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Abstract. In this work we prove some abstract results about the existence
of a minimizer for locally Lipschitz functionals, over a set which has its
definition inspired in the Nehari manifold. As applications we present a
result of existence of ground state bounded variation solutions of prob-
lems involving the 1-laplacian and the 1-biharmonic operator, where the
nonlinearity satisfies mild assumptions.
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1. Introduction and some abstract results

Since its appearance, the Nehari method has been used in a number of situa-
tions in order to get ground state solutions to elliptic problems. In [17] Szulkin
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and Weth have elegantly described in a systematic way the real essence of
the Nehari method. Their main theorem, describing in an abstract framework
sufficient conditions to get ground state solutions, has been applied to study
problems like {−Δpu − λ|u|p−2u = f(x, u) in Ω,

u = 0 on ∂Ω,

where λ < λ1, λ1 the first eigenvalue of −Δp and f a subcritical power-type
nonlinearity. Also, they considered elliptic problems in R

N like{−Δu + V (x)u = f(x, u) in R
N ,

u(x) → 0, |x| → ∞,

under some conditions on V and f .
These two problems (and other two also considered in [17]) have a com-

mon feature which allows the use of the standard Nehari method described by
Szulkin and Weth. In fact, the energy functionals associated to them has the
”principal part” p-homogenous. This condition, by its side, has been dropped
out in the paper of Figueiredo and Ramos [11], in which they conclude the
same as Szulkin and Weth, but with weaker assumptions. The applications of
Figueiredo and Ramos results treat with non homogenous elliptic problems.
They consider, for instance, quasilinear elliptic problems which includes the
(p, q)-Laplacian operator, Kirchhoff-type problems and an anisotropic equation
(see [11] for details).

Leaving aside the questions about the homogeneity, a common feature
which seems to never be dropped out in results based on a Nehari approach, is
the differentiability of Φ. In fact this is a natural assumption that researchers
have always considered when dealing with sets which resemble the Nehari
manifold, since some directional derivatives of the functional is involved in its
definition.

In this work we present some abstract results whose assumptions are
enough to give a reasonable sense to a Nehari set, which contains all the crit-
ical points of functionals which are neither C1, nor even differentiable and
where all minimizers are critical points. More specifically, we deal with func-
tionals defined in Banach spaces, which are written like a combination of a
locally Lipschitz and a C1 functional and satisfy some natural assumptions. In
fact, despite the lack of smoothness in our functional, we ask it to have at least
directional derivatives in some directions which are enough to get the result.
Although this can sound a little bit artificial, in a lot of examples this assump-
tion is satisfied. For example, as we will show later in Sect. 3, in problems
involving the 1-laplacian (the formal limit of Δp as p → 1), the 1-biharmonic
operator and some other operators derived from these ones, the associated
energy functionals are not differentiable in all directions.

Our main results are the following.

Theorem 1. Let E,F be Banach spaces, E compactly embedded into F and
such that for all bounded sequence (un) ⊂ E such that un → u in F , it holds
that u ∈ E. Let Φ, I0 : E → R, I : F → R be functionals such that Φ = I0−I|E,
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where I0 is locally Lipschitz continuous, I ∈ C1(E) ∩ C0(F ), I(0) = 0 and for
all u ∈ E, there exists the following limit

I ′
0(su)u := lim

t→0

I0(su + tu) − I0(su)
t

, ∀s ∈ R.

Suppose also the following conditions are satisfied:
(i) I0 is lower semicontinuous in the topology of F , i.e., if (un) is a bounded

sequence in E, and u ∈ E are such that, up to a subsequence, un → u in
F , then I0(u) � lim inf

n→∞ I0(un);

(ii) There exist ρ, α0 > 0, such that Φ(u) � α0 > Φ(0), for every u ∈ E with
‖u‖ = ρ;

(iii) ∀u ∈ E, Φ(u) � ‖u‖ − I(u);
(iv) t 	→ Φ′(tu)u is strictly decreasing in (0,+∞);
(v) For each bounded sequence (vn) ⊂ E such that vn → v 
= 0 in F , it

follows that

lim
t→∞

Φ(tvn)
t

= −∞, uniformly for n ∈ N.

Then, the infimum of Φ on the following set

N := {u ∈ E\{0}; I ′
0(u)u = I ′(u)u}

is achieved.

It is important to say that, since Theorem 1 is going to be applied in
non-reflexive Banach spaces, it is not possible to work with weak convergence
in E, this way, being necessary to introduce the space F .

Since we are dealing with locally Lipschitz functionals, before saying
something about the existence of critical points, we have to give the precise
definition of it. We say that u0 ∈ E is a critical point of Φ, if 0 ∈ ∂Φ(u0),
where ∂Φ(u0) denotes the generalized gradient of Φ in u0, as defined in [6] for
instance.

Finally, our last theorem ensures that all minimizers of Φ on the Nehari
set, N , are in fact critical points.

Theorem 2. Suppose all conditions of Theorem 1 hold, then if u0 ∈ N is such
that Φ(u0) = min

N
Φ, then u0 is a critical point of Φ in E.

In [18] the author studies all the usual minimax theorems like Mountain
Pass Theorem, Saddle Point Theorem, etc., for functionals written as Φ =
I0−I, where I0 is locally Lipschitz, lower semicontinuous and I is C1. However,
any mention about arguments which resembles a Nehari set has been made.

As a first application of these results we address the question of finding
critical points of a functional involving the absolute value of the total variation
of a function in the space of functions of bounded variation, BV (Ω), in a setting
in which coerciveness and smoothness are lost. In fact, a lot of attention has
been paid recently to the space BV (Ω), since it is the natural environment
in which minimizers of many problems can be found, especially in problems
involving interesting physical situations, in capillarity theory and existence of
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minimal surfaces. In fact, this space turns to be the natural domain of relaxed
versions of some functionals defined in usual Sobolev spaces.

In [10], Degiovanni and Magrone study the version of Brézis–Nirenberg
problem to the 1-laplacian operator, corresponding to{

−Δ1u = λ
u

|u| + |u|1∗−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where 1∗ = N/(N − 1) and Δ1u = div
( ∇u

|∇u|
)

. In this work, the authors

extend Φ in a suitable Lp(Ω) space, which have better compactness properties,
even though its continuity is lost.

This kind of argument, which consists in extending the functional defined
in BV (Ω), to some Lp(Ω) in order to recover the Palais–Smale condition, is
generally used in dealing with Δ1 operator. For example, in [7], Chang uses
this approach to study the spectrum of the 1-Laplacian operator, proving the
existence of a sequence of eigenvalues.

In the first application we study the energy functional whose Euler–
Lagrange equation is a relaxed form of{−Δ1u = f(u) in Ω,

u = 0 on ∂Ω, (1.2)

where Ω ⊂ R
N is a smooth bounded domain, N � 2 and f satisfies the

following set of assumptions.

(f1) f ∈ C0(R);
(f2) f(0) = 0;
(f3) there exist constants c1, c2 > 0 and p ∈ (1, 1∗) such that

|f(s)| � c1 + c2|s|p−1, s ∈ R;

(f4) lim
t→± ∞

F (t)
t

= ±∞, where F (t) =
∫ t

0
f(s)ds;

(f5) f is increasing for s ∈ R.

Let us consider I0, I : BV (Ω) → R defined by

I0(u) =
∫

Ω

|Du| +
∫

∂Ω

|u|dHN−1

and

I(u) =
∫

Ω

F (u)dx.

It follows that Φ : BV (Ω) → R given by Φ(u) = I0(u) − I(u) is the functional
whose Euler–Lagrange equation is a relaxed form of (1.2). Since Φ is just a
locally Lipschitz functional (since I0 lacks smoothness), we have first to explain
what we mean by saying that u ∈ BV (Ω) is a critical point of Φ. Since I0 is
a convex locally Lipchitz functional and I ∈ C1(BV (Ω)), then u ∈ BV (Ω)
is going to be called a critical point of Φ, or a bounded variation solution of
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(1.2), if I ′(u) ∈ ∂I0(u), where ∂I0(u) denotes the subdifferential of the convex
function I0. This is equivalent to

I0(v) − I0(u) � I ′(u)(v − u), ∀v ∈ BV (Ω). (1.3)

In the second application of our main results, we study a problem involv-
ing the 1-biharmonic operator⎧⎨

⎩
Δ2

1u = f(u) in Ω,

u =
Δu

|Δu| = 0 on ∂Ω, (1.4)

where Ω ⊂ R
N is a smooth bounded domain, N � 2 and f satisfies the same set

of assumptions (f1)− (f5), with 1 < p < N/(N − 2) in (f3). The 1-biharmonic
operator is formally defined as

Δ2
1u = Δ

(
Δu

|Δu|
)

and can be seen as the limit case as p → 1 of the p-biharmonic operator

Δ2
pu := Δ

(|Δu|p−2Δu
)
,

which in turn, has been used to study systems of second order elliptic problems
(see [4] for example). As in the first application, we get ground state solutions
of (1.4) by proving that the energy functional Φ satisfies all the assumptions of
Theorems 1 and 2. However, this time the energy functional has to be defined
in a different space, BL0(Ω) =

{
u ∈ W 1,1

0 (Ω) : Δu ∈ M(Ω)
}

, and is given by

Φ : BL0(Ω) → R, such that Φ(u) = Ĩ0(u) − I(u), where

Ĩ0(u) =
∫

Ω

|Δu|,

where
∫
Ω

|Δu| is the total variation of the Radon measure Δu.
The paper by Parini et al. [14] seems to be the very first work dealing with

the 1-biharmonic operator and treating in particular the related eigenvalue
problem. Actually their result is even more complete, in the sense that it
provides also information about the shape of the domain Ω that maximizes the
first eigenvalue of such operator. The natural space in which problems involving
this operator takes place is BL0(Ω) := {u ∈ W 1,1

0 (Ω); Δu ∈ M(Ω)}, a space
which has similar properties of BV (Ω). In [16], the same authors still deal
with the 1-biharmonic operator since they study the following minimization
problem

Λc
1,1(Ω) = inf

u∈C∞
c (Ω)\{0}

∫
Ω

|Δu|dx

|u|1 .

It turns that since C∞
c (Ω) is not a dense subset of BL0(Ω) in the topology of

the norm, the minimizing problems above are in fact different. As in their first
work [14], in [16] the authors also study the shape of the subset that maximizes
the quantity Λc

1,1(Ω). In [15] these authors investigate some optimal constants
of the Sobolev embeddings of some spaces of functions which are associated to
the 1-biharmonic operator.
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To finish, the wide range of situations in which Nehari method has been
applied in problems involving operators like −Δ and −Δp, together with the
lack of study of different geometric situations when dealing with the 1-laplacian
and 1-biharmonic operators, lead us to think that this paper can give the tools
to shed some light in several questions which could be raised to problems in
BV (Ω), in analogy to situations involving −Δ and −Δp operators.

In Sect. 2 we prove the abstract results stated in this introduction. In
Sect. 3, we start with a subsection, in order to provide the basic notation and
results about functionals defined in BV (Ω) and in similar spaces. Later, we
present two applications of our abstract results. To finish, in an Appendix we
present an alternative proof of Theorem 2 which uses a version of the Lagrange
Multiplier rule to locally Lipschitz functionals (see [8]), in the concrete case
where the function f is C2.

2. Proof of the abstract results

Proof of Theorem 1. Let us start proving that N 
= ∅. In order to do so let us
prove that for all w ∈ E\{0}, there exists a unique tw > 0 such that tww ∈ N .

For w ∈ E\{0} consider γw : R+ → R defined by

γw(t) = Φ(tw).

Note that γw is a smooth function such that, γw(0) = Φ(0) and γ′
w(t) =

I ′
0(tw)w − I ′(tw)w. By ii), for t0 = ρ/‖w‖, it follows that γw(t0) � α0 > Φ(0).

Moreover, by v), it follows that

lim
t→∞ γw(t) = −∞.

Then there exists a tw > 0 such that γ′
w(tw) = 0 and consequently, tww ∈ N .

In order to verify the uniqueness of such a tw, note that, supposing that
γ′

w(t) = γ′
w(s) = 0, for t, s > 0, then it follows that Φ′(tw)w = Φ′(sw)w. Then

by iv) it follows that t = s.
Note that for all u ∈ N , it follows by ii)

Φ(u) = max
t�0

Φ(tu) � Φ
(

ρ

‖u‖u

)
� α0 > Φ(0). (2.1)

Then there exists (un) ⊂ N such that

lim
n→∞ Φ(un) = inf

N
Φ =: c.

Note that there exists δ > 0 such that

‖u‖ � δ for all u ∈ N . (2.2)

In fact, otherwise it would exists (wn) ⊂ N such that wn → 0 in E, which
would contradict (2.1).

Let us prove that the minimizing sequence (un) is bounded in E. Assume
by contradiction that ‖un‖ → ∞, as n → ∞ and let vn =

un

‖un‖ . Since (vn) ⊂ E

is bounded, the compactness of the embedding E ↪→ F , implies that there
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exists v ∈ F such that vn → v in F , up to a subsequence. Then it follows that
I(vn) → I(v).

If v = 0, then by (iii), for all t � 0

c + on(1) = Φ(un) = Φ(vn‖un‖)
= max

s�0
Φ(svn)

� Φ(tvn)
� t − I(tvn)
= t + on(1),

which is a clear contradiction with the fact that c ∈ R.
If v 
= 0, then by (v)

on(1) = lim
n→∞

c

‖un‖ = lim
n→∞

Φ(un)
‖un‖ = lim

n→∞
Φ(vn‖un‖)

‖un‖ = −∞.

Then we get a contradiction.
Hence (un) is bounded in E and then there exists u ∈ F such that un → u

in F , up to a subsequence. Then, by hypothesis, it follows that u ∈ E.
If u = 0, then by (2.2), for all t � 0,

c + on(1) = Φ(un)
= max

s�0
Φ(sun)

� Φ(tun)
� t‖un‖ − I(tun)
� tδ − I(tun)
= tδ + on(1),

which give us a contradiction.
Hence u 
= 0 and let tu > 0 be such that tuu ∈ N . Then, by i)

c � Φ(tuu)
= I0(tuu) − I(tuu)
� lim inf

n→∞ I0(tuun) − lim
n→∞ I(tuun)

= lim inf
n→∞ Φ(tuun)

� lim inf
n→∞ Φ(un) = c

and then Φ(tuu) = c and tuu ∈ N , which proves the theorem. �

Now let us present the proof of our second result.

Proof of Theorem 2. Suppose by contradiction that 0 
∈ ∂Φ(u0), then β(u0) >
0, where β(u0) = inf{‖z‖∗; z ∈ ∂Φ(u0)}, since by ([6, p. 105]), such infimum
is attained, where the dual norm and the subdifferential of Φ0 are taken with
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respect to E. Since u 	→ β(u) is lower semicontinuous (again by [6, p. 105], for
instance), it follows that there exists κ > 0 such that

β(u) >
β(u0)

2
> 0, ∀u ∈ Bκ(u0). (2.3)

Let us denote J =
[
1 − κ

4
, 1 +

κ

4

]
⊂ R and define g : J → E by

g(t) = tu0.

Denoting c := Φ(u0) = inf
N

Φ, note that

Φ(g(t)) < c, ∀t 
= 1.

Moreover, note that

max
{

Φ
(
g

(
1 − κ

4

))
, Φ

(
g

(
1 +

κ

4

))}
= c0 < c.

By using the version of the Deformation Lemma to locally Lipschitz func-
tionals, without the Palais–Smale condition (see [9, Lemma 2.3]), there exists
ε > 0 such that

ε < ε0 := min
{

c − c0

2
,
κβ(u0)

16

}
,

and an homeomorphism η : E → E such that
(i) η(x) = x for all x 
∈ Φ−1([c − ε0, c + ε0]) ∩ Bκ(u0);
(ii) η(Φc+ε ∩ Bκ/2(u0)) ⊂ Φc−ε;
(iii) Φ(η(x)) � Φ(x), for all x ∈ E,
where, for d ∈ R, Φd = {u ∈ E; Φ(u) � d}.

Let us define now h : J → E by h(t) = η(g(t)) and two functions,
Ψ0,Ψ1 : J → R by

Ψ0(t) = Φ′(tu0)u0

and

Ψ1(t) =
1
t
Φ′(h(t))h(t).

Since for t ∈
{(

1 − κ

4

)
,
(
1 +

κ

4

)}
, Φ(g(t)) � c0 < c − ε0, then h(t) =

η(g(t)) = g(t) = tu0 for t ∈
{(

1 − κ

4

)
,
(
1 +

κ

4

)}
. Hence

Ψ0(t) = Ψ1(t), ∀t ∈
{(

1 − κ

4

)
,
(
1 +

κ

4

)}
. (2.4)

Let us briefly justify that the Brouwer Degree d(Ψ0, J, 0) is equal to
− 1. In fact, by the proof of Theorem 1, it follows that Ψ0(t) = γ′

u0
(t) is

continuous, strictly decreasing, Ψ0(1 − κ/4) > 0 > Ψ0(1 + κ/4), and t = 1 is
the unique point in J where Ψ0 vanishes. Since there is no information about
the smoothness of Ψ0, in order to calculate d(Ψ0, J, 0), we should approximate
Ψ0 by some C1(J,R) function. By considering a strictly decreasing function
Ψ ∈ C1(J,R), such that Ψ(t − κ/4) = Ψ0(t − κ/4), Ψ(t + κ/4) = Ψ0(t + κ/4)
and Ψ(1) = 0, note that by the very definition of Brouwer Degree and by its
invariance by homotopy, d(Ψ0, J, 0) = d(Ψ, J, 0) = sgn(Ψ

′
(1)) = − 1.
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Since Ψ0 = Ψ1 on ∂J and d(Ψ0, J, 0) = − 1, by degree theory, d(Ψ1, J, 0) =
− 1. Then there exists t ∈ J such that h(t) ∈ N . This implies that

c � Φ(h(t)) = Φ(η(g(t))).

But note that Φ(g(t)) < c + ε and also g(J) ⊂ Bκ/2(u0). Then, by ii)

Φ(η(g(t))) < c − ε

which contradicts the last inequality. Then the result follows. �

3. Applications

3.1. Preliminaries

First of all let us introduce the space of functions of bounded variation, BV (Ω).
We say that u ∈ BV (Ω), or is a function of bounded variation, if u ∈ L1(Ω),
and its distributional derivative Du is a vectorial Radon measure, i.e.,

BV (Ω) =
{
u ∈ L1(Ω); Du ∈ M(Ω,RN )

}
.

It can be proved that u belongs to BV (Ω) is equivalent to∫
Ω

|Du| := sup
{∫

Ω

udivφdx; φ ∈ C1
c (Ω,RN ), s.t. |φ|∞ � 1

}
< +∞.

The space BV (Ω) is a Banach space when endowed with the norm

‖u‖BV (Ω) :=
∫

Ω

|Du| + |u|1,

which is continuously embedded into Lr(Ω) for all r ∈ [1, N/(N − 1)] and is
compactly embedded for r ∈ [1, N/(N − 1)) (see [3, Theorems 10.1.3, 10.1.4]).

Because of Trace Theorem [3, Theorem 10.2.1] and the continuous em-
bedding of BV (Ω) into L1(Ω), it follows that

‖u‖ :=
∫

Ω

|Du| +
∫

∂Ω

|u|dHN−1,

where HN−1 denotes the usual (N −1)-dimensional Hausdorff measure, defines
in BV (Ω) an equivalent norm, which we use as the standard norm in BV (Ω)
from now on.

It can be proved that I0 : BV (Ω) → R given by

I0(u) =
∫

Ω

|Du| +
∫

∂Ω

|u|dHN−1 (3.1)

is a convex functional and Lipschitz continuous in BV (Ω). In fact, note that
by the version of Poincaré inequality to BV (Ω) (see [13] for example) and
the continuous embedding BV (Ω) ↪→ L1(∂Ω), it follows that I0 is a norm in
BV (Ω), equivalent to the usual one.

It follows also that BV (Ω) is a lattice (see [1] for instance), i.e., if u, v ∈
BV (Ω), then max{u, v},min{u, v} ∈ BV (Ω) and also

I0(max{u, v}) + I0(min{u, v}) � I0(u) + I0(v), ∀u, v ∈ BV (Ω). (3.2)
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For a vectorial Radon measure μ ∈ M(Ω,RN ), we denote by μ = μa +μs

the usual decomposition stated in the Radon Nikodyn Theorem, where μa

and μs are, respectively, the absolute continuous and the singular parts with
respect to the N -dimensional Lebesgue measure LN . We denote by |μ|, the
absolute value of μ, the scalar Radon measure defined like in [3, p. 125]. By
dμ

d|μ| (x) we denote the usual Lebesgue derivative of μ with respect to |μ|, given

by

dμ

d|μ| (x) = lim sup
r→0

μ(Br(x))
|μ|(Br(x))

.

In order to remark the properties of differentiability (or lack thereof) of
I0, let us recall the result of Anzellotti in [2, Theorem 2.4]. For g : Ω×R

N → R,
let us define

g0(x, p) = lim
t→0+

g
(
x,

p

t

)
t.

Suppose that g is differentiable in p for all x ∈ Ω, p ∈ R
N and g0(x, p) is

differentiable for all x ∈ Ω, p ∈ R
N\{0} and also that there exists M > 0 such

that

|gp(x, p)| � M, |g0
p(x, p)| � M.

Then Jg : BV (Ω) → R defined by

Jg(u) =
∫

Ω

g(x,Du) :=
∫

Ω

g(x, (Du)a(x))dx +
∫

Ω

g0

(
x,

Du

|Du| (x)
)

|Du|s

is differentiable at the point u ∈ BV (Ω) in the direction v ∈ BV (Ω) if and
only if |Dv|s is absolutely continuous with respect to |Du|s, and in such a case
one has

J ′
g(u)v =

∫
Ω

gp(x, (Du)a(x))(Dv)a(x)dx +
∫

Ω

g0
p

(
x,

Du

|Du| (x)
)

Dv

|Dv| (x)|Dv|s.

Since

I0(u) = Jg(u) +
∫

∂Ω

|u|dHN−1

with g(x, p) = g0(x, p) = |p|, we have that, given u ∈ BV (Ω), I ′
0(u)v is well

defined for every v ∈ BV (Ω) such that |Dv|s is absolutely continuous with
respect to |Du|s and v(x) = 0, HN−1− a.e. on the set {x ∈ ∂Ω; u(x) = 0} and
we have that

I ′
0(u)v =

∫
Ω

(Du)a(Dv)a

|(Du)a| dx+
∫

Ω

Du

|Du| (x)
Dv

|Dv| (x)|(Dv)|s+
∫

∂Ω

sgn(u)vdHN−1.

(3.3)
Now let us just make precise the sense of solutions that we consider in this

work. Regarding (1.2), the energy functional associated to it is Φ : BV (Ω) → R

given by

Φ(u) = I0(u) − I(u),
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where

I(u) =
∫

Ω

F (u)dx. (3.4)

Since I ∈ C1(BV (Ω)) and I0 is Lipschitz continuous, we say that u0 ∈
BV (Ω) is a solution of (1.2) if 0 ∈ ∂Φ(u0), where ∂Φ(u0) denotes the general-
ized gradient of Φ in u0, as defined in [6]. It follows that this is equivalent to
I ′(u0) ∈ ∂I0(u0) and, since I0 is convex, this is written as

I0(v) − I0(u0) � I ′(u0)(v − u0), ∀v ∈ BV (Ω). (3.5)

Hence all u0 ∈ BV (Ω) such that (3.5) holds is going to be called a bounded
variation solution of (1.2).

In the second application we deal with the space

BL0(Ω) =
{

u ∈ W 1,1
0 (Ω) :

∫
Ω

|Δu| < +∞
}

,

when endowed with the norm

‖u‖0 = |u|1 + |∇u|1 +
∫

Ω

|Δu|.

By the Poincaré inequality in BV (Ω) (see [13, Proposition 2]) and the results
in [5, Theorem 1.2 and Proposition 2.1] by H. Brézis and A. Ponce, we can
define a norm in BL0(Ω) given by

‖u‖ =
∫

Ω

|Δu| for every u ∈ BL0(Ω), (3.6)

which is equivalent to ‖ · ‖0. In fact, if u ∈ BL0(Ω), since u ∈ W 1,1
0 (Ω), then∫

Ω
|Du| =

∫
Ω

|∇u|dx. Then it follows that

‖u‖0 � (C + 1)|∇u|1 +
∫

Ω

|Δu|

� C1

∫
Ω

|Δu|.

It follows also that the space BL0(Ω) has w.r.t. its norm all the properties that
BV (Ω) has. For example, it can be proved (see [14]) that BL0(Ω) is a Banach
which is continuously embedded into Lr(Ω) for all r ∈ [1, N/(N − 1)] (this
embedding being compact for r ∈ [1, N/(N −1))). The norm ‖·‖ given in (3.6)
is lower semicontinuous w.r.t. the Lr(Ω) convergence, for r ∈ [1, N/(N − 1)].

In analogy with the first application, the energy functional associated to
(1.4) is given by

Φ(u) = Ĩ0(u) − I(u),

where

Ĩ0(u) =
∫

Ω

|Δu| (3.7)

and I is given by (3.4). Also as in the first application, Φ is written as the
difference between a Lipschitz continuous and a C1(BL0(Ω)) functional, in
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such a way that a solution of (1.4) is going to be considered as a function
u0 ∈ BL0(Ω) such that

Ĩ0(v) − Ĩ0(u0) � I ′(u0)(v − u0), ∀v ∈ BL0(Ω). (3.8)

3.2. A problem involving the 1-laplacian operator

Let us consider the problem of finding critical points of the functional Φ :
BV (Ω) → R given by

Φ(u) =
∫

Ω

|Du| +
∫

∂Ω

|u|dHN−1 −
∫

Ω

F (u)dx,

where Ω ⊂ R
N is a smooth bounded domain, N � 2, F (t) :=

∫ t

0

f(s)ds, and

f satisfy the following assumptions

(f1) f ∈ C0(R);
(f2) f(0) = 0;
(f3) there exist constants c1, c2 > 0 and p ∈ (1, 1∗) such that

|f(s)| � c1 + c2|s|p−1, s ∈ R;

(f4) lim
t→± ∞

F (t)
t

= ±∞;

(f5) f is increasing for s ∈ R.

In fact the critical points of Φ are weak solutions of a relaxed form of{−Δ1u = f(u) in Ω,
u = 0 on ∂Ω, (3.9)

where Δ1u = div
( ∇u

|∇u|
)

.

Let us consider the functionals I0, I : BV (Ω) → R given by (3.1) and
(3.4), respectively and define Φ : BV (Ω) → R by

Φ(u) = I0(u) − I(u).

Clearly the operator Δ1 is highly singular and some words about this
imprecise way to define it have to be stated. The first step is to extend the
functionals I0, I and Φ to L1∗

(Ω), defining I0, I,Φ : L1∗
(Ω) → R, where

I0(u) =
{

I0(u), if u ∈ BV (Ω),
+∞, if u ∈ L1∗

(Ω)\BV (Ω),

I(u) =
∫

Ω

F (u)dx

and Φ = I0 − I. It is easy to see that I belongs to C1(L1∗
(Ω)) and that I0 is

convex and lower semicontinuous in L1∗
(Ω). Hence the subdifferential of I0 is

well defined. The following is a crucial result in obtaining an Euler-Lagrange
equation satisfied by the critical points of Φ.

Lemma 3. If u ∈ BV (Ω) is such that 0 ∈ ∂Φ(u), then 0 ∈ ∂Φ(u).
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Proof. Suppose that u ∈ BV (Ω) is such that 0 ∈ ∂Φ(u). Then u satisfies (1.3).
Let us verify that

I0(v) − I0(u) � I
′
(u)(v − u), ∀v ∈ L1∗

(Ω).

For v ∈ L1∗
(Ω), note that:

• if v ∈ BV (Ω) ∩ L1∗
(Ω), then

I0(v) − I0(u) = I0(v) − I0(u)
� I ′(u)(v − u)

=
∫

Ω

f(u)(v − u)dx

= I
′
(u)(v − u);

• if u ∈ L1∗
(Ω)\BV (Ω), since I0(v) = +∞ and I0(u) < +∞, it follows

that

I0(v) − I0(u) = +∞
� I

′
(u)(v − u).

Therefore the result follows. �

Let us assume that u ∈ BV (Ω) is a bounded variation solution of (3.9).
Since 0 ∈ ∂Φ(u), by the last result it follows that 0 ∈ ∂Φ(u). Since I0 is
convex and I is smooth, it follows that I

′
(u) ∈ ∂I0(u). By [12, Proposi-

tion 4.23, p. 529], it follows that there exist z ∈ L∞(Ω,RN ) such that |z|∞ � 1,

− divz = f(u) in LN (Ω) (3.10)

and

−
∫

Ω

udivzdx =
∫

Ω

|Du|, (3.11)

where the divergence in (3.10) has to be understood in the distributional sense.
Therefore, it follows from (3.10) and (3.11) that u satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∃z ∈ L∞(Ω,RN ), |z|∞ � 1, divz ∈ LN (Ω),

−
∫

Ω

u div zdx =
∫

Ω

|Du|,

−divz = f(u), a.e. in Ω.

(3.12)

Hence, (3.12) is the precise version of (3.9).
Note that I0 is Lipschitz continuous in BV (Ω) and I ∈ C1(BV (Ω)).

Moreover, BV (Ω) is compactly embedded into Lp(Ω), p as in (f3), I(0) = 0
and, for all u ∈ BV (Ω) and s ∈ R, by (3.3) we have that
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I ′
0(su)u = lim

t→0

I0(su + tu) − I0(su)
t

=
∫

Ω

(D(su))a(Du)a

|(D(su))a| dx

+
∫
Ω

D(su)
|D(su)| (x) Du

|Du| (x)|Du|s +
∫

∂Ω
sgn(su)udHN−1

=
∫

Ω

|(Du)a|dx +
∫

Ω

|(Du)s| +
∫

∂Ω

|u|dHN−1

and then I ′
0(u)u = I0(u), for all u ∈ BV (Ω).

Let us define the Nehari set by

N = {u ∈ BV (Ω)\{0}; I ′
0(u)u = I ′(u)u}

=
{

u ∈ BV (Ω)\{0};
∫

Ω

|Du| +
∫

∂Ω

|u|dHN−1 =
∫

Ω

f(u)udx

}
.

In the following result we prove that all nontrivial critical points of Φ
belong to N .

Lemma 4. If u0 ∈ BV (Ω), u0 
= 0 and 0 ∈ ∂Φ(u0), then u ∈ N .

Proof. If 0 ∈ ∂Φ(u0), then

I0(v) − I0(u0) �
∫

Ω

f(u0)(v − u0)dx, ∀v ∈ BV (Ω).

For t > 0, by taking v = u0 + tu0 in the last expression and calculating the
limit as t → 0+ we get

I0(u0) = lim
t→0+

I0(u0 + tu0) − I0(u0)
t

�
∫

Ω

f(u0)u0dx.

Doing the same for t < 0 we get

I0(u0) = lim
t→0−

I0(u0 + tu0) − I0(u0)
t

�
∫

Ω

f(u0)u0dx

from where it follows the equality in both expressions above. Hence u0 ∈
N . �

Note that by the last result, if we manage to prove that the infimum of
Φ in N is achieved and it is a critical point, then we would get a nontrivial
critical point of Φ with lowest energy among all nontrivial ones, then, it would
be a ground state bounded variation solution of (3.9). In order to do so, let us
verify that Φ satisfies all the conditions of Theorem 1.

It is a well know result the fact that I0 satisfies i) of Theorem 1.
For ii), first of all note that (f2) and (f3) imply that for all ε > 0, there

exists Cε such that

|F (s)| � ε|s| + Cε|s|p, for all s ∈ R. (3.13)

Then, the embeddings of BV (Ω) and (3.13) imply that

Φ(u) � (1 − Cε)‖u‖ − CCε‖u‖p

= ‖u‖(1 − ε − CCε‖u‖p−1)
= ρ(1 − ε − CCερ

p−1) =: α0 > 0 = Φ(0),
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where ‖u‖ = ρ and ε, ρ are positive and small enough, and the constant C > 0
is larger than the best constants of the embeddings of BV (Ω) into L1(Ω) and
Lp(Ω).

By definition of Φ it follows that (iii) holds, since in this case we have
the equality being satisfied.

In order to verify (iv), just note that

t 	→ I ′(tu)u =
∫

Ω

f(tu)udx

is increasing in (0,+∞) by (f5). Taking into account the fact that, by (3.3),
t 	→ I ′

0(tu)u = I0(u) is constant, it follows that t 	→ Φ′(tu)u is a decreasing
function in (0,+∞).

Finally, to verify v), let (vn) ⊂ BV (Ω) and v ∈ Lp(Ω)\{0} such that
vn → v in Lp(Ω). Since Φ(u) = ‖u‖ − ∫

Ω
F (u)dx, it is enough to prove that

lim
t→∞

∫
Ω

F (tvn)
t

= +∞ uniformly in n ∈ N.

Let Γ = {x ∈ Ω; v(x) 
= 0} and note that |Γ| > 0. Then by Fatou Lemma, it
follows that, for all t > 0,∫

Γ

F (tv)
t

dx � lim inf
n→∞

∫
Ω

F (tvn)
t

dx.

Then, by (f4) we have that

lim inf
t→∞ lim inf

n→∞

∫
Ω

F (tvn)
t

dx � lim inf
t→∞

∫
Γ

F (tv)
t

dx = +∞.

But this means that for every M > 0, there exist t0 > 0 and n0 ∈ N such that∫
Ω

F (tvn)
t

dx � M, for every t > t0 and n � n0,

which proves (v).
Now, since all conditions of Theorem 1 are satisfied, it follows the exis-

tence of u0 ∈ N such that

Φ(u0) = inf
v∈N

Φ(v).

Moreover, by Theorem 2, it follows that u0 is a critical point to Φ and then,
a ground state bounded variation solution of (3.9).

3.3. A problem involving the 1-biharmonic operator

In this section we deal with the following problem involving the 1-biharmonic
operator ⎧⎨

⎩
Δ2

1u = f(u) in Ω,

u =
Δu

|Δu| = 0 on ∂Ω, (3.14)

where Ω ⊂ R
N is a smooth bounded domain, N � 2 and f : R → R is assumed

to satisfy the same set of assumptions (f1) − (f5) as in our first application.



47 Page 16 of 18 G. M. Figueiredo and M. T. O. Pimenta NoDEA

Let us consider Ĩ0, I : BL0(Ω) → R given by (3.7) and (3.4), respectively
and let us define Φ : BL0(Ω) → R by

Φ(u) = Ĩ0(u) − I(u).

Note that Ĩ0 is Lipschitz continuous in BL0(Ω) and I ∈ C1(BL0(Ω)).
Moreover, BL0(Ω) is compactly embedded into Lr(Ω) for r ∈ [1, N/(N − 1))
and I(0) = 0.

Note that for all u ∈ BL0(Ω), in a similar way that in (3.3) it is possible
to show that

Ĩ ′
0(u)v =

∫
Ω

(Δu)a(Δv)a

|(Δu)a| dx +
∫

Ω

Δu

|Δu| (x)
Δv

|Δv| (x)|(Δv)|s. (3.15)

Let us define the Nehari set by

N =
{

u ∈ BL0(Ω)\{0}; Ĩ ′
0(u)u = I ′(u)u

}

=
{

u ∈ BL0(Ω)\{0};
∫

Ω

|Δu| =
∫

Ω

f(u)udx

}

In the following result we state that all nontrivial critical points of Φ
belong to N . Its proof is totally analogous of Lemma 4.

Lemma 5. If u0 ∈ BL0(Ω), u0 
= 0 and 0 ∈ ∂Φ(u0), then u ∈ N .

As in the case of Sect. 3.2, if we manage to prove that the infimum of
Φ in N is achieved and it is a critical point, then we would get a nontrivial
critical point of Φ with lowest energy, then, it would be a ground state bounded
variation solution of (3.14).

Once more, let us verify that all the conditions of Theorem 1 are satisfied.
As in the first application, it is well known (see [14]) that Ĩ0 satisfies (i) in
Theorem 1.

For (ii), (iii), (iv) and (v), all the calculations are absolutely the same as
in Sect. 3.2 and then will be omited.

Now, since all conditions of Theorem 1 are satisfied, it follows that there
exists u0 ∈ N such that

Φ(u0) = inf
v∈N

Φ(v).

Moreover, by Theorem 2, it follows that u0 is a critical point to Φ and then,
a ground state bounded variation solution of (3.14).

Again, as in our first application, by using the same arguments it is
possible to prove that the ground state solution u0 ∈ BL0(Ω) of (3.14) in fact
satisfy the following problem, which is the precise version of (3.14),⎧⎪⎪⎨

⎪⎪⎩
∃ z ∈ W 1,1

0 (Ω) ∩ L∞(Ω), |z|∞ � 1, Δz ∈ LN (Ω),∫
Ω

uΔzdx =
∫

Ω

|Δu|,
Δz = f(u), a.e. in Ω.
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Remark 6. Note that the boundary condition
Δu

|Δu| = 0 on ∂Ω can be seen as

being satisfied by z, since z ∈ W 1,1
0 (Ω) implies that z = 0 on ∂Ω in the sense

of trace.
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