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Robust Stackelberg controllability
for the Navier–Stokes equations
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Abstract. In this paper we deal with a robust Stackelberg strategy for
the Navier–Stokes system. The scheme is based in considering a robust
control problem for the “follower control” and its associated disturbance
function. Afterwards, we consider the notion of Stackelberg optimization
(which is associated to the “leader control”) in order to deduce a local
null controllability result for the Navier–Stokes system.
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1. Introduction

The theory of robust control began in the late 1970s and early 1980s for finite
dimensional systems. Since then, many techniques have been developed to
deal with systems with uncertainties. In the late 90s the papers of Bewley
et al. [4] presented the first rigorous generalization of the concepts in the
case of partial differential equations. What could we understand by robustness
in a control system? Well, informally, a controller designed for a particular
set of parameters is said to be robust if it also functions correctly under a
uncertainty: the controller is designed to work assuming that certain variable
will be unknown. In this sense, one could think in the worst-case disturbance
of the system, and design a controller which is suited to handle even this
extreme situation. Thus, the problem of finding a robust control involves the
problem of finding the worst-case disturbance in the spirit of a non-cooperative
game (when there is not cooperation between the controller and disturbance
function), which is from the mathematical point of view to reach a saddle point
for the pair disturbance–controller.
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The research on robust control for PDE systems is in an early stage.
Much of the literature deals with numerical aspects and much of the theory
has been developed for fluid mechanics and for some elliptic problems. See e.g.
[1,4,5,20,22]. In this paper we will present a hierarchic strategy to deal with
robust control and, simultaneously, with null control for incompressible fluids
modelled by the Navier–Stokes equations with Dirichlet boundary conditions.

We will work in the setting of a Stackelberg competition, see [24]. This
consists in a non-cooperative decision problem in which one of the participants
enforce its strategy on the other participants. We assume that we can act on
the dynamics of the system through a hierarchy of controls. In our case the
controls are external forces acting on the system, where the leader control has
a local null controllability objective while the follower control and perturbation
solve a robust control problem.

To be precise: let Ω be a nonempty bounded connected open subset of RN

(N = 2 or N = 3) of class C∞. Let T > 0 and let ω and O be (small) nonempty
open subsets of Ω with ω ∩ O = ∅. We will use the notation Q := Ω × (0, T ),
Σ := ∂Ω × (0, T ) and n(x) will denote the outward unit normal vector at the
point x ∈ ∂Ω.

Let us consider the Navier–Stokes system with homogeneous Dirichlet
boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + (y · ∇)y + ∇p = h1ω + vχO + ψ in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(1)

where h = h(x, t) ∈ L2(0, T ;L2(ω)N ) is called the “leader control”, v =
v(x, t) ∈ L2(0, T ;L2(O)N ) is the “follower control”, ψ ∈ L2(Q)N is an un-
known perturbation and y0 an initial state in a suitable space. Here 1ω is the
characteristic function of the set ω and χO is a smooth non-negative function
such that supp χO = O.

To our knowledge there are not results in the literature concerning a ro-
bust Stackelberg strategy for system (1). As far as we know, the first paper on
robust Stackelberg controllability is [19], which develops the concept of control
for a semi-linear parabolic equation. However, there exist several papers which
treat independently robust and hierarchical control for the Navier–Stokes sys-
tem. In the context of robust control [that is h ≡ 0 in (1)], the works [4,6] show
the existence and uniqueness of the solution to the robust control problem for
the N -dimensional case of system (1), and present an appropriate numerical
method to solve it. In their works the authors have used an abstract scheme
throughout Leray projection and classical techniques of optimal control theory.
In [22], some theoretical and numerical aspects are presented for the optimal
and robust control of the Navier–Stokes equations. Additional information on
optimal and robust control theory for linear and nonlinear systems can be
found in [5,14,22], and references therein.
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In the context of hierarchical control [that is ψ ≡ 0 in (1)], some recent
works such as [2,3,17,19,21] show a strategy with a leader and follower con-
trols for different equations. Some older results on a Stackelberg–Nash control
strategy were proved by Diaz and Lions [9] for a linear parabolic problem and
by Limaco et al. [21] for a linear parabolic problem with moving boundaries. In
both cases, the objective of the leader control is an approximate controllability
result. In the case of linear fluid models some approximate controllability of
Stackelberg–Nash strategies started with the result of Guillén-González et al.
[17] for the Stokes system, and were extended by Araruna et al. [2] for lin-
earized micropolar fluids. In [2] the main arguments are based on a Fenchel–
Rockafeller dual variational principle [25]. For semilinear parabolic equations,
a Stackelberg–Nash strategy with exact controllability for the leader control
is proved in [3] using Carleman inequalities.

In the case of nonlinear fluids there are not, as far as we know, results
concerning a Stackelberg control strategy. In this paper we will fill this gap
giving an answer for the case of a incompressible fluid flow described by means
of Navier–Stokes equations with no-slip boundary conditions, see Theorem 1.3.
More precisely, system (1) with ψ ≡ 0 and Theorem 1.2 with γ = γ0 = 0 will
allow us to deduce a local null controllability result for the leader control when
we apply a Stackelberg minimizing strategy for the Navier–Stokes system. The
arguments should be carried out following the schemes of Proposition 1 and
Theorem 3.5.

In our work, we follow the ideas introduced in [19] for the Navier–Stokes
equations with Dirichlet boundary conditions. However the nonlinearity of
(1) will allows only to obtain a local null controllability result for the leader
control.

Let us now introduce the usual spaces in the context of incompressible
fluids [23]:

H := {u ∈ L2(Ω)N : ∇ · u = 0, in Ω, u · n = 0 on ∂Ω},
V := {u ∈ H1

0 (Ω)N : ∇ · u = 0 in Ω}.

Following the scheme for the robust control problem given in [1,6], the
general space for the control functions and the disturbance ψ in the right-hand
side of (1) is L2(0, T ;H).

Now, we focus our attention on the control problem we are interested in.

1.1. The main problem

Given h ∈ L2(0, T ;L2(ω)N ) a (leader) control, we consider the secondary cost
functional

Jr(ψ, v;h) :=
μ

2

∫∫

Od×(0,T )

|y − yd|2dxdt +
�2

2

∫∫

Q

χO|v|2dxdt − γ2

2

∫∫

Q

|ψ|2dxdt,

(2)
where �, γ, μ > 0 are constants, Od is an open subset of Ω, which represents
a observability domain, and yd ∈ L2(0, T ;L2(Od)N ) is given. The constant μ
arises from the physical parameters that govern the motion of fluids such as
viscosity, characteristic length and characteristic velocity. The parameters �, γ
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are included to make the cost functional consistent and to account the relative
weight of each term. Note that the sign of the term associated to the distur-
bance is opposite to the sign used for the control, this is because we minimize
with respect to the control v meanwhile simultaneouly maximize with respect
to the disturbance ψ. From another perspective, the term −γ2‖ψ‖2

L2(Q)N con-
strains the magnitude of the disturbance function in the maximization with
respect to ψ and, the term associated to �2‖v‖2

L2(Q)N constrains the magnitude
of the control in the minimization with respect to v.

To explain the robust Stackelberg control problem, we will consider the
following two subproblems:

(i) First problem For every fixed leader control h, solve the robust control
problem for the nonlinear system (1), that is, find the best control v in
the presence of the disturbance ψ which maximally spoils the follower
control for the Navier–Stokes system (1). The robust control problem to
be solved is given in the following definition.

Definition 1.1. Let h ∈ L2(0, T ;L2(ω)N ) be fixed. The disturbance ψ ∈
L2(Q)N , the control v ∈ L2(Q)N , and the solution y = y(h, v(h), ψ(h))
of (1) associated with (ψ(h), v(h)) are said to solve the robust control
problem when a saddle point (ψ(h), v(h)) of the cost functional defined
in (2) is reached, that is, if ∀(ψ, v) ∈ L2(Q)N×N

Jr(ψ, v(h);h) ≤ Jr(ψ(h), v(h);h) ≤ Jr(ψ(h), v(h);h). (3)

In this case,

Jr(ψ(h), v(h);h) = max
ψ∈L2(Q)N

min
v∈L2(Q)N

Jr(ψ, v;h)

= min
v∈L2(Q)N

max
ψ∈L2(Q)N

Jr(ψ, v;h).

(ii) Second problem Once the saddle point has been identified for each leader
control h, this is, once the existence of the saddle point (ψ(h), v(h)) for
every leader control h is guarantied, we deal with the problem of finding
the control h of minimal norm satisfying null controllability constraints.
More precisely, we look for an optimal control h such that

J(h) = min
h

1
2

∫∫

ω×(0,T )

|h|2dxdt, subject to y(·, T ) = 0 in Ω. (4)

Our main result on the robust hierarchic control is given in the following
theorem.

Theorem 1.2. Assume that ω ∩ Od 
= ∅. Then, for every T > 0 and O, ω ⊂ Ω
open subsets such that O ∩ ω = ∅, there exist γ0, �0, δ and a positive function
ρ = ρ(t) blowing up t = T such that for any γ ≥ γ0, � ≥ �0, y0 ∈ V and
yd ∈ L2(0, T ;L2(Od)N ) satisfying

‖y0‖V ≤ δ and
∫∫

Od×(0,T )

ρ2(t)|yd|2dxdt < +∞, (5)
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we can find a leader control h ∈ L2(0, T ;L2(ω)N ) and an unique saddle point
(ψ, v) ∈ L2(Q)N × L2(0, T ;L2(O)N ), for the functional given by (2), and an
associated solution (y, p) to (1) verifying y(·, T ) = 0 in Ω.

As mentioned in the introduction, we have an additional result when
ψ = 0. That is, when we consider a Stackelberg strategy for

⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + (y · ∇)y + ∇p = h1ω + vχO in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0(·) in Ω,

(6)

and we define as the follower functional

Jr(v;h) :=
μ

2

∫∫

Od×(0,T )

|y − yd|2dxdt +
�2

2

∫∫

O×(0,T )

χO|v|2dxdt. (7)

We have the following result.

Theorem 1.3. Assume that ω ∩ Od 
= ∅. Then, for every T > 0 and O, ω ⊂
Ω open subsets such that O ∩ ω = ∅, there exist �0, δ > 0 and a positive
function ρ = ρ(t) blowing up t = T such that for any � ≥ �0, y0 ∈ V and
yd ∈ L2(0, T ;L2(Od)N ) satisfying

‖y0‖V ≤ δ and
∫∫

Od×(0,T )

ρ2(t)|yd|2dxdt < +∞, (8)

we can find a leader control h ∈ L2(0, T ;L2(ω)N ) and an unique follower
control v on L2(0, T ;L2(O)N ) minimizing (7) and an associated solution (y, p)
to (6) verifying y(·, T ) = 0 in Ω.

In order to prove Theorem 1.2, we shall mainly consider two steps: a) the
robust control results established in [6] allow us to solve the mentioned-above
first problem. Here, as consequence of the nonlinearity given by the convection
term, constrains either over small data or small time are necessary in order to
obtain the robust control; b) The hierarchical control (second problem), where
the main tools will be news Carleman estimates and fixed point arguments for
solving the local null controllability associated to the leader control.

The rest of the paper is organized as follows. In Sect. 2, we present the
general scheme of the robust control problem for the system (1). In the first
subsection we present the existence and characterization of the robust control
for the linearized system (Stokes equation) and in the second subsection the
same result for the nonlinear case. In Sect. 3, we solve the robust Stackelberg
strategy for the Stokes case. That is, we prove the null controllability for the
coupled Stokes system that arises as characterization of the robust control
problem. In Sect. 4, we end the proof of Theorem 1.2 throughout an inverse
function theorem of the Lyusternik’s kind.

2. The robust control problem

As mentioned in the previous section, the main objetive in robust control is to
determine the best control function v ∈ L2(0, T ;L2(O)N ) in the presence of the
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disturbance ψ ∈ L2(Q)N which maximally spoils the control. In this section
we present some lemmas on the existence, uniqueness and characterisation of
a solution to the robust control problem established in Definition 1.1.

The proof of the existence of a solution (ψ, v) to the robust control prob-
lem is based on the following result. The interested reader can see [10] for more
details.

Lemma 2.1. Let J be a functional defined on X × Y, where X and Y are
non-empty. closed, unbounded convex sets. If J satisfies
(a) ∀ψ ∈ X, v �−→ J (ψ, v) is convex lower semicontinuous.
(b) ∀v ∈ Y, ψ �−→ J (ψ, v) is concave upper semicontinuous.
(c) ∃ψ0 ∈ X such that lim‖v‖Y →∞ J (ψ0, v) = +∞.
(d) ∃v0 ∈ Y such that lim‖ψ‖X→∞ J (ψ, v0) = −∞.

Then the functional J has a least one saddle point (ψ, v) and

J (ψ, v) = min
v∈Y

sup
ψ∈X

J (ψ, v) = max
ψ∈X

inf
v∈Y

J (ψ, v).

2.1. Linear problem

In this section we will treat the corresponding robust Stackelberg strategy for
the linearized system. That is we will consider the Stokes system

⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + ∇p = h1ω + vχO + ψ in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0(·) in Ω.

(9)

We have the following result:

Lemma 2.2. Let h ∈ L2(0, T ;L2(ω)N ) be fixed. There exists γ0 > 0 such that
for every γ > γ0, there exists a saddle point (ψ, v) and the corresponding
solution y(h, ψ, v) of (9) such that

Jr(ψ, v;h) ≤ Jr(ψ, v;h) ≤ Jr(ψ, v;h), ∀(ψ, v) ∈ L2(Q)N × L2(0, T ;L2(O)N ).

The proof of Lemma 2.2 follows as in [6] where the authors used Lemma
2.1 with X = Y = L2(Q)N to prove the existence of a saddle point for a slightly
different cost functional J . As consequence of this result, the existence of a
solution (ψ, v) to our robust control problem is guaranteed.

Remark 1. In Lemma 2.2, if the condition on γ is not met, we cannot prove the
existence of the saddle point. On the other hand, it is known that the existence
of a saddle point for the functional Jr implies that for any ψ ∈ L2(Q)N , v ∈
L2(0, T ;L2(O)N )

∂Jr

∂ψ
(ψ, v) · ψ = 0,

∂Jr

∂v
(ψ, v) · v = 0,

where
∂Jr

∂ψ
(ψ, v) · ψ =

∫∫

Od×(0,T )

(y − yd)wψdxdt − γ2

∫∫

O×(0,T )

ψψdxdt
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and
∂Jr

∂v
(ψ, v) · v =

∫∫

Od×(0,T )

(y − yd)wvdxdt + �2
∫∫

O×(0,T )

χOvvdxdt,

and wψ, wv are the Gâteaux derivatives of y solution to (9) in the directions
ψ and v respectively.

Finally, in order to characterize the robust control problem, we introduce
the linear adjoint system to (9) with right-hand side related with Jr, that is,
we consider ⎧

⎪⎪⎨

⎪⎪⎩

−zt − Δz + ∇πz = μ(y − yd)χOd
in Q,

∇ · z = 0 in Q,
z = 0 on Σ,
z(·, T ) = 0 in Ω.

In the following result we characterize the saddle point (v, ψ) in terms of z.
The interested reader can consult [4] for more details.

Lemma 2.3. Let h ∈ L2(0, T ;L2(ω)N ) and y0 ∈ V be given. Suppose that (ψ, v)
is the solution to the robust control problem stated in Definition 1.1. Then

ψ =
1
γ2

z and v = − 1
�2

zχO,

where γ is sufficiently large and the pair (y, z) solves the following coupled
system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt − Δy + ∇πy = h1ω + (−�−2χO + γ−2)z in Q,
−zt − Δz + ∇πz = μ(y − yd)χOd

in Q,
∇ · y = 0,∇ · z = 0 in Q,
y = z = 0 on Σ,
y(·, 0) = y0(·), z(·, T ) = 0 in Ω.

(10)

2.2. Nonlinear problem

The analysis is similar to the previous one for the linear case. However, it is
well known that the theory of the Navier–Stokes equations is complete in two-
dimensional spaces, which do not occur in three-dimensional spaces. Roughly
speaking, in three dimensions, the existence of a robust control is restricted to
cases of either small data or small T . Additionally, the nonlinearity will require
new assumptions on the parameter �. Under the constraint of small data, we
need to impose the following condition: there exists δ > 0 such that, for every
(vχO, ψ) ∈ L2(Q)N×N and y0 ∈ V

‖vχO‖L2(Q)N + ‖ψ‖L2(Q)N ≤ δ and ‖y0‖V ≤ δ (11)

holds.

Lemma 2.4. Let h ∈ L2(0, T ;L2(ω)N ) be fixed.
(i) Case N = 2. There exist constants γ0 > 0 and �0 > 0 such that for every

γ > γ0 and � > �0, there exists (ψ, v) on L2(Q)N ×L2(0, T ;L2(O)N ) and
the associated solution to (1) y = y(h, v, ψ) such that

Jr(ψ, v;h) ≤ Jr(ψ, v;h) ≤ Jr(ψ, v;h), ∀ (ψ, v) ∈ L2(Q)N × L2(0, T ;L2(O)N ).
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That is, (ψ, v) is a saddle point of Jr.
(ii) Case N = 3. Under the hypothesis of the case N = 2, and that either

y0 ∈ V and (vχO, ψ) ∈ L2(Q)N×N satisfies (11), or that t = T is small,
then there exists (ψ, v) ∈ L2(Q)N × L2(0, T ;L2(O)N ) a saddle point of
Jr.

Analogously to the linear case, we give the characterization of the robust
control problem in the following result.

Lemma 2.5. Let h ∈ L2(0, T ;L2(ω)N ) and y0 ∈ V be given. Then, there exist
positive constants γ0, �0 such that if γ > γ0, � > �0, the solution (v, ψ) to the
robust control problem stated in Definition 1.1 exists and is unique. Further-
more, (v, ψ) is characterized by

ψ =
1
γ2

z and v = − 1
�2

zχO,

where z is the second component of (y, z) solution to the following coupled
system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt − Δy + (y · ∇)y + ∇πy = h1ω + (−�−2χO + γ−2)z in Q,
−zt − Δz + (z · ∇t)y − (y · ∇)z + ∇πz = μ(y − yd)χOd

in Q,
∇ · y = 0,∇ · z = 0 in Q,
y = z = 0 on Σ,
y(·, 0) = y0(·), z(·, T ) = 0 in Ω.

(12)

The proof of Lemmas 2.4 and 2.5 can be found in [6].

3. Controllability

In the previous sections we saw that the robust control is characterized in
such a way that a coupled system needs to be solved. In order to establish a
Stackelberg strategy requiring the leader control to drive the equation to zero
we need to find h ∈ L2(0, T ;L2(ω)N ) such that the corresponding y solution
to (10) (in the linear case) or to (12) (in the nonlinear case), satisfies y(T ) = 0.
To achieve this objectives, we will obtain first the result in the linear case. To
this aim we will prove an observability inequality for the adjoint system to
(10) by means of Carleman estimates. The nonlinear case will be obtained by
a fixed point argument. The next subsection will be devoted to the obtention
of the Carleman inequalities.

3.1. Carleman inequalities

We first define several weight functions which will be useful in the sequel. Let
ω0 be a nonempty open subset of RN such that ω0 ⊂⊂ ω ∩ Od and η ∈ C2(Ω)
such that

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω.
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The existence of such a function η is proved in [13]. Then, for some positive
real number λ, we consider the following weight functions:

α(x, t) =
e12λ‖η‖∞ − eλ(10‖η‖∞+η(x))

(t(T − t))5
, ξ(x, t) =

eλ(10‖η‖∞+η(x))

(t(T − t))5
,

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t).

(13)

These weight functions have been used by Gueye [16] and Guerrero [15] to
obtain Carleman estimates for a Stokes coupled system similar to the presented
in our work.

We consider now the non homogeneous adjoint system to (10):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ϕt − Δϕ + ∇πϕ = g1 + μθχOd
in Q,

θt − Δθ + ∇πθ = g2 − �−2ϕχO + γ−2ϕ in Q,
∇ · ϕ = 0, ∇ · θ = 0 in Q,
ϕ = θ = 0 on Σ,
ϕ(·, T ) = ϕT (·), θ(·, 0) = 0 in Ω,

(14)

where g1, g2 ∈ L2(Q)N and ϕT ∈ H.
Our Carleman estimate is given in the following proposition. In what

follows, the constants a0 and m0 are fixed, and satisfy
5
4

≤ a0 < a0 + 1 < m0 < 2a0, m0 < 2 + a0. (15)

Proposition 1. Assume that ω ∩ Od 
= ∅ and that � and γ are large enough.
Then, there exist a constant λ = λ(Ω, ω,Od) such that for any λ ≥ λ there
exist two constants s(λ) > 0 and C = C(λ) > 0 depending only on Ω and
ω such that for any g1, g2 ∈ L2(Q)N and any ϕT ∈ H, the solution of (14)
satisfies

∫∫

Q

e−2sα−2a0sα∗
(sλ2ξ|∇(∇ × θ)|2 + s3λ4ξ3|∇ × θ|2)dxdt

+

∫∫

Q

e−2sm0α(sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2 + (sξ)−1|Δϕ|2)dxdt

≤ C

(

s15λ24
∫∫

ω×(0,T )
e−4a0sα∗+2(m0−2)sα∗

(ξ̂)15|ϕ|2dxdt

+ s5λ6
∫∫

Q

e−2sα̂−2a0sα∗
(ξ̂)5|g1|2dxdt +

∫∫

Q

e−2a0sα∗ |g2|2dxdt

)

, (16)

for any s ≥ s.

Before giving the proof of Proposition 1, we recall some technical re-
sults. We first present a Carleman inequality proved in [12] for a general heat
equation with Fourier boundary conditions. Let us introduce the system

⎧
⎨

⎩

−ut − Δu = f1 + ∇ · f2 in Q,
(∇u + f2) · n = f3 on Σ,
u(·, T ) = uT (·) in Ω,

(17)
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where f1 ∈ L2(Q), f2 ∈ L2(Q)N and f3 ∈ L2(Σ). We have:

Lemma 3.1. Under the previous assumptions on f1, f2 and f3, there exist pos-
itive constants λ, σ1, σ2 and C, only depending on Ω and ω, such that, for any
λ ≥ λ, any s ≥ s = σ1(eσ2λT + T 2) and any uT ∈ L2(Ω), the weak solution to
(17) satisfies

∫∫

Q

e−2sα[s3λ4ξ3|u|2 + sλ2ξ|∇u|2]dxdt

≤ C

(∫∫

Q

e−2sα(|f1|2 + s2λ2ξ2|f2|2)dxdt

+ sλ

∫∫

Σ

e−2sαξ|f3|2dσdt + s3λ4

∫∫

ω0×(0,T )

e−2sαξ3|u|2dxdt

)

.

(18)

The second result holds for the solutions of a Stokes system with Dirichlet
boundary conditions. The interested reader can see [11] for more details.

Lemma 3.2. Let u0 ∈ V and f4 ∈ L2(Q)N . Then, there exists a constant
C(Ω, ω, T ) > 0 such that the solution u ∈ L2(0, T ;H2(Ω)N ∩V )∩L∞(0, T ;V ),

p ∈ L2(0, T ;H1(Ω)), with
∫

ω0

p(x, t)dx = 0, of

⎧
⎪⎪⎨

⎪⎪⎩

ut − Δu + ∇p = f4 in Q,
∇ · u = 0 in Q,
u = 0 on Σ,
u(·, 0) = u0(·) in Ω,

satisfies
∫∫

Q

e−2sα(sλ2ξ|∇u|2 + s3λ4ξ3|u|2)dxdt

≤ C

(

s16λ40

∫∫

ω×(0,T )

e−8sα̂+6sα∗
(ξ̂)16|u|2dxdt

+ s15/2λ20

∫∫

Q

e−4sα̂+2sα∗
(ξ̂)15/2|f4|2dxdt

)

, (19)

for any λ ≥ C and s ≥ C(T 5 + T 10).

Remark 2. In [11,12] slightly different weight functions are used to prove the
above results. However, the inequality remains valid since the key point of the
proof is that α goes to 0 when t tends to 0 and T .

The next result concerns the regularity of the solutions to the Stokes
system, see [15,23] for more details.

Lemma 3.3. Let a ∈ R and B ∈ R
N be constant and let f5 ∈ L2(0, T ;V ).

Then, there exists a unique solution

u ∈ L2(0, T ;H3(Ω)N ∩ V ) ∩ H1(0, T ;V )
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for the Stokes system
⎧
⎪⎪⎨

⎪⎪⎩

ut − Δu + au + B · ∇u + ∇p = f5 in Q,
∇ · u = 0 in Q,
u = 0 on Σ,
u(·, 0) = 0 in Ω,

(20)

for some p ∈ L2(0, T ;H2(Ω)), and there exists a constant C > 0 such that

‖u‖L2(0,T ;H3(Ω)N ) + ‖u‖H1(0,T ;L2(Ω)N ) ≤ C‖f5‖L2(0,T ;H1(Ω)N ). (21)

Moreover, if we assume that a ≡ B ≡ 0 and f5 ∈ L2(Q)N , u is actually,
together a pressure p, the strong solution of (20), i.e.,

(u, p) ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ) ∩ H1(0, T ;H) × L2(0, T ;H1(Ω)).

Furthermore, there exists a constant C > 0 such that

‖u‖L2(0,T ;H2(Ω)N ) + ‖u‖L∞(0,T ;V ) + ‖u‖H1(0,T ;L2(Ω)N ) ≤ C‖f5‖L2(Q)N . (22)

Now, we give the proof of Proposition 1.

3.2. Proof of Proposition 1

Proof. Carleman estimate for θ
Let define θ∗ := ρ∗θ, π∗ := ρ∗π, where ρ∗ = ρ∗(t) = e−a0sα∗

and a0

fixed satisfying (15). From (14), (θ∗, π∗) is the solution of the following system
⎧
⎪⎪⎨

⎪⎪⎩

θ∗
t − Δθ∗ + ∇π∗ = ρ∗g2 + ρ∗(−�−2ϕχO + γ−2ϕ) + ρ∗

t θ in Q,
∇ · θ∗ = 0 in Q,
θ∗ = 0 on Σ,
θ∗(·, 0) = 0 in Ω.

Now, we decompose (θ∗, π∗) as follows:

(θ∗, π∗) = (θ̂, π̂) + (θ̃, π̃), (23)

where (θ̂, π̂) and (θ̃, π̃) solve respectively
⎧
⎪⎪⎨

⎪⎪⎩

θ̃t − Δθ̃ + ∇π̃ = ρ∗g2 + ρ∗(−�−2ϕχO + γ−2ϕ) in Q,

∇ · θ̃ = 0 in Q,

θ̃ = 0 on Σ,

θ̃(·, 0) = 0 in Ω,

(24)

and ⎧
⎪⎪⎨

⎪⎪⎩

θ̂t − Δθ̂ + ∇π̂ = ρ∗
t θ in Q,

∇ · θ̂ = 0 in Q,

θ̂ = 0 on Σ,

θ̂(·, 0) = 0 in Ω.

(25)

For system (24) we will use Lemma 3.3 and the regularity result estimate (22),
meanwhile for the system (25) we will use the ideas of both works [15,16].

We apply the operator ∇ × · to the Stokes system satisfied by θ̂. Then,
we have

(∇ × θ̂)t − Δ(∇ × θ̂) = ρ∗
t (∇ × θ) in Q.
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Using Lemma 3.1 with f1 = ρ∗
t (∇ × θ), there exists a positive constant C =

C(Ω, ω0) such that

∫∫

Q

e−2sα(sλ2ξ|∇(∇ × θ̂)|2 + s3λ4ξ3|∇ × θ̂|2)dxdt

≤ C

(∫∫

Q

e−2sα|ρ∗
t |2|∇ × θ|2dxdt

+ sλ

∫∫

Σ

e−2sαξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt + s3λ4

∫∫

ω0×(0,T )

e−2sαξ3|∇ × θ̂|2dxdt

⎞

⎠ ,

(26)
for any λ1 := λ ≥ C and s ≥ C(T 10 + T 9).

Now, using the inequality (a − b)2 ≥ a2

2 − b2, for every a, b ∈ R with
a = θ∗ and b = θ̃, we get (recall that θ̂ = θ∗ − θ̃):

1
2

∫∫

Q

e−2sα−2a0sα∗
(sλ2ξ|∇(∇ × θ)|2 + s3λ4ξ3|∇ × θ|2)dxdt

−
∫∫

Q

e−2sα(sλ2ξ|∇(∇ × θ̃)|2 + s3λ4ξ3|∇ × θ̃|2)dxdt

≤
∫∫

Q

e−2sα(sλ2ξ|∇(∇ × θ̂)|2 + s3λ4ξ3|∇ × θ̂|2)dxdt.

(27)

The fact that s3λ4e−2sαξ3 and sλ2e−2sαξ are upper bounded allow us to es-
timate the terms associated to |∇(∇ × θ̃)|2 and |∇ × θ̃|2 through (22). More
precisely, we have:

s3λ4

∫∫

Q

e−2sαξ3|∇ × θ̃|2dxdt + sλ2

∫∫

Q

e−2sαξ|∇(∇ × θ̃)|2dxdt

≤ Cs,λ‖θ̃‖2
L2(0,T ;H1(Ω)N )∩L2(0,T ;H2(Ω)N )

≤ Cs,λ‖ρ∗g2‖2
L2(Q)N + Cs,λ‖ρ∗(−�−2ϕχO + γ−2ϕ)‖2

L2(Q)N ,

(28)

where Cs,λ is a positive constant depending on s and λ. i.e., Cs,λ = Cs3λ4.

On the other hand, taking into account that |ρ∗
t | ≤ CsTρ∗(ξ∗)6/5 for

every s ≥ C, it follows that

∫∫

Q

e−2sα|ρ∗
t |2|∇ × θ|2dxdt ≤ Cs2T 2

∫∫

Q

e−2sα−2a0sα∗
(ξ∗)12/5|∇ × θ|2dxdt,

which can be absorbed by the first term in the right-hand side of (27), for
every λ ≥ 1, s ≥ C.
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From the identity θ∗ = θ̂ + θ̃ (recall (23)) and (28), it is easy to estimate
the local term that appear in the right-hand side of (26) by:

s3λ4

∫∫

ω0×(0,T )

e−2sαξ3|∇ × θ̂|2dxdt

≤ Cs3λ4

∫∫

ω0×(0,T )

e−2sαξ3(|∇ × θ∗|2 + |∇ × θ̃|2)dxdt

≤ Cs3λ4

∫∫

ω0×(0,T )

e−2sαξ3|∇ × θ∗|2dxdt + Cs,λ‖ρ∗g2‖2
L2(Q)N

+ Cs,λ‖ρ∗(−�−2ϕχO + γ−2ϕ)‖2
L2(Q)N .

(29)

Putting together (26), (27) and (29), we have for the moment
∫∫

Q

e−2sα−2a0sα∗ (
sλ2ξ|∇(∇ × θ)|2 + s3λ4ξ3|∇ × θ|2) dxdt

≤ C

(

s3λ4

∫∫

ω0×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt

+ sλ

∫∫

Σ

e−2sαξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt

⎞

⎠

+ Cs,λ‖ρ∗g2‖2
L2(Q)N + Cs,λ‖ρ∗(−�−2ϕχO + γ−2ϕ)‖2

L2(Q)N ,

(30)

for every s ≥ C and λ1 := λ ≥ C.
The last step will be to estimate the boundary term

sλ

∫∫

Σ

e−2sαξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt.

To this end we follow the arguments of [16].
We consider ζ ∈ C2(Ω) such that

∂ζ

∂n
= 1, ζ = constant on ∂Ω.

Observe that
∫∫

Σ

e−2sαξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt =
∫∫

Σ

e−2sαζξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt.

Through integrating by parts and using Cauchy–Schwartz’s inequality, the
previous boundary term can be estimated by

IΣ := sλ

∫∫

Σ

e−2sαξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt

≤ Csλ

∫ T

0

e−2sα∗
ξ∗‖θ̂‖H2(Ω)N ‖θ̂‖H3(Ω)N dt.

(31)
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Additionally, taking into account that H2(Ω)N =(H1(Ω)N ,H3(Ω)N )1/2,2,
(31) can be replaced by

IΣ := sλ

∫∫

Σ

e−2sαξ

∣
∣
∣
∣
∣

∂(∇ × θ̂)
∂n

∣
∣
∣
∣
∣

2

dσdt

≤ Csλ

∫ T

0

e−2sα∗
ξ∗‖θ̂‖1/2

H1(Ω)N ‖θ̂‖3/2

H3(Ω)N dt.

(32)

From (31), (32) and Young’s inequality we have

IΣ ≤ C

∫ T

0

e−2sα∗
λ

(
s5/2(ξ∗)5/2‖θ̂‖2

H1(Ω)N + s1/2(ξ∗)1/2‖θ̂‖2
H3(Ω)N

)
dt. (33)

Using the divergence free condition ∇· θ̂ = 0, the Dirichlet condition boundary
for θ̂ and also the relationship

θ̂ = θ∗ − θ̃,

we obtain

‖θ̂‖H1(Ω)N ≤ C‖∇ × θ̂‖L2(Ω)2N−3

≤ C(‖∇ × θ̃‖L2(Ω)2N−3 + ‖∇ × θ∗‖L2(Ω)2N−3).
(34)

Observe that the first term in the right-hand side of (34) can be estimated
like in (28). Respect to the second term, it can be absorbed by the left-hand side
of (30). Let us estimate the second term in (33). This is done by a bootstrap
argument based on a regularity result of the Stokes system. Let (Θ, πΘ) =
(η(t)θ̂, η(t)π), where

η(t) = s1/4λ1/2e−sα∗
(ξ∗)1/4 in (0, T ).

Thus, (Θ, πΘ) satisfies the Stokes system
⎧
⎪⎪⎨

⎪⎪⎩

Θt − ΔΘ + ∇πΘ = ηρ∗
t θ + ηtθ̂ in Q,

∇ · Θ = 0 in Q,
Θ = 0 on Σ,
Θ(·, 0) = 0 in Ω.

(35)

It is easy to prove the right-hand side of this system belongs to L2(0, T ;V ).
Therefore, Lemma 3.3 allows us to conclude that the solution of (35) satisfies
Θ ∈ L2(0, T ;H3(Ω)N ∩ V ). Furthermore,

‖Θ‖L2(0,T ;H3(Ω)N ) + ‖Θ‖H1(0,T ;L2(Ω)N ) ≤ C‖ηρ∗
t θ + ηtθ̂‖L2(0,T ;H1(Ω)N ). (36)

Putting together (33)–(36), there exist Cs,λ > 0 such that

IΣ ≤ Cs,λ‖ρ∗g2‖2
L2(Q)N + Cs,λ‖ρ∗(−�−2ϕχO + γ−2ϕ)‖2

L2(Q)N

+ ε

(∫∫

Q

e−2sα−2a0sα∗
(sλ2ξ|∇(∇ × θ)|2 + s3λ4ξ3|∇ × θ|2)dxdt

)

.

for every ε > 0.
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From the previous inequality and (30) we conclude the following Carle-
man estimate for θ:

∫∫

Q

e−2sα−2a0sα∗
(sλ2ξ|∇(∇ × θ)|2 + s3λ4ξ3|∇ × θ|2)dxdt

≤ Cs,λ‖ρ∗g2‖2
L2(Q)N + Cs3λ4

∫∫

ω0×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt

+ Cs,λ‖ρ∗(−�−2ϕχO + γ−2ϕ)‖2
L2(Q)N ,

(37)
for every s ≥ C(T 5 + T 10) and λ1 := λ ≥ C.

Carleman estimate for ϕ
First, assuming that θ is given, we look at ϕ as the solution of

⎧
⎪⎪⎨

⎪⎪⎩

−ϕt − Δϕ + ∇πϕ = g1 + μθχOd
in Q,

∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(·, T ) = ϕT (·) in Ω.

Now, we choose πϕ such that
∫

ω0
πϕdx = 0 and we apply Lemma 3.2 with

f4 = g1 + μθχOd
and use the weight function m0α (instead of α), where

a0 + 1 < m0 ≤ 2a0 and m0 ≤ 2 + a0. We obtain
∫∫

Q

e−2m0sα[s−1ξ−1|Δϕ|2 + sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2]dxdt

≤ C

(

s16λ40

∫∫

ω0×(0,T )

e−8m0sα̂+6m0sα∗
(ξ̂)16|ϕ|2dxdt

+ s15/2λ20

∫∫

Od×(0,T )

e−4m0sα̂+2m0sα∗
(ξ̂)15/2|θ|2dxdt

+ s15/2λ20

∫∫

Q

e−4m0sα̂+2m0sα∗
(ξ̂)15/2|g1|2dxdt

)

,

(38)

for any λ2 := λ ≥ C and s ≥ C(T 5 + T 10).
Taking into account that ‖θ‖L2(Ω)N ≤ C‖∇ × θ‖L2(Ω)2N−3 and the in-

equality (66) with ε = m0−a0−1
m0+a0+1 , M1 = − 15

4(m0+a0+1) and M2 = − 10
(m0+a0+1) ,

the second term in the right-hand side of (38) can be estimated by
∫∫

Q

e−2sα∗−2a0sα∗ |∇ × θ|2dxdt

and therefore it can be absorbed by the left-hand side of (37).
From (37) and (38) we have

∫∫

Q

e−2sα−2a0sα∗
(sλ2ξ|∇(∇ × θ)|2dxdt + s3λ4ξ3|∇ × θ|2)dxdt

+
∫∫

Q

e−2m0sα[s−1ξ−1|Δϕ|2 + sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2]dxdt

≤ Cs16λ40

∫∫

ω0×(0,T )

e−8m0sα̂+6m0sα∗
(ξ̂)16|ϕ|2dxdt
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+Cs,λ‖ρ∗(−�−2ϕχO + γ−2ϕ)‖2
L2(Q)N

+Cs15/2λ20

∫∫

Q

e−4m0sα̂+2m0sα∗
(ξ̂)15/2|g1|2dxdt + C‖ρ∗g2‖2

L2(Q)N

+Cs3λ4

∫∫

ω0×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt, (39)

for any λ3 := max{λ1, λ2} ≥ C, s ≥ C(T 5 + T 10) and Cs,λ depending on s, λ.

Choosing � and γ large enough (i.e., �, γ >> C3T
30/4eC4/T 10

, where
C3, C4 are positive constants depending on a0,m0, s.), we can absorb the sec-
ond term in the right-hand side of (39) by the left-hand side.

Let us estimate the local term concerning ∇×θ in terms of ϕ. To do this,
we use the first equation of (14) since ω ∩ Od 
= ∅ and ω0 ⊂ Od. We have

−(∇ × ϕ)t − Δ(∇ × ϕ) = ∇ × g1 + μ(∇ × θ), in ω0 × (0, T ).

Then,

I := s3λ4

∫∫

ω0×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt

= s3λ4

∫∫

ω0×(0,T )

e−2sα−2a0sα∗
ξ3(∇ × θ)(−(∇ × ϕ)t − Δ(∇ × ϕ)

− (∇ × g1))dxdt.

We introduce an open set ω1 ⊂⊂ ω such that ω0 ⊂ ω1 and a positive
function ζ ∈ C2

c (ω1) such that ζ ≡ 1 in ω0. Then, after several integration by
parts in time and space we have:

I = s3λ4

∫∫

ω0×(0,T )

e−2sα−2a0sα∗
ξ3(∇ × θ)(−(∇ × ϕ)t − Δ(∇ × ϕ)

− (∇ × g1))dxdt

≤ s3λ4

∫∫

ω1×(0,T )

ζ∂t(e−2sα−2a0sα∗
ξ3)(∇ × θ)(∇ × ϕ)dxdt

+ s3λ4

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ3((∇ × θ)t − Δ(∇ × θ))(∇ × ϕ)dxdt

− s3λ4

∫∫

ω1×(0,T )

Δ(ζe−2sα−2a0sα∗
ξ3)(∇ × θ)(∇ × ϕ)dxdt

− 2s3λ4

∫∫

ω1×(0,T )

∇(ζe−2sα−2a0sα∗
ξ3)(∇(∇ × θ))(∇ × ϕ)dxdt

− s3λ4

∫∫

ω1×(0,T )

ζe−2sα−2a0sα∗
ξ3(∇ × θ)(∇ × g1)dxdt.
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From the second equation in (14), we have that

I ≤ s3λ4

∫∫

ω1×(0,T )

ζ∂t(e−2sα−2a0sα∗
ξ3)(∇ × θ)(∇ × ϕ)dxdt

+ s3λ4γ−2

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × ϕ|2dxdt

− s3λ4

∫∫

ω1×(0,T )

Δ(ζe−2sα−2a0sα∗
ξ3)(∇ × θ)(∇ × ϕ)dxdt

− 2s3λ4

∫∫

ω1×(0,T )

∇(ζe−2sα−2a0sα∗
ξ3)(∇(∇ × θ))(∇ × ϕ)dxdt

− s3λ4

∫∫

ω1×(0,T )

ζe−2sα−2a0sα∗
ξ3(∇ × θ)(∇ × g1)dxdt

− s3λ4

∫∫

ω1×(0,T )

ζe−2sα−2a0sα∗
ξ3(∇ × ϕ)(∇ × g2)dxdt.

(40)
Using the estimate

|∂t(e−2sα−2a0sα∗
ξ3)| ≤ CTse−2sα−2a0sα∗

(ξ)4+1/5, for every s ≥ C

and Young’s inequality, we can deduce the following inequalities:

I1 := s3λ4

∫∫

ω1×(0,T )

ζ∂t(e−2sα−2a0sα∗
ξ3)(∇ × θ)(∇ × ϕ)dxdt

≤ CTs4λ4

∫∫

ω1×(0,T )

ζe−2sα−2a0sα∗
ξ4+1/5|∇ × θ||∇ × ϕ|dxdt

≤ εs3

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt

+ C(ε)s5λ8

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
(ξ)5+2/5|∇ × ϕ|2dxdt,

for every s ≥ C and every ε > 0.
Now, using the estimate

|Δ(ζe−2sα−2a0sα∗
ξ3)| ≤ Cs2λ2e−2sα−2a0sα∗

ξ5, for every s ≥ C

and again the Young’s inequality for the third term in the right-hand side of
(40), we obtain

I3 := −s3λ4

∫∫

ω1×(0,T )

Δ(ζe−2sα−2a0sα∗
ξ3)(∇ × θ)(∇ × ϕ)dxdt

≤ Cs5λ6

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ5|∇ × θ||∇ × ϕ|dxdt

≤ εs3

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt

+ C(ε)s7λ12

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ7|∇ × ϕ|2dxdt,
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for every s ≥ C and every ε > 0.
Analogously, we can estimate the fourth term in the right-hand side of

(40) by

I4 := −2s3λ4

∫∫

ω1×(0,T )

∇(ζe−2sα−2a0sα∗
ξ3)(∇(∇ × θ))(∇ × ϕ)dxdt

≤ εsλ2

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ|∇(∇ × θ)|2dxdt

+ C(ε)s7λ8

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ7|∇ × ϕ|2dxdt,

for every s ≥ C and every ε > 0.
Additionally, through another integration by part and Young’s inequality we
can obtain

I5 := −s3λ4

∫∫

ω1×(0,T )

ζe−2sα−2a0sα∗
ξ3(∇ × θ)(∇ × g1)dxdt

≤ ε

(

sλ2

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ|∇(∇ × θ)|2dxdt

+ s3λ4

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ3|∇ × θ|2dxdt

)

+ C(ε)s5λ6

∫∫

Q

e−2sα−2a0sα∗
ξ5|g1|2dxdt,

for every s ≥ C and every ε > 0.

I6 := −s3λ4

∫∫

ω1×(0,T )

ζe−2sα−2a0sα∗
ξ3(∇ × ϕ)(∇ × g2)dxdt

≤ C

(

‖ρ∗g2‖L2(Q)N + s7λ12

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ7|∇ϕ|2dxdt

+ s6λ8

∫∫

ω1×(0,T )

e−4sα−2a0sα∗
ξ6|∇ × (∇ × ϕ)|2dxdt

)

.

We use Lemma 6.2 in the Appendix in order to obtain an appropriate up-
per bound for the last term in the right-hand side on the previous inequality
through the following terms:

s7λ12

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ7|∇ϕ|2dxdt and εs−1

∫∫

Q

e−2m0sαξ−1|Δϕ|2dxdt,

for every ε > 0.
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Putting together (39) and the previous estimates, we have
∫∫

Q

e−2sα−2a0sα∗
(sλ2ξ|∇(∇ × θ)|2dxdt + s3λ4ξ3|∇ × θ|2)dxdt

+
∫∫

Q

e−2m0sα[s−1ξ−1|Δϕ|2 + sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2]dxdt

≤ Cs16λ40

∫∫

ω0×(0,T )

e−8m0sα̂+6m0sα∗
(ξ̂)16|ϕ|2dxdt + C

∫∫

Q

e−2a0sα∗ |g2|2dxdt

+ Cs15/2λ20

∫∫

Q

e−4m0sα̂+2m0sα∗
(ξ̂)15/2|g1|2dxdt

+ Cs7λ12

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ7|∇ × ϕ|2dxdt,

(41)
for any λ3 ≥ C, s ≥ CT 10.

On the other hand, considering open sets ω2, ω3 ⊂⊂ ω such that ω1 ⊂⊂
ω2 ⊂⊂ ω3 ⊂ ω, we can deduce that

s7λ12

∫∫

ω1×(0,T )

e−2sα−2a0sα∗
ξ7|∇ × ϕ|2dxdt

≤ C(ε)s15λ24

∫∫

ω3×(0,T )

e2(m0−2)sα∗−4a0sα∗
(ξ̂)15|ϕ|2dxdt

+ ε

(∫∫

Q

e−2m0sα[s−1ξ−1|Δϕ|2 + sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2]dxdt

)

,

for any λ3 ≥ C, s ≥ CT 10 and any ε > 0. By defining

ρ̃1(t) := s16λ40e−8sm0α̂+6sm0α∗
(ξ̂)16, ρ̃2(t) = s15λ24e2(m0−2)sα∗−4a0sα∗

(ξ̂)15

and taking into account that m0 > a0 + 1, there exists a constant C > 0 such
that ∫∫

ω0×(0,T )

ρ̃1(t)|ϕ|2dxdt ≤ C

∫∫

ω3×(0,T )

ρ̃2(t)|ϕ|2dxdt. (42)

From (41)–(42), we conclude the proof of Proposition 1. �

3.3. Null controllability of the linear system

In this section we are concerned in the null controllability of the linear coupled
Stokes system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt − Δy + ∇p = f1 + h1ω + (−�−2χO + γ−2)z in Q,
−zt − Δz + ∇π = f2 + μ(y − yd)χOd

in Q,
∇ · y = 0,∇ · z = 0 in Q,
y = z = 0 on Σ,
y(·, 0) = y0(·), z(·, T ) = 0 in Ω,

(43)

where the functions f1 and f2 are in appropriate weighted spaces. We look
for a control h ∈ L2(0, T ;L2(ω)N ) such that, under suitable properties on
f1, f2, the solution to (43) satisfies y(·, T ) = 0 in Ω. To do this, let us first
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state a Carleman inequality with weight functions not vanishing in t = 0. Let
�̃ ∈ C1([0, T ]) be a positive function in [0, T ) such that:

�̃(t) = T 2/4 ∀t ∈ [0, T/2] and �̃(t) = t(T − t) ∀t ∈ [T/2, T ].

Now, we introduce the following weight functions

β(x, t) =
e12λ‖η‖∞ − eλ(10‖η‖∞+η(x))

�̃5(t)
, τ(x, t) =

eλ(10‖η‖∞+η(x))

�̃5(t)
,

β∗(t) = max
x∈Ω

β(x, t), τ∗(t) = min
x∈Ω

τ(x, t),

β̂(t) = min
x∈Ω

β(x, t), τ̂(t) = max
x∈Ω

τ(x, t).

(44)

Lemma 3.4. Let s and λ like in Proposition 1. Then, there exists a constant
C > 0 (depending on s, λ, ω,Ω, T and μ) such that every solution (ϕ, θ) of
(14) satisfies

‖ϕ(·, 0)‖2
L2(Q)N +

∫∫

Q

e−2m0sβ∗
(τ∗)3|ϕ|2dxdt

+
∫∫

Q

e−2(a0+1)sβ∗
(τ∗)3|θ|2dxdt

≤ C

(∫∫

Q

e−2a0sβ∗
(τ̂)15|g1|2dxdt +

∫∫

Q

e−2a0sβ∗ |g2|2dxdt

+
∫∫

ω×(0,T )

e−4a0sβ∗+2(m0−2)sβ(τ̂)15|ϕ|2dxdt

)

.

(45)

Proof. By construction α = β and ξ = τ in Ω × (T/2, T ), so that
∫ T

T/2

∫

Ω

e−2(a0+1)sα∗
(ξ∗)3|θ|2dxdt +

∫ T

T/2

∫

Ω

e−2sm0α∗
(ξ∗)3|ϕ|2)dxdt

=
∫ T

T/2

∫

Ω

(e−2(a0+1)sβ∗
(τ∗)3|θ|2 + e−2sm0β∗

(τ∗)3|ϕ|2)dxdt.

Therefore, it follows from Proposition 1 the estimate
∫ T

T/2

∫

Ω

(e−2(a0+1)sβ∗
(τ∗)3|θ|2 + e−2sm0β∗

(τ∗)3|ϕ|2)dxdt

≤ C

(∫∫

Q

e−2a0sα∗
(ξ̂)5|g1|2dxdt +

∫∫

Q

e−2a0sα∗ |g2|2dxdt

+
∫∫

ω×(0,T )

e−4a0sα∗+2(m0−2)sα(ξ̂)15|ϕ|2dxdt

)

.

Since �̃(t) = t(T − t) for any t ∈ [T/2, T ] and

e−2a0sβ∗ ≥C, e−2a0sβ∗
(τ∗)5 ≥C and e−4a0sβ∗+2(m0−2)sβ(τ̂)15 ≥ C in [0, T/2],
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we readily get

∫ T

T/2

∫

Ω

(e−2(a0+1)sβ∗
(τ∗)3|θ|2 + e−2sm0β∗

(τ∗)3|ϕ|2)dxdt

≤ C

(∫∫

Q

e−2a0sβ∗
(τ̂)5|g1|2dxdt +

∫∫

Q

e−2a0sβ∗ |g2|2dxdt

+
∫∫

ω×(0,T )

e−4a0sβ∗+2(m0−2)sβ(τ̂)15|ϕ|2dxdt

)

.

(46)

Now, we introduce a function ν ∈ C1([0, T ]) such that ν ≡ 1 in [0, T/2], ν ≡ 0
in [3T/4, T ]. It is easy to see that (νϕ, νπϕ) and (νθ, νπϕ) satisfies the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(νϕ)t − Δ(νϕ) + ∇(νπϕ) = ν(g1 + μθχOd
) − ν′ϕ in Q,

(νθ)t − Δ(νθ) + ∇(νπθ) = ν(g2 − �−2ϕχO + γ−2ϕ) + ν′θ in Q,
∇ · (νϕ) = ∇ · (νθ) = 0,∇ · q = 0 in Q,
νϕ = νθ = 0 on Σ,
(νϕ)(T ) = 0, (νθ)(0) = 0 in Ω.

(47)

Using classical energy estimate for both νϕ and νθ, which solve the Stokes
system (47) we get

‖ϕ(0)‖2
L2(Q)N + ‖ϕ‖2

L2(0,T/2;H1
0 (Ω)N )

≤ C

(
1

T 2
‖ϕ‖2

L2(T/2,T/4;L2(Ω)N )

+ ‖θ‖2
L2(0,3T/4;L2(Od)N ) + ‖g1‖2

L2(0,3T/2;L2(Ω)N )

)

and

‖θ‖2
L2(0,T/2;H1

0 (Ω)N )
≤ C

(
1

T 2
‖θ‖2

L2(T/2,3T/4;L2(Ω)N )

+ ‖ν(−�−2ϕχO + γ−2ϕ)‖2
L2(0,3T/4;L2(Ω)N ) + ‖g2‖2

L2(0,3T/2;L2(Ω)N )

)
.

Taking into account that

e−2sm0β∗
(τ∗)3 ≥ C > 0 e−2(a0+1)sβ∗

(τ∗)3 ≥ C > 0, ∀t ∈ [T/2, 3T/4]

and

e−2a0sβ∗
(τ̂)5 ≥ C > 0 e−2a0sβ∗

> e−4a0sβ∗ ≥ C > 0, ∀t ∈ [0, 3T/4],
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we have

‖ϕ(0)‖2
L2(Ω)N +

T/2∫

0

∫

Ω

e−2m0sβ∗
(τ∗)3|ϕ|2 + e−2(a0+1)sβ∗

(τ∗)3|θ|2 dxdt

≤ C

(∫ 3T/2

T/2

∫

Ω

[e−2m0sβ∗
(τ∗)3|ϕ|2 + e−2(a0+1)sβ∗

(τ∗)3|θ|2]dxdt

+ ‖νμe−2a0sβ∗
θ‖2

L2(0,3T/4;L2(Od)N )

+ ‖ν(−�−2ϕχO + γ−2ϕ)‖2
L2(0,3T/4;L2(Ω)N )

+
∫ 3T/4

0

∫

Ω

[
e−2a0sβ∗

(τ∗)5|g1|2 + e−2a0sβ∗ |g2|2
]
dxdt

)

.

(48)

Thus, from (46) and (48) we have at this moment

‖ϕ(0)‖2
L2(Ω)N +

∫∫

Q

(e−2(a0+1)sβ∗
(τ∗)3|θ|2 + e−2sm0β∗

(τ∗)3|ϕ|2)dxdt

≤ C

(∫∫

Q

e−2a0sβ∗
(τ̂)5|g1|2dxdt +

∫∫

Q

e−2a0sβ∗ |g2|2dxdt

+
∫∫

ω×(0,T )

e−4a0sβ∗+2(m0−2)sβ(τ̂)15|ϕ|2dxdt

+ ‖νμe−2a0sβ∗
θ‖2

L2(0,3T/4;L2(Od)N )

+ ‖ν(−�−2ϕχO + γ−2ϕ)‖2
L2(0,3T/4;L2(Ω)N )

)
.

(49)

Observe that if � and γ are large enough (again, �, γ >> C3T
30/4eC4/T 10

,
where C3, C4 are positive constants depending on a0,m0, s), the last term in
the right-hand side of (49) can be absorbed by the left-hand side. In addition,
considering θ∗(x, t) = e−2sβ∗

θ(x, t) instead νθ in (47) and using standard
energy estimate for the system associated to θ, we obtain

∫ 3T/4

0

∫

Ω

ν2μ2e−4a0sβ∗ |θ|2dxdt

≤ C

(∫∫

Q

e−4a0sβ∗ |g2|2dxdt +
1
�4

∫ T

0

∫

Od

e−4a0sβ∗ |ϕ|2dxdt

+
1
γ4

∫∫

Q

e−4a0sβ∗ |ϕ|2dxdt +
∫∫

Q

e−4a0sβ∗
(τ∗)6/5|θ|2dxdt

)

.

(50)

Putting together (49), (50) and taking again � and γ large enough (as above),
we obtain the desired inequality (45). �

Remark 3. In order to establish a null controllability result for the system (43)
we need adequate weight functions, see Theorem 3.5. As consequence of the
inequalities a0 + 1 < m0 ≤ 2a0, a0 ≥ 5

4 observe that on the left-hand side of
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(16) it is possible to add the term
∫∫

Q

e−4a0sβ∗
(τ∗)3|θ|2dxdt.

Now, we are ready to prove the null controllability of system (43). The
idea is to look a solution in an appropriate weighted functional space. Let us
introduce the following space

E :=
{
(y, z, πy, πz, h) : ea0sβ∗

(τ̂)−5/2y ∈ L2(Q)N , ea0sβ∗
z ∈ L2(Q)N ,

e2a0sβ∗−(m0−2)sβ̂(τ̂)−15/2h1ω ∈ L2(Q)N ,

ea0sβ∗
(τ̂)−15/2y ∈ L2(0, T ; H2(Ω)N ) ∩ L∞(0, T ; V ),

ea0sβ∗
(τ∗)−c0z ∈ L2(0, T ; H2(Ω)N ) ∩ L∞(0, T ; V ), c0 ≥ 5

2
,

em0sβ∗
(τ̂∗)−3/2(yt − Δy + ∇πy − (−�−2χO + γ−2)z − h1ω) ∈ L2(Q)N ,

e2a0sβ∗
(τ̂∗)−3/2(−zt − Δz + ∇πz − μ(y − yd)χOd

) ∈ L2(Q)N
}

.

It is clear that E is a Banach space for the following norm:
‖ea0sβ∗

(τ̂)−5/2y‖L2(Q)N + ‖ea0sβ∗
z‖L2(Q)N

+ ‖e2a0sβ∗−(m0−2)sβ̂(τ̂)−15/2h1ω‖L2(Q)N

+ ‖ea0sβ∗
(τ̂)−15/2y‖L2(0,T ;H2(Ω)N ) + ‖ea0sβ∗

(τ̂)−15/2y‖L∞(0,T ;V )

+ ‖ea0sβ∗
(τ∗)−c0z‖L2(0,T ;H2(Ω)N ) + ‖ea0sβ∗

(τ∗)−c0z‖L∞(0,T ;V )

+ ‖em0sβ∗
(τ∗)−3/2(yt − Δy + ∇πy − (−�−2χO + γ−2)z − h1ω)‖L2(Q)N

+ ‖e2a0sβ∗
(τ∗)−3/2(−zt − Δz + ∇πz − μ(y − yd)χOd

)‖L2(Q)N .

Remark 4. Observe in particular that (y, z, πy, πz, h) ∈ E implies y(·, T ) = 0
in Ω.

Theorem 3.5. Assume the hypothesis of Lemma 3.4 and

y0 ∈ V, em0sβ∗
(τ∗)−3/2f1 ∈ L2(Q)N , e2a0sβ∗

(τ∗)−3/2f2 ∈ L2(Q)N . (51)

Then, we can find a control h ∈ L2(0, T ;L2(ω)N ) such that the associated

solution (y, z, πy, πz, h) to (43) satisfies (y, z, πy, πz, h) ∈ E.

Proof. Let us introduce the following constrained extremal problem:

inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(∫∫

Q

e2a0sβ∗
(τ̂)−5|y|2dxdt +

∫∫

Q

e2a0sβ∗ |z|2dxdt

+
∫∫

ω×(0,T )

e4a0sβ∗−2(m0−2)sβ̂(τ̂)−15|h|2dxdt

)

subject to h ∈ L2(Q), supp h ⊂ ω × (0, T ), and⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt − Δy + ∇πy = f1 + hχω + (−�−2χO + γ−2)z in Q,
−zt − Δz + ∇πz = f2 + μ(y − yd)χOd

in Q,
∇ · y = 0,∇ · z = 0 in Q,
y = z = 0 on Σ,
y(·, 0) = y0(·), y(·, T ) = 0, z(·, T ) = 0 in Ω.

(52)
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Assume that this problem admits a unique solution (ŷ, ẑ, π̂y, π̂z, ĥ). Then,
from the Lagrange’s principle there exists dual variables (ϕ̂, θ̂, π̂ϕ, π̂θ) such that

ŷ = e−2a0sβ∗
(τ̂)5(−ϕ̂t − Δϕ̂ + ∇π̂ϕ − μθ̂Od

) in Q,

ẑ = e−2a0sβ∗
(θ̂t − Δθ̂ + ∇π̂θ − (−�−2χO + γ−2)ϕ̂) in Q,

ĥ = e−4a0sβ∗+2(m0−2)sβ̂(τ̂)15ϕ̂ in Q,
ŷ = ẑ = 0 on Σ.

(53)

Now, following the arguments established in [11], we introduce the space P0

of functions (y, z, πy, πz) ∈ C2(Q)2N+2 such that
(i) ∇ · y = ∇ · z = 0 in Q.
(ii) y = z = 0 on Σ.

(iii)
∫

ω0

πϕdx = 0.

We also consider the bilinear form a(·, ·) over P0 × P0 defined by:

a((ϕ̂, θ̂, π̂ϕ, π̂θ), (w, z, πw, πz))

=:

∫∫

Q

e−2a0sβ∗
(τ̂)5(−ϕ̂t − Δϕ̂ + ∇π̂ϕ − μθ̂Od

)(−yt − Δy + ∇πy − μzOd
) dxdt

+

∫∫

Q

e−2a0sβ∗
(θ̂t − Δθ̂ + ∇π̂θ − (−�−2χO + γ−2)ϕ̂)(zt − Δz + ∇πz)

−
∫∫

Q

e−2a0sβ∗
(θ̂t − Δθ̂ + ∇π̂θ − (−�−2χO + γ−2)ϕ̂)(�−2χO + γ−2)w) dxdt

+

∫∫

ω×(0,T )

e−4a0sβ∗+2(m0−2)sβ̂(τ̂)15ϕ̂w dxdt,

for every (w, z, πw, πz) ∈ P0, and a linear form

〈G, (w, z, πw, πz)〉 :=
∫∫

Q

f1·w dxdt+
∫∫

Q

f2·z dxdt+
∫

Ω

y0(·)·w(·, 0) dx. (54)

Taking into account this definitions, one can see that, if the functions ŷ, ẑ and
ĥ solve (52), we must have ∀(w, z, πw, πz) ∈ P0

a((ϕ̂, θ̂, π̂ϕ, π̂θ), (w, z, πw, πz)) = 〈G, (w, z, πw, πz)〉. (55)

Observe that Carleman inequality (45) holds for all (w, z, πw, πz) ∈ P0. Con-
sequently,

∫∫

Q

e−2m0sβ∗
(τ∗)3|z|2dxdt +

∫∫

Q

e−2(a0+1)sβ∗
(τ∗)3|w|2dxdt (56)

+
∫∫

Q

e−2a0sβ∗
(τ∗)3|w|2dxdt + ‖w(0)‖2

L2(Ω)N (57)

≤ Ca((w, z, πw, πz), (w, z, πw, πz)), (58)

for every (w, z, πw, πz) ∈ P0.
Therefore, a(·, ·) : P0 × P0 �−→ R is symmetric, definite positive bilinear

form on P0. We denote by P the completion of P0 for the norm induced by
a(·, ·). Then, a(·, ·) is well-defined, continuous and again definite positive on
P . Furthermore, in view of the Carleman inequality (45), the assumption (51)
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and (56), the linear form (w, z, πw, πz) �−→ 〈G, (w, z, πw, πz)〉 is well-defined
and continuous on P . Indeed, for every (w, z, πw, πz) ∈ P ,

〈G, (w, z, πw, πz)〉
≤ ‖e(a0+1)sβ∗

(τ∗)−3/2f1‖L2(Q)N ‖e−(a0+1)sβ∗
(τ∗)3/2w‖L2(Q)N

+ ‖em0sβ∗
(τ∗)−3/2f2‖L2(Q)N ‖e−m0sβ∗

(τ∗)3/2z‖L2(Q)N + ‖y0‖H‖w(0)‖H

≤ ‖em0sβ∗
(τ∗)−3/2f1‖L2(Q)N ‖e−(a0+1)sβ∗

(τ∗)3/2w‖L2(Q)N

+ ‖e2a0sβ∗
(τ∗)−3/2f2‖L2(Q)N ‖e−m0sβ∗

(τ∗)3/2z‖L2(Q)N + ‖y0‖H‖w(0)‖H .

Using (56) and the density of P0 in P , we find

〈G, (w, z, πw, πz)〉 ≤ C
(
‖em0sβ∗

(τ∗)−3/2f1‖L2(Q)N

+ ‖e2a0sβ∗
(τ∗)−3/2f2‖L2(Q)N + ‖y0‖H

)
‖(w, z, πw, πz)‖P .

Hence, from Lax–Milgram’s Lemma, there exists a unique (ϕ̂, θ̂, π̂ϕ, π̂θ) ∈ P
satisfying ∀(w, z, πw, πz) ∈ P :

a((ϕ̂, θ̂, π̂ϕ, π̂θ), (w, z, πw, πz)) = 〈G, (w, z, πw, πz)〉. (59)

Let us set (ŷ, ẑ, ĥ) like in (53) and remark that (ŷ, ẑ, π̂y, π̂z, ĥ) verifies

a((ϕ̂, θ̂, π̂ϕ, π̂θ), (ϕ̂, θ̂, π̂ϕ, π̂θ)) =
∫∫

Q

e2a0sβ∗
(τ̂)−5|ŷ|2dxdt

+
∫∫

Q

e2a0sβ∗ |ẑ|2dxdt +
∫∫

ω×(0,T )

e4a0sβ∗−2(m0−2)sβ̂(τ̂)−15|ĥ|dxdt < +∞.

Let us prove that (ŷ, ẑ) is, together with some (π̂y, π̂z), the weak solution
of the Stokes system in (52) for h = ĥ. In fact, we introduce the (weak) solution
(ỹ, z̃, π̃y, π̃z) to the Stokes system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ỹt − Δỹ + ∇π̃y = f1 + ĥ1ω + (−�−2χO + γ−2)z̃ in Q,
−z̃t − Δz̃ + ∇π̃z = f2 + μ(ỹ − ỹd)χOd

in Q,
∇ · ỹ = 0,∇ · z̃ = 0 in Q,
ỹ = z̃ = 0 on Σ,
ỹ(·, 0) = y0(·), z̃(·, T ) = 0 in Ω.

(60)

Clearly, (ỹ, z̃) is the unique solution of (60) defined by transposition. This
means that, for every (a, b) ∈ L2(Q)2N ,

〈(ỹ, z̃), (a, b)〉L2(Q)N = 〈y0, ϕ(0)〉L2(Ω) + 〈(f1 + ĥ1ω, f2), (ϕ, θ)〉L2(Q)N , (61)

where (ϕ, θ) is, together with some (πϕ, πθ), the solution to
⎧
⎪⎪⎨

⎪⎪⎩

L∗(ϕ, θ) = (a, b) in Q,
∇ · ϕ = 0, ∇ · θ = 0 in Q,
ϕ = θ = 0 on Σ,
ϕ(·, T ) = 0, θ(·, 0) = 0 in Ω,

(62)
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and L∗ is the adjoint operator of L given by:

L(ỹ, z̃) := (ỹt − Δỹ + ∇π̃y − (−�−2χO + γ−2)z̃,−z̃t − Δz̃ + ∇π̃z

−μ(ỹ − ỹd)χOd
).

From (53) and (55), we see that (ŷ, ẑ) also satisfies (61). Consequently, (ŷ, ẑ) =
(ỹ, z̃) and (ŷ, ẑ) is, together with some (π̂y, π̂z) = (π̃y, π̃z), the weak solution
to the system (60).

Finally, we must see that (ŷ, ẑ, π̂y, π̂z, ĥ) ∈ E. We already know that

ea0sβ∗
(τ̂)−5/2ŷ, ea0sβ∗

ẑ, e2a0sβ∗−(m0−2)sβ̂(τ̂)−15/2ĥ1ω ∈ L2(Q)N

and [see hypothesis (51)]

em0sβ∗
(τ∗)−3/2f1 ∈ L2(Q)N and e2a0sβ∗

(τ∗)−3/2f2 ∈ L2(Q)N .

Thus, it only remains to check that

ea0sβ∗
(τ̂)−15/2ŷ, ea0sβ∗

(τ∗)−c0z ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V ),

where c0 ≥ 5
2 .

1. We define the functions

y∗ := ea0sβ∗
(τ̂)−15/2ŷ, z∗ := ea0sβ∗

(τ∗)−c0 ẑ

π∗
y := ea0sβ∗

(τ̂)−15/2π̂y, π∗
z := ea0sβ∗

(τ∗)−c0 π̂z

and

f∗
1 := ea0sβ∗

(τ̂)−15/2(f1 + h1ω), z∗∗ := ea0sβ∗
(τ̂)−15/2(−�−2χO + γ−2)z

f∗
2 := ea0sβ∗

(τ∗)−c0f2, y∗∗ := ea0sβ∗
(τ∗)−c0(y − yd)χOd

.

Then (y∗, π∗
y , z∗, π∗

z) satisfies:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y∗
t − Δy∗ + ∇π∗

y = f∗
1 + z∗∗ + (e3/2sβ∗

(τ̂)−15/2)
′
ŷ in Q,

−z∗
t − Δz∗ + ∇π∗

z = f∗
2 + y∗∗ + (e1/2sβ∗

(τ̂)7)
′
ẑ in Q,

∇ · y∗ = 0,∇ · z∗ = 0 in Q,
y∗ = z∗ = 0 on Σ,

y∗(·, 0) = e3/2sβ∗(0)(τ̂(0))−15/2y0(·), z∗(·, T ) = 0 in Ω.

(63)

2. Now, we prove that the right-hand side of the main equations in (63) is
in L2(Q)N .
• |ea0sβ∗

(τ̂)−15/2f1| ≤ Cea0sβ∗ |τ̂ |−15/2|f1| ≤ Cem0sβ |τ∗|−3/2|f1|.
• |ea0sβ∗

(τ̂)−15/2h1ω| ≤ Ce2a0sβ∗−(m0−2)sβ∗
(τ̂)−15/2|h|1ω.

• |z∗∗| = |ea0sβ∗
(τ̂)−15/2(−�−2χO + γ−2)z| ≤ Cea0sβ∗ |ẑ|.

• |(e3/2sβ∗
(τ̂)−15/2)

′
ŷ| ≤ Csea0sβ∗ |τ∗|6/5|ŷ| ≤ Cea0sβ∗ |τ̂ |−5/2|ŷ|.

• |f∗∗
2 | = |ea0sβ∗

(τ∗)−c0f2| ≤ Ce(a0+1)sβ∗ |τ∗|−c0 |f2|.
• |(e1/2sβ∗

(τ̂)7)
′
ẑ| ≤ Cea0sβ∗ |ẑ|.

•
|y∗∗| = |ea0sβ∗

(τ∗)−c0(y − yd)χOd
|

≤ Cea0sβ∗ |τ̂ |−5/2|ŷ| + Cea0sβ∗ |τ∗|−c0 |yd|.
Observe that y∗∗ ∈ L2(Q)N thanks to the hypothesis (5).
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Taking into account a) − b) and y0 ∈ V , we have y∗, z∗ ∈ L2(0, T ;H2(Ω)N ) ∩
L∞(0, T ;V ) (see Lemma 3.3 in Sect. 3.1).

This concludes the proof of Theorem 3.5. �

Remark 5. Before starting the last section, it is important to consider small
data in order to prove our main result, Theorem 1.2. Thus, we impose that

‖em0sβ∗
(τ∗)−3/2f1‖L2(Q)N + ‖e2a0sβ∗

(τ∗)−3/2f2‖L2(Q)N + ‖y0‖V ≤ δ, (64)

where δ is a small positive number.

4. Proof of the main result

In this section we give the proof of Theorem 1.2 throughout classical arguments
such like in [11]. The results obtained in the previous section allow us to locally
invert a nonlinear operator associated to the nonlinear system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt − Δy + (y · ∇)y + ∇πy = h1ω + (�−2χ̃O + γ−2)z in Q,
−zt − Δz + (z,∇t)y − (y,∇)z + ∇πz = μ(y − yd)χOd

in Q,
∇ · y = 0,∇ · z = 0 in Q,
y = z = 0 on Σ,
y(·, 0) = y0(·), z(·, T ) = 0 in Ω.

To do this, we will apply an inverse function theorem of the Lyusternik’s kind
[18], which will allow us to complete the proof of Theorem 1.2. More precisely,
we will use the following theorem.

Theorem 4.1. Suppose that B1,B2 are Banach spaces and

A : B1 → B2

is a continuously differentiable map. We assume that for b0
1 ∈ B1, b

0
2 ∈ B2 the

equality
A(b0

1) = b0
2 (65)

holds and A′(b0
1) : B1 → B2 is an epimorphism.Then there exists δ > 0 such

that for any b2 ∈ B2 which satisfies the condition

‖b0
2 − b2‖B2 < δ

there exists a solution b1 ∈ B1 of the equation

A(b1) = b2.

Proof. We apply Theorem 4.1 for the spaces B1 := E and

B2 := {(f1, f2, y0) ∈ X∗
1 × X∗

2 × V : f1, f2, y0 satisfies (64)},

where X∗
1 := L2(em0sβ∗

(τ∗)−3/2(0, T );L2(Ω)N ) and

X∗
2 := L2(e2a0sβ∗

(τ∗)−3/2(0, T );L2(Ω)N ).
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We define the operator A by the formula

A(y, z, πy, πz, h) :=
(
yt − Δy + (y · ∇)y + ∇πy − (�−2χ̃O + γ−2)z − h1ω,

− zt − Δz + (z,∇t)y − (y,∇)z + ∇πz − μ(y − yd)χOd
, y(·, 0)

)
,

for every (y, z, πy, πz, h) ∈ B1.
Let us see that A is of class C1(B1,B2). Indeed, notice that all the terms

in A are linear, except for (y · ∇)y and z,∇t)y − (y,∇)z, then, we only have
to check that these nonlinear terms are well-defined and depend continuously
on the data. Thus, we will prove that the bilinear operator

((y1, z1, π1
y, π1

z , h1), (y2, z2, π2
y, π2

z , h2)) �−→ (y1 · ∇)y2

is continuous from B1 × B1 to X∗
1 , and the bilinear forms

((y1, z1, π1
y, π1

z , h1), (y2, z2, π2
y, π2

z , h2)) �−→ (y1 · ∇)z2,

((y1, z1, π1
y, π1

z , h1), (y2, z2, π2
y, π2

z , h2)) �−→ (z1 · ∇t)y2

are continuous from B1 × B1 to X∗
2 .

In fact, notice that (see the definition of the space E):

ea0sβ∗
(τ̂)−15/2y ∈ L2(0, T ;L∞(Ω)N )

and

∇(ea0sβ∗
(τ̂)−15/2y) ∈ L∞(0, T ;L2(Ω)N×N ).

Consequently, we obtain

‖em0sβ∗
(τ∗)−3/2(y1 · ∇)y2‖L2(Q)N

≤ C‖(ea0sβ∗
(τ̂)−15/2y1 · ∇)ea0sβ∗

(τ̂)−15/2y2‖L2(Q)N

≤ C‖e2sβ∗
(τ̂)−15/2y1‖L2(0,T ;L∞(Ω)N )‖ea0sβ∗

(τ̂)−15/2y2‖L∞(0,T ;V ).

On the other hand, for c0 ≥ 5/2,

ea0sβ∗
(τ∗)−c0z ∈ L2(0, T ;L∞(Ω)N )

and

∇(ea0sβ∗
(τ∗)−c0z) ∈ L∞(0, T ;L2(Ω)N×N ).

Then,

‖e2a0sβ∗
(τ∗)−3/2(y1 · ∇)z2‖L2(Q)N

≤ C‖ea0sβ∗
(τ̂)−15/2y1‖L2(0,T ;L∞(Ω)N )‖ea0sβ∗

(τ∗)−c0z2‖L∞(0,T ;V ),

and analogously,

‖e2a0sβ∗
(τ∗)−3/2(z1 · ∇)y2‖L2(Q)N

≤ C‖ea0sβ∗
(τ∗)−c0z1‖L2(0,T ;L∞(Ω)N )‖ea0sβ∗

(τ̂)−15/2y2‖L∞(0,T ;V ).

Notice that A′(0, 0, 0) : B1 → B2 is given by

(yt − Δy + ∇πy − (�−2χ̃O + γ−2)z − h1ω,−zt − Δz

+∇πz − μ(y − yd)χOd
, y(·, 0)),



NoDEA Robust Stackelberg controllability Page 29 of 33 46

for all (y, z, πy, πz, h) ∈ B1. In virtue of Theorem 3.5, this functional satisfies
Im(A′(0, 0, 0)) = B2.

Let b0
1 = (0, 0, 0) and b0

2 = (0, 0). Then Eq. (65) obviously holds. So
all necessary conditions to apply Theorem 4.1 are fulfilled. Therefore there
exists a positive number δ such that, if ‖y(·, 0)‖V ≤ δ, we can find a control
h ∈ L2(0, T ;L2(ω)N ) and an associated solution (y, z, πy, πz) to (1) satisfying
y(·, T ) = 0 in Ω. This finishes the proof of Theorem 1.2. �

5. Conclusion and open problems

We omitted the proof of Theorem 1.3 since it can be done following the proof
of Theorem 1.2 an adapting the proof for γ = 0.

In this article, we mentioned the main results on robust control for the N -
dimensional Navier–Stokes system with Dirichlet boundary conditions. These
results has also allowed us to characterise the follower control v and its dis-
turbance function ψ through a nonlinear coupled system. Once this step has
finished, we used the robust pair (v, ψ) to prove the null controllability of the
leader control h. The main novelties are the Carleman inequalities for coupled
Stokes system, which involves new relationships between the weight functions
and the robustness parameters �, γ, see Proposition 1 and Lemma 6.1. To
conclude, we present now some open problems arising from our study:
• If instead of considering in the hierarchical strategy a zero objective for

the leader control h in (1), the objective may be a trajectory (y, π) of the
uncontrolled system:

⎧
⎪⎪⎨

⎪⎪⎩

yt − Δy + (y · ∇)y + ∇π = 0 in Q,
∇ · y = 0, in Q,
y = 0 on Σ,
y(·, 0) = y0(·) in Ω,

So we may ask if is it possible to prove the local exact controllability to
trajectories of system (1). That is, does there exist a control h such that
for the corresponding solution to (10) satisfies y(T ) = y(T )?

• Some null controllability results for the N -dimensional Navier–Stokes sys-
tem [7,8] allow to act on the system by means of few controls. Is it possible
to extend these results to a robust Stackelberg strategy? Is is possible to
ask the leader control h to have one vanishing component?

• Is it possible to extend the results in this paper to Navier-slip boundary
conditions? In other words, can we say something about the existence and
uniqueness of saddle points for the Navier–Stokes system with Navier-slip
conditions? Does we have the null controllability for the leader control
h?

• From a numerical point of view, the implementation of the Stackelberg
strategy even for the linear coupled system (10) shows a challenge to
overcome.

• Finally, it would be interesting to study the problems proposed in this
paper to other models such as water waves (Korteweg–de Vries equation),
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interaction fluid–heat (Boussinesq system), micropolar fluids, models of
turbulence, among others.

6. Appendix: Some technical results

In the following results, it will be assumed that N = 2 or N = 3.
From the relation between α∗ and α̂, it is possible to prove the following
inequality.

Lemma 6.1. For any ε > 0, any M1,M2 ∈ R, there exists λ0 > 0 and C =
C(ε,M1,M2) > 0 such that

esα∗ ≤ CsM1λM2(ξ̂)M1es(1+ε)α̂ (66)

for every λ > λ0.

Proof. Recall that

α∗(t) := max
x∈Ω

α(x, t), α̂(t) := min
x∈Ω

α(x, t) and ξ̂(t) := max
x∈Ω

ξ(x, t).

From the definition of α∗ and α̂, α̂(t) = F (λ)α∗, where

F (λ) :=
e2λ‖η0‖∞ − eλ‖η0‖∞

e2λ‖η0‖∞ − 1
.

It is easy to check that F (λ) → 1 to λ → +∞ and F (λ) → 1/2 to λ → 0+.
Additionally, by construction of F (λ), for any ε > 0, there exists λ0 > 0 such
that, for every λ ≥ λ0

F (λ) + εF (λ) > 1.

In consequence, exists a positive constant C = C(ε,M1, M̃2) such that the
inequality

λM̃2e(1−(1+ε)F (λ))sα∗ ≤ CsM1(ξ̂)M1

holds for any M1, M̃2 ∈ R.
This completes the proof of Lemma 6.1. �

As a consequence of Lemma 6.1, for a0,m0 satisfying 2 ≤ a0 < m0 ≤ a0 + 2,
we can deduce the next result:

Lemma 6.2. Under the hypothesis of Lemma 6.1, for any ω ⊂⊂ Ω and any
u ∈ V , there exists λ0 > 0 and C = C(ε, M̃1, M̃2) > 0 such that

sM̃1λM̃2

∫∫

ω×(0,T )

e−4sα̂−2a0sα∗
(ξ̂)M̃1 |Δu|2dxdt≤Cs−1

∫∫

Q

e−2m0sα∗
(ξ̂)−1|Δu|2dxdt.

Proof. Sketch Taking ε =
2

m0 − a0
− 1, M1 = − M̃1 + 1

2(m0 − a0)
and M2 =

− M̃2 + 1
2(m0 − a0)

in (66), the proof is direct. �
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