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Abstract. In this paper we consider a linear elliptic equation in divergence
form ∑

i,j

Dj(aij(x)Diu) = 0 in Ω. (0.1)

Assuming the coefficients aij in W 1,n(Ω) with a modulus of continuity
satisfying a certain Dini-type continuity condition, we prove that any very

weak solution u ∈ Ln′
loc(Ω) of (0.1) is actually a weak solution in W 1,2

loc (Ω).
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1. Introduction

Let n ≥ 2 and Ω ⊂ R
n be a bounded open set. In this paper we study regularity

properties of very weak solutions to the linear elliptic equation
∑

i,j

Dj(aij(x)Diu) = 0 in Ω, (1.1)

where the matrix-field A : Ω → R
n×n, A(x) = (aij(x))i,j , is elliptic and

belongs to W 1,n(Ω,Rn×n) ∩ L∞(Ω,Rn×n), i.e.

sup
i,j=1,...,n

‖aij‖W 1,n(Ω) ≤ M (1.2)

and

λ|ξ|2 ≤
∑

i,j

aij(x)ξiξj ≤ Λ|ξ|2 ∀ξ = (ξ1, . . . , ξn) ∈ R
n, a.e. in Ω, (1.3)

for some positive constants λ,Λ, and M . Moreover, the matrix A is symmetric,
that is aij = aji a.e. in Ω for all i, j ∈ {1, ..., n}.
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Finally we assume that the coefficients (aij(x))i,j are double-Dini contin-
uous in Ω, i.e. aij ∈ C0(Ω) and

ĀΩ(r) :=
∑

i,j

sup
x,y∈Ω

|x−y|≤r

|aij(x) − aij(y)|, r > 0,

satisfies ˆ diam(Ω)

0

1
t

ˆ t

0

ĀΩ(s)
s

ds dt < ∞. (1.4)

A common type of double-Dini continuous functions are, of course, ω(r) = rα,
0 < α ≤ 1, thus an example of a matrix-field A satisfying (1.2) and (1.4) is
A ∈ W 1,p(Ω,Rn×n), with p > n. On the other hand, condition (1.4) occurs
not only for ω(r) = rα, but more generally for ω(r) = logβ

(
1
r

)
, β < −2.

Given a measurable matrix A(x) = (aij(x))i,j satisfying (1.3), a function
u ∈ W 1,2

loc (Ω) is called a weak solution of (1.1) if
∑

i,j

ˆ
aij(x)DiuDjϕdx = 0, ∀ϕ ∈ C∞

c (Ω).

The celebrated result by De Giorgi in [5] states that if u is a weak solution
of (1.1) then u is locally Hölder continuous.

Subsequently, J. Serrin produced in [14] a famous example, constructing
an equation of the form (1.1) which has a solution u ∈ W 1,p(Ω), with 1 <
p < 2, and u /∈ L∞

loc(Ω). Serrin conjectured that if the coefficients aij are
locally Hölder continuous, then any solution (in the sense of distributions)
u ∈ W 1,1

loc (Ω) of (1.1) must be a (usual) weak solution, i.e. u ∈ W 1,2
loc (Ω).

Serrin’s conjecture was established by Hager and Ross [9], and then in full
generality by Brezis [2] (see also [1] for a full proof) starting with u ∈ W 1,1

loc (Ω),
or even with u ∈ BVloc(Ω), i.e., u ∈ L1

loc(Ω) and its derivatives (in the sense
of distributions) being Radon measures. Let us remark that in Brezis’s result
the coefficients aij , satisfying (1.3), are Dini continuous functions in Ω. The
Dini continuity of the coefficients is optimal in some sense: for the unit ball B1

and continuous coefficients, Jin et al. [10] constructed a solution (in the sense
of distributions) u ∈ W 1,1

loc (B1)\W 1,p
loc (B1) for every p > 1.

For A(x) = (aij(x))i,j satisfying (1.2) and (1.3), we will consider a very
weak solution u ∈ Ln′

loc(Ω) of (1.1), namely
∑

i,j

ˆ
u(x)Di(aij(x)Djϕ(x)) dx = 0, ∀ϕ ∈ C∞

c (Ω), (1.5)

with n′ = n
n−1 .

Remark 1.1. It is not difficult to prove that the test functions ϕ in (1.5) can
be taken in W 2,n(Ω) ∩ W 1,∞(Ω), with supp ϕ � Ω. Indeed, one can argue by
density to show that given a function ϕ ∈ W 2,n(Ω) ∩ W 1,∞(Ω) with compact
support, we may find a sequence ϕk ∈ C∞

c (Ω) such that ϕk → ϕ strongly in
W 2,n and supk ‖ϕk‖1,∞ < ∞ (so that Dϕk converges to Dϕ weakly* in L∞)
and then taking the limit as k goes to infinite in the Eq. (1.5) for ϕk.
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The main result of the paper is the following.

Theorem 1.2. Let u be a very weak solution of (1.1), with A(x) = (aij(x))i,j

satisfying (1.2), (1.3) and (1.4), then u belongs to W 1,2
loc (Ω) and thus it is a

weak solution.

Remark 1.3. It is worth noting that, under hypotheses (1.2) and (1.3), one
can consider a very weak solution u ∈ Ln′

loc(Ω) to (1.1), but when dealing
with the regularity properties of u some extra conditions on the coefficients
aij must be considered. The counterexample constructed in [10] provides in
fact continuous coefficients aij which belong also to W 1,n(B1), showing that
one can not expect a very weak solution u ∈ Ln′

loc(Ω) to be a weak solution in
W 1,2

loc (Ω) under just conditions (1.2) and (1.3). For the sake of completeness,
we will propose the example given in [10] in the “Appendix B”, underlining
that the constructed coefficients belong also to W 1,n(B1).

On the other hand, in Sect. 4 we propose an alternative to double Dini
continuous coefficients which again bypasses the counterexample. In particular,
under hypotheses (1.2) and (1.3) we consider a very weak solution in Lq

loc(Ω),
with q > n′.

Remark 1.4. In [15] Zhang and Bao deal with the case of very weak solutions
u ∈ L1

loc(Ω) of (1.5), interpreting the coefficients as Lipschitz functions, due
to the assumption made on the solutions. Thus our result represents a natural
extension from their research.

2. Notation and preliminary results

We collect here the main definitions and notation and some useful results that
will be needed in the sequel.

2.1. Notation

In the following, we denote by Br(x) = {y ∈ R
n : |y − x| < r} the ball of radius

r centered at x.
We indicate by {e1, . . . en} the canonical basis of Rn. Given h ∈ R\ {0},

for a measurable function ψ : Rn → R and for 	 = 1, . . . , n, we introduce the
notation

Δ�
hψ :=

ψ(x + he�) − ψ(x)
h

for the incremental quotient in the 	-th direction. We recall that for every pair
of functions ϕ,ψ, we have

Δ�
h(ϕψ) = Δ�

hϕψ + ϕ(x + he�)Δ�
hψ. (2.1)

The following result pertaining to difference quotients of functions in
Sobolev spaces is well known t (see [8, Proposition 4.8] for example).
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Theorem 2.1. Let p > 1; if ψ ∈ W 1,p(Ω), then Δ�
hψ ∈ Lp(Ω′) for any Ω′ � Ω

satisfying h < dist(Ω′,∂Ω)
2 , and we have

‖Δ�
hψ‖Lp(Ω′) ≤ ‖D�ψ‖Lp(Ω).

If ψ ∈ Lp(Ω) and there exists L ≥ 0 such that, for every h < dist(Ω′, ∂Ω),
	 = 1, . . . , n, we have

‖Δ�
hψ‖Lp(Ω′) ≤ L,

then ψ ∈ W 1,p(Ω′), ‖D�ψ‖Lp(Ω′) ≤ L and Δ�
hψ → D�ψ in Lp(Ω′) as h → 0.

Finally, given p > 1, we denote by p′ = p
p−1 the conjugate exponent of p.

2.2. Dini continuous functions

We say that a continuous function f on Ω is Dini continuous if the modulus
of continuity f̄Ω : [0, diam(Ω)] → R

+ defined by

f̄Ω(r) := sup
x,y∈Ω

|x−y|≤r

|f(x) − f(y)|

satisfies ˆ diam(Ω)

0

f̄Ω(t)
t

dt < ∞.

We also denote by CD(Ω) the space of Dini continuous functions; it turns
out to be a Banach space equipped with the following norm:

‖f‖CD(Ω) := ‖f‖∞ +
ˆ diam(Ω)

0

f̄Ω(t)
t

dt,

where ‖ · ‖∞ is the usual uniform norm.
Let us remark that by the uniform continuity, any function in CD(Ω) may

be extended up to the boundary of Ω with the same modulus of continuity.
Moreover,

C0,α(Ω) ⊆ CD(Ω),

for any 0 < α ≤ 1, where C0,α(Ω) denotes the space of Hölder continuous
functions.

The space CD
c (Ω) will denote the set of functions in CD(Ω) with compact

support in Ω.

Lemma 2.2. The space C∞
c (Ω) is dense in CD

c (Ω).

Proof. Let f ∈ CD
c (Ω) that we extend to zero on R

n\Ω and set fε(x) =
(ρε ∗ f)(x), where ρε is a standard mollifier. Then, if ε is sufficiently small,
fε ∈ C∞

c (Ω); we will prove that

fε → f in CD(Ω). (2.2)

It is easily seen that fε uniformly converges to f in Ω, thus in order to
prove (2.2) we will just show thatˆ diam(Ω)

0

(f − fε)Ω(t)
t

dt → 0,
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as ε tends to 0. Observe that

(f − fε)Ω(r) = sup
x,y∈Ω

|x−y|<r

{|fε(x) − f(x) − fε(y) + f(y)|} ≤ f̄Ω(r) + (f̄ε)Ω(r)

and
(f̄ε)Ω(r) = sup

x,y∈Ω
|x−y|<r

{|fε(x) − fε(y)|}

= sup
x,y∈Ω

|x−y|<r

{∣∣∣∣
ˆ

ρε(z) (f(x − z) − f(y − z)) dz

∣∣∣∣

}

≤
ˆ

ρε(z)f̄Ω(r)dz = f̄Ω(r),

which together yield

(fε − f)Ω(r) ≤ 2f̄Ω(r).

On the other hand, since (fε − f)Ω → 0 pointwise, the dominated convergence
theorem implies ˆ diam(Ω)

0

(fε − f)Ω(t)
t

→ 0,

which concludes the proof of (2.2). �

Remark 2.3. The previous result ensures that CD
c (Ω) is a separable space,

noting that C1
c (Ω) is separable with respect to the usual norm ‖f‖1,∞ :=∑

|α|≤1 ‖Dαf‖∞, C1
c (Ω) ⊆ CD

c (Ω) and f̄Ω(r) ≤ r‖Df‖∞, for every f ∈ C1
c (Ω).

Lemma 2.4. Let f, fε, and g belonging to CD(Ω) such that fε converges to f
in CD; then gfε converges to gf in CD.

Proof. As before, it is enough to prove the convergence of the seminorm since
the uniform convergence is immediate. Then, writing the definition of the
modulus of continuity, we have

g(fε − f)tΩ(r) = sup
x,y∈Ω

|x−y|<r

{|g(x)(fε(x) − f(x)) − g(y)(fε(y) − f(y))|}

≤ sup
x,y∈Ω

|x−y|<r

{|g(x)| |(fε(x) − f(x)) − (fε(y) − f(y))|}

+ sup
x,y∈Ω

|x−y|<r

{|g(x) − g(y)||f(y) − fε(y)|}

≤ ‖g‖∞(f − fε)Ω(r) + ḡΩ(r)‖f − fε‖∞.

(2.3)

Hence,ˆ diam(Ω)

0

[g(fε − f)]Ω(t)
t

dt ≤ ‖g‖∞
ˆ diam(Ω)

0

(f − fε)Ω(t)
t

dt

+ ‖f − fε‖∞
ˆ diam(Ω)

0

ḡΩ(t)
t

dt,
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which goes to zero as ε tends to zero. �
2.3. C1-Dini regularity of solutions to divergence form elliptic equations with

Dini-continuous coefficients

For the proof of our result, we will need the following extension of the Schauder
regularity theory for elliptic equations in divergence form with Dini continuous
coefficients (see [12, Theorem 1.1] and [6, Theorem 1.3], see also [11] which is
inclusive of the parabolic case.). For the Lp-regularity theory we refer to [7],
where the general case of V MO coefficients is treated (see also [13, Theorem
5.5.3 (a)] or [3, Theorem 2.2. Chapter 10] for the case of continuous coeffi-
cients).

Theorem 2.5. For Ω ⊂ R
n, let aij satisfy (1.3) and (1.4); we consider f =

(f1, f2, . . . , fn) with fj ∈ C∞
c (Ω) for all j ∈ {1, . . . , n}. Assume that u ∈ H1(Ω)

is a weak solution of the equation
∑

i,j

Dj (aijDiu) =
∑

j

Djfj in Ω (2.4)

Then u ∈ C1,D(Ω′), for any bounded open set Ω′, Ω′ � Ω.
Moreover, let Ω a C1,1 bounded open subset of Rn, let aij satisfy (1.2)

and (1.3), and let fj ∈ Lp(Ω), for every j ∈ {1, . . . , n}, with 1 < p < ∞, then
there exists a unique solution u ∈ W 1,p

0 (Ω) to the problem
∑

i,j

ˆ
Ω

aijDiuDjϕdx =
∑

j

ˆ
Ω

fjDjϕdx ∀ϕ ∈ W 1,p′
0 (Ω),

and
‖u‖W 1,p(Ω) ≤ C

∑

j

‖fj‖Lp(Ω) (2.5)

holds, where C depends on n, λ,Λ, p, ∂Ω, ‖A‖W 1,n(Ω,Rn×n).

Remark 2.6. The first conclusion of Theorem 2.5 comes with an estimate of
the Dini modulus of continuity of Du involving the Dini modulus of conti-
nuity of aij and fj . Actually, in [12, Theorem 1.1] and in [6, Theorem 1.3]
only the continuity of Du is proved and these results are obtained with a
weaker assumption on the coefficients aij . Assuming (1.4) for the coefficients
we are able to prove also the Dini continuity of the gradient of the solution. In
“Appendix A” we will resume in broad terms the proof of [12, Theorem 1.1],
developing it in order to get the needed Dini continuity result.

2.4. C2-regularity of solutions to non divergence form elliptic equations with
Dini-continuous coefficients

Let us first recall the W 2,p-solvability of the Dirichlet problem for non diver-
gence elliptic equations with discontinuous coefficients (see [4, Theorem 4.2
and Theorem 4.4]).

Theorem 2.7. The Dirichlet problem
⎧
⎨

⎩

∑

i,j

aij(x)Diju = f a.e.inΩ

u = 0 on ∂Ω
(2.6)
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where Ω is a C1,1 smooth and bounded subset of Rn, f ∈ Lp(Ω) with 1 < p <
∞, and aij satisfies (1.2) and (1.3), admits a unique solution u ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) and
||u||W 2,p(Ω) ≤ C

(||u||Lp(Ω) + ||f ||Lp(Ω)

)
, (2.7)

where the constant C depends on n, p, λ,Λ, ∂Ω, ‖A‖W 1,n(Ω,Rn×n).

The next result specifies estimate (2.7); its proof is quite standard but
we prefer to write it for the sake of completeness.

Proposition 2.8. Suppose u is a solution of the elliptic Dirichlet problem (2.6)
with aij , f, p and Ω as above. Then

||u||W 2,p(Ω) ≤ C||f ||Lp(Ω). (2.8)

Proof. Let

L =
{

L =
∑

i,j

aijDij , sup
i,j

||aij ||W 1,n(Ω) ≤ 2M, λ|ξ|2 ≤
∑

i,j

aij(x)ξiξj ≤ Λ|ξ|2
}

;

having in mind Theorem 2.7, if we prove that for any operator L ∈ L and for
any f ∈ Lp(Ω), the solution u of

{
Lu = f a.e. in Ω
u = 0 on ∂Ω,

satisfies

||u||Lp(Ω) ≤ C||f ||Lp(Ω),

we are done. Suppose it is not the case, then this is equivalent to say that for
every N ∈ N, there exists an operator LN =

∑
i,j aN

ij Dij ∈ L and a function
fN ∈ Lp(Ω) such that the corresponding solution uN to the Dirichlet problem

{
LNuN = fN a.e. in Ω
uN = 0 on ∂Ω,

satisfies
||uN ||Lp(Ω) > N ||fN ||Lp(Ω). (2.9)

Let us define vN = uN/‖uN‖Lp(Ω) and gN = fN/‖uN‖Lp(Ω), so that vN

solves (2.6) with LN and gN . By the W 2,p estimate (2.7),

||vN ||W 2,p(Ω) ≤ C
(||vN ||Lp(Ω) + ||gN ||Lp(Ω)

)
< C

(
1 +

1
N

)
,

where C does not depend on N and hence,

||vN ||W 2,p(Ω) ≤ C. (2.10)

Thus vN is a precompact sequence: up to a non relabeled subsequence, we can
suppose vN ⇀ u∗ weakly in W 2,p(Ω), for some u∗ ∈ W 2,p(Ω), moreover u∗ ∈
W 2,p(Ω) ∩ W 1,p

0 (Ω). Similarly, we can also say that, for every i, j = 1, . . . , n,
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aN
ij ⇀ a∗

ij weakly in W 1,n(Ω) and aN
ij → a∗

ij strongly in Lq(Ω) ∀ 1 ≤ q < ∞.
Thus, the operator L∗ =

∑
i,j a∗

ijDij belongs to L and for ϕ ∈ Lp′
(Ω) we have

∣∣∣∣
ˆ

Ω

(LNvN − L∗u∗) ϕdx

∣∣∣∣

≤
n∑

i,j=1

{ˆ
Ω

∣∣∣∣(a
N
ij − a∗

ij)
∂2vN

∂xi∂xj
ϕ

∣∣∣∣ dx +
∣∣∣∣
ˆ

Ω

a∗
ijϕ

(
∂2vN

∂xi∂xj
− ∂2u∗

∂xi∂xj

)
dx

∣∣∣∣

}

≤ C

n∑

i,j=1

‖(aN
ij − a∗

ij)ϕ‖Lp′ (Ω) +
n∑

i,j=1

{∣∣∣∣
ˆ

Ω

a∗
ijϕ

(
∂2vN

∂xi∂xj
− ∂2u∗

∂xi∂xj

)
dx

∣∣∣∣

}
.

Therefore, LNvN converges weakly in Lp(Ω) to L∗u∗. On the other hand, using
(2.9), we have

||gN ||Lp(Ω) <
1
N

.

Passing to the limit in the equation satisfied by vN , we discover that the limit
u∗ ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) satisfies L∗u∗ = 0 a.e. in Ω. By the uniqueness
properties of the solutions to (2.6), it follows that u∗ = 0. Thus vN converges
to zero and the argument becomes contradictory since ‖vN‖Lp(Ω) = 1. �

In [6, Theorem 1.5] it is shown that solutions to elliptic equations in
non divergence form with zero Dirichlet boundary conditions are C2 up to the
boundary when the leading coefficients are Dini continuous functions.

Theorem 2.9. Assume that Ω is a C2,1 smooth and bounded open subset of Rn,
f ∈ CD(Ω) and aij satisfies (1.2), (1.3), and (1.4). Let u ∈ W 2,2(Ω)∩W 1,2

0 (Ω)
be a solution of the Dirichlet problem

⎧
⎨

⎩

∑

i,j

aij(x)Diju = f a.e. in Ω

u = 0 on ∂Ω,
(2.11)

then u ∈ C2(Ω).

Remark 2.10. The assumption in [6] about the coefficients is weaker then (1.4),
since they assume that the modulus of continuity

ÃΩ(r) :=
∑

i,j

sup
x∈Ω

−
ˆ

Br(x)∩Ω

|aij(y) − (aij)Br(x)∩Ω| dy

with (aij)Br(x)∩Ω = −
ˆ

Br(x)∩Ω

aij , satisfies

ˆ
0

ÃΩ(r)
r

dr < ∞.
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3. Proof of the main theorem

We use a duality argument in conjunction with the regularity properties for
elliptic equations in divergence and in non divergence form, stated in Theorems
2.5 and 2.9.

Proof. Let Ω′ � Ω be an open set and choose a C2,1 open set Ω0 with Ω′ �
Ω0 � Ω; let d(Ω′, ∂Ω0) = d > 0. Let h0 = d/4, and 0 < |h| < h0.
For the sake of clarity, we divide the proof into two steps.

Step 1 For 	 = 1, . . . , n, we claim that Δ�
hu is bounded in the dual space

of Dini continuous functions with compact support (CD
c (Ω′))′.

Given a Dini continuous function w ∈ CD
c (Ω′), according to Theorem

2.9 combined with Theorem 2.7, the solution v ∈ W 2,q(Ω0), ∀q > 1, to the
Dirichlet problem

⎧
⎨

⎩

∑

i,j

aij(x)Dijv = w a.e in Ω0

v = 0 on ∂Ω0,
(3.1)

enjoys the C2-regularity up to the boundary of Ω0.
We consider a partition of unity: let x1, . . . , xJ ∈ Ω′ and η1, . . . , ηJ ∈

C∞(Rn) be such that

Ω′ ⊂ Ω̄′ ⊂
J⋃

k=1

Bd/8(xk), 0 ≤ ηk ≤ 1, ∀k = 1, . . . , J, and
J∑

k=1

ηk = 1 in Ω′,

and

supp ηk is compact and supp ηk ⊂ Bd/8(xk).

We fix one of these balls and the related function ηk; we omit to indicate the
center xk and the index k for ηk for simplicity.

In view of Remark 1.1, we can insert ϕ = ηΔ�
−hv in (1.5), getting

0 =
∑

i,j

ˆ
uDi(aijDj(ηΔ�

−hv)) dx

=
∑

i,j

ˆ
uDiaijDj(ηΔ�

−hv) dx +
∑

i,j

ˆ
u aijDij(ηΔ�

−hv) dx

=
∑

i,j

ˆ
uDiaijDjηΔ�

−hv dx +
∑

i,j

ˆ
u ηDiaijDj(Δ�

−hv) dx

+
∑

i,j

ˆ
η u aijDij(Δ�

−hv) dx +
∑

i,j

ˆ
u aijDjηDi(Δ�

−hv) dx

+
∑

i,j

ˆ
u aijDiηDj(Δ�

−hv) dx +
∑

i,j

ˆ
u aijDijηΔ�

−hv dx.
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We can rearrange the previous equation in order to have
∑

i,j

ˆ
η u aijDij(Δ�

−hv) dx = −
∑

i,j

ˆ
uDiaijDjηΔ�

−hv dx

−
∑

i,j

ˆ
u ηDiaijDj(Δ�

−hv) dx

−
∑

i,j

ˆ
u aijDjηDi(Δ�

−hv) dx

−
∑

i,j

ˆ
u aijDiηDj(Δ�

−hv) dx

−
∑

i,j

ˆ
u aijDijηΔ�

−hv dx.

With a simple change of variables, we get
∑

i,j

ˆ
η u aijDij(Δ�

−hv) dx =
∑

i,j

ˆ
Rn

η u aijΔ�
−h(Dijv) dx

=
∑

i,j

ˆ
Rn

Δ�
h(η u aij)Dijv dx

=
∑

i,j

ˆ
Δ�

hu η aijDijv dx

+
∑

i,j

ˆ
u(x + he�)Δ�

h(η aij)Dijv dx,

where we also used (2.1). Thus, we finally have
∑

i,j

ˆ
ηΔ�

hu aijDijv dx = −
∑

i,j

ˆ
uDiaijDjηΔ�

−hv dx

−
∑

i,j

ˆ
u ηDiaijDj(Δ�

−hv) dx

−
∑

i,j

ˆ
u aijDjηDi(Δ�

−hv) dx

−
∑

i,j

ˆ
u aijDiηDj(Δ�

−hv) dx

−
∑

i,j

ˆ
u aijDijηΔ�

−hv dx

−
∑

i,j

ˆ
u(x + he�)Δ�

h(η aij)Dijv dx

= I1 + I2 + I3 + I4 + I5 + I6.

(3.2)

Now, we estimate the six terms Im.
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The use of Hölder’s inequality gives

|I1| ≤
∑

i,j

ˆ
Bd/8

|uDiaijDjηΔ�
−hv| dx

≤ ||Dη||L∞(Rn,Rn)||A||W 1,n(Ω,Rn×n)||u||Ln′ (Ω0)
||Δ�

−hv||L∞(Bd/8)

≤ C||Dv||L∞(Ω0,Rn) ≤ C‖w‖L∞(Ω′),

combined with Sobolev’s embedding and Proposition 2.8 in the last inequality.
Analogously

|I2| ≤ ||A||W 1,n(Ω,Rn×n)||u||Ln′ (Ω0)
‖D2v‖L∞(Ω0,Rn×n).

The terms I3 and I4 can be treated in the same way. Using Hölder’s inequality,
Theorem 2.1 and Proposition 2.8, we have

|I3|, |I4| ≤ Λ‖u‖Ln′ (Ω0)
‖Dη‖L∞(RnRn)||v||W 2,n(Ω0) ≤ C||w||Ln(Ω′).

Again, for I5 we have

|I5| ≤ Λ‖u‖Ln′ (Ω0)
‖D2η‖L∞(Rn,Rn×n)‖Dv‖Ln(Ω0,Rn) ≤ C‖w‖Ln(Ω′).

We finally estimate I6. From (2.1), we get

I6 = −
∑

i,j

ˆ
u(x + he�) ηΔ�

haijDijv dx

−
∑

i,j

ˆ
u(x + he�)aij(x + he�)Δ�

hη Dijv dx.

The second term can be estimated as I3 and I4, thus:

|I6| ≤
∑

i,j

ˆ
Bd/8

|u(x + he�) ηΔ�
haijDijv| dx + C‖w‖Ln(Ω′)

≤ C‖A‖W 1,n(Ω,Rn×n)‖u‖Ln′ (Ω0)
‖D2v‖L∞(Ω0,Rn×n) + C‖w‖Ln(Ω′).

(3.3)

Here we have used once more Theorem 2.9.
Finally, combining the estimates found for Im, m ∈ {1, . . . 6}, from (3.2)

we get
∑

i,j

ˆ
Bd/8

ηΔ�
hu aijDijv dx ≤ C,

where C depends on λ,Λ, ‖Dη‖L∞(Rn,Rn), ‖D2η‖L∞(Rn,Rn×n), ‖u‖Ln′ (Ω0)
,

‖A‖W 1,n(Ω,Rn×n), ‖w‖L∞(Ω′) and ‖D2v‖L∞(Ω0,Rn×n), as well as on the mod-
ulus of continuity of the coefficients aij and of the datum w. Summing over
k = 1, . . . , J , since v is the weak solution to the Dirichlet problem (3.1), we
finally have

∣∣∣∣
ˆ

Ω′
η wΔ�

hu dx

∣∣∣∣ ≤ C,

and we get
∣∣∣∣
ˆ

Ω′
wΔ�

hu dx

∣∣∣∣ ≤ C,
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for every w ∈ CD
c (Ω′). By the uniform boundedness principle this means that

{Δ�
hu}h is a family of equibounded elements in the dual space of Dini contin-

uous functions (CD
c (Ω′))′. Since (CD

c (Ω′))′ is separable, we have that, up to a
subsequence,

Δ�
hu

∗
⇀ μ� ∈ (CD

c (Ω′))′.

Step 2. We prove that u ∈ W 1,p′
loc (Ω), with p > n.

Using the previous Step we can easily deduce from (1.5) that
∑

i,j

〈μi, aijDjϕ〉 = 0 ∀ϕ ∈ C∞
c (Ω′), (3.4)

where the duality pairing is between (CD
c (Ω′))′ and CD

c (Ω′).
For j ∈ {1, . . . , n}, let f = (f1, . . . , fn) with fj ∈ C∞

c (Ω′) be such that

∑

j

||fj ||Lp(Ω′) ≤ 1,

with p > n. Introducing as before a regular set Ω0 between Ω′ and Ω we can
possibly assume that Ω is a C1,1 set. Let v ∈ W 1,2

0 (Ω) be the weak solution of
the problem

∑

i,j

ˆ
aijDivDjϕdx =

∑

j

ˆ
Djϕfj dx ∀ϕ ∈ C∞

c (Ω). (3.5)

By Theorem 2.5 we have that v ∈ W 1,p
0 (Ω) and

||v||W 1,p(Ω) ≤ C||f ||Lp(Ω′,Rn).

Note that, since p > n, this means also that the function v is Hölder continuous.
We take BR/2 ⊂ BR ⊂ Ω′ a pair of concentric balls centered at x0 ∈ Ω′

and we consider ξ(x) = ξ(|x − x0|) a smooth function such that ξ(t) = 1 for
t ∈ [0, R/2] and ξ(t) = 0 for t ≥ R .

We would like to use ϕ = ξv as test function in (3.4). We first observe
that, by Theorem 2.5, the function ξv belongs to C1,D

c (Ω′). Moreover, prov-
ing Lemma 2.2, we actually proved that a mollification of a Dini continuous
function with compact support strongly converges in CD to the function itself.
Thus, combining this fact with Lemma 2.4, we have that aijDj(ξv)ε strongly
converges in CD to aijDj(ξv), where (ξv)ε(x) = (ρε ∗ ξv)(x), ρε being a stan-
dard mollifier. This in turn implies that the use of ϕ = ξv as test function in
(3.4) is admissible:

∑

i,j

〈μi, aijDjv ξ〉 +
∑

i,j

〈μi, aijvDjξ〉 = 0. (3.6)
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Let us come back now to the equation satisfied by v. Let uε be a mollifi-
cation of the solution u, that is uε = ρε ∗u, with ρε a standard radial mollifier.
We use ξuε in (3.5):

∑

i,j

ˆ
aijξDjuεDiv dx +

∑

i,j

ˆ
aijDjξ uεDiv dx

=
∑

j

ˆ
ξfjDjuε dx +

∑

j

ˆ
uεDjξfj dx.

Now we claim that this implies, when we pass to the limit as ε → 0, that

∑

i,j

〈μj , aijξDiv〉 +
∑

i,j

ˆ
aijDiξuDjv dx =

∑

j

〈μj , ξfj〉 +
∑

j

ˆ
uDjξfj dx.

(3.7)
Note that the most delicate terms are the two involving the gradient of uε.
For a Dini continuous function w (the domain of w is not specified since the
function will be multiplied by a function with compact support) we will show
that

lim
ε→0

lim
h→0

ˆ
Δj

h(uε − u)w ξ dx = 0,

or, in other terms, recalling that μj is the limit in the weak∗ topology of
(CD

c (Ω′))′ of the incremental quotient of u

lim
ε→0

ˆ
Djuεw ξ dx = 〈μj , w ξ〉.

We have:

lim
ε→0

lim
h→0

ˆ
Δj

huεw ξ dx

= lim
ε→0

lim
h→0

ˆ
ξ(x)w(x)

ˆ
ρε(x − z)

u(z + hej) − u(z)
h

dz dx

= lim
ε→0

lim
h→0

ˆ
u(z + hej) − u(z)

h

ˆ
ρε(x − z)ξ(x)w(x) dx dz

= lim
ε→0

lim
h→0

ˆ
u(z + hej) − u(z)

h

ˆ
ρε(z − x)ξ(x)w(x) dx dz

= lim
ε→0

lim
h→0

ˆ
u(z + hej) − u(z)

h
(w ξ)ε(z) dz = lim

ε→0
lim
h→0

ˆ
Δj

hu (w ξ)ε dz

= lim
ε→0

〈μj , (wξ)ε〉 = 〈μj , w ξ〉,

where in the last equality we used again that a mollified function of a Dini
continuous function with compact support strongly converges in CD to the
function itself. Thus we obtain (3.7).
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From it, exploiting the symmetry of aij and using (3.6) we get

∑

j

〈μj , ξfj〉 = −
∑

i,j

〈μi, aijDjξv〉 +
∑

i,j

ˆ
aijDiξuDjv dx −

∑

j

ˆ
uDjξfj dx

= I1 + I2 + I3.

(3.8)
We now estimate the three terms Im, m = 1, 2, 3. We have

|I1| ≤
∑

i,j

‖μi‖(CD
c (Ω′))′‖aijvDiξ‖CD(Ω′).

By the definition of the norm in the space of Dini continuous functions we
have

‖aijvDiξ‖CD(Ω′) ≤ Λ‖v‖L∞(Ω′)‖Diξ‖L∞(BR) +
ˆ diam(Ω′)

0

(aijvDiξ)Ω′(r)
r

dr.

By simple computation we have

(aijvDiξ)Ω′(r) ≤ ‖v‖L∞(Ω′)(aijDiξ)Ω′(r) + ‖aijDiξ‖L∞(Ω′)vΩ′(r),

and, using the properties of the solution v (recall that p > n), the right hand
side can be estimated as

(aijvDiξ)Ω′(r) ≤ C(aijDjξ)Ω′(r)‖f‖Lp(Ω′,Rn)

+ Cr1− n
p ‖aijDjξ‖L∞(Ω′)‖Dv‖Lp(Ω′,Rn).

To summarize, we have

|I1| ≤ C‖f‖Lp(Ω′,Rn).

The estimate of I2 and I3 simply comes by Hölder’s inequality and again by
the properties of the solution v:

|I2| ≤
∑

i,j

∣∣∣∣
ˆ

aijDiξuDjv dx

∣∣∣∣ ≤ C‖u‖Ln′ (Ω′)‖Dξ‖L∞(BR,Rn)Λ‖v‖W 1,n(Ω′)

≤ C‖f‖Ln(Ω′,Rn),

and

|I3| ≤
∑

j

∣∣∣∣
ˆ

uDjξfjdx

∣∣∣∣ ≤ ‖u‖Ln′ (Ω′)‖Dξ‖L∞(BR,Rn)‖f‖Ln(Ω′,Rn).
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At the end, the estimates proved for I1, I2 and I3 lead to
∑

j

〈μj , ξfj〉 ≤ C‖f‖Lp(Ω′,Rn),

as well
∑

j

〈μjξ, fj〉 ≤ C‖f‖Lp(Ω′,Rn).

Since f is an arbitrary smooth function in Lp(Ω′,Rn), we conclude
∑

j

‖μjξ‖Lp′ (Ω′) ≤ C,

which means, using a finite covering argument, that μj is a function in Lp′
loc(Ω)

and then u ∈ W 1,p′
loc (Ω), since, for every ϕ ∈ C∞

c (Ω) and for h small enough,
we have ˆ

Δj
huϕdx =

ˆ
uΔj

−hϕdx;

passing to the limit as h → 0, we derive

〈μj , ϕ〉 =
ˆ

ϕμj dx = −
ˆ

uDjϕdx.

Since u ∈ W 1,p′
loc (Ω), Brezis’s result implies that u is a weak solution of

the equation (1.5), i.e. our statement. �

4. Sobolev coefficients

As pointed out in the Introduction, very weak solutions in Ln′
loc(Ω) associated

to coefficients in W 1,n(Ω) are not weak solutions, due to the counterexample
found in [10]. The quoted references on this problem have suggested us to
consider Sobolev coefficients with a modulus of continuity satisfying the double
Dini condition.

On the other hand, another way to get around the counterexample is
to deal with very weak solutions in Lq

loc(Ω), with q > n′. The result is the
following.

Theorem 4.1. Let u ∈ Lq
loc(Ω), q > n′, be a very weak solution of (1.1), with

A(x) = (aij(x))i,j satisfying (1.2) and (1.3), then u belongs to W 1,2
loc (Ω) and

thus it is a weak solution.

Proof. The proof rests on a duality and a bootstrap argument.

Step 1 We claim that u ∈ W
1,

(
qn′

q−n′
)′

loc (Ω).
We proceed as in the Step 1 of the proof of Theorem 1.2 to arrive to (3.2).

Now we estimate the six terms Im. We use Hölder’s inequality and Proposition
2.8 to get
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|I1| ≤ ‖Dη‖L∞(Rn)‖A‖W 1,n(Ω,Rn×n)‖u‖Lq(Ω0)‖Dv‖
L

qn′
q−n′ (Ω0,Rn)

≤ C‖w‖
L

qn′
q−n′ (Ω0)

,

|I2| ≤ ‖A‖W 1,n(Ω,Rn×n)‖u‖Lq(Ω0)‖D
2
v‖

L
qn′

q−n′ (Ω0,Rn×n)
≤ C‖w‖

L
qn′

q−n′ (Ω0)
,

|I3|, |I4| ≤ Λ‖u‖Lq(Ω0)‖Dη‖L∞(Rn,Rn)‖D
2
v‖Lq′ (Ω0,Rn×n) ≤ C‖w‖Lq′ (Ω′) ≤ C‖w‖

L
qn′

q−n′ (Ω′)
,

|I5| ≤ Λ‖u‖Lq(Ω0)‖D
2
η‖L∞(Rn,Rn×n)‖Dv‖Lq′ (Ω0,Rn) ≤ C‖w‖Lq′ (Ω′) ≤ C‖w‖

L
qn′

q−n′ (Ω′)
,

and finally, as for (3.3),

|I6| ≤ C‖w‖
L

qn′
q−n′ (Ω′)

+ C‖w‖Lq′ (Ω′) ≤ C‖w‖
L

qn′
q−n′ (Ω′)

.

So, arguing as in the Step 1 of Theorem 1.2, we deduce
∣∣∣∣
ˆ

Ω′
wΔ�

hu dx

∣∣∣∣ ≤ C‖w‖
L

qn′
q−n′ (Ω′)

,

which in turn implies, thanks also to Theorem 2.1, that u ∈ W
1,

(
qn′

q−n′
)′

loc (Ω).
Let us note that thanks to this, the equation satisfied by u may be rewritten
as

∑

i,j

ˆ
aij(x)DiuDjϕdx = 0, (4.1)

where the test functions ϕ can be taken in W 1, qn′
q−n′ (Ω) with compact support.

On the other hand, the summability of the solution u is not improved by its

belonging to this Sobolev space, since
(

qn′

q−n′

)′
= qn′

qn′−q+n′ and the Sobolev

conjugate of qn′

qn′−q+n′ is q.

Step 2 We prove that u ∈ W 1,q
loc (Ω).

As in the Step 2 of the proof of Theorem 1.2, for j ∈ {1, . . . , n} let
f = (f1, . . . , fn) with fj ∈ C∞

c (Ω′) be such that

∑

j

||fj ||Lq′ (Ω′) ≤ 1.

For every p > 1, let v ∈ W 1,p
0 (Ω) be the weak solution of the problem

∑

i,j

ˆ
aijDivDjϕdx =

∑

j

ˆ
Djϕfj dx ∀ϕ ∈ W 1,p′

0 (Ω). (4.2)

By Theorem 2.5 we have in particular that

||v||W 1,q′ (Ω′) ≤ C||f ||Lq′ (Ω′,Rn).
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As before, we take BR/2 ⊂ BR ⊂ Ω′ a pair of concentric balls centered
at x0 ∈ Ω′ and we consider ξ(x) = ξ(|x − x0|) a smooth function such that
ξ(t) = 1 for t ∈ [0, R/2] and ξ(t) = 0 for t ≥ R . We can choose ϕ = vξ in
(4.1) and ϕ = uξ as test function in (4.2), so that

∑

i,j

ˆ
aijDiuDjv ξ dx +

∑

i,j

ˆ
aijDiuDjξv dx = 0,

and
∑

i,j

ˆ
aijDivDju ξ dx +

∑

i,j

ˆ
aijDivDjξu dx

=
∑

j

ˆ
fjDju ξ dx +

∑

j

ˆ
fjDjξu dx.

Subtracting the two equations and using the symmetry of aij we get
∑

j

ˆ
fjDju ξ dx = −

∑

j

ˆ
fjDjξu dx +

∑

i,j

ˆ
aijDivDjξu dx

−
∑

i,j

ˆ
aijDiuDjξv dx = I1 + I2 + I3.

We estimate the three terms Im. We have

|I1| ≤ ‖u‖Lq(Ω′)‖Dξ‖L∞(BR,Rn)‖f‖Lq′ (Ω′,Rn) ≤ C‖f‖Lq′ (Ω′,Rn),

|I2| ≤ Λ‖Dξ‖L∞(BR,Rn)‖u‖Lq(Ω′)‖Dv‖Lq′ (Ω′,Rn) ≤ C‖f‖Lq′ (Ω′,Rn),

and finally

|I3| ≤ Λ‖u‖
W

1,( qn′
q−n′ )

′
(Ω′)

‖v‖
L

qn′
q−n′ (Ω′)

≤ C‖v‖W 1,q′ (Ω′),

where the last inequality derives from the fact that the Sobolev conjugate of
q′ is qn′

q−n′ . To sum up we have obtained
∣∣∣
∑

j

ˆ
fjξDju dx

∣∣∣ ≤ C‖f‖Lq′ (Ω′,Rn),

as well

‖ξDu‖Lq(Ω′,Rn) ≤ C,

and, using a finite covering argument, this implies that u ∈ W 1,q
loc (Ω). Let

us observe that this Sobolev regularity improves the summability of u. In
particular, u ∈ Lq∗

loc(Ω), where q∗ is the Sobolev conjugate of q.
Step 3 We claim that if q > n then u is a weak solution.
By the previous step, we deduce that if q > n then the solution u is in

L∞
loc(Ω). At this point, it is not difficult to prove, arguing as in Step 1, that

u ∈ W 1,n
loc (Ω).

Step 4 We prove that u ∈ L∞
loc(Ω).
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We just observed that if q > n we are done. Let us consider now q ≤ n.
The solution u is in W 1,q

loc (Ω) and by the Sobolev’s embedding u ∈ Lq∗
loc(Ω),

where q∗ = qn
n−q if q < n and any number greater then 1 if q = n. Arguing

exactly as in the Step 2 we derive that u ∈ W 1,q∗
loc (Ω), which in turn implies

that u is in L∞
loc(Ω) if q∗ > n. We already noticed in Step 3 that this gives the

desired result. Let us observe that if q = n, q∗ is any number greater then 1
and so this can be chosen greater then n, while if q < n, q∗ > n is equivalent
to q > n

2 . We can iterate this procedure. Given q > n′ = n
n−1 after (at most)

n − 1 times we deduce that u is locally bounded.
By Step 3 the locally boundedness of the solution gives the desired result.

�
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Appendix A: The C1-Dini regularity of solutions to divergence
form elliptic equations with Dini-continuous coefficients

As announced in Remark 2.6, we will specify the modulus of continuity of
the gradient of solutions to (2.4) in the proof of [12, Theorem 1.1]. We will
consider only the main points of the proof referring for the rest to [12]. The set
Ω is supposed to be the ball B4 centered at 0 and Ω′ = B1. The improvement
regards Proposition 1.1 in [12]: for the sake of completeness we will sketch the
proof, modifying the original when needed.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proposition A.1. For B4 ⊂ R
n, n ≥ 1, let aij, defined on B4, satisfy (1.3)

and (1.4) and let f = (f1, f2, . . . , fn) with fj ∈ C∞
c (B4) for all j ∈ {1, . . . , n}.

Assume that u ∈ H1(B4) is a weak solution of (2.4), then there exist a ∈ R

and b ∈ R
n such that

−
ˆ

Br

|u(x) − (a + b · x)| dx ≤ rδ(r)[‖u‖L2(B2) + ‖f‖C1(B2)], ∀r ∈ (0, 1), (A.1)

where δ(r), depending on n, λ,Λ, and on the modulus of continuity of aij and
f , is a monotonically increasing positive function defined on (0, 1) satisfyingˆ 1

0

δ(r)
r

dr < +∞.

Remark A.2. As shown in [12, Proposition 1.2], δ(r) will be the modulus of
continuity of Du.

Proof. The proof is carried out for f = 0. We use the same notation of [12],
denoting by ϕ the modulus of continuity such that

(
−
ˆ

Br

|A − A(0)|2
) 1

2

≤ ϕ(r),

where A = (aij)i,j . Observe that in our case, assuming (1.4), ϕ(r) has the
following form

(
−
ˆ

Br

|A − A(0)|2
) 1

2

≤
(

−
ˆ

Br

ĀB4(|x|)2 dx

) 1
2

≤ C

(
1
rn

ˆ r

0

ĀB4(ρ)2ρn−1dρ

) 1
2

=: ϕ(r),

which is double-Dini continuous since ϕ(r) ≤ ĀB4(r), and satisfies

max
r/2≤s≤r

ϕ(s) ≤ μϕ(r),

with μ > 1. As in [12], by induction, one will find, for k ≥ 0, wk ∈ H1(B3/4k+1)
such that∑

i,j

Dj(aij(0)Diwk) = 0 in B3/4k+1 , (A.2)

‖wk‖L2(B2/4k+1 ) ≤ C4− k(n+2)
2 ϕ(4−k), ‖Dwk‖L∞(B1/4k+1 ,Rn)Cϕ(4−k),

(A.3)

‖D2wk‖L∞(B1/4k+1 ,Rn×n) ≤ C4kϕ(4−k), (A.4)

‖u −
k∑

j=0

wj‖L2(B1/4k+1 ) ≤ 4− (k+1)(n+2)
2 ϕ(4−(k+1)), (A.5)

and
‖wk‖L∞(B1/4k+1 ) ≤ C4−kϕ(4−k), (A.6)

see [12, (14), (15), (16), (17), and (18) of Proposition 1.1]. Here and in the
sequel C will denote a universal constant.
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For x ∈ B1/4k+1 , using (A.3), (A.4), (A.6) and Taylor expansion,

|
k∑

j=0

wj(x) −
∞∑

j=0

wj(0) −
∞∑

j=0

Dwj(0) · x|

≤
∞∑

j=k+1

(|wj(0)| + |Dwj(0)||x|) +
k∑

j=0

‖D2wj‖L∞(B1/4k+1 ,Rn×n)|x|2

≤ C
∞∑

j=k+1

(4−jϕ(4−j) + ϕ(4−j)|x|) + C
k∑

j=0

4jϕ(4−j)|x|2

≤ C4−(k+1)

ˆ 4−k

0

ϕ(r)
r

dr + C|x|2
ˆ 1

|x|
2

ϕ(r)
r2

dr.

(A.7)

We then derive from (A.5) and the above, using Hölder’s inequality, that
ˆ

B1/4k+1

|u(x) −
∞∑

j=0

wj(0) −
∞∑

j=0

Dwj(0) · x| dx

≤ ‖
k∑

j=0

wj(x) −
∞∑

j=0

wj(0) −
∞∑

j=0

Dwj(0) · x‖L1(B1/4k+1 )

+ ‖u −
k∑

j=0

wj(x)‖L1(B1/4k+1 )

≤ C4−(k+1)(n+1)

ˆ 4−k

0

ϕ(r)
r

dr + C

ˆ 1/4k+1

0

ρn+1

ˆ 1

ρ
2

ϕ(r)
r2

dr dρ

+ C 4−(k+1)(n+1)ϕ(1/4k+1).

(A.8)

Proposition A.1 follows from the above with a =
∞∑

j=0

wj(0), b =
∞∑

j=0

Dwj(0) · x,

and

δ(r) �
ˆ r

0

ϕ(s)
s

ds +
1

rn+1

ˆ r

0

ρn+1

ˆ 1

ρ
2

ϕ(s)
s2

ds dρ + ϕ(r),

the symbol � standing for = up to a constant. It remains to prove that δ(r)
is a Dini modulus of continuity. Thanks to assumption (1.4), it occurs if we
show the Dini continuity of the second term in the previous sum. It yields

1
rn+1

ˆ r

0

ρn+1

ˆ 1

ρ
2

ϕ(s)
s2

ds dρ ≤ r

ˆ 1

r
2

ϕ(s)
s2

ds +
ˆ r

0

ϕ(ρ)
ρ

dρ,

so that, integrating by parts,
ˆ

0

ˆ 1

r
2

ϕ(s)
s2

ds dr = r

ˆ 1

r
2

ϕ(s)
s2

ds

∣∣∣∣∣
0

+
ˆ

0

ϕ( r
2 )

r/4
dr.
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It is easy to see that limr→0 r
´ 1

r
2

ϕ(s)
s2 ds = 0, and thus the thesis follows by the

Dini continuity of ϕ. �

Appendix B: The counterexample

To construct the example, one first considers, for r ∈ (0, 1) and for β > 1, the
function

α(r) =
−βn

(n − 1) log
(

r0
r

) +
β(β + 1)

(n − 1) log2
(

r0
r

) ,

for some r0 > 1. One takes then A(x) = (aij(x))i,j defined by

aij(x) = δij + α(|x|)
(

δij − xixj

|x|2
)

,

with r0 large enough so that α ≥ − 1
2 , A being then uniformly elliptic.

Let us check now that A ∈ W 1,n(B1,R
n×n). Simple computation gives

∣∣∣∣
∂aij

∂x�

∣∣∣∣ � |α′(|x|)| + |α(|x|)| 1
|x| ,

for every i, j, 	 = 1, . . . , n (the symbol � stand for ≤ up to a constant). On
the other hand

|α′(|x|)| � 1

|x| log2
(

r0
|x|

) +
1

|x| log3
(

r0
|x|

) ,

which in turn implies
∣∣∣∣
∂aij

∂x�

∣∣∣∣ � 1

|x| log
(

r0
|x|

) +
1

|x| log2
(

r0
|x|

) +
1

|x| log3
(

r0
|x|

) � 1

|x| log
(

r0
|x|

) ,

if r0 is big enough. Thus, the belonging of A to W 1,n(B1,R
n×n) is provided

by the estimateˆ
B1

∣∣∣∣
∂aij

∂x�

∣∣∣∣
n

dx �
ˆ

B1

1

|x|n logn
(

r0
|x|

) dx �
ˆ 1

0

1
r logn

(
r0
r

) dr < +∞.

With such an A, which is continuous but not Dini-continuous, in [10] the
authors construct a solution of (1.1) (in the sense of distributions) u ∈
W 1,1

loc (B1)\W 1,p
loc (B1) for every p > 1. In particular, let us observe that such a

solution belongs to Ln′
loc(B1).
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