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Abstract. This paper is concerned with the initial value problem for semi-
linear wave equation with structural damping s+ (—A)7us—Au = f(u),
where o € (0,1) and f(u) ~ |ul” or ulu[’~" with p > 1+ 2/(n — 20).
We first show the global existence for initial data small in some weighted
Sobolev spaces on R™ (n > 2). Next, we show that the asymptotic profile
of the solution above is given by a constant multiple of the fundamen-
tal solution of the corresponding parabolic equation, provided the initial
data belong to weighted L' spaces.
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1. Introduction

In this paper, we consider the unique global existence of solutions and diffu-
sion phenomina for the Cauchy problem of the semilinear wave equation with

structural damping (damping term depends on the frequency) for o € (0, 3):

{utt — Au+ (=A)7uy = f(u), t>0, z €R", @

u(0,z) = uo(z), w(0,2) =ui(x), x€R",
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where f € CF'Y(R) (1 < 5, [5] < p) satisfies

d’ ,
—_ < p—J < 153 < s
|dé§jf(U)\ < Clul (0<j<Is]), 12)
(P~ F@)] < Clu— ol (ul + el G =[8]),
for a positive constant C. Here, [5] denotes the integer part of 3.
For linear wave equations with structural damping:
Ut + (*A)Jut — Au = 0, t Z O, S Rn, (1 3)
w(0,2) = wo(x), wu(0,2) =wui(x), x€R”, '

with o € (0, 3), Narazaki and Reissig [20] gave some LP — L7 (1 < p < ¢ <
00) estimates of the solutions. D’Abbicco and Ebert [2] showed the diffusion
phenomena, by giving the LP — L? decay estimates of the difference between
the low frequency part of the solution of (1.3) and that of the corresponding
parabolic equation

v+ (=AY v =0, t>0, x<cR" (1.4)

with initial data (—A)%ug+u;. Ikehata and Takeda [11] showed that a constant
multiple of the fundamental solution of the parabolic equation (1.4) gives the
asymptotic profile of the solutions of (1.3) with (ug,u;) € (L'NHY) x (L*NL?)
(see Remark 3).

For semilinear structural damped wave equation (1.1) with ¢ € (0, 3),
D’Abbicco and Reissig [5] first showed global existence and decay estimates of
the solution of (1.1) with small initial data for space dimension 1 < n < 4 and
p € [2,n/[n — 2]4] such that

p>ps =1+ (1.5)

n— 20
They showed the results by using (L' N L?) — L? estimates of solutions of the
linear wave equation with structural damping (1.3). In [5], they considered
also for o € [%, 1] and showed that p, is critical in a particular case uy +
2(—=A)%us — Au = 0. Using the L? — L7 decay estimate (1 < p < ¢ < o0) of
solutions of the linear wave equations with structural damping (1.3) by [2] for
low frequency part, D’Abbicco and Ebert [4] (see also [3]) showed the unique
existence of solutions of (1.1) for small initial data in some Sobolev spaces and
gave the decay estimates of the solutions, in the following two cases:

142
P < D, n<1+2max{m€N;m<1+20}, (1.6)
— 20

or
2(1+ 20)

e <p<1l4d —mF"T—
br=? I —2(1+20)]5

H El} (1-20) <1+ 20.
+

(1.7)
In [4], they also treated the case where —Auw is replaced by (—A)%u with § > 0.
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The assumption (1.6) and (1.7) for p < 2 restrict the space dimension
from above. The first purpose of this paper is to remove restriction of the space
dimension n from above for every o € (0, 3).

The second purpose is to give the asymptotic profile of the solutions of
(1.1) as t — oo, if small initial data belongs to some weighted L! spaces. We
show that a constant multiple of the fundamental solution of the parabolic
equation (1.4) gives the asymptotic profile of (1.1) (Theorem 3). As as far as
the author knows, there seems to be no results on the asymptotic profile for
semilinear wave equation with structural damping (1.1) for o € (0, 3).

In the case 0 = 0, the asymptotic profile for semilinear damped wave
equation is investigated. Since we treat nonlinear term not necessarily absorb-
ing, we only refer to the results for non-absorbing type nonlinear term. Then
if 1 < p < poy where

2
po := 1+ — : Fujita Exponent,
n

then the solution of the semilinear damped wave equation blows up when
f(u) = |u|P and the integrals of initial data on R™ are positive (see [10,15,
23,24] ). On the other hand, in the case p > pg, small data global existence
is widely studied, (see [7-9,12,16-19,21,23], for example, and the references
therein). The asymptotic profiles of the solutions are obtained as follows. Gal-
ley and Raugel [6] (n = 1), Hosono and Ogawa [8] (n = 2), showed that the
asymptotic profile of the solutions is given by a constant multiple of the heat
kernel G(t,x), provided the initial data belong to some Sobolev spaces. (See
also Kawakami and Takeda [14] for higher order asymptotic expansion in the
case n < 3.) For general space dimensions, Hayashi, Kaikina and Naumkin [7]
proved the unique existence of global solution u € C([0,00); H® N H%Y) for
small initial data belonging to some weighted L' spaces, and showed that a
constant multiple of the heat kernel gives the asymptotic profile of the solutions
(see Remark 9).

We consider the equation in weighted Sobolev spaces as in [7]. The high
frequency part of the structural damped wave equation has a good regulariz-
ing property. However, unlike the damped wave equation (o = 0), the Fourier
transform of the kernel of the linear structural damped wave equation is sin-
gular at the origin. This fact causes the difficulty when we treat the equation
in weighted Sobolev spaces. To get around this difficulty, we estimate the low
frequency part in a new way employing Lorentz spaces (Lemma 1). For the
estimate of nonlinear term, we use the method of [7,9].

This paper is organized as follows.

In Sect. 2, we list some notations and state main results.
In Sect. 3, we list known preliminary lemmas.
In Sect. 4, we estimate kernels.

In Sect. 6, we estimate a nonlinear term.

3
4
In Sect. 5, we prove Theorem 1.
6
In Sect. 7, we estimate a convolution term.
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e In Sect. 8, we prove Proposition 1 and Theorems 2 and 3. That is, we
prove the global existence of the solution of semilinear wave equation with
structural damping, and give the asymptotic profile of the solutions.

2. Main results

Before stating our results, we list some notations.

Notation 1. We write p(x) < (x) on I if there exists a positive constant C
such that

o(x) < CY(z) for everyx € 1.
We write o(x) ~¥(z) on I, if o(x) S P(x) and Y(z) S (x) on 1.
Notation 2. For a € R, [a];+ := max{a,0}.

Notation 3. For every q € [1,00], we abbreviate R™ in LY(R™), and LY norm
is denoted by || - ||4.

Notation 4. Let H5° = H*(R") denote the weighted Sobolev space equipped
with the norm

el re.s = [[€2)° (1 = A)*2u] 2.

H5Y equals HS. Let H® = HS(R”) denote the homogeneous Sobolev space
equipped with the norm

a7 = I1(=2)*2u]| 2.

Notation 5. (see [1, section 1.3], for example) Let ¢ € (1,00) and r € [1,0].
Let 1 be the Lebesque measure on R™. The distribution function m(T, ) is
defined by

m(r, ) = p({z; (@) > 7}).

The Lorentz space Lq ., consists of all locally integrable function ¢ on R™ such
that

oo N\
lolar = ([ @@y %) <o when v <o,
lellg,00 == Sl}ptl/qw*(t) = supTm(r, )" < oo,
t T
where ©*(t) = inf{T; m(r, ) <t} (the rearrangement of ).
Notation 6. For x € (0,n), Riesz potential is the operator

L f(z) = 1 f()

el re 2=y

«f = dy = Co T (€7 f(0)).

First we give the asymptotic profile of the solutions to linear wave equa-
tion with structural damping.
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Theorem 1. Let n > 1. Let (ug,u;) € (L' N L?) x (L' N H~29) such that
|- % u; € LY with 0; € [0,1] (j = 0,1). Let u € C([0,00); H') N C((0, 00); L?)
be a unique global solution of (1.3). Then the following holds.
u(t,) = VoHo(t, ) = 1 Go(t, )2
< 1y (EF2 D) g0 1 4 ymaxdets (“E+30-1) 2 (= 540)} 1y |

+e= = ([fuoll2 + [|ua | -2-)

n__ 6 n 6
7 CETD||| L o]y + T CEEITD|| | Pry ||y, (2.1)
where
H,(tz) = F e "7 (p),
Gy(t,x) = FUE| 20 () = O L Lo Ho (), (2.2)
9o = / woly)dy, Oy = / s () dy. (2.3)
Remark 1.
1 n 1/ n i (-3 +30—1) if80<m,
max { = (= 7 +30-1), o ( 4+U)}_{;(_g+g) if 80 > n.

Remark 2. The function H, (¢, z) is the fundamental solution of the parabolic
equation (1.4). We easily see that

1Go(t, 2 = IGa(t, )2 ~ t 77 CEF | Hy(t, )| = | Ho(t, )2 ~ ¢~ 507,
(2.4)

(see (5.8) and (5.16)). Putting 6y = [0 — 20|, and 6; = 6 (6 € (0,1]) in (2.1),
and taking (2.4) and the assumption o € (0, §) into consideration, we obtain

[u(t,) = G ()2
< tmax{ﬁ(—%—&-o—min{l—Qa,%}),%(—%-‘ro)}
X (luolle + llurll 20 + 12T ug |y + 1) P |1)-

Thus, the decay order of ||u(t,-) —91 G, (t,-)||2 is larger than that of |G, (¢, )2
itself, and therefore, ¥1G, (¢, x) gives the asymptotic profile of the solution if
91 # 0.
If u; = 0, then (2.1) implies
lu(t, ) — 9 Ho (8, )|z < 177 (570 0=2958) (g 5 4 )%y ).
(2.5)

Thus, the decay order of ||u(t, ) —9gHy (¢, )||2 is larger than that of || H, (¢, )||2
itself if 6y > 0, and therefore, Yo H, (¢, ) gives the asymptotic profile if ¥y # 0.

Remark 3. Ikehata and Takeda [11, Theorem 1.2] showed
lu(t, ) = D1 Go (1, )| = oft == 5+))
as t — oo for initial data in (ug,u1) € (L* N HY) x (L' N L?).
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If uy = 0, Karch [13, Corollary 4.1] showed
lu(t, ) = Do Hy (, )2 = o(t™ T7)
as t — oo for ug € L.

Theorem 2. (Global existence of the solution) Let n > 2, and
2

>py =1 . 2.6

p>p + (2.6)
Assume that § > 1 and [3] < p. If 25 < n, assume moreover that

<1 . 2.7

Pt n— 23 27)

Assume that f € CPIY(R) satisfies (1.2). Let q; (j = 0,1) be numbers such
that
2n _2n / 1t 4
n+2—4d0° T2 b =b n+2—do’
n(p—1) n(p—1)
l<qg<—=, l<qg<—"r—"
1 2 =0+ (p-1)0)

if 14

qo =

4
——— <p<1+—,
n+2—4do P> +n

4
1<qy <2, 1l<q < if 1+—<p.
n

n
n+ 4o
(2.8)

(Case 1). In the case p, <p <1+ let 0 be a number satisfying

4
n+2—40’
1 2

2(+a>"1<5<". (2.9)
p—1
Then there exists a positive number € such that if initial data
Ug € Hn I‘.’O’é7 <'>5’U,0 S qu,27 uy € Hg_17 <~>5’U,1 S Lq1’2 (210)
satisfy
1) uo0llg0,2 + 1) 2uollz + uollars + ()2 urllgy 2 + lJua ]l gro-r <& (2.11)

then initial value problem (1.1) has a unique global solution
u € C([0,00); H* N H*?) N CL((0,00); H¥71).
(Case 2). In the case p > 1+ there exists a positive number € such
that if initial data

up € HSN L2  wy e H 1N L1?,

_ 4
n+2—40’

satisfy
[uollgo.2 + lluoll s + [luallgr.2 + lluallms—r <e, (2.12)
then initial value problem (1.1) has a unique global solution

u € C([0,00); H*) N C((0,00); H1).

Remark 4. We note that L% = L% % C L9%2 by Lemma A given later, since
q; < 2.
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Remark 5. If the space dimension n = 2, then 1+ < ps, and therefore,

(Case 1) does not occur.

4
n+2—4o0

We prove Theorem 2 by using the following proposition.

Proposition 1. (Global existence of the solution) Let n > 2 and r € [1, ni’ia).
Let

—1y 2.13

P Por = L T (2.13)

Assume that § > 1 and [3] < p. If 25 < n, assume moreover (2.7). Assume
that f € CFLY(R) satisfies (1.2). Let § be a non-negative constant satisfying

1 1 1 1
N S 2) -2 .
n(r 2> 1_5<n<r 2) 20 (2.14)

and
n(%—%)<6, if r=1,
(2.15)
n(p%—%)ﬁé if re(l,ni’ia).
Let
nr nr
7 = -—-——— 7 = . 2.1
o n—r(d+20)’ B= s (2.16)

Then there exists a positive number € such that if initial data
ug € HSNH" (Vouy € L2 wy € H L, ()0u; € L2 (2.17)
satisfy

B 5
1$:) wollgo,2 + [1¢-) woll2 + [luoll s

5 s . (2.18)
+ llualls + 1) urllg 2 + 1(=4)2 (1 = A) 2w |2 <,
i the case r =1, and
1) uo0llgo,2 + 1) uoll2 + luollars
q” (2.19)

1 ullar 2 + 1(=A)2 (1= A) 2 s <,
in the case r € (1,2], then initial value problem (1.1) has a unique global
solution u € C([0,00); H* N H%?)) N C*((0,00); H5™1).

Furthermore, the solution satisfies estimate:
sup ((@ﬁ(%(%*%)%)”u(t? My + <t>ﬁ(%(%*%)f%*0)“| Joult, )],
>0

iy (3G =2)—o+d)

[(—A)2u(t, -)Hz) < o0. (2.20)

Remark 6. The assumption r < —2%— implies that n( — 1) — 20 > 0. The

+4
inequality
1 1
—— =] =2
(5-3) -

n(E -1 <
pr 2
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is equivalent to
2ro

p>1+ ;
n—2ro

which holds by (2.13) since o < 1. Hence, we can take a non-negative number
d satisfying assumptions (2.14) and (2.15).

If initial data belong to weighted L' space, the asymptotic profile of the
solution is given by a constant multiple of the fundamental solution of the
parabolic equation (1.4).

Theorem 3. (Asymptotic profile) Assume the assumption of Proposition 1 with
r = 1. Let € be a positive constant given by Proposition 1 for r = 1, and
let & € [0,1]. Assume that initial data satisfy (2.17) and (2.18) and that
(MO=20) 44 (NOuy € LY. Let v be an arbitrary number satisfying

1
0<1/<min{Z(p—2)—|—2p6,5}. (2.21)
Assume moreover that
1) P n
R —2—> i os< 2 9.92
y<2§(n 2(n 3) if 5<g (2.22)

Then there is a constant C' depending on
=2 wg |l + (1) w0 | o=y + 1) w012 + [fuo] s
_1
1 1) uall g+ 1(=28)2 (1= A) 2 ua

such that the solution u € C([0,00); H* N H*®) N CY((0,00); H*~Y) of (1.1),
which is given by Proposition 1, satisfies the following:

Hu(t,~) _ QGa(t,~)”2

< Ctmax{ﬁ(7%+o'7min{(p71)(%70)71,1720',1/%}),%(7%+o')}

Wl

(2.23)

where G, is defined by (2.2) and
o= [ wdy+ [ [ rutry)dyir (2.24)
R’n O Rn

Remark 7. The right-hand sides of (2.21) and (2.22) are positive. In fact,
assumtion (2.15) implies & (p—2)+pd > 0, and (2.7) implies n— £(n—25) > 0.
Hence we can take v satisfying (2.21) and (2.22).

Remark 8. Since (2.4) holds, (2.23) implies that G, gives the asymptotic pro-
file of the solution if @ # 0.

Remark 9. In the case o = 0, Hayashi, Kaikina and Naumkin [7] showed the
existence of global solution u € C([0, 00); H® N H%?) of the semilinear damped
wave (1.1) with o = 0 for small initial data ug € H* N H%% vy € H>'n H%?
with 6 > %, and showed

Jutt,) =BGt )

< ot 30D min{3(r-1)-1.5 -5 v}
q



NoDEA Asymptotic profile of solutions for semilinear Page 9 of 43 16

3 (UO(y) + ul( dy + fo wa 7_ y))dydT
Gy is the heat kernel ((2.2) with o =0) and 0 < v < 1.

3. Preliminary lemmas

We list some properties for weak LP and Lorentz spaces which are used in this
paper (see [1, section 1.3], [22], for example).

Lemma A. Let ¢ € (0,00). Then
Lo = L9, L9 =L,
L4:-P1 C L4:P2 Zf 1 S 1 S P2 S 00.

Lemma B. Assume that p, p,v € (1,00) and fi, p, v € [1,00] satisfy
1 1 1 1 1 1
- = = — - ==+ =.
pop voppow

Then

||fg||’u,,’u ~ ||f||p p||g||l/ v
provided the right-hand side is finite.

The next corollary immediately follows from Lemma B.

Corollary A. Let w > 0, u,v € (1,00) and i € [1,00]. If
1w 1

)

Wwoonov

then the following hold.
lial =]l < Nal =12 el 1,

Lemma C. Let g € (2,00), and let ¢’ be the dual exponent of q, that is, g—l—qi =
1. Let v € [1,00|. Then

1F LAl lgw < llpllgrv-

Lemma D. (Young’s inequality) Let q,p € (1,2] such that % + % = % Let
s,t € [2,00) such that % + l = l Then

e * 9lly S ol slldllg,p-
Lemma E. (sharp Sobolev embedding theorem) Let ¢ € [2,00) and s > 0. If
n
——s< =,
2 T

then
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4. Decay estimate for the kernels

In this section, we estimate the kernel of the following linear wave equation
with structural damping (1.3).
By Fourier transform, the equation (1.3) is transformed to

Gy + €)% 0 + €22 =0 (t>0), w(0) = g, U (0) = .

Hence the solution u of (1.3) is expressed as

u(t,z) = (Ko(t, ) x uo)(z) + (Ki(t, ) * u1)(@), (4.1)
where
6 — 1 A—(leht _ ()
KO(t?g) - )\+(|£|) — )\_(|£|)<)\+<‘f|)€ ! A*(KDB t>7 (42)
- 1
7 _ Al _ - (e ,
B W (3 W A )
1
Ae(€l) = 5 (—lelP £ /e — 41éP) (4.4)
Lgpe (—14/1— 4|g|2<1720>) it g < e
T\ (s /AETET ) i sy
We divide Ky and K7 into
) e (et (16)
PR TG(ED = A-(lgD) '
T, oo Attt

Let Xiow(§) € C®(R™) be a function such that xie,(§) = 1 for |¢] <
2717 and Xiow (&) = 0 for |¢] > 271 _ Let Xhigh(§) € C*°(R™) be a function
such that xpign(§) =1 for |£] > 2 and xpign(§) = 0 for |¢] < 1.

We put
szd(g) =1 Xlow(g) - Xhigh(g)v
th(g) =1 Xiow (5) = Xmid(g) + Xhigh(g)'

Here we note that

__3 __3
SUPP Xmia C {&; €] € [277727,2]},  supp xam C{& €] € 27727, 00)}.

(4.8)
We put
Kjow(t,x) = f_l[Kj (t, ) X1ow ()]s
Kjmia(t,x) == f_l[kj (t, ) Xmia(-)],
K nign(t,x) == F K (t, ) Xnign ()],
Kjmn(t,z) .= Kj mia(t,x) + K pign(t, x),
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for 7 = 0, 1. Dividing the kernel into

K = Kjow + Kjmid + Kj high = Kj 10w + Kjmh
for j = 0,1, we estimate each part.
4.1. Estimate of the kernels for low frequency part

. . . . 2
In this subsection, we consider low frequency region: || < 27 1-2.

Lemma 1. Let o > —5 and 3 > 0. Let a > 2" T2, Let g(t,p) be a smooth
function on [0,00) x (0,a) satisfying

8ig(t p)| < o hem i (4.9)
6pk ) ~ °
on [0,00) x (0,a) for every k =0,1,---. Put
K(t,x) = FHg(t, [€)xtow] (2).
Then for every q; € [1,2) (j = 0,1) and ¥ € [0, § + a) satisfying
1 1 d—a 1 1 «
> > -9 4.10
Q1’2+ n g 2 n (4.10)
the following holds.
L Cp(L_lyi9—a
ol (B (e, ) = (), (P GEmD*0=) g,
1 Cp(_ly_q
PG e, @
where || - ||, denote
[l if ¢g=1
I 1lg = ‘ (4.12)
I llg2 i q€(1,2].

Before proving Lemma 1, we state two corollaries:

Corollary 1. Let > —35 and 3> 0. Let a > 27122 . Let v and \ be smooth

functions on some interval (0,a) such that
[0 (p)| S p* 7, (4.13)
M) S, =Ap) ~p° (4.14)
on (0,a) for every j =0,1,---. Put
K(t,2) = Fu(|E)e P (@) xiou] (2)- (4.15)

Then the conclusion of Lemma 1 holds.

In fact, we easily see that

‘38,; (U(p)e’\(p)t)

k
SO T | e S et
§=0

(4.16)

on (0,a) for every k = 0, 1,.... Hence, g(t, p) = v(p)eP)* satisfies the assump-
tion (4.9) of Lemma 1, and thus the conclusion holds.
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Corollary 2. Let «, 3,7 be numbers such that o — 3+~ > —5, 8 > 0 and
v>0. Leta>2 T2 . Let v and A be smooth functions on (0,a) such that

W (p)] < p*, (4.17)
D () 7, =A(p) ~ p* (4.18)
1D () <77, —plp) ~ p (4.19)

on (0,a) for every j =1,2,---. Put
K(t,x) = F M o(|g))e DA (1 — er 1Dty ().

Then for every q; € [1,2) (j = 1,2) and 9 € [0, 5 + o — B+ ) satisfying
=77 (4.20)
the following holds.
ol (K (1) oDl 5 1y F Dm0 o
D gy @)
Remark 10. D’Abbicco and Ebert [2] considered the kernels:

K(t,z) = F (€)1 y 00 (2),

where v and X satisfy the assumptions (4.13) and (4.14) for a > —1 (see [2,
Lemma 3.1]), and

- e (€Dt
p(lENt

where v, A and p satisfy (4.17), (4.18) and (4.19) for « > —1,8 > 0,7 > 0
(see [2, Lemma 3.2]), and showed LP — L% estimates of ¢ +— K(t,-) % ¢ for
1 < p < ¢ < oo such that

K(t,x) = F 1 |u(lg))erD Xiow | (%),

(i) p# q if a =0 and v is not a constant,
(ii) % - 5 > -2 ifa e (-1,0),

n
by using the description of kernels by Bessel functions.
In this paper, we show weighted L? estimates of K(t,-) * ¢ in a way
different from [2] by employing Lorentz spaces.

Proof of Corollary 2. By the Leibniz rule, we have

ok A\ b o7 k=i
= (Pt — erlPty) = Z Al)ty 2
apF (v(p)e (I1—e )) ]EZO Ch.j 9 (v(p)e )8 -
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By assumtion (4.19), we have

k— k—j
o (1_6u(p)t) — o 6u(p)t
k—
Opk—i Opk—
k—j k—j—1
Sp k) (Z(NW) et =pTFHpt N (prt)e
i=1 i=0
< pRHITTe i < g (4.23)
if j<k-—1, and
k=i 0
‘a (1 0] = |1 0] = ()t O < g, (4.24)
P

with 6 € (0,1) if j = k. From (4.22), (4.16) with k replaced by j, (4.23) and
(4.24), it follows that

ak
o (v(p)e’\(p)t(l _ eu(p)t))
n (0,a). Hence, g(t,p) = v(p)eMPt(1 — e#(P)) satisfies the assumption (4.9)

with « replaced by a — 4 v, and therefore, Lemma 1 implies the assertion.
O

<po¢+7 kte 2p t<pa+'y £B— ke 4pﬁt

Now we prove Lemma 1.

Proof of Lemma 1. (Step 1) Let k be a non-negative integer and v € (0, c0).
We show that

|Ca)sR @) s @bt (4:25)
for every t > 0 if (—a + k)v < n, and
[k )| swEcen 1, (4.26)

for every t > 0 if (—a + k)v = n.
First, we assume that (—a+k)r < n. Using assumtion (4.9) and changing
variables by t'/8p = r, we have

v
v

[CISE SO

S0 oE(t¢)

[v|=Fk

v
v

p(a—k)ue—%l/pﬁtpn—ldp (427>

A
c\g

ta
:tﬁ(( a+k)v— n)/ ,rf(foﬁLk)uef%urﬁrnfldr
0
< tal(atky—n) (4.28)
By (4.27), we have
[z s [ ooty < .
v 0
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for 0 < t <1, which together with (4.28) yields (4.25).
Next we assume that (—a + k)v = n. By (4.9), we have
R 6| S lel
for every t > 0. Hence,
su{& 07K (1,€)] > )7 S 57T = 1,
if || = k, and therefore,

[CINEIE

&
2

<5 a5

Iv|=k

for every t > 0, that is, (4.26) holds in the case (—a + k)v = n.
(Step 2) Let ¢ € [0,6] and & € (1,2]. We prove that

- 7Kt S (fyF i), (4.29)

) ||K,2N

for every t > 0 if —a+ 9 < n(l — 1), and

- 7K ()| S @F@-emni=) —q, (4.30)

K,00 ™Y

for every t > 0 if —a+9 =n(1—21).
Let w be a non-negative number such that ¥ + w becomes an integer and

that
1 1 n
)< —. 4.31
n( 2>w<ﬁ (4.31)

Since n > 2, we can take w satisfying above conditions. Let v and its dual
exponent v/ be the numbers defined by

1 w 1 w 1
,:f+177:f+f/, (4.32)
kK n v o n v
Since 0 < 1/v/ = 1/k —w/n < 1/2 by assumtion (4.31), we have
l<v<2<V <. (4.33)

Now we prove (4.29) under the assumption —a + ¢ < n(l — 1). By
Corollary A and Lemmas A and C together with the relation (4.33), we have

(IR NCORT P | il KN e S CZD1 /S {8 g PN /[ b (OB |
= [ NUPTIPE o (SN ey SOl
<oy FEe|
oy TR = |ca =R, (4.34)

Since the assumption —a+9 < n(1—1) and (4.32) imply that —a+9J+w < Z,
we can take k = ¥ + w in (4.25). Substituting the inequality into (4.34), we
obtain (4.29).
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Next we prove (4.30) under the assumption —a + ¢ = n(1 — 1). By
Corollary A and Lemma C together with (4.33), we have

(RGOl MR R el R e (G
S PR = [P T R,
<lleayF R, (4.35)

Since the assumption —a+9 =n(1— 1) implies —a+ 94w = 2, we can take
k =194 w in (4.26). Substituting the inequality into (4.35), we obtain (4.30).

(Step 3) We define r; € (1,2] by + 3 (j =1,2). We estimate each
term of the right-hand side of

- 1PE W)+ o), SN PEE D)+ o, + | K&« (- 7o), (4.36)
If ¢ € (1,2), Lemma D yields
(- 17K @)+ @lly S IPE ], s llelly, o (4.37)

The assumption (4.10) implies —a+9 < n(q1 —35)=n(l- —) Hence, noting
that ||| - \ﬂK(t,-)HT1 - < ||l 1K, HT . and substituting (4.29) or (4.30)
with (9, k) = (¥,r1) into (4.37), we obtain
1 Cp(l_Lyig_a
[0 PE) =l S @ EED e )

g1

In the case g1 = 1, Young’s inequality yields
(- 1P (@) = lly S 17K el = ([ 17K el (4.39)

The assumption ¥ < § 4« implies —a+9 < § = n(1— 5). Hence, substituting
(4.29) with (9, k) = (¢,2) into (4.39), we see that (4.38) holds also for ¢; = 1.

We can estimate the second term of (4.36) in the same way: If g5 € (1, 2),
Lemma D yields

1K) (- Py S NEE ool 17, o (4.40)

The assumption (4.10) implies —a < n(q%—%) = n(l——) Hence, substituting
(4.29) or (4.30) with (¢, k) = (0,r2) into (4.40), we obtain
(1 _1y_q
1+ (- 170, < 0 D), (1.41)
In the case ¢o = 1, Young’s inequality yields

15 ) = (- 17|y S T E - Poll, = 1K E oIl Pell, - (442)

Since —a < Z = n(1 — 1), we have (4.29) with (¢, ) = (0,2), which together
with (4.42) yields (4.41) with go = 1.

Hence, (4.38) and (4.41) hold for every case. Substituting (4.38) and
(4.41) into (4.36), we obtain (4.11). O
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NoDEA
Lemma 2. Assume that 0 < so < s1 and ¢ > 0 satisfy 9 — s1 + 55 < 2 — 20
IfQ] € [172) (] = 172a374) Satisfy
i>1+20+19—81+82’ 1 >1+20—81+827 l>1+19—81+827
q 2 n 2 n q3 ~ 2 n

(4.43)

then the following hold provided the right-hand sides are finite

i1 a)% (FHE il <o)
3

9 —
—%)-i- 51+ 2

) )(=a) Foll,
e (CEGE D)) payE

ol (4.44)
1 17a)% (F KT (4 ponl <)

%)J”ﬁiséJrsz +U) ||(

2
—A)Z el

~A)F o], (4.45)

no

V—s1+s s
S TEONES

ollg,

)P (—a) F ol

(4.46)
[P a2 f—l[@t’ Mol %),
< (e (CHEDEEER) A
N s R TRTEINE T A
[ 1Pa0% (720G (4 xol +9)
< <t>§(fg<%f%>+“’%+20*1)||(—A)572<p|\23
F i CEEDERT) pnF el (a)
Hl "(=2)7 (Ko ou(t,) %) L
A S e [N TS
+ e CEE D) ea) Ry (449

where || - ||}, is defined by (4.12).
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Proof. Since
1

117202 (FUE @ Do)+ ¢)|

= 1P E g o R ) xioulél 21|

2
s$1—s2

= |1 P ) TR F R xou] + (-8) F

27
the conclusion reduces to the case sy = 0 by taking s; — so and (—A)*2¢ as
s1 and ¢ respectively.

Let At be the functions defined by (4.4). From (4.5), it follows that

B 2p2—2(7 B
_2 2 20’<>\ J— <_ 2 2(7" 4.50
P~ < A(p) I S p (4.50)
log 1 log
=P <A(p) < =5p", (4.51)
Ai(p) = A_(p) = p*7 /1 — 4p2(1=20) ~ p%7 (4.52)

on the support of Xjow-
We first prove (4.44). It is written that

(—8)% (FUKT (6 Pviow] * ) = FHIEET (8 xioul % ¢,

where K is defined by (4.6). By definition, K (t,z) = .7-'_1[|§\51I/(1:(t, )Xiow)
has the form (4.15) with

v(p) = MMOW Alp) = A+(p)-

By using (4.50) and (4.52), we easily see that v and A above satisfy the as-
sumption of Corollary 1 with o = 1 — 20, 3 = 2(1 — o). The assumption
n>2and 0 < 20 <1 implies o > —% and 8 > 0, that is,  and 3 satisfy the
assumption of Corollary 1. Definition of o and (4.43) imply (4.10) (here we
note that we assume s = 0). Hence, applying Corollary 1, we obtain (4.44).

K(t,x) = F €' K] (¢, ) Xiow) (K; is defined by (4.6)) has the form
(4.15) with
—ps

U(p) - )\+(P) — )\,(p) Xlows A(p) - )\—(P)-

By using (4.51) and (4.52), we easily see that v and A above satisfy the as-
sumption of Corollary 1 for a = 51 — 20(> —%),3 = 20(> 0) and therefore,
(4.45) holds in the same way as in the proof of (4.44).

Since o < 1 — o by the assumption that o € (0,1/2), the estimate (4.46)
follows from (4.44) and (4.45).

K(t,2) = FUIE Ky () vion] (K; is defined by (4.7)) has the form
(4.15) with

’U(p) = mxwwy A(p) = )‘+(p)a
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By using (4.50)—(4.52), we easily see that v and A satisfy the assumption
of Corollary 1 with o = 51,5 = 2(1 — ). Definition of o and (4.43) imply
assumtion (4.10) of ¢; for ¢; = g3. Since g4 < 2, the assumption on ¢, of (4.10)
holds for g2 = ¢4. Hence, we can apply Corollary 1 to obtain (4.47).

Kernel K = FY|¢* K (¢, ) Xiow] (Ky is defined by (4.7)) has the form
(4.15) with

_ P A (p)
v(p) = leom

By using (4.50)—(4.52), we easily see that v and A above satisfy the assumption
of Corollary 1 with o = s1 +2(1 — 20)(> 0), 8 = 20(> 0). Definition of o and
(4.43) imply the assumption on ¢; of (4.10) for ¢; = ¢3. The assumption on
g2 of (4.10) holds for g2 = g4 in the same reason as above. Hence, (4.48) holds
by (4.11).

Since o € (0,1/2), inequality (4.49) follows from (4.47) and (4.48). O

Alp) = A-(p),

Lemma 3. Let ¥ > 0 and 0 < so < s1 such that ¥ — s1 +s2 < § — 20. Assume
that q; € [1,2) (j = 1,2,3,4) satisfy

1 20+9Y—51+s 1 1 20—s1+s 1 1 Y—s1+s
+ 1 2,7>,+#77>,+#_

> —
-2 n g2~ 2 n q 2 n

1
Q1
(4.53)
Then the following hold provided the right-hand sides are finite:
s1 P _95 —|g|2=)
11720 (FET @) = 127 0] ) |

1 (_ned 1y, 9—si+so _ s
< (e (B DETE ) 2 o

1 _1y435-1 52
Ga=2430=1) | oAy F g (4.54)

FES ) = e o) <) |

Y—s

S
Tt
—~
> =
) ~
m‘ﬁ A‘H
~ T
w3

122 1951 s

: IENEPT
e [ RUCVNE TS (4.55)

where || - ||}, is defined by (4.12).

Proof. We first prove (4.54). Let Ay be the functions defined by (4.5). By the
same reason as in the proof of Lemma 2, we may assume that sy = 0. It follows
from the definition that

T _9g —|g]2(t—)
J€[** K (1,€) — €[ 2ot

1 —9 2(1—0’)t s
_ |€|51—20 — exp |§| — o 6_‘6‘2(1 Ot
/1 — 4|§|2(1 20) 1+ /1 — 4‘§|2(1 20)
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|€|5172067|§|2(1_")t 74|£|2(2730)t
= exp ( ) —1
/1 — 4]¢[2(0-20) (14 /1 —4]¢[2(-20))2
4|§|sl+2(1—3a)e—|g|2<lﬂ>t

(L VI - 4EPT) /T — 4fgPa2)
=M1+ Mo (weput). (4.56)

We easily see that

B *PSI?ZJ B 2(1—0) B 4p2(273a)

U(p) - \/m? )‘(p) - P ’ .u(p) - 1_ 4p2(1720))2
satisfy the assumption (4.17)—(4.19) of Corollary 2 with @ = 1 — 20,08 =
2(1 — 0),7 = 2(2 — 30). Then the assumption n > 2 and 20 < 1 implies
a—p+v=s+2(1-30)>—% and 3 > 0, that is, o, § and ~ satisfy the
assumption of Corollary 2. The assumption (4.53) and the definition of «, 3, vy
above imply

l>1+20'+19—81 >1+19—a+6—77
a2 n -2 n
i>}+20—31 >1+—a+ﬁ—7,

qQ2 2 n -2 n

that is, (4.20) holds. Hence, we can apply Corollary 2 for the above choice to
obtain

(M| S (e (RGP o)
’ ) ) “ (4.57)
= (- 3(5—3)—5+30-1
+ (t) (-2 )III 1%l
We also see that

4p
v(p) = ,
(1+ \/1 _ 4,02(1_2"))\/1 _ 4p2(1—20)
satisfy the assumption of Corollary 1 with o = s1 +2(1 — 30)(> —3%) and
B =2(1—-0)(>0). The assumption (4.10) is satisfied by (4.53) together with
the definition of a. Hence, we can apply Corollary 1 to obtain

s1+2(1—30) 210
Alp) = —p

| M 2| < @ﬁ(—%(ﬁ—%)#";l+3o—1)HS0”;1
#(,g(i,l)filJr?mil) 3 (458)
+<t>1fo 2%\gqy 2 2 |||| SOH;Z

Inequality (4.54) follows from (4.56), (4.57) and (4.58).
Next we prove (4.55). It follows from (4.5), (4.50) and (4.52) that

‘f|leO+(t,§) _ |§‘316_‘5‘2(170)t

16 (g a1 ()

2‘§|sl+2(1720)

- - e
(1+ V/T=4gP027) /1= 4 P02

xp(Ae (€)1
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_4]¢|2(2-30)
+ (€] exp(—[¢]*0 1) (exp < AP ) 1) (4.59)

(1+ /T - 4gPi2)2

=: Mg’l + Mg’g (We put). (460)

We easily see that

s1+2(1—20)

()—
v(p) =
(1-1-\/1 4p (1-20) \/1 4p (1-20)

_2p2 20't
)\ = >\ =
(p) +@)1+ T a0

satisfy the assumption of Corollary 1 with a = s1 +2(1 — 20),8 = 2(1 — o).
The assumption (4.53) and the definition of o above yield

7

¥ — s ¥ -«
> —+ ,

1 1 1
2 n 2 n

Y
4

—Q

V

DN | =
A%

+

1
2 n’

S

that is, (4.10) holds for ¢; = ¢3 and g2 = ¢4. Hence, we can apply Corollary 1
to obtain

M| < (7 (CE G2

g3

2 (-z2(Lt-1)-L+20-1
T L S LT A e TR (4.61)

We also see that

4p2(2—30)

1— 4p2(1720))2

v(p) =p", Ap)=—p"""7, ulp) =

satisfy the assumption of Corollary 2 with o = s1, 8 = 2(1 —0),y = 2(2—30).
The assumption (4.53) and the definition of a, 3,7 above yield

1 19— 1 9—s—2(1-2 19— —
11, 9=-s L d-5-201-2) 1 d-a+f-v
q3 ~ 2 2 n 2 n

1 1 1 —s51—2(1—-2 1 - -

1. 1,1 = -20-2) 1 —a+f-y

q 2 2 n 2 n

that is, (4.20) holds for ¢; = ¢3,¢2 = g4. Hence, we can apply Corollary 2 to
obtain

1 (_n(1_ 1y, 9-s _
M| < (e (CFGE D 0200)

1 (—z2(L_1ly_214951
Ly (CEGE Dy oy (4.62)

Inequality (4.55) follows from (4.60), (4.61) and (4.62). O
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4.2. Estimate of the kernels for high frequency part(|£| > 1)

In this subsection, we consider high frequency region: |¢| > 1.

Lemma 4. For every s > 0,6 > 0, the following hold.

[(=2)% (Kunign(t,) @), S e 2 I(=0)5(1 = 8) %2, (4.63)
H< Aahmh Vx )l SeTEI = 2)7E() g, (4.64)
[(=2)% (Konign(t, ) * )|, S e 21(=2) 5 ¢ll2, (4.65)
1) Ko nigh(t, ) @)y S €72 [ ¢ll2, (4.66)
provided the rzght-hand sides are finite.
Proof. We easily see that
RO S e L (467)

on the support of xpign. Hence,

[(=8)% (Bynign *wHQ—HM|K1tomWM®w@W2

gHmmamm @] _lllerte @@, S e HI-a)F (1 - A)~ gl

that is, (4.63) holds.
In the proof of [9, p. 10] (see also [7, p. 643]), the following Leibniz rule
is shown:
n [9]4+1

10 =25 e)]l2 <D0 3 105 ¢lloll (1 = A)E4]lo. (4.68)

j=1 k=1

Since |8;?(I/(\1(t, E)Xnigh (E)(E))| < Cre™3 for every nonnegative integer k, we
have

117 rnian < D], = [[1=2)F (e xman (€ (0 26|,
(O 1= 8)"20(0)| ~ e Bl - 2)73 ) el

Taking ¥ = 0 and § in this inequality, we obtain (4.64).
We can prove (4.65) and (4.66) in the same way. O

t
< e 2

~

4.3. Estimate of the kernels for middle frequency part

In this subsection, we consider the region: |£| € [27 2 ,2].

Lemma 5. There is a constant ¢, € (0, 2) such that the following hold for
every s >0, 6 > 0:

[(=2)% (Kymia(t,) = @), S €= [[(1 = A) "2 g]ls, (4.69)
8% Kmmu>* My Se =t (1= 2)72 ()¢, (4.70)
[(=2)2 (Komialt,) * )|, S e =" llella, (4.71)
8% Kmm ) * @)y S e = 4 w2, (4.72)

provided the right-hand sides are finite.
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Proof. By definitions (4.3), (4.4) and (4.5), we have

A+ €Dt _ oA (€Dt

1K1 (t,€)| = ::t‘ewk+ﬂéb+(1—ﬁkfﬂﬁhﬂ
A+ (1€]) = A= (1€ (4.73)
— ¢ | B (-2 +(20-1) €12 /1= 4]g[20-2))
for some 6 € (0, 1). Hence,
- 20 —%a
IK1(t,€)] = te 2167t < ge=2 T < o260t (4.74)

in the case 2|¢['729 > 1, where ¢, = 271721 Next, we consider the case
2/£[1=29 < 1. Then

LI (1 4 20 1)1 P < Mg 4T )

o 2—20 e
= 2¢l < —[g[% < 275 < 2,
1+ /1 - 4¢P0-29)

and thus,
Ki(t )] < te et S oot
on [Q_ﬁﬂ_ﬁ], which together with (4.74) yields

()L (8, E)xmia(€)] S e (4.75)

Calculating in the same way as in the proof of (4.63) by using (4.75) instead
of (4.67), and noting that —A is bounded operator on the support Xid, we
obtain (4.69).

In the same way as in the proof of (4.75), we see that
11 = A)F K (t, Yl oo < Cre™™", (4.76)

for every k € NU{0}. Then by the same calculation as in the proof of (4.64),
we obtain (4.70).

We can estimate

_ )Urek,t — e Mt eM — A
Ko = = Ap + A
0 A — A WIS W

in the same way, and obtain the assertion for Ko 4. O

5. Asymptotic profile of the solutions of linear equation

In this section, we prove Theorem 1.
Since the solution u of (1.3) is written as

u(t’x) = (Ko(t7 ) * UO) (SL‘) + (Kl(ta ) * ul) (33)7

the conclusion of Theorem 1 follows from the following lemma.
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Lemma 6. Let u; € L' N L% for j =0,1. Then the following hold.
HKl(t, )k ug — Gg(t,x)/ u(y)dy
n 2

< (tymexle (CE ) (S |y 4 et lun | 20

D | oy, oy

HKO(t, ) % ug — Hg(t,x)/ uo(y)dy

n

2

n

1 (_ny95 _e 1 (_n_906
< (0= CE g 47 fuollz + =7 CFE | P (5.2)
Proof. First we prove (5.1). We have

Kalt,) s = Golt) [ wo)dy
< |7 R (] = F e g |

n

2
R @ xton |+ Kt )

7 Gt ] ||+ 11Ga ) 501 = Gt / i (y)dyll2

n

= hi+hLho+hszs+Lia+1is (5.3)
By (4.54) and (4.45) for g1 = g2 = 1 and ¥ = s1 = s5 = 0, we have
L+ L S O™ D+ 07Ol (5.4)
By (4.63) and (4.69), we have
Lis Se ot ug g1 (5.5)

. .. . __3 _6(1—0)
Since the support of ., is included in [2 17320,00) and 27 120 > g, , we

have
I = | Go e Yxmnin]|, = |le727 7™ xunta | S €72 a2
(5.6)
It is written that
L5 =[G (t,) (a1 (-) = 1(0))]|o- (5.7)

Since é:—(tf) = |§\72‘76*|€|2(1_0)t, we have by the transformation e = P
that

o0
- _ _ _9,.2(1—0)
[Galt |- = [ ot 2 gy
0

oo
n+2(0—20) _ n+2(0—20)
= t‘W/ ,02(9*20)+n*1672p2(1 a)dp ~ T2
0
that is,

2]

G (t, )] Pl ~ e (TE 24, (5.8)
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On the other hand, since 6 € [0, 1], we have

(@) = O] < [ e = urle)| o= [
= 2/n sin ("T25> ui(x)
<2, (f') fur(@)lde =20 P, 59)

for every £ € R™. From (5.7), (5.8) and (5.9), it follows that

(ei%s‘ —eT )ul(m)‘ dx

dzx

I 5 <

111l [, =21Go ) Pl 1+ ],

—ivz H| u1H1. (5.10)

<t1

~

Substituting (5.4)—(5.6) and (5.10) into (5.3), we obtain (5.1).
Next we prove (5.2). We have

HKO(L‘, Yk — Hg(t7:r)/ wo(y)dy

n

2
< |7 G (6 xtond o = [ ) aou] * |,

G 0 xton] 5 | 4+ 1Ko () 5wl

| [Eat o] o, + 1) 0 = Hae) [ wotwhdl
R’IL

=:Ip1 + 1o+ Io3z+ Ioa+ Ips. (5.11)

By (4.55) with ¢; = 1,5; =0 (j = 1,2) and ¥ = 0, we have

b= [ (R0 -7 0] ],
< (e (CE2 ) (5.12)
Inequality (4.48) implies
Toz £ {)7 527 ug, (5.13)
and inequalities (4.65) and (4.71) imply
fos S 676&”“0”2- (5.14)

Since the support of ., is included in [27 =27 2 ,00) and 27 =y > ey , WE
have
To = € xunto || S €= uoll2 (5.15)
2
By (5.8) with 6 replaced by 20 + 6, we have

- —~ . 1 (_n_9
1Ho (t,)] - 1°ll2 = |G (8, )] - [PH0||p ~ te T E 720, (5.16)
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Then, in the same way as in the proof of (5.10), by using (5.16) instead of
(5.8), we have

Ips St CF D || uo), (5.17)
Since o < 1 — 0, (5.2) follows from (5.11)—(5.15) and (5.17). O

6. Estimate of the nonlinear term

Throughout this section, we suppose assumtion (1.2), and estimate nonlinear

terms by using the argument of [7] and [9]. For r € [1,2), 6 € [0, 2 — 20) and
5> 1, we define
X,55 = {u € C((0,00); H* N H*?); ullx,.55 <00}, (6.1)
where
1 (n(1_1y_gys 5
lelix, , . = sup (<t>14(z(r H-o+3) | (—a) /Qw(t)H
>0 2

(6.2)

—~
~

~
—
‘ ‘
q
—~
mh
M\»—l

N ell,)-

For s > 0, we define

- 2n ) 1 1 1+([s]—s
5= , thatis, —=-+———. 6.4
¢ n+ 24 2[s] —2s ww s 2 + n (64)

Lemma 7. Letr € [1,2), d € [0, 5 —20) and 5 > 20. Let X = X, 55. Then the
following holds for every ¥ € [0,0], s € [0,5] and u € X:

(i) We have
I=2)5u(t, )|, S (= CEE=2+ =8 ju (6.5)
H|- ult, ) »12s<t>1ia<**<%*%>+ #0) |ul . (6.6)
(ii) We have
1 (1 1y, ) 2n
lut. ), < OFCEED N ully, i g= T (6.7)

1 (Cnl 1y,
lu(t, ), S ()= CEG=D+) |y

qN
{(ngé’”m ST )

(ni’;é, 00) (25 > n).
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(#ii) We have

I(—A >% flu <t,->>||q‘s<t>*< TAOPEEHEE) u|%, (6.9)
H )| 5 @ (CEE D g (6.0)
1) £ (utt, HWW) <t ><uﬂ||u||§(- (6.11)

Proof. Except use of the weak LP estimate, we follow the argument of [9,
Lemmas 2.3 and 2.5], which is originated in [7, Lemma 2.1, 2.3 and 2.5].

(i) By Plancherel’s theroem and Hélder’s inequality, we have
[(=2)2u(t, )], = - a2

< I - Fadt, )15 1, s = 1(=A)Fu(t, )15 lult, )l

which together with the definition of || - |[x implies (6.5). In the same

way, we see that (6.6) holds by Holder’s inequality.
(ii) We first consider the case ni_"% = ¢, that is, n(% — 2) =0. Then

lult, Mgz S -1 solll - Pt Nz S M- P2, (6.12)

which together with the definition of || - || x implies (6.7).
+25<q<2that180< %—%)<5.

In [9, (2.12)] (see also [7, (2.5)]), the following is shown
lully < s 5 - 1Pl = (6.13)

when 0 < n (% - %) < 0. This together with the definition of || - | x
implies (6.8).

We consider the case =5-2(£3).
Then Sobolev’s embedding theorem together with (6.5) implies

1 (_mnel_ 1 _ s _1 n 1
lullg < llullgs < (B T7(CEE=Dr=5) gy = (1) 7= (CEGD+) |y

that is, (6.8) holds. In the same way, (6.8) holds also in the case 2 < ¢ < o0
and 5 < 2n.
(iii) We put

n 1
L 14
S T | (6.14)

By the Leibniz rule together with assumtion (1.2), we have

[s]
I8t Dllg. < Juct S [T ID%ut,

IH (6.15)
Sy fvgl=ls] 7=
where v; is a multi index. Put k; = \1/]| Then, as in the proof of [9,
Lemma 2.5, we can choose s; € [0,k; — —1=) such that ¢; (j = 1,...,[s])
defined by
1 1 &
—=(z_Z — 6.16
= (5-5) -, (6.16)
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1 1 Kk+s;—k; .
—_—=— =1,... 1
T B ) (617)
satisfies
[s]
1 1
Y —==, (6.18)
=0 q; qs
(p—[s])go € [2,00) and g; € [2,00) for j =1,...,[s]. (6.19)
Since
1 1 [s] — s 1 &
e e G )

the condition (6.18) is equivalent to

[s]
Z 5j =8—K, (6.20)
j=1

and thus, k+s; < s. Taking (6.16)(6.19) into account, we apply Hélder’s
inequality and Sobolev’s embedding theorem to (6.15). Then we obtain

[s]
o S e 3 TTNP ()l
k20,00 kj=[s] I=1
[s]
SIveuls™ S TNV, s,

k>0, kj=[s] 771

IVE £ Cut, )

(6.21)

where |V| := (—A)'/2. Then estimating the right-hand side of (6.21) by
the definition of || - || x, and using (6.20) and (6.14), we obtain

1999 f(u(t, g, < o)™ (CEGB 80t =3 R bty

= (e (CHror a8y,

that is, (6.9) holds.

Sobolev’s embedding theorem together with inequality (6.9) implies
(6.10).

By Holder’s inequality and assumtion (1.2), we have

1) £ Cult, Dllan /a2y S 16 ult )allut, )5,y (6.22)

The assumption (2.13) implies

( 1) > 2rn - 2n
e “n—-2r0 " n+25’
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and (2.7) implies

2n
1)<
np—1) < n— 28
if 25 < n. Thus, we can apply (6.6) and (6.8) with ¢ = n(p — 1), which
together with (6.22) yields (6.11). O

7. Estimates of a convolution term
Throughout this section, we suppose assumtion (1.2).

7.1. Decay estimates

Throughout this subsection, we suppose the assumption of Proposition 1.

Lemma 8. Let ¥ € [0,6]. For every u € X = X, 55, we have

/0 1 [KE ] (= 7, fCulr Dy S 06l ()
where (9 is the number defined by (6.3).
Proof. By (4.64) and (4.70), Sobolev’s embedding theorem and (6.11), we have
1177 [ ] (€ = 7)< £t )|
S eI = A) 7= () fu(r, )]l
S

e (92 f(u(r, Dl 25, S €5 (r) 0l
which yields (7.1). -

Lemma 9. For every u,v € X = X, 535, we have

/ 119 (1t —7,) % flu(r, ) ||,dr S (6 e (CEG=D+Er) jy )2 (7.2)

I 0= 720 (7 tr0) = FCor )

_ncl_ 1 o
S B CEEDHR) (flu x + [lollx )P flu — vl x. (73)

Proof. First, we estimate the low frequency part. By (4.46) with ¢; =7, g2 =

n%lz and ¥ =4, s1 = s2 = 0, we have
t
S ot = 70 Falr e < B+ By (1)
0
where

)| flu(r, ), dr i >
)| fu(r, ) adr i > 1,

I - / (t =) CE L2 (7, ) 000

M\r—‘ m\»—t
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Since § > 1, assumtion (2 7) implies that pr < 2p < n2”2, if 2s, < n. From
(2.15), it follows that +26 < pr in the case r = 1, and n+25 < pr in the case

r > 1. In the case < pr, we can apply (6.8) with ¢ = pr to obtain

)
_n(p—1 o
1@ Dl S Nulr ) S ()= CEEDD i (75)
In the case pr = n+25, making use of the equality (|u|P)* = (u*)?, we have

1 (T, D2 SHw(r )P lle2 = lulm, lprzp S lulr, )2
Hence, by (6.7) with ¢ = pr, we obtain

n

1, D,z S (= (2

Substituting (7.5) or (7.6) into I;, we obtain

t
115/ (£ — )T (CE D 540) (1) e (-3 E=2490) gy 2.
0

) B (7.6)

The following inequality is commonly used to estimate the nonlinear
term.

t (tymexton) it min{p,n) < -1,
/ (t —7)Ps"dr < ¢ (tymaxtentlog(2 +¢) if min{p,n} =1, (7.7)
0 (t)yLtetn it min{p,n} > —1.
The assumption that § > n(L — 1) — 1 implies

1i0<—g(i— +2 +a) (7.8)

The assumption (2.13) is equivalent to p ( 2 0) > 5= — o + 1, which is
equivalent to

117 <—Z< ;1> +p0> < -1 (7.9)

Hence, by using (7.7), we obtain

I <ty e (3 () de) iz (7.10)

Since 2~ (—4% + o) > —1, it follows from (6.11) and (7.7) that

t
I < /0 (t = )7 CH (S drul g

IEEE :
_ [ i< -1
~ ) ()T (TGt log(t + 2)||ull% if (5 > —1.

The assumption that § > n(: — 1) — 1 implies —2 + o < —2(2 - 1)+ ¢ + 0.
Hence, we have

I S8y 77 (CEG D45 u 5 (7.11)
in the case (s < —1. By definition (6.3) and assumption (2.13), we have
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1ig(—%+0’)+<7-,6+1
2 (52 st n (50)

P @(1 1) L0
1—o\ 2\ 2/ 277)
Hence, (7.11) holds also in the case (s > —1. Substituting (7.10) and (7.11)
into (7.4), we obtain

/ 11 1 (B ot — 7,) % F(ur, )|y < (1) e (CF G080 2

which together with (7.1) yields (7.2).
The assumption (1.2) implies

[f(u(r,2)) = fo(r,2)] S (lu(r,2)] + |o(, 2)|)" " u(r, 2) = v(7,2)],

and we can prove (7.3) in the same way. O

Lemma 10. Let s € [0,8]. For every u,v € X = X, 55, we have

/0 [(=2)F (K (2= 7,) % f(u(r, ) ||,dr < (&)= (CEG=D=859) 7

< (ymax(z (=5 G2 =340) e (-5 G =3 o= (=D (=) H 1)}y 2.

tN (7.13)
/0 [(=2)F (K (t —7,) * flu(r, ) ||ydr S (677 (CEGD=559) g 7
(7.14)

< == CEETDTE) (ullx 4 o)~ lu— vlx. (7.15)
for every u,v € X,
Proof. We first prove (7.12). We divide the left-hand side of (7.12) into three

parts:
t
/

dr

2

(—A)F (F7URY (= 7 xeoul(t = 7.0) % flu(r, )

(—A)2 (K (t—7,-) * f(u(r,)))

dr

+/t:2 ’(*A)% (J-‘fl[f(f(t — 7, ) Xiow|(t — 7, ) * f(U(T,~))) o

t
/
0

= J +J + J5 (we put). (7.16)

(—8)F (FURT (=7, )l = 7,) + flur, ) | ar

2
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Substituting (4.44) with ¥ =0, ¢ = g2 =7, 51 = s and s = 0 and (7.5) into
JiF, and using (7.9), we obtain

t/2 )
Jr < @ﬁ(—%(%—%)—%w)/ (rya (=50 >+po—)d7||u|\§(
0

[Jull - (7.17)
By (4.44) with & = 0, 51 = 5, 52 = [s], @1 = g2 = s (defined by (6.4)), and
(6.9), we have

t
VA / (t — 7ymrer (Tn(GE = D=2 | A f(u(r, )| dr
/2

qs

< () e ((CFtopti+ti—3)

t/2
lly [ )
0

~ (T (CE PP |y

(3=3)-5+o—(p-1)(3E—0)+1)

w3

= ()= Jull% (7.18)

Last we estimate J;". Combining (4.63), (4.69) and (6.10), we have
t 1 1
5 5 [ et (e (o =l
0

< () e (CFtoptits—3)

Jull%
L (_n(l_ly4 5 s _(p 1) (—0g)+L
= (1) 77 (CF G ro 5= GE o)t 1) |y 1. (7.19)
The assumption (2.13) implies —(p — 1)(5= — o) + 1 < 0. Thus, (7.12) follows

from (7.16)—(7.19).
We divide the left-hand side of (7.13) into three parts:

[

dr

2

(—A)% (F7RT (¢ = 7 xioul(t = 7.2) % flu(r,)))

(=2)% (K (¢ =7,) % f(u(r,))

dr

2

+ / |83 (F AT (= 7 el (=7, ) 5 S (ulr, ) )| ar

(=) (F7URT (=7 )xmnl (¢ = 70) % flur, ) | ar
=:J; +J; +J5 (we put). (7.20)

Substituting (4.45) with ¥ =0, ¢ = g2 =, s1 = s and s = 0 and (7.5) into
Ji , and using (7.9), we obtain

=

A

=
Q=

t/2

(*%(%*%)*%ﬂf)/ <T>ﬁ(*%(pil)+pa)d7||u”§( 1)
0 )

(-3G-9-3+0)

A
=
9=

[ullx-
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Since o < 1 — o, the right-hand side of (4.45) is dominated by that of (4.44).
Hence, J; and J; are estimated by the right-hand sides of (7.18) and (7.19),
respectively, and thus,

Ty S
J5 §<t>ﬁ(—%<%—%)—% o—(p—1)(&—0)+1) [ (7.23)

Substituting (7.21), (7.22) and (7.23) into (7.20), we obtain (7.13).
Inequality (7.14) follows from (7.12) and (7.13), since ¢ < 1 — ¢ and
—(p—1)(gz —0)+1<0.
By using assumtion (1.2), we can prove (7.15) in the same way. O

w3

(

3=

=

)= 4= 1) [y 1 (7.2

7.2. Diffusion estimate

Lemma 11. Let 6 and v be an arbitrary number satisfying the assumption of
Theorem 3. Let X = X155, where X155 is defined by (6.1). Then we have

| [ e s stutr i = Gote) [ [ statrpavar]

< tmax{ﬁ(—%—‘,—o’—min{(p—l)(%)—1,1—20,1/}),%(—%-‘,—o’)} HUHZ))(

(7.24)
Proof. We have
| [ mate=ry s stutronar = Gate [ [ stutragar]],
0 0 Rn
< L1+ Lo+ L3 + Ly, (7.25)
where
Lu:LHKﬁ—ﬂJ*ﬂMﬂMMW,
2t/2
Lo = /0 Ki(t—7,)* f(u(r,")) = G, (t — 7,") . fu(r,y))dy ) dr,

L /WHG n) = Golt )| [ statriay

/ /f u(T,y))dydr| .

First we estimate L; by dividing the integrand as
K1 (E = 70) * fulT, )l = [ K1 iow(t = 7,-) * f(u(T, )2
F 1K1 mn (= 7,-) = f(u(T,)) 2

niiia and s; = s2 =¥ = 0 in (4.46), we obtain

s 0w (t =7 ) Sl ))ll2 S 1l Dl 2y S s )z -

n+4o

dr,

w

Ly = |Go(t, )2

Taking g1 = ¢ =

(7.26)
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Since 5 > 1, assumtion (2.13) implies
2 2
np__ _2n 7
n+40 " n+20

and (2.7) implies

2np - 2n
n+40 = n—25
if 25 < n. Thus, we can apply (6.8) with r =1 and ¢ = nﬁfg to obtain

1 (_n(p_L1_ 20
[u(r, P, S (r) 7 (CBE=E=300500) 8
n+4do

= ()7 (CEm(Emo) =302y 1

From the inequality above and (7.26), it follows that

t
[ 1K ow(t = 7,-) % flu(r, ) |adr S () 7 (CEFo=(=D(E=0)+1) 7

(7.27)
By (7.19) and (7.23) with r = 1 and s = 0, we have
/ Ky mn(t =7, % F(ulr, ) edr S (877 (CHFot3=0=DE=) |8
which together with (7.27) yields
Ly < (e (Cato—eD(5 o)1)y . (7.28)
By (5.1) with u; = f(u(7,-)) and 6 = 20, we have
t/2
Ly < <t>max{1i6(_ﬂ+3a 1),2(- %Jm)}/ 1 (u(r, )| dr
0
Lot
w [l e 729)
L )2 i
s Carr) [T (e, e
0
=:Lo1+Lao+ Lajs (We put).
Inequality (7.5) and (7.9) with r =1 yield
t/2 t/2 L
| Wt plhdr s [RGB i <l
Thus
Ly $ (tymlie (G0 1) S (CH o))y (7.30)
Since § > 1, (2.7) and (2.15) with » = 1 imply 2p > %, and moreover
2p < ngg if 25 < n. Hence, we can use (6.8) with r = 1 and ¢ = 2p to obtain

P (_n(1_L1yis
1f (u(r, Nllgr—20 S lult, B, S (67 CEO=E+) 2 < Jluf.
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Thus
Lys < e =o' ullk. (7.31)

We estimate Lo 3. Let 7 be an arbitrary number satisfying

1
O<V<17<min{Z(p—2)+2p(5,5}. (7.32)
Assume moreover that
- ) P
7 < o (n ~Lin- 23)) (7.33)
if 5 < §. By Hélder’s inequality, we have
» 20 20 _ 20
R I TR e o g R K G e O [T C e

U

20

= (1| 1Pur, )l flu(r )57, (7.34)

where ¢ = ’fﬁ and ¢ = ¢(1 — i—g). The assumption (7.32) implies

M 20 _p57217> 2n
=N "0 )~ 50 " ny2

In fact, the condition 7 < §(p — 2) + & 5 is equivalent to § = pg:?f > ni@&'
The condition (7.33) is equivalent to § = p6 12,” < n2_"2§ in the case n > 25.

Hence, using (6.8) with taking ¢ as ¢, and deﬁnltlon of || - |lx with r =1 (see
(6.2)) in the right-hand side of (7.34), we obtain

1 1

1 1 (_n1_1lyi, 1 (_n(_1l)ig 20
[ futr, )|, < et (O Do DF et (30D

= (r) e (CE D)y 1 (7.35)
Thus,

t/2
Laa (7300 [T nyee (a0 aruy
0

which yields

S(—24o—(p—1)(3—0)+1) i

() s (-5 = 1) +po+7) > —1,

Loy S (=7 CH7 D log((t) +1) if L (~3(p— 1) +po+7) = 1,
(t)llv(_%+‘7_ﬁ) if & (-%(p—-1)+po+7v)<-1

5 <t>11 (_%+g—min{(p—l)(%—o)—l,u}). (736)

Inequalities (7.30), (7.31) and (7.36) yield
Lo 5 <t>max{lig( 2+ o—min{l—20,(p— 1)(7—0) 1,u}), %(—%+a)}”u”§(
(7.37)



NoDEA Asymptotic profile of solutions for semilinear Page 35 of 43 16

We estimate L. By the definition of G,
1 8@;-
o Ot

1
:T/ |£‘2(1—2a)e—\§|2<1*”)(t—er)de_
0

F(Go(t—1,") = Go(t,") =T (t—0r1,£)do

Inequality (5.8) with 0 = 2 — 20 implies

H|§|2(1—20)€—\f\2(17°’)(t—e‘f') ~ tﬁ(_%_1+20) (738)

2

uniformly to 6 € [0,1] and 7 € [0,¢/2]. Then by using (7.5) with r = 1 together,
we have

/2

Lo 7 (3140 [t ) adr

% p (7.39)

sttt [T e (a0 vy
0

which yields

A0 L (e 1)+ o) > 2
Ly St (CH71420) oo (1) 1) if = (=Z(p— 1)+ po) = —2
pro7 (—§-1+20) if L (~Z(p—1)+po) < -2

< tﬁ(*%+07min{(p71)(7§‘70)71,1720}). (740)

Last we estimate L. Since n > 2, the assumptions (2.14) and (2.13)
imply
2n 2n 1

< =1 <1
n+2 ~ 2n—2 +n71_ +n720

<p.

By this inequality and (2.7), we can apply (6.8) with » = 1 and ¢ = p to
obtain

1 (Cn_ 1y,
lu(r, Yp S (1) 77 (CFA=D49) |y .

This together with (7.9) yields
/s

Taking the product of (2.4) and (7.41), we obtain

(u(r,y))dy

ars [ @ CEr )y
t/2
~ T CEmE g (741

R

Ly <t (ChHo--)(3-0)+1) (7.42)

Substituting (7.28), (7.37), (7.40) and (7.42) into (7.25), we obtain (7.24). O
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8. Proof of Proposition and Theorems

8.1. Proof of Proposition 1
Let € > 0, and

X(e) = Xrs5(e) = {p € Xrssillollx. ;. <els

where X, 55 and |[¢||x, , , are defined by (6.1) and (6.2), respectively. We put
X =X, 55 and || - ||x = |l¢llx,.s., throughout this subsection.
If w is a solution of (1.1), then Duhamel’s principles implies

u(t,z) = Ko(t,-) *ug + K1 (t,-) * uy —|—/0 Ki(t—1,°) * f(u(r,-))dr,

where K and K are defined by (4.2) and (4.3). Taking account of the formula
above, we define the mapping ® on X (g) by

(Pu)(t) := Ko(t,-) xug + K1(t,-) *uy —I—/O Ki(t—7,) * f(u(r,-))dr.
(8.1)

We prove that ® is a contraction mapping on X (¢) provided ¢ and initial data
are sufficiently small. .
First we estimate K7 (t, ) *u;. By (2.14), we see that assumtion (4.43) of

Lemma 2 is satisﬁed for ¥ =0 and 9, 51 = so =0, 1 =7 and ¢ = (€

r

The high and middle frequency parts are given by (4.64) and (4.70). Then we
have

[r,2)) (that is, q% =-— ) Then, (4.46) gives estimate of low frequency part.

1 (_m(l_1y,08, .
< (07 CEGDHER) (g |1 4 [[() | e )

n—rs§’

e (1= A) T2 () o (8.2)

Assumption (2.14) implies —1 < 3, and therefore, sharp Sobolev’s em-
bedding theorem (Lemma E) yields

(1= A)72 (Yous |2 < [ 0us

Substituting this inequality into (8.2), we obtain

|67 (e, ) )|

n—r
T

nr_ g,

n—ré’

1 (_m(l_1yys.,
()2 )run)||, S (6T CEGDFEAO) (g 114 (V|| nz ).
(8.3)

Inequality (4.46) with ¥ = 0, s1 = 5, s = 0, 1 = g2 = r, and inequalities
(4.63) and (4 69) with s = § yield
A3 (

< <t>ﬁ< FGmD73H) |y L 4 eS| (—A)E (1 — A) Fug o (8.4)

Next we estimate Ko(t,j * ug. By (2.14), we see that the assumption of
Lemma 2 is satisfied for

Yd=0andd, s1=s,=0, ¢q3=

Ki(t )*ul)’2

nr B nr
= n—r(d+20)

n—2ro’
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Then, (4.49) gives estimate of low frequency part. Inequalities (4.66) and (4.72)
give estimate of high and middle frequency parts. Then we obtain

16? (Kot ) + o))

1 (_n(l_1yydy,
< (@) T (TG DFH) (fug | a5 + () o]

~ n—2ro

2

2) + e M) uol2.

nr
n—r(6+20)’

By Corollary A, we have

luoll 2 < el ™Mz 00 1) o]l s 0 S 1) 0]l 2z 0. (8:5)
Hence, we have
[1()° (Ko(t, ) = uo)|l,
< <t>ﬁ(_%(%_%)+%+0)||<'>5U0||n,,r&lh),? + e |(Youo o (8.6)
Inequality (4.49) with ¥ = 0, s1 = 5, 53 = 0 and g3 = @4 = "5~ and

inequalities (4.65) and (4.71) with s = 5 imply

’ 2

1y_ 5 _
D754 ugl|_ap 5 + €75 lug|l 1

1 (Cm(l_1y_s., _
<<t>1—(r( 3(y—3z)—35+ )H<>6UOH nr s+e E"tHuoHHE. (87)

n—r(6+20)"

For the last inequality, we used (8.5).
By (8.1), (8.3), (8.4), (8.6), (8.7), (7.2) and (7.14) with s = 0, 5, we have

5 &
[Pullx S 11() woll 2 +11() woll2 + [[uoll s

nr
n—r(6+20)°

s _1
e+ 116wl n o+ 1(=2)2 (1= A) ™ Zua [l2 + JJull-

n—ré

(i) First we consider the case r = 1. By (8.8), there is a positive constant
C independent of initial data such that
s
l@ullx < G (16l

n
n=(6F20)"

2+ 1) uollz + lluol| 7=

a1+ 116 Pl o o+ 1(=2) 3 (1= A) 2 flo + Hullﬂ’g)-

n—a"

Hence, taking €; > 0 such that 015117—1

Gi (II(-)‘SUOIIm,z + 1) uollz + (=) 2ol

s 1 13
s 2 (A= 8) Bufls) < T

< %, and assuming ug and wuy satisfy

+llual + (1)

n—ao?

we see that ® is a mapping from X (g1) to X (g7).
By (7.3) and (7.15), there is a positive constant C independent of initial
data such that

[P — Pvllx < Coflullx + vllx)" [lu—vllx (8.9)
for every u,v € X. We take € € (0,¢1) such that
Cy(2e)P71 < 1.
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Then we see that ® is a contraction mapping from X (¢) to X (¢), and therefore
® has the only one fixed point u, which is the unique solution.

(ii) Next we consider the case r € (1, ni’;a] By Corollary A, we have

r2 S 12170l ool () ull a2 S 1) w2y o

n—ré’ n—ré’

lually = flual

Substituting this inequality into (8.8), we obtain
| @ullx < Cs (11 uol

HI()

5
2 + [1() uoll2 + [uoll as

nr
n—r(6+20)°

a2+ (=) (1= &) Buflo + ullk ), (8.10)

n—ré’

for a positive constant C3 independent of initial data. Hence, taking eo > 0
such that Cseb ™! < %, and assuming uo and u; satisfy
s
a2+ 1) uoll2 + [luoll

Cs(||<'>5“0 EEmei=rok

El _1 S
I ull ey o+ I(-A)2 (1 - A) zulllz) <=,

n—ré’ 2
we see that ® is a mapping from X (g2) to X (e2). In the same way as (8.9), we
see that there is a positive constant C; independent of initial data satisfying
[@u — @v||x < Ca(flufl + [[ol)P~ u - v]x

for every u,v € X. We take ¢ € (0,e2) such that Cy(2¢)P~1 < 1. Then ®
becomes a contraction mapping X (g) to X (e), and therefore ® has the only
one fixed point u, which is the unique solution.

8.2. Proof of Theorems 2 and 3

Proof of Theorems 2. We prove Theorem 2 by using Proposition 1.
(Case 1) In the case p, < p < 1+ 2, we can > 0 sufficiently small such

that r defined by
L_2 ! + + (8.11)
r ni\p-—1 ? 1 '

satisfies

1 2 1 2
S4 2% o221, thatis, re1,—" ). (8.12)
2 n r n+ 4o

Then L > 2 (p%l + o) implies assumtion (2.13).

T n

(Case 1-1) First we consider the case p, < p <1+ M%M. We put
1 n
§ = —=-—1 . 1
(p—1+0> 5 +nn (8.13)

By definition (8.11), we have

& =n (i - ;) ~1. (8.14)

Comparing (2.9) and (8.13), we see that
§ <48 (8.15)
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if n > 0 is sufficiently small. Hence, taking n > 0 sufficiently small, we can
assume that r and ¢’ defined above satisfy (8.12) and (8.15). We check that
the assumptions (2.14) and (2.15) of Proposition 1 are satisfied with ¢ replaced

§’. Since 20 < 1, (2.14) is trivial by (8.14). Since n > 2 and 20 < 1, we have
2% L R PR Sk
b= n+2—4o 1-20 1-20’

from which it follows that

1 2 1
2l —— 4o ) —-1>—-——+0).
p—1 p\p—1

From this and the definition of ¢’ and r, it follows that

§ =2 L—i—a 1- 2 4n >2 L—&—U tn— 2 =n R
CT\p-1 2 g p\p—1 o= pr 2/

(8.16)

that is, (2.15) is satisfied with § replaced by ¢’. Hence the assumption of
Proposition 1 is satisfied. Let §; (j = 0,1) be the constants defined by (2.16)
with § = ¢’ and r defined above. Then
! !

i:n—r(é +20):n—|—2—40’ i:n—r6:n+2, (8.17)

qo nr 2n q1 nr 2n
that is, ¢; = ¢; (j = 0,1). Since ¢’ < §, the assumptions (2.10) and (2.11)
imply (2.17) and (2.19) with d replaced by §’. Thus, Proposition 1 guarantees
the existence of the solution u € C*([0,00), H®) N C([0,00), H*~1) if ¢ is suf-
ficiently small. By the standard argument, the uniqueness holds in the class
C([0,00), H%) N C([0,00), H5™1).

(Case 1-2) Next we consider the case

4 4
1+ — <14 —. 8.18
+n+2—4o<p_ +n ( )

We show that § = 0 satisfies the assumptions (2.14) and (2.15), that is,

if n > 0 is sufficiently small.
The assumption (8.12) implies n(

1+ 7”5%40 < p is equivalent to

=

) — 20 > 0. The assumption

N[ =

<

2<1+a>—”—1<0. (8.21)

Hence (8.19) holds if 7 is sufficiently small.
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From the assumption that p > 1 + ﬁ, it follows that
2 1 g _QSQ(n+2—40) n+2—40+0 n
p\p—1 2 n+6—4o0 4 2
_ n—|—40—2<0
- n+6—40

and thus assumtion (8.20) holds if n > 0 is sufficiently small. Hence the as-
sumption of Proposition 1 is satisfied with 6 = 0. Let §; (j = 0,1) be the
constants defined by (2.16) with § = 0, and r be defined by (8.11) for suffi-
ciently small 7 satisfying conditions described above. Then

11 2 _ 2 1 _1__ 2 2
o n -0 " @ 7 -1 a "
(8.22)
Then by the assumption of ¢; (j = 0,1), we have
4 <4 (G=01), (8.23)
if 7 > 0 is sufficiently small. Since p <1+ %,
1 2
S> % > thatis, §;<2 (j=0,1). 8.24
dj n(p _ 1) 9 J ( ) ( )

By (8.23) and (8.24),
qu’Q - qu72 N Ls.
Hence (2.11) implies (2.19). Thus the conclusion holds by Proposition 1 in the

same way as above.
(Case 2) Last we consider the case p > 1+ %. We define r by
1 1 20

-, . 2
. 2+n+17 (n>0) (8.25)

Since 20 < 1, (2.14) holds for § = 0 if » > 0 is sufficiently small. The assump-
tion
1 1y n
"(or2) =5

4o
1—1—;—%277<p7

is equivalent to

which holds if n > 0 is sufficiently small, since 0 < 1 and p > 1 + %. Hence,
defining r by (8.25) with sufficiently small > 0, we can take § = 0 in Propo-
sition 1. Let §; (j = 0, 1) be the constants defined by (2.16) with § = 0 and
defined above. Then, considering the asumption of g; (j =0, 1), we see that

1 1 20 1 1 1 1 1 20 1
—=--T—=-4n<—, —=-=-+—+4n<—, (8.26)
o ™ n 2 o0 @ r 2 n T
if » > 0 is sufficiently small. This imply that ¢; < ¢; < 2 (j = 0,1). Hence
(2.12) implies (2.19) with § = 0, and the conclusion holds by Proposition 1.
O
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Proof of Theorem 3. Since u = ®u (P is defined by (8.1)), we can write
U(t, ) - @Ga(ta .TZ‘) = (KO(ta ) * Up + Kl(t7 ) *Up — ﬂlGU(ta .I‘))

+ </Ot Ki(t—7,)  f(u(r,)dr — Go(t, z) /OOO . flu(r, y))dydT) ;
(8.27)

where 9 is defined by (2.3). Since Ky(t,) * ug + Ki(t,) * uy is a solution
of the linear equation (1.3), the first term of the right-hand side of (8.27) is
estimated by Theorem 1. The second term is estimated in (7.24). Combining
these estimates, we obtain the assertion. O
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