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On the numerical approximation of vectorial
absolute minimisers in L∞
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Abstract. Let Ω be an open set. We consider the supremal functional

E∞(u,O) := ‖Du‖L∞(O), O ⊆ Ω open, (1)

applied to locally Lipschitz mappings u : Rn ⊇ Ω −→ R
N , where n,N ∈

N. This is the model functional of Calculus of Variations in L∞. The area
is developing rapidly, but the vectorial case of N ≥ 2 is still poorly under-
stood. Due to the non-local nature of (1), usual minimisers are not truly
optimal. The concept of so-called absolute minimisers is the primary con-
tender in the direction of variational concepts. However, these cannot be
obtained by direct minimisation and the question of their existence under
prescribed boundary data is open when n,N ≥ 2. We present numerical
experiments aimed at understanding the behaviour of minimisers through
a new technique involving p-concentration measures.
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1. Introduction

Let n,N ∈ N be fixed integers and Ω an open set in R
n. In this paper we per-

form numerical experiments and make some theoretical observations regarding
appropriately defined minimisers of the functional

E∞(u,O) := ‖Du‖L∞(O), O ⊆ Ω open, (1.1)

which is the archetypal model functionals of the Calculus of Variations in the
space L∞. The appropriate functional setting to place this functional is the
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Sobolev space W 1,∞(Ω;RN ), which (by the Rademacher theorem [23][Thm
3.1.6]) consists of a.e. differentiable continuous mappings u : Rn ⊇ Ω −→ R

N

with L∞ derivative Du. Here the gradient is understood as an N × n matrix-
valued map

Du = (Diuα)α=1...N
i=1...n : Ω −→ R

N×n

where Di ≡ ∂/∂xi and the L∞ norm in (1.1) is understood as the essential
supremum of the Euclidean (Frobenius) norm on R

N×n, defined through the
associated Frobenius inner product A : B:=tr(A�B) by |A|2 = A : A.

The area of Calculus of Variations in L∞ has a relatively short history
in Analysis, pioneered by G. Aronsson in the 1960s, see e.g. [4–6]. Nonethe-
less, since its inception it has attracted the interest of many mathematicians
due to both the theoretical importance (see e.g. [2,10,11,16,22,28,38] and the
expository texts [7,15,31]) as well as due to the relevance to various and di-
verse applications from electrical breakdown [26] to image processing [21] to
polycrystals [13] and from conformal mappings [14,29] to game theory [9,37].

A major difficulty in the study of (1.1) is that, quite surprisingly, global
minimisers are not truly optimal objects for such pointwise functionals, in the
sense that “they can be minimised even further” and in general may not solve
any kind of Euler–Lagrange equations. There are many simple examples even
in one space dimension where a minimiser does not minimise with respect to its
own boundary conditions on subdomains [31][Chapter 1]. The latter property
is of course automatic for integral functionals. In essence, this owes to the
“non-local” nature of (1.1): although we can see (1.1) as the limit case of the
p-Dirichlet functional as p → ∞

Ep(u,O) :=
(∫

O
|Du|p

)1/p

, O ⊆ Ω open, u ∈ W 1,p(Ω;RN ), (1.2)

when passing to the extreme case of p = ∞, the σ-additivity properties of
the Lebesgue integral are lost. This was already realised by Aronsson, who
introduced the next concept.

Definition 1. (Absolute minimisers) A mapping u ∈ W 1,∞(Ω;RN ) is called an
absolute minimiser of E∞ on Ω if

E∞(u,O) ≤ E∞(u + φ,O)

for any open sets O ⊆ Ω and any variation φ ∈ W 1,∞
0 (O;RN ).

Here, and throughout this exposition, O acts as a fixed variable ranging
through the open subsets of Ω.

Although the area is developing rapidly, the vectorial case of N ≥ 2 is
still poorly understood. In particular, to date neither the existence nor the
uniqueness of absolute minimisers with prescribed boundary data on ∂Ω are
known, unless min{n,N} = 1, namely either when n = 1 (curves in R

N ) or
N = 1 (scalar functions on R

n), even in more general situations when we have
a general Hamiltonian H(., u,Du) instead of |Du|. The difficulty lies in the
fact that for the “localise” variational concept of Definition 1, the standard
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approach of direct minimisation ([18,24,25]) of the functional (1.1) in the affine
space

W 1,∞
u0

(Ω;RN ) :=u0 + W 1,∞
0 (Ω;RN )

for a fixed u0 ∈ W 1,∞(Ω;RN ) does not in general yield absolute minimisers,
but merely global minimisers which minimise on Ω only. Hence, in the absence
of alternative methods, the main vectorial tool is to resort to Lp approxima-
tions and then let p → ∞. To this end, let (up)p be the family of p-minimisers
in W 1,∞

u0
(Ω;RN ). The problem encountered in the attempt to pass to the limit

in

Ep(up,O) ≤ Ep(up + φ,O),

is that the weak* sequential compactness is not strong enough to obtain that
the limit is an absolute minimiser. This is because that, although p-Harmonic
maps are C1,α, this is not uniform in p. It can be shown, by the Bhattacharya-
DiBenedetto-Manfredi estimate [8], they are bounded in W 1,∞(O) uniformly
in p. Hence, up to a subsequence (pj)∞

1 , there exists a u∞ such that up
∗−−⇀u∞

as pj → ∞. This obstacle can be bypassed when min{n,N} = 1 because of
either the scalar nature of the competing functions and comparison methods,
or because of the one-dimensionality of their domain of definition (see for
instance [1,10,32]), although the mode of convergence itself cannot in general
be strengthened. In particular, the functional (1.1) is only weakly* lower semi-
continuous and not weakly* continuous.

Herein we present and perform numerical experiments based on a new
method curently being investigated, where various existence and uniqueness
results have been obtained. This approach is motivated by the paper [22] and
relates to developments in mass transportation (see e.g. [19,20,40], underpin-
ning also the approach followed in the recent paper [35], despite in different
guises since the higher order case treated therein is quite special. We refrain
from giving any details now, and instead expound on the main ideas of this
method in some detail in Sect. 2.

The numerical method we employ is a finite element approximation, based
on an earlier work of Barrett and Liu on numerical methods for elliptic sys-
tems [12]. Therein the authors prove that, for a fixed exponent p, the method
converges to the respective p-harmonic mapping under certain regularity as-
sumptions on the solution. We would like to stress that significant care must
be taken with numerical computations using this approach because the under-
lying nonlinear system is ill-conditioned. This owes to the nonlinearity of the
problem which grows exponentially with p. Work to overcome this issue in-
cludes, for example, the work of Huang, Li and Liu [27] where preconditioners
based on gradient descent algorithms are designed and shown to work well for
large p.

Our mechanism for designing approximations of absolute minimisers is
based on the approximation of the L∞ minimisation problem by a respective
Lp one. We then utilise the approach described in [33,34,39] where it was
shown that by forming an appropriate limit we are able to select candidates for
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numerical approximation along a “good” sequence of solutions, the p-harmonic
mappings.

The purpose of this work is to demonstrate some key properties of vec-
torial absolute minimisers using an analytically justifiable numerical scheme
which currently is the only technique available to give insight into the limiting
vector-valued problem. We note that our goal is not to construct an efficient
approximation method for vectorial absolute minimisers; indeed this indirect
approximation of the limiting problem is not computationally efficient.

We conclude by noting that, albeit the concept of absolute minimisers is
the primary contender in the direction of variational concepts, is not the unique
candidate in the vector case of N ≥ 2. This is connected to that fact that,
when N ≥ 2, the associated Euler–Lagrange ∞-Laplace system admits smooth
non-minimising solutions which are characterised by two distinct variational
concepts, see e.g. [3,30,36].

2. Approximating absolute minimisers through p-concentration
measures

In this section we present the recently proposed method to construct absolute
minimisers. For the clarity of this discussion suppose that u ∈ C1(Ω;RN ). The
central point of this approach is to bypass the difficulties caused by the lack
of continuity of the essential-supremum with respect to weak convergence by
attempting to write the supremum as an integral but for a different quirky
measure, namely

E∞(u,O) =
∫

O
|Du|dσ (2.1)

where σ is a Radon probability measure on the closure O, which in principle is
O-dependent as well as u-dependent. Of course an infinity of different families
of measures {σO : O � Ω} can be defined to perform this role: for instance,
for any O � Ω choose any point xO maximising |Du| on O, namely any point
xO ∈ O such that

|Du|(xO) = E∞(u,O)

and then choose the Dirac mass σO:=δxO . However, this condition by itself
does not suffice for our purposes and has to be coupled by another condition.
Firstly, in order to utilise duality arguments with ease, let us modify (2.1) to
its L2 variant

E∞(u,O)2 =
∫

O
|Du|2 dσ (2.2)

and suppose in addition that the matrix-valued Radon measure Duσ is
divergence-free on O, namely that 1

div
(
Duσ

)
= 0. (2.3)

1Here we are avoiding the differential notation “f dσ” and using fσ to denote a measure
σ on X times a σ-measurable function f (which is absolutely continuous to σ). Integrating
against fμ, then by the Radon-Nikodym theorem we have

∫
X g d(fμ) =

∫
X gf dμ.
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The PDE (2.3) is to be understood in a sense stronger than the usual
distributional sense, due to the emergence of the boundary. In fact, (2.3) has
to be interpreted as∫

O
Du : Dφ dσ = 0, for all φ ∈ C1

0 (O;RN ),

namely in the space of those C1 test maps φ : O −→ R
n which vanish on

∂O and extend continuously together with their derivative on ∂O (but whose
derivative may not vanish on ∂O).

Although the pair of conditions (2.2)–(2.3) seem to be ad-hoc and un-
motivated, the payoff is that it is quite easy to see that if we have a C1 map
u : Ω −→ R

N such that for any O � Ω there is a Radon probability measure
σO on O such that the pair u, σO satisfies (2.2)–(2.3), then in fact u is an
absolute minimiser in the sense of Aronsson (Definition 1.1). Indeed, fix a test
function φ ∈ C1

0 (O;RN ) and for simplicity suppose that ∂O has zero Lebesgue
n-measure. Then, we have

E∞(u,O)2
(2.2)
=

∫
O

|Du|2 dσO

(2.3)
=

∫
O

|Du|2 dσ + 2
∫

O
Du : Dφ dσO

≤
∫

O
|Du|2 dσO + 2

∫
O

Du : Dφ dσO +
∫

O
|Dφ|2 dσO

=
∫

O
|Du + Dφ|2 dσO

≤ σO(O) sup
O

|Du + Dφ|2

= E∞(u + φ,O)2,

where the last equality follows from the fact that σO is a probability mea-
sure on O, that is σO(O) = 1. Hence, u is indeed minimising on O, at least
among smooth variations. The general case then needs some approximation
arguments, appropriately adapted to L∞. What is less clear is how we can ac-
tually prove the existence of such objects in W 1,∞

u0
(Ω;RN ) with given boundary

conditions. The idea is to use Lp approximations in the following way: for each
p > n, consider the minimisation problem

Ep(up,Ω) = inf
{

Ep(u,Ω) : u ∈ W 1,p
u0

(Ω;RN )
}

.

By standard variational arguments (see e.g. [18,24]), this problem has a solu-
tion up, which is a weak solution to the celebrated p-Laplace system:

div
(
|Du|p−2Du

)
= 0, in Ω. (2.4)

In particular, this means that for any O � Ω and any φ ∈ W 1,p
0 (O;RN ), up

satisfies ∫
O

Dup : Dφ |Dup|p−2 = 0 (2.5)
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By defining the (absolutely continuous) probability measure

σO
p (A) :=

∫
A∩O

|Dup|p−2

∫
O

|Dup|p−2
, A ⊆ Ω Borel, (2.6)

we may rewrite (2.5) as ∫
O

Dup : Dφ dσO
p = 0. (2.7)

By juxtaposing (2.7) with (2.3), we see that upon devising appropriate analytic
tools in order to pass in an appropriate weak* sense to some limit

(Dup, σ
O
p ) ∗−−⇀ (Du∞, σO

∞)

subsequentially as p → ∞, one would in principle obtain (2.3). This is particu-
larly challenging, as on the one hand mass might be lost towards the boundary
∂O and measures on O rather than on O have to be considered, even though by
definition σO

p (∂O) = 0. On the other hand, the main cause of additional rami-
fications is the possible “oscillations” of the pair of weakly* converging objects
(Dup, σ

O
p ) which requires particular “compensated compactness” mechanisms

to pass to the limit and show that the oscillations occur in such a way that
cancel each other.

It remains to show that, at least formally, we obtain (2.2) in the limit as
p → ∞. To see this, note that for any α ∈ (0, 1) and for

Np(O) :=
(∫

O
|Dup|p−2

)1/(p−2)

,

directly from the definition of σO
p we have the estimate

σO
p

({
|Dup| ≤ αNp(O)

})
=

∫
{|Dup|≤αNp(O)}∩O

|Dup|p−2

∫
O

|Dup|p−2

≤ αp−2 (Np)p−2∫
O

|Dup|p−2

= αp−2.

Since we can check with simple arguments that

E∞(u∞,O) ≤ lim inf
p→∞

Np(O)

(with semi-continuity methods similar to e.g. in [31][Ch. 8]), we see that, at
least formally

σO
∞

({
|Du∞| ≤ αE∞(u∞,O)

})
= 0, for all α ∈ (0, 1),

which implies
σO

∞
({

|Du∞| < E∞(u∞,O)
})

= 0. (2.8)
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Equality (2.8) implies that the limit probability measure σO
∞ is supported on

the arg-max set

O ∩
{
|Du∞| = E∞(u∞,O)

}
,

since its complement is a nullset with respect to σO
∞. Then, we have∫

O
|Du∞|2 dσO

∞ =
∫

O∩{|Du∞|=E∞(u∞,O)}
|Du∞|2 dσO

∞

= E∞(u∞,O)2 σO
∞

(
O \

{
|Du∞| < E∞(u∞,O)

})
= E∞(u∞,O)2

(
σO

∞
(
O

)
− σO

∞
({

|Du∞| < E∞(u∞,O)
}))

= E∞(u∞,O)2.

Hence, (2.2) indeed follows.

3. Numerical approximations of p-concentration measures

In this section we perform several numerical experiments in both the scalar
and the vectorial case for various appropriately selected boundary conditions.
These experiments demonstrate in a concrete fashion the plethora of possible
behaviours of the limit measures σO

∞, depending on the shape of O and its
position in relation to the level sets of the modulus of the gradient |Du∞|.

The method we use is a conforming finite element discretisation of the
p-Laplace system analysed in [12] for fixed p. We will describe the discreti-
sation and summarise extensive numerical experiments aimed at quantifying
the behaviour of the limit measure σO

∞. We refer to [33,34,39] for analytic
justification.

We let T be an admissible triangulation of Ω, namely, T is a finite col-
lection of sets such that

(1) K ∈ T implies K is an open triangle,
(2) for any K,J ∈ T we have that K ∩ J is either ∅, a vertex, an edge, or

the whole of K and J and
(3) ∪K∈T K = Ω.

The shape regularity constant of T is defined as the number

μ(T ) := inf
K∈T

ρK

hK
, (3.1)

where ρK is the radius of the largest ball contained inside K and hK is the
diameter of K. An indexed family of triangulations {T n}n is called shape
regular if

μ := inf
n

μ(T n) > 0. (3.2)

Further, we define h : Ω → R to be the piecewise constant meshsize function
of T given by

h(x) := max
K	x

hK . (3.3)
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A mesh is called quasiuniform when there exists a positive constant C such
that maxx∈Ω h(x) ≤ C minx∈Ω h(x). In what follows we shall assume that all
triangulations are shape-regular and quasiuniform.

We let P
1(T ) denote the space of piecewise linear polynomials over the

triangulation T , i.e.,

P
1(T ) =

{
φ such that φ|K ∈ P

1(K)
}

(3.4)

and introduce the finite element space

V :=P
1(T ) ∩ C0(Ω) (3.5)

to be the usual space of continuous piecewise linear polynomial functions.

3.1. Galerkin discretisation

We consider the Galerkin discretisation, to find U ∈ [V]N with U |∂Ω = Ihu0,
the piecewise Lagrange interpolant, such that∫

Ω

|DU |p−2DU : DΦ = 0, ∀Φ ∈ [V]N . (3.6)

This is a conforming finite element discretisation of the vectorial p-Laplacian
system proposed in [12]. Existence and uniqueness of solution to (3.6) follows
from examination of the p-functional

Ep(u,Ω) =
(∫

Ω

|Du|p
)1/p

. (3.7)

Notice that (3.7) is strictly convex and coercive on W 1,p
0 (Ω,RN ) so we may

apply standard arguments from the Calculus of Variations showing that the
minimisation problem is well posed. Hence, there exists a u ∈ W 1,p

u0
(Ω,RN )

such that
Ep(u,Ω) = min

v∈W 1,p
0 (Ω,RN )

Ep(v,Ω). (3.8)

Since [V]N ⊂ W 1,p(Ω,RN ) the same argument applies for the Galerkin ap-
proximation.

Further, for fixed p, let {Up} be the finite element approximation gener-
ated by solving (3.6) (indexed by h) and up, the weak solution of the p-Laplace
system, then we have that

Up −→ up in C0(Ω,RN ), as h → 0. (3.9)

3.2. Numerical experiments

Our numerical approximations are achieved using Galerkin approximations to
the p-Laplacian for sufficiently high values of p. We focus on studying the
behaviour solutions have as p increases which allow us to make various con-
jectures on the behaviour of their asymptotic limit as p → ∞.

The computation of p-harmonic mappings is an extremely challenging
problem in its own right. The class of nonlinearity in the problem results in
the algebraic system, which ultimately yields the finite element solution, being
extremely badly conditioned. One method to tackle this class of problems is
by using preconditioners based on descent algorithms [27]. For extremely large
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p, say p ≥ 10000, this may be required; however for our purposes we restrict
our attention to p ∼ 100. This yields sufficient accuracy for the results we are
illustrating.

We emphasise that even the case p ∼ 100 is computationally difficult
to handle. The numerical approximation we are using is based on a damped
Newton solver. As it is well known, Newton solvers require a sufficiently close
initial guess in order to converge. A reasonable initial guess for the p-Laplacian
is given by numerically approximating with the q-Laplacian for q < p suffi-
ciently close to p. This leads to an iterative process in the generation of the
initial guess, i.e., we solve the 2-Laplacian as an initial guess to the 3-Laplacian
which serves as an initial guess to the 4-Laplacian, and so on. In each of our
experiments the number of nonlinear iterations required to achieve a relative
tolerance of 10−8 was achieved in less that 20 iterations.

Using the methodology of p-approximation which we advocate here, it
has been numerically demonstrated in the scalar case the rates of convergence
both in p and in h that we expect to achieve [39][Section 4]. It was noticed that
these rates were dependant on the regularity of the underlying ∞-harmonic
function and that

‖u∞ − Up∗‖L∞ ≈ O(h) (3.10)
for solutions u∞ ∈ C∞ and

‖u∞ − Up∗‖L∞ = O(h1/3) (3.11)

if u∞ ∈ C1,1/3. Where we use p∗ as the argminp‖u∞ − Up‖L∞ .
In both cases as h is decreased, an increasing value of p is required to

achieve optimal approximation (in h). This suggests a coupling p = Chα is
necessary to achieve convergence, where the α is determined by the regularity
expected in u∞. We found experimentally that coupling p = h−1/2 worked
well for the singular case (u∞ ∈ C1,1/3) and p = h−1 for the smooth case
(u∞ ∈ C∞).

We mention that we do not have access to exact solutions in general. For
the experiments in Sects. 3.3–3.5 we only provide boundary data and in prin-
ciple the solutions to this problem are non-smooth and must be interpreted in
an appropriate weak sense. For the scalar problem this is through the viscosity
solution framework [17].

3.3. Scalar case: Aronsson solution

Here we examine the scalar problem with prescribed boundary data given by
the celebrated Aronsson solution

u∞(x, y) = |x|4/3 − |y|4/3. (3.12)

We study the measure σO
p (T ) with various domains O and increasing values of

p to enable conjectures to be made as to the structure of σO
∞ in some test cases.

In particular, we examine the interplay between σO
∞ and the level sets of |Du∞|.

In Figs. 1, 2, 3 and 4 we plot the domain O and σO
p (T ) for p = 2, 4, 10, 20, 100.

Specific conjectures regarding the behaviour of the measure σO is provided
at the captions of each figure, since the particular behaviour depends on the
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shape of the domain and its position in relation to the level sets of the gradient,
but generally it is a sum of lower-dimensional concentration measures.

3.4. Scalar case: Eikonal solution

In this test we examine the scalar problem with prescribed boundary data
given by the conic solution

u(x, y) = (x2 + y2)1/2. (3.13)

Notice this function is Eikonal. We study the measure σO
p (T ) with O taken

such that 0 /∈ O. Results are shown in Fig. 5 where we plot the domain O and
σO

p (T ) for p = 2, 4, 10, 20, 100. Notice that, in contrast to the Aronsson case,
the mass is not sent toward the boundary as p → ∞. In this case we conjecture
that σO is always absolutely continuous with respect to the Lebesgue measure
Ln�O.

3.5. Vectorial case: Eikonal solution

In this test we examine the vectorial problem with prescribed boundary data
given by

u(x, y) = eix − eiy, (3.14)
where we use the notation eit = (cos t, sin t). Notice this function is Eikonal. We
study the measure σO

p (T ) with O taken such that 0 /∈ O. Results are shown
in Fig. 6 where we plot the domain O and σO

p (T ) for p = 2, 4, 10, 20, 100.
Notice that mass is not sent towards the boundary as p → ∞. We conjecture
that again σO is absolutely continuous with respect to the Lebesgue measure
Ln�O.

3.6. Vectorial case: mixed boundary conditions

In this test we examine the vectorial problem with prescribed boundary data
given by

u(x, y) =

{
(x, y), if x ≤ 0,

(λx, y), if x > 0,
(3.15)

for λ ∈ {±1
2}. We study the measure σO

p (T ) with O = Ω. Results are shown in
Figs. 7 and 8 where we plot the domain O and σO

p (T ) for p = 2, 4, 10, 20, 100.
Specific conjectures regarding the behaviour of the measure σO is provided
at the captions, since the particular behaviour depends on the shape of the
domain and its position in relation to the level sets of the gradient. This case
appears to combine both concentration and absolutely continuous parts.

3.7. Vectorial case: orientation preserving diffeomorphism

In this test we examine the vectorial problem with prescribed boundary data
given by

u(x, y) = e(log |x|S)x, (3.16)
where S is the orthogonal, skew-symmetric matrix

S =
[
0 −1
1 0

]
. (3.17)
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Figure 1. A test to characterise the σO
∞ for boundary data

given by the Aronsson solution in (3.12). We show the domain
O and the measure σO

p (T ) for increasing values of p. In each
of the subfigures b–f we plot 10 contours that are equally
spaced between the minimum and maximum values of σO

p .
Notice that as p increases these contours tend toward the top
right corner of O indicating that mass is concentrated there
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Figure 2. As Fig. 1 with a different O. Notice that as p
increases these contours tend toward the corners of O indi-
cating that mass is concentrated there. We conjecture that
σO

∞ = 1
4

∑3
j=0 δxj

, with xj denoting the four corners of O
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Figure 3. As Fig. 1 with a different O. The corners of the
square defining O are touching the level sets of |Du∞|. Again,
we conjecture that σO

∞ = 1
4

∑3
j=0 δxj

, with xj denoting the
four corners of O
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Figure 4. As Fig. 2 with a different O. The boundary of O
now contains a portion of the level sets of |Du∞|. Notice that
as p increases, mass is concentrated on four portions of the
boundary, where the red square intersects with the level sets.
We conjecture that σO = 1

C

∑3
i=0 H1�Γi

, where H1 is the
Hausdorff measure, Γ0, . . . ,Γ3 are the four boundary portions
and C :=

∑3
i=0 H1(Γi)
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Figure 5. A test to characterise the σO
∞ for boundary data

given by the Eikonal function in (3.14). We show the domain
O and the measure σO

p (T ) for increasing values of p. In each
of the subfigures b–f we plot 10 contours that are equally
spaced between the minimum and maximum values of σO

p . No-
tice that as p increases these contours remain equally spaced
indicating mass is not pushed to the boundary
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Figure 6. A test to characterise σO
∞ for the boundary data

given by (3.14). We show the domain O and the measure
σO

p (T ) for increasing values of p. In each of the subfigures b–f
we plot 10 contours that are equally spaced between the min-
imum and maximum values of σO

p . Notice that as p increases
these contours remain equally spaced indicating mass is not
pushed to the boundary
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Figure 7. A test to characterise σO
∞ for the boundary data

given by (3.15) with λ = 1
2 . We show the domain O and

the measure σO
p (T ) for increasing values of p. In each of the

subfigures b–f we plot 10 contours that are equally spaced
between the minimum and maximum values of σO

p . Notice
that as p increases these contours become concentrated at the
four points {xi}3

i=0. In this case we conjecture that σO is given
by the sum of four Dirac masses at the points {xi}3

i=0 and
otherwise it is absolutely continuous with respect to Ln�O,
rescaled so that it is a probability on O
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Figure 8. As Fig. 7 with λ = − 1
2 . Qualitatively the same

behaviour is observed here as well
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Figure 9. A test to characterise σO
∞ for the boundary data

given by (3.16) with λ = 1
2 . We show the domain O and

the measure σO
p (T ) for increasing values of p. In each of the

subfigures b–f we plot 10 contours that are equally spaced
between the minimum and maximum values of σO

p . Notice
that as p increases these contours are relatively evenly spaced.
Again the conjecture is that σO is absolutely continuous with
respect to Ln�O
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This is the explicit example given in [36][Lemma 3.1]. Results are shown in
Fig. 9 where we plot the domain O and σO

p (T ) for p = 2, 4, 10, 20, 100. In this
case we also conjecture that σO must be absolutely continuous with respect
to the Lebesgue measure Ln�O. Given that absolute continuity appears in
all cases we have eikonal data, it appears that this must be a general fact
regardless of any particular additional structures.
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