 1, where
in particular U · n|∂Ω = 0, and r − � ∈ C([0, T ];HM (Ω)) with r > 0. Let
{νt,x}(t,x)∈(0,T )×Ω be a dissipative measure-valued solution of the same system
(in terms of � and the momentum m), with a dissipation defect D and such
that

ν0,x = δr(0,x),(rU)(0,x) for a.e. x ∈ Ω.

Then D = 0 and

νt,x = δr(t,x),(rU)(t,x) for a.e. (t, x) ∈ (0, T ) × Ω.

Proof. We will first prove that the relative energy inequality (43) holds for
[r,U] as in our hypothesis. By density, we can find two sequences {rn−�}n∈N ⊂
C∞

c ([0, T ] × Ω), {Un}n∈N ⊂ C∞
c ([0, T ] × Ω;RN ) such that

rn − � → r − � in C([0, T ];HM (Ω)),

Un → U in C([0, T ];HM (Ω;RN )).

If we now fix ε > 0, we know that there exists n0 = n0(ε) such that, for every
n ≥ n0

sup
t∈[0,T ]

‖(r − rn)(t, ·)‖HM (Ω) < ε,

sup
t∈[0,T ]

‖(U − Un)(t, ·)‖HM (Ω;RN ) < ε.

From now on, let n ≥ n0; for each t ∈ [0, T ] we have
∫

Ω

〈
νt,x;

1
2�

|m − �U|2
〉

dx =
∫

Ω

〈
νt,x;

1
2�

|m − �(U − Un + Un)|2
〉

dx

=
∫

Ω

〈
νt,x;

1
2�

|m − �Un|2
〉

dx

−
∫

Ω

〈νt,x;m − (� − �)Un〉 · (U − Un)(t, ·)dx

+ �

∫
Ω

Un · (U − Un)(t, ·)dx

+
1
2

∫
Ω

〈νt,x; � − �〉|U − Un|2(t, ·)dx

+
�

2

∫
Ω

|U − Un|2(t, ·)dx.
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Revoking notation introduced in Sect. 2.3, we focus on the last three lines: we
can rewrite the first term as∫

Ω

〈νt,x; [m]ess − [� − �]essUn〉 · (U − Un)(t, ·)dx

+
∫

Ω

〈νt,x; [m]res − [� − �]resUn〉 · (U − Un)(t, ·)dx;

since 〈ν(t,·); [m]ess − [� − �]essUn〉, (U − Un)(t, ·) ∈ L2(Ω;RN ) we can apply
Hölder’s inequality to get∫

Ω

〈νt,x; [m]ess − [� − �]essUn〉 · (U − Un)(t, ·)dx

≤ sup
t∈[0,T ]

‖〈ν(t,·); [m]ess − [� − �]essUn〉‖L2(Ω;RN )‖(U − Un)(t, ·)‖L2(Ω;RN )

≤ C sup
t∈[0,T ]

‖(U − Un)(t, ·)‖HM (Ω;RN )

≤ Cε.

We also have that 〈ν(t,·); [� − �]resUn〉 ∈ Lγ(K);RN ) with K compact and

since γ > 2γ
γ+1 we obtain 〈ν(t,·); [m]res− [�−�]resUn〉 ∈ L

2γ
γ+1 (Ω;RN ); using the

embedding of the Sobolev space into the Hölder one we get that (U−Un)(t, ·) ∈
L∞(Ω;RN ) and hence (U − Un)(t, ·) ∈ Lp(Ω;RN ) for all p ∈ [2,∞]. Since
2γ

γ−1 > 2, we can again apply Hölder’s inequality to get∫
Ω

〈νt,x; [m]res − [� − �]resUn〉 · (U − Un)(t, ·)dx

≤ sup
t∈[0,T ]

‖〈ν(t,·); [m]res − [� − �]resUn〉‖
L

2γ
γ+1 (Ω;RN )

‖(U − Un)(t, ·)‖
L

2γ
γ−1 (Ω;RN )

≤ C sup
t∈[0,T ]

‖(U − Un)(t, ·)‖HM (Ω;RN )

≤ Cε.

For the second term we can apply Hölder’s inequality:∫
Ω

Un · (U − Un)(t, ·)dx ≤ sup
t∈[0,T ]

‖Un(t, ·)‖L2(Ω;RN )‖(U − Un)(t, ·)‖L2(Ω;RN )

≤ C sup
t∈[0,T ]

‖(U − Un)(t, ·)‖HM (Ω;RN )

≤ Cε.

Applying the same procedure as before to the third term we get∫
Ω

〈νt,x; � − �〉|U − Un|2(t, ·)dx

=
∫

Ω

〈νt,x; [� − �]ess + [� − �]res〉|U − Un|2(t, ·)dx

≤ sup
t∈[0,T ]

‖〈ν(t,·); [� − �]ess〉‖L2(Ω;RN )‖(U − Un)(t, ·)‖L4(Ω;RN )

+ sup
t∈[0,T ]

‖〈ν(t,·); [� − �]res〉‖Lγ(Ω;RN )‖(U − Un)(t, ·)‖
L

2γ
γ−1 (Ω;RN )

≤ Cε.
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For the last term we simply have∫
Ω

|U − Un|2(t, ·)dx ≤ sup
t∈[0,T ]

‖(U − Un)(t, ·)‖HM (Ω;RN ) < ε.

Similarly, ∫
Ω

〈νt,x;P (�) − P ′(r)(� − r) − P (r)〉dx

=
∫

Ω

〈νt,x;P (�) − P ′(rn)(� − rn) − P (rn)〉dx

+
∫

Ω

〈νt,x;P ′(rn)(� − rn) − P ′(r)(� − r)〉dx

−
∫

Ω

〈νt,x;P (r) − P (rn)〉dx

=
∫

Ω

〈νt,x;P (rn) − P ′(r)(rn − r) + P (r)〉dx

−
∫

Ω

〈νt,x; [P ′(r) − P ′(rn)](� − rn)〉dx

=
P ′′(ξ1)

2

∫
Ω

(r − rn)2(t, ·)dx

− P ′′(ξ2)
∫

Ω

〈νt,x; � − �〉(r − rn)dx

+ P ′′(ξ2)
∫

Ω

(r − rn)(rn − �)(t, ·)dx.

We can now focus on the last three lines: the first term is simply bounded as
follows ∫

Ω

(r − rn)2(t, ·)dx ≤ sup
t∈[0,T ]

‖(r − rn)(t, ·)‖HM (Ω) < ε.

The second term can be rewritten as∫
Ω

〈νt,x; � − �〉(r − rn)(t, ·)dx

=
∫

Ω

〈νt,x; [� − �]ess〉(r − rn)(t, ·)dx

+
∫

Ω

〈νt,x; [� − �]res〉(r − rn)(t, ·)dx

≤ sup
t∈[0,T ]

‖〈ν(t,·); [� − �]ess〉‖L2(Ω;RN )‖(r − rn)(t, ·)‖L2(Ω)

+ sup
t∈[0,T ]

‖〈ν(t,·); [� − �]res〉‖Lγ(Ω;RN )‖(r − rn)(t, ·)‖
L

γ
γ−1 (Ω)

≤ Cε;

notice that, if γ ∈ (1, 2) we use the same argument as before while if γ ∈ [2,∞)
we have to use the Sobolev embedding in the Lp-spaces. For the last term we
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can use Hölder inequality to get∫
Ω

(r − rn)(rn − �)(t, ·)dx ≤ sup
t∈[0,T ]

‖(rn − �)(t, ·)‖L2(Ω)‖(r − rn)(t, ·)‖L2(Ω)

≤ C sup
t∈[0,T ]

‖(r − rn)(t, ·)‖HM (Ω)

≤ Cε.

Repeating the same steps for each term that appears in the relative energy
inequality and introducing the operator

L(ν|r,U)(τ) = a

∫ τ

0

∫
Ω

〈
νt,x;

m

�
· (m − �U)

〉
dxdt + D(τ)

+

∫ τ

0

∫
Ω

〈νt,x;m − �U〉 · [∂tU + ∇xU · U]dxdt

−
∫ τ

0

∫
Ω

〈
νt,x;

(m − �U) ⊗ (�U − m)

�

〉
: ∇xUdxdt

+

∫ τ

0

∫
Ω

〈νt,x; p(�) − p(r)〉 divx Udxdt

+

∫ τ

0

∫
Ω

[〈νt,x; (� − r)∂tP
′(r) + (m − rU) · ∇xP ′(r)〉dxdt

+

∫ τ

0

∫
Ω

∇xU : dμm +

∫ τ

0

∫
Ω

U · ∇xU · dμc −
∫ τ

0

∫
Ω

∇xP ′(r) · dμc,

we have

[E(ν|r,U)(t)]t=τ
t=0 + L(ν|r,U)(τ) ≤ [E(ν|rn,Un)(t)]t=τ

t=0 + L(ν|rn,Un)(τ) + Cε ≤ Cε,

for some positive constant C, since for a test function we already proved that
the relative energy inequality holds which is equivalent in saying that

[E(ν|rn,Un)(t)]t=τ
t=0 + L(ν|rn,Un)(τ) ≤ 0.

By the arbitrary of ε we can conclude that the relative energy inequality holds
for [r,U] as in our hypothesis.

Repeating the same passages as we did in the proof of the previous the-
orem, we end up to the following inequality

E(ν|r,U)(τ) + a

∫ τ

0

∫
Ω

〈
νt,x;

1

2�
|m − �U|2

〉
dxdt + D(τ)

≤
∫ τ

0

∫
Ω

〈
νt,x;

∣∣∣∣ (m − �U) ⊗ (�U − m)

�

∣∣∣∣
〉

|∇xU|dxdt

+

∫ τ

0

∫
Ω

〈νt,x; |p(�) − p′(r)(� − r) − p(r)|〉| divx U|dxdt

+

∫ τ

0

∫
Ω

|∇xU| · d|μm| +

∫ τ

0

∫
Ω

|U · ∇xU| · d|μc| +

∫ τ

0

∫
Ω

|∇xP ′(r)| · d|μc|.

The thesis now follows as before - the only thing that changes is that in this
case U and P (r) − P (�) are L∞-functions, but still we can control the terms
|∇xU|, |divx U|, |U · ∇xU| and |∇xP (r)| by some constants. �

Remark 3.4. This theorem applies to the already know results concerning
strong solutions; in particular
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(i) if Ω is bounded, for local in time solutions see [16], and [15] for the global
one;

(ii) if Ω = R
3, for local in time solution see for instance [12,13], and [17] for

the global one.

4. Vanishing viscosity limit

Unifying the two main results achieved in the previous sections, cf. Theo-
rems 2.3 and 3.3, we conclude proving our last theorem: the solutions of the
Navier–Stokes system converge in the zero viscosity limit to the strong solution
of the Euler system with damping on the life span of the latter.

Theorem 4.1. Let Ω ⊂ R
N , N = 2, 3 be a domain with compact Lipschitz

boundary and � > 0 be a given far field density if Ω is unbounded. Suppose
that γ > N

2 and let �R, uR be a family of weak solutions to the Navier–Stokes
system (7) – (12) in

(0, T ) × ΩR, ΩR = Ω ∩ BR,

with initial data {�R,0 − �,mR,0 = �R,0uR,0}R>0 such that

�R,0 − � ⇀ �0 − � in L2 + Lγ(Ω); (44)

mR,0 ⇀ m0 in L2 + L
2γ

γ+1 (Ω;RN ). (45)

Suppose that �0 > 0,
(
�0 − �, m0

�0

)
∈ HM (Ω), M > N

2 + 1, and that [r,U] ∈
HM (Ω) is the strong solution to the Euler system with damping with the same
initial data.

Then
�R − � → r − � in Cweak([0, T ]; L2 + Lγ(Ω)) and in L1((0, T ) × K);

mR = �RuR → rU in Cweak([0, T ]; L2 + L
2γ

γ+1 (Ω;RN )) and in L1((0, T ) × K;RN )

for any compact K ⊂ Ω.

Proof. Convergences (44), (45) follow easily from (23), repeating the same
passages that we did in Sect. 2.3. In the proof of Theorem 2.3, we also showed
that

�R − � → 〈ν(·,·); � − �〉 in Cweak([0, T ];L2 + Lγ(Ω));

mR → 〈ν(·,·);m〉 in Cweak([0, T ];L2 + L
2γ

γ+1 (Ω;RN )),

where

νt,x : (t, x) ∈ (0, T ) × Ω → P([0,∞) × R
N ),

ν ∈ L∞
weak((0, T ) × Ω;P([0,∞) × R

N )),

is the Young measure associated to the sequence {(�R − �,mR)}R>0 and also
the dissipative measure-valued solution to the Euler system with damping.
Then, since

ν0,x = δ�0(x),m0(x) for a.e. x ∈ Ω,
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we can apply Theorem 3.3 to get that

νt,x = δr(t,x),rU(t,x) for a.e. (t, x) ∈ (0, T ) × Ω,

and hence we obtain the claim. �
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A. Young measures

In this section we recall some useful definitions and results concerning the
theory of Young measures.

Definition A.1. Let Q ⊆ R
d be an open set. The mapping ν : Q → M(Rm) is

said to be weak-∗ measurable, if for all F ∈ L1(Q;C0(Rm)) the function

Q � x �→ 〈νx, F (x, ·)〉 =
∫
Rm

F (x, λ)dνx(λ),

is measurable.

Here and in the sequel we use the standard notation νx = ν(x), as if
measures νx were parametrized by x. For a weak-∗ measurable map ν we
have

‖νx‖M(Rm) = sup
f∈C0(R

m)
‖f‖∞≤1

|〈νx, f〉|,

thus the function x �→ ‖νx‖M(Rm) is also measurable and we can define

‖ν‖L∞
w (Ω;M(Rm)) = ess sup

x∈Q
‖νx‖M(Rm).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Finally, we introduce the space

L∞
weak(Q;M(Rm)) = {ν : Q → M(Rm); ν weak-∗ measurable,

‖ν‖L∞
w (Ω;M(Rm)) < ∞}.

The following theorem holds.

Theorem A.2. Let Q ⊆ R
n be open. Let Φ ∈ (L1(Q;C0(Rm)))∗ be a linear

bounded functional. Then there exists a unique ν ∈ L∞
weak(Q;M(Rm)) such

that, for all F ∈ L1(Q;C0(Rm)),

Φ(F ) =
∫

Q

〈νx, F (x)〉dx, (46)

and
‖Φ‖(L1(Q;C0(Rm)))∗ = ‖ν‖L∞

w (Q;M(Rm)).

Proof. See [14], Chapter 3, Theorem 2.11. �

Let now Q be a measurable set. Given a measurable sequence {zR}R>0,
we can construct the Young measure associated to it. First, for every R we
define the mapping

νR : Q → M(Rm)
defined for a.e. y ∈ Q by

νR
y = δzR(y),

where δa is the Dirac measure supported at a ∈ R
m. Hence, for every ψ ∈

L1(Q;C0(Rm)) the function

y �→ 〈νR
y , ψ(y)〉

is measurable since it is integrable; indeed

〈νR
y , ψ(y)〉 =

∫
Rm

ψ(y, ·)dνR
y =

∫
Rm

ψ(y, ·)dδzR(y) = ψ(y,zR(y)),

and then∫
Q

|〈νR
y , ψ(y)〉|dy ≤

∫
Q

sup
λ∈Rm

|ψ(y, λ)|dy = ‖ψ‖L1(Q;C0(Rm)).

The mapping νR is then weakly-∗ measurable with

‖νR‖L∞
w (Q;M(Rm)) = ess sup

y∈Q
‖νR

y ‖M(Rm) = ‖δzR(y)‖M(Rm) = 1.

Therefore, {νR}R>0 is uniformly bounded in L∞
weak(Q;M(Rm)), which by The-

orem A.2 is the dual space of the separable space L1(Q;C0(Rm)); we can
apply the Banach-Alaoglu theorem to find a subsequence, not relabeled, and
ν ∈ L∞

weak(Q;M(Rm)) such that

νR ∗
⇀ ν in L∞

weak(Q;M(Rm)).

This means that for all ψ ∈ L1(Q;C0(R4))∫
Q

ψ(y,zR(y)) dy =
∫

Q

〈νR
y , ψ(y)〉 dy →

∫
Q

〈νy, ψ(y)〉 dy as R → ∞.
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If we now choose ψ(y, λ) = g(y)ϕ(λ) with g ∈ L1(Q), ϕ ∈ C0(Rm), the last
limit tells us that∫

Q

g(t, x)ϕ(zR(y)) dy =
∫

Q

g(y)〈νR
y , ϕ〉 dy →

∫
Q

g(y)〈νy, ϕ〉 dy as R → ∞.

Then, for every ϕ ∈ C0(Rm), knowing that

ϕ(zR) ∗
⇀ ϕ in L∞(Q),

we can deduce that

ϕ(y) = 〈νy, ϕ〉 for a.e. y ∈ Q.

From the weak-∗ lower semi-continuity of the norm we also have that

‖νy‖M(Rm) ≤ lim inf
R→∞

‖νR
y ‖M(Rm) = 1 for a.e. y ∈ Q.

What we proved is the first statement of the following theorem.

Theorem A.3. Let Q ⊂ R
d be a measurable set and let zR : Q → R

m, R > 0,
be a sequence of measurable functions. Then there exists a subsequence, still
denoted by zR, and a measure-valued function ν with the following properties:

1. ν ∈ L∞
weak(Q;M(Rm)), ‖νy‖M(Rm) ≤ 1, for a.e. y ∈ Q and we have for

every ϕ ∈ C0(Rm), as R → ∞,

ϕ(zR) ∗
⇀ ϕ in L∞(Q), ϕ(y) = 〈νy, ϕ〉, for a.e. y ∈ Q;

2. moreover, if

lim
k→∞

sup
R>0

meas{y ∈ Q ∩ Br; |zR(y)| ≥ k} = 0 (47)

for every r > 0, where Br ≡ {y ∈ Q; |y| ≤ r}, then
‖νy‖M(Rm) = 1 for a.e. y ∈ Q;

3. Let Ψ : [0,∞) → R be a Young function satisfying the Δ2-condition.
If condition (47) holds and if we have for some continuous function τ :
R

m → R

sup
R>0

∫
Q

Ψ(|τ(zR)|)dy < ∞, (48)

then

τ(zR) ∗
⇀ τ in the Orlicz space LΨ(Q), τ(y) = 〈νy, τ〉 for a.e. y ∈ Q.

Proof. See [14], Chapter 4, Theorem 2.1. �
Remark A.4. If zR are uniformly bounded in Lp(Q;Rm) for some p ∈ [1,∞),
the condition (47) is satisfied. Indeed, denoting AR

k ≡ {y ∈ Q ∩ Br; |zR(y)| ≥
k}, we have

|AR
k |kp ≤

∫
AR

k

|zR(y)|pdy ≤
∫

Q

|zR(y)|pdy ≤ c.

Since c is independent of both R and k, we obtain

sup
R>0

|AR
k | ≤ c

kp
,

which implies (47).
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The following two lemma justify the introduction of the concentration
measures and dissipation defect in Definition 2.2

Lemma A.5. Let {zR}R>0, zR : Q → R
m be a sequence of measurable func-

tions generating a Young measure ν ∈ L∞
weak(Q;M(Rm)), where Q is a mea-

surable set in R
d. For every continuous function H : Rm → R such that

‖H(zR)‖L1(Q) ≤ c, uniformly in R,

〈νy;H〉 is finite for a.e. y ∈ Q.

Proof. Without loss of generality, we can consider |H| or, equivalently, assume
that H ≥ 0. We take a family of cut-off functions

Tk(z) = min{z, k};

Then Tk(H) ∈ C0(Rm) and thus

Tk(H(zR)) ∗
⇀ Tk(H) in L∞(Q)

with
Tk(H)(y) = 〈νt,x, Tk(H)〉 for a.e. y ∈ Q.

On the other hand we have that

Tk(H)(λ) ↗ H(λ), for any λ ∈ R
m as k → ∞;

by monotone convergence theorem, we have that

〈νy, Tk(H)〉 =

∫
Rm

Tk(H)(λ)dνy(λ) →
∫
Rm

H(λ)dνy(λ) for a.e. y ∈ Q as k → ∞.

Hence H is νy-integrable but the integral can also be infinite. However, by the
weak-∗ lower semi-continuity of the norm

‖〈ν(·), Tk(H)‖L1(Q) ≤ lim inf
R→∞

‖Tk(H(zR))‖L1(Q) ≤ lim inf
R→∞

‖H(zR)‖L1(Q) ≤ c,

uniformly in k. Then, since
(i) limk→∞〈νy;Tk(H)〉 = 〈νy;H〉 for a.e. y ∈ Q;
(ii) supk∈N ‖〈ν(·);Tk(H)〉‖L1(Q) ≤ c,

applying Fatou’s lemma we get that ‖〈ν(·);H〉‖L1(Q) ≤ c. Then 〈νy;H〉 is finite
for a.e. y ∈ Q. �

Lemma A.6. Let {zR}R>0, zR : Q ⊂ R
d → R

m be a sequence of measurable
functions generating a Young measure ν ∈ L∞

weak(Q;M(Rm)), where Q is a
measurable set in R

d. Let
G : Rm → [0,∞)

be a continuous function such that

‖G(zR)‖L1(Q) < ∞, uniformly in R,

and let F be continuous such that

F : Rm → R, |F (z)| ≤ G(z) for all z ∈ R
m.

Denote

μF∞ = μF̃ − 〈νy, F (v)〉dy, μG∞ = μG̃ − 〈νy, G(v)〉dy,
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where μF̃ , μG̃ ∈ M(Q) are the weak-∗ limits of {F (zR)}R>0, {G(zR)}R>0 in
M(Q). Then

|F∞| ≤ G∞.

Proof. We have seen that the Young measure {νy}y∈Q is such that for all
ψ ∈ L1(Q;C0(Rm))∫

Q

ψ(y,zR(y))dy →
∫

Q

〈νy, ψ(y)〉dy =
∫

Q

∫
Rm

ψ(y, λ)dνy(λ)dy,

as R → ∞. Now, from the fact that

μF (zR)
∗
⇀ μF̃ in M(Q),

μG(zR)
∗
⇀ μG̃ in M(Q),

we have that for all ϕ ∈ C0(Q)

〈μF̃ , ϕ〉 = lim
R→∞

∫
Q

F (zR)ϕdy

= lim
R→∞

∫
{|zR|≤M}

F (zR)ϕdy + lim
R→∞

∫
{|zR|>M}

F (zR)ϕdy,

〈μG̃, ϕ〉 = lim
R→∞

∫
Q

G(zR)ϕdy

= lim
R→∞

∫
{|zR|≤M}

G(zR)ϕdy + lim
R→∞

∫
{|zR|>M}

G(zR)ϕdy.

Now, we can write∫
{|zR|≤M}

F (zR(y))ϕ(y)dy =
∫

Q

ψ(y,zR(y))dy,

with
ψ(y, λ) = F (λ)ϕ(y)χ{|λ|≤M};

then, we have that ψ ∈ L1(Q;C0(Rm)); indeed, calling K = supp(ϕ) we have∫
Q

‖ψ(y, ·)‖C0(Rm)dy =
∫

K

|ϕ(y)| sup
|λ|≤M

|F (λ)| ≤ |K| sup
y∈K

|ϕ(y)| sup
|λ|≤M

|F (λ)| ≤ c,

since both ϕ and F are continuous functions and so they admit maximum on
compact sets. Then, for what we have told previously, we have

lim
R→∞

∫
{|zR|≤M}

F (zR)ϕdy = lim
R→∞

∫
Q

ψ(y,zR(y))dy

=
∫

Q

〈νy, ψ(y)〉dy =
∫

Q

∫
Rm

ψ(y, λ)dνy(λ)dy

=
∫

Q

∫
{|λ|≤M}

F (λ)ϕ(y)dνy(λ)dy.

Applying now Lebesgue theorem we have

lim
M→∞

(
lim

R→∞

∫
{|zR|≤M}

F (zR)ϕdy

)
=

∫
Q

(∫
Rm

F (λ)dνy(λ)
)

ϕdy
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=
∫

Q

〈νy;F 〉ϕdy.

Similarly

lim
M→∞

(
lim

R→∞

∫
{|zR|≤M}

G(zR)ϕdy

)
=

∫
Q

〈νy;G〉ϕdy.

Then, we deduce

〈μF∞ , ϕ〉 = lim
M→∞

(
lim

R→∞

∫
{|zR|>M}

F (zR)ϕdy

)
,

〈μG∞ , ϕ〉 = lim
M→∞

(
lim

R→∞

∫
{|zR|>M}

G(zR)ϕdy

)
.

Then, from condition |F | ≤ G we obtain what we wanted to prove. �
A.1. Young measure for the compressible Euler system with damping

Our next goal is to adapt the abstract machinery presented in previous subsec-
tion in order to justify the definition of a dissipative measure-valued solution
for the compressible Euler system. To this end, it is enough to take

• Q = (0, T ) × Ω ⊂ R
N+1;

• m = N + 1;
• zR = (�R − �,mR),

where (�R−�,mR = �RuR) are the weak solutions of the Navier–Stokes system
(14), (15).

First of all, notice that condition (47) is satisfied for zR = (�R − �,mR);
indeed, introducing the sets AR

k ≡ {y ∈ Q ∩ Br; |zR(y)| ≥ k} we have, for
y ∈ AR

k

k ≤ |(�R − �,mR)(y)| ≤ |�R(y)| + |mR(y)|
≤ |[�R − �]ess(y)| + |[�R − �]res(y)|

+ |[mR]ess(y)| + |[mR]res(y)|,
and hence at least one of the terms on the last line must be ≥ k

4 so that

AR
k ⊆

{
y ∈ Q ∩ Br; |[�R − �]ess(y)| ≥ k

4

}
︸ ︷︷ ︸

≡AR
k,1

∪
{

y ∈ Q ∩ Br; |[�R − �]res(y)| ≥ k

4

}
︸ ︷︷ ︸

≡AR
k,2

∪
{

y ∈ Q ∩ Br; |[mR]ess(y)| ≥ k

4

}
︸ ︷︷ ︸

≡AR
k,3

∪
{

y ∈ Q ∩ Br; |[mR]res(y)| ≥ k

4

}
︸ ︷︷ ︸

≡AR
k,4

.

For k large enough (k ≥ 4), we have

|AR
k |k ≤ 4

4∑
i=1

|AR
k,i|

k

4

� |AR
k,1|

(
k

4

)2

+ |AR
k,2|

(
k

4

)γ

+ |AR
k,3|

(
k

4

)2

+ |AR
k,4|

(
k

4

) 2γ
γ+1



NoDEA Vanishing viscosity limit for the compressible Navier Page 27 of 31 57

≤
∫

AR
k,1

|[�R − �]ess(y)|2dy +
∫

AR
k,2

|[�R − �]res(y)|γdy

+
∫

AR
k,3

|[mR]ess(y)|2dy +
∫

AR
k,4

|[mR]res(y)| 2γ
γ+1 dy

≤ ‖[�R − �]ess‖L2(Q) + ‖[�R − �]res‖Lγ(Q) + ‖[mR]ess‖L2(Q)

+ ‖[mR]res‖
L

2γ
γ+1 (Q)

≤ c(E0),

where in particular the constant c(E0) is independent of k and R so that

sup
R>0

|AR
k | ≤ c

k
,

which implies (47).
The Young measure in our case is then a parametrized family of probabil-

ity measures supported on the set [0,∞)×R
N , since the densities are supposed

to be non-negative:

νt,x : (t, x) ∈ (0, T ) × Ω → P([0,∞) × R
N ),

ν ∈ L∞
weak((0, T ) × Ω;P([0,∞) × R

N )).

It is also easy to check that Ψ(t) = tp with p > 1 are Young functions that
satisfy the Δ2-condition with the constant 2p, and in that case LΨ(Q) =
Lp(Q). Thus,

1. first, we can take Ψ(t) = t2 and τ1(z) = z1χ(z1 + �), where z =
(z1, z2, z3, z4) in our case, to notice that condition (48) is equivalent in
requiring that [�R − �]ess are uniformly bounded in L2((0, T )×Ω) which
is true from (28). Then we obtain

〈νt,x; τ1〉 = f�−�(t, x) for a.e. (t, x) ∈ (0, T ) × Ω;

also, taking Ψ(t) = tγ and τ2(z) = z1(1 − χ(z1 + �)), condition (48)
is equivalent in requiring that [�R − �]res are uniformly bounded in
Lγ((0, T ) × Ω) which is true from (29). Then we obtain

〈νt,x; τ2〉 = g�−�(t, x) for a.e. (t, x) ∈ (0, T ) × Ω.

Unifying the two results we get

〈νt,x; τ1 + τ2〉 = (� − �)(t, x) for a.e. (t, x) ∈ (0, T ) × Ω,

where �−� is the weak limit of the densities found in (32). We will write
〈νt,x; � − �〉 = (� − �)(t, x) for almost every (t, x) ∈ (0, T ) × Ω just to
make the notation readable;

2. secondly, we can take Ψ(t) = t2 and τ1(z) = ziχ(z1+�) with i = 2, 3, 4 to
see that condition (48) is equivalent in requiring that each component of
[mR]ess is uniformly bounded in L2((0, T ) × Ω) which is true from (30).
Also, choosing Ψ(t) = t

2γ
γ+1 and τ2(z) = zi(1 − χ(z1 + �)) with i = 2, 3, 4,

condition (48) is equivalent in requiring that each component of [mR]res



57 Page 28 of 31 D. Basarić NoDEA

is uniformly bounded in L
2γ

γ+1 ((0, T ) × Ω) which is true from (31). Then
we obtain

〈νt,x; τ1 + τ2〉 = mi(t, x) for a.e. (t, x) ∈ (0, T ) × Ω,

which we will write 〈νt,x;m〉 = m(t, x) for almost every (t, x) ∈ (0, T )×Ω,
with m the weak limit of the momenta found in (33).

Moreover, due to Lemma A.5, it makes sense to introduce the following
new measures:

μM∞ = μ{M} −
〈

ν(·,·);
m ⊗ m

�

〉
dxdt,

μp∞ = μ{p}−p(�) − 〈ν(·,·); p(�) − p(�)〉 dxdt,

μσ∞ = μtrace{M} −
〈

ν(·,·);
|m|2
�

〉
dxdt,

μE∞ = μ{E} −
〈

ν(·,·);
1
2

|m|2
�

+ P (�) − P ′(�)(� − �) − P (�)
〉

dxdt.

Now, revisiting the momentum equation (35) and using the fact that

divx ϕ = I : ∇xϕ,

we get

∫
Ω

m · ϕ(τ, ·)dx −
∫

Ω

m0 · ϕ(0, ·)dx

=
∫ τ

0

∫
Ω

[
m · ∂tϕ +

(〈
νt,x;

m ⊗ m

�

〉
+ M∞

)
: ∇xϕ

]
dxdt

+
∫ τ

0

∫
Ω

[(〈νt,x; p(�)〉 + p∞)I : ∇xϕ − am · ϕ] dxdt,

for all τ ∈ [0, T ) and for all ϕ ∈ C1
c ([0, T ] × Ω;RN ), ϕ · n|∂Ω = 0, which can

be rewritten as

∫
Ω

m · ϕ(τ, ·)dx −
∫
Ω

m0 · ϕ(0, ·)dx =

∫ τ

0

∫
Ω

[
m · ∂tϕ +

〈
νt,x;

m ⊗ m

�

〉
: ∇xϕ

]
dxdt

+

∫ τ

0

∫
Ω

[〈νt,x; p(�)〉 divx ϕ − am · ϕ ] dxdt

+

∫ τ

0

∫
Ω

∇xϕ : dμm,

for all τ ∈ [0, T ) and for all ϕ ∈ C1
c ([0, T ] × Ω;RN ), ϕ · n|∂Ω = 0, where

μm = M∞ + p∞I ∈ M([0, T ] × Ω;RN × R
N ) is a tensor-valued measure.
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Similarly, from (36) we get∫
Ω

[〈
ντ,x;

1
2

|m|2
�

+ P (�) − P ′(�)(� − �) − P (�)
〉

+ E∞(τ)
]

dx

+ a

∫ τ

0

∫
Ω

[〈
νt,x;

|m|2
�

〉
+ σ∞

]
dxdt

≤
∫

Ω

[〈
ν0,x;

1
2

|m|2
�

+ P (�) − P ′(�)(� − �)(� − �) − P (�)
〉

+ E∞(0)
]

dx,

for a.e. τ ∈ (0, T ), which can be rewritten as∫
Ω

〈
ντ,x;

1
2

|m|2
�

+ P (�) − P ′(�)(� − �) − P (�)
〉

dx

+ a

∫ τ

0

∫
Ω

〈
νt,x;

|m|2
�

〉
dxdt + D(τ)

≤
∫

Ω

〈
ν0,x;

1
2

|m|2
�

+ P (�) − P ′(�)(� − �) − P (�)
〉

dx,

for a.e. τ ∈ (0, T ), with D ∈ L∞(0, T ) such that

D(τ) =
∫

Ω

E∞(τ)dx + a

∫ τ

0

∫
Ω

σ∞dxdt

We also have that ∫ τ

0

∫
Ω

d|μm| �
∫ τ

0

D(t)dt,

for a.e. τ ∈ (0, T ). Indeed,
∫ τ

0

∫
Ω

d|μm| ≤
N∑

i,j=1

∫ τ

0

∫
Ω

|(M∞)i,j |dxdt +
N∑

i,j=1

∫ τ

0

∫
Ω

|p∞|δi,jdxdt

=
N∑

i,j=1

∫ τ

0

∫
Ω

|(M∞)i,j |dxdt + N

∫ τ

0

∫
Ω

|p∞|dxdt.

Now it is sufficient to apply Lemma A.6 with F = p(�) − p(�), G = P (�) −
P ′(�)(� − �) − P (�) first and F = mimj

� , G = |m|2
� then, to get

∫ τ

0

∫
Ω

d|μm| �
∫ τ

0

∫
Ω

E∞dxdt ≤
∫ τ

0

D(t)dt.
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