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factors in planar elasticity in presence of
smooth cracks
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Abstract. In this work we first analyze the singular behavior of the dis-
placement u of a linearly elastic body in dimension 2 close to the tip
of a smooth crack, extending the well-known results for straight frac-
tures to general smooth ones. As conjectured by Griffith (Phys Eng Sci
221:163–198, 1921), u behaves as the sum of an H2-function and a lin-
ear combination of two singular functions whose profile is similar to the
square root of the distance from the tip. The coefficients of the linear com-
bination are the so called stress intensity factors. Afterwards, we prove
the differentiability of the elastic energy with respect to an infinitesimal
fracture elongation and we compute the energy release rate, enlightening
its dependence on the stress intensity factors.
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1. Introduction

In this paper we are concerned with the stability properties of cracks in brittle
materials. We consider a linear elastic, isotropic, and homogeneous body, whose
reference configuration is represented by an infinite cylinder of the form Ω ×
R, where the cross section Ω ⊆ R

2 is an open bounded set with Lipschitz
boundary ∂Ω. For simplicity of exposition, we also assume that the origin 0
belongs to Ω. In the setting of plane elasticity, we assume that the applied
boundary and volume forces produce a horizontal displacement, namely the
deformed configuration is described by

Ω × R � (x1, x2, x3) �→ (x1, x2, x3) + (u1(x1, x2), u2(x1, x2), 0).

This assumption allows us to work in the planar domain Ω.
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As usual, the behavior of the elastic material is fully described by the
elasticity tensor C, which is interpreted as a linear operator on the space M2

sym

of squared symmetric matrices of order 2. Under our assumptions, C can be
expressed in terms of the so called Lamé coefficients λ, μ ∈ R of the material.
Namely, for every F ∈ M

2
sym we have

CF:= λtr(F) I+2μF,

where I is the identity matrix and tr(F) denotes the trace of the matrix F.
Under the conditions

μ > 0, λ + μ > 0,

we also have that C is positive definite (see, e.g., [13]).
The physical model of brittle fracture we deal with goes back to Griffith

[10] and has been formulated in [9] in a variational language: the crack evo-
lution is the result of the interplay between the energy released by the elastic
body when the fracture increases and the energy needed to produce such a
new crack. Therefore, if we assume that the elastic body Ω is fractured along a
sufficiently smooth curve Γ ⊂ Ω, that no volume force is applied, and that no
force is transmitted across the fracture lips (traction free condition), we define
the elastic energy as

E(u,Γ):=
1
2

∫
Ω\Γ

CEu : Eu dx, (1.1)

where u ∈ H1(Ω\Γ;R2) is the displacement field and Eu denotes the symmetric
part of the gradient of u, i.e., Eu := (Du + DuT )/2. In what follows, we will
assume the crack set Γ to be a simple closed C∞-curve in Ω with initial point
belonging to ∂Ω and endpoint in the origin.

In this framework, our aim is first to study the regularity of the displace-
ment of the body Ω at the equilibrium for a given crack set Γ and boundary
datum g ∈ H1(Ω\Γ;R2). As usual, the equilibrium condition is expressed by
the minimum problem

min {E(u,Γ) : u ∈ H1(Ω\Γ;R2), u = g on ∂Ω}. (1.2)

We denote by Emin(Γ) the value of the minimum. Clearly, a solution u ∈
H1(Ω\Γ;R2) to (1.2) exists unique and solves, in a variational sense, the PDE
system ⎧⎨

⎩
div (CEu) = 0 in Ω\Γ,
u = g on ∂Ω,
(CEu)νΓ = 0 on Γ,

(1.3)

where νΓ is the unit normal vector to Γ. Notice that the first equation in (1.3)
is intended in the sense of distributions, the second one in the sense of traces,
and the third one in the duality H−1/2(Γ)−H1/2(Γ).

Our main result is then the following: we show that the solution u to (1.2)
is of class H2 far from the crack tip, while close to the origin it exhibits
a singularity, approaching the crack tip with a profile similar to the square
root of the distance from the tip. Indeed, denoting by (ρ, θ) the usual polar
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coordinates, we are able to prove that there exist two regular functions φ1(θ),
φ2(θ) and two constants Q1 and Q2 such that

u − Q1ρ
1/2φ1 − Q2ρ

1/2φ2 ∈ H2(Ω′\Γ;R2), (1.4)

for every Ω′ ⊂⊂ Ω. We emphasize that the functions ρ1/2φi, i = 1, 2, belong
to H1(Ω\Γ;R2) but not to H2(Ω\Γ;R2). For this reason, they are referred to
as the singular solutions of elasticity (see, e.g., [12] and Remark 2.6 for further
discussions). Moreover, denoting with σ(u) := CEu the stress field associated
to the deformation u, the decomposition (1.4) implies that σ(u) blows up
as ρ−1/2 in the origin, that is, the elastic body develops an infinite stress close
to the crack tip, unless Q1 = Q2 = 0. Therefore, the constants Q1 and Q2,
which depend only on the crack set Γ and are uniquely determined, are called
stress intensity factors. As we discuss in Remark 2.7, Q1 and Q2 are related
to Mode I and II of crack growth.

The singularity (1.4), which is a consequence of the linearization (1.3)
of the elasticity system, was already formally noticed by Griffith in [10] while
studying the behavior of the stress field in elastic bodies with elliptic cracks
degenerating into lines. After [10], the decomposition (1.4) has been widely
studied: in [11,12] Grisvard proved it rigorously for domains with a straight
crack. The proof is based on sophisticated tools in differential operator the-
ory and complex analysis. Roughly speaking, problem (1.3) is recast in the
variational form⎧⎨

⎩
∫

Ω\Γ

CEu : Ev dx = 0 for every v ∈ H1
0 (Ω\Γ;R2),

u − g ∈ H1
0 (Ω\Γ;R2),

and, because of the absence of volume forces, it is shown to be equivalent to a
biharmonic problem in the fractured planar domain⎧⎪⎨

⎪⎩
Δ2w = 0 in Ω\Γ,
w = 0 on Γ,
∂w

∂ν
= 0 on Γ,

(1.5)

where w is the so called Airy function satisfying

D2w = σ(u)⊥ :=
(

σ22(u) −σ12(u)
−σ12(u) σ11(u)

)
. (1.6)

The behavior of w close to the crack tip is then investigated following the
Kondrat’ev method in suitable weighted Sobolev spaces (see [15–17] for more
details). These techniques make strong use of the particular geometry of the
crack set near its tip. Indeed, being Γ a straight line, with the help of a suitable
change of variable and of a Fourier transform, system (1.5) reduces to the study
of the singularities of an ODE with constant coefficients and whose solutions
are explicit. The same strategy in the case of a curved crack (even if smooth)
would lead to the study of a more complicated ODE with coefficients depending
on the fracture and whose solutions could not be easily computed. Therefore,
another approach is in order.
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In the context of in-plane linearized elasticity, we also mention the work
[3], in which the authors find a characterization of the form (1.4), by studying
the asymptotic behavior of the displacement near the crack tip, under very
weak assumptions on the fracture: Γ is assumed to be a closed set whose density
with respect to the Hausdorff H1-measure at the tip equals 1/2. The idea of
add-crack of density 1/2 at the tip, and the corresponding generalized notion of
energy release rate, have been introduced in [5], in the case of a straight initial
crack. The strategy in [3] is to reduce the equilibrium problem (1.2) (or (1.3)) to
the biharmonic system (1.5) and study the blow-up limit of a proper rescaling
of w near the origin. Such a blow-up approach was successfully proposed in
[6] for the anti-plane case, that is, when the elasticity system (1.3) reduces to
the Poisson equation. However, in [3] the lack of regularity of the crack does
not allow one to determine in a unique way the blow-up limit and, hence, the
stress intensity factors Qi.

In this paper we follow the lines of [11,18], in which a similar problem
is tackled in the simplified setting of anti-plane linearized elasticity. Thanks
to classical results, we reduce the elasticity system to the biharmonic prob-
lem (1.5) for the associated Airy function w ∈ H2(Ω\Γ) in the fractured
domain Ω\Γ, where the crack set Γ, as mentioned above, is assumed to be of
class C∞. As in [18], we perform a change of variables that straightens Γ close
to the tip and, clearly, perturbs the coefficients of the biharmonic equation.
The C∞-regularity of the fracture allows us to apply the regularity and pencil
operator theories in weighted Sobolev spaces (see Sect. 3 for a short discussion
and [16,17] for full details) in order to show that w behaves, close to the ori-
gin, as ρ3/2. The splitting (1.4) can then be deduced by the relation (1.6). We
stress that, similar to [18], with our approach the stress intensity factors Q1

and Q2 are uniquely determined (see Theorem 2.5).
Going back to the comparison with Griffith’s theory [10], we have already

discussed the postulated relation between the elastic energy released during
the crack extension and the energy dissipated in order to create a new fracture
surface. In the mathematical language, the above interaction is expressed in
terms of the so called energy release rate, i.e., the opposite of the derivative of
the elastic energy (1.1) with respect to the crack elongation. More precisely,
if we assume that we are given an increasing family Γs of sufficiently regular
crack sets in Ω parametrized by their arc-length s, the energy release rate G(Γs)
is formally defined as

G(Γs) := − dEmin(Γs)
ds

.

In other words, G(Γs) represents the amount of elastic energy released as a
consequence of an infinitesimal elongation of the fracture. Griffith’s original
model is therefore based on the comparison between G(Γs) and the toughness
of the material, a positive parameter that depends on the physical properties
of the material and represents the energy needed to produce a new fracture of
length one.
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Exploiting the decomposition result (1.4), we show the differentiability
of the energy s �→ Emin(Γs) and we explicitly compute its derivative. This
allows us to show the dependence of the energy release rate G(Γs) on the
stress intensity factors Q1(Γs) and Q2(Γs) at the configuration Γs, and on the
Lamé coefficients λ, μ of the material. Namely, we get (see Theorem 4.1)

G(Γs) = 2π(Q2
1(Γs) + Q2

2(Γs))μ(λ + μ)(λ + 2μ). (1.7)

In particular, we remark that G(Γs) depends only on the actual crack set Γs.
Moreover, in the proof of Theorem 4.1 we actually show that the energy release
rate admits an integral representation involving the displacement at the equi-
librium and on the geometry of the crack Γs. As a consequence, G turns out
to be continuous with respect to the Hausdorff convergence of the fracture set,
under suitable regularity constraints. We refer to Remark 4.2 and Corollary 4.3
for further details.

We mention that in the anti-plane setting a similar result was obtained
in [18] with weaker regularity of the crack set, and then applied in [19] to the
study of the vanishing viscosity approach to the quasi-static fracture evolu-
tion problem. In [7], instead, the authors computed, always in the anti-plane
context, higher order derivatives of the elastic energy for a straight crack set.

1.1. Plan of the paper

In Sect. 2 we present the mechanical problem, we show the relationship with
the biharmonic problem in the plane (1.6), and we state the decomposition
result (1.4) (see Theorem 2.5), together with the corresponding property for
the Airy function (Theorem 2.4). Section 3 is devoted to the proof of the
decomposition result: in Theorems 3.11 and 3.12 we show the singular behavior
of the Airy function exploiting the already mentioned regularity theory of
PDEs in polygonal domains. Finally, in Sect. 4 we prove the differentiability
of the energy with respect to an infinitesimal increment of fracture length and,
taking advantage of the decomposition (1.4) of the displacement, we compute
the energy release rate, enlightening its dependence on the stress intensity
factors.

2. The planar elasticity system

In this section we specify the standing assumptions, we show the relation
between the elasticity system (1.3) and the biharmonic equation (1.5), and we
prove the decomposition result (1.4) for the displacement.

Let us consider an open bounded subset Ω of R2 containing the origin 0
and with Lipschitz boundary ∂Ω. The set Ω represents the reference configu-
ration of the horizontal cross section of a cylindrical vertical elastic body. As
already pointed out in the Introduction, we assume that the applied boundary
and volume forces produce a horizontal displacement, thus we are allowed to
work on the planar cross section, without mentioning the vertical component,
which is unchanged during the deformation. The material under considera-
tion is assumed to be isotropic, homogeneous, and linearly elastic, so that its
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behavior is completely described by the elasticity tensor C : M2
sym → M

2
sym,

where M
2
sym denotes the space of symmetric matrices of order 2. In particu-

lar, C is independent of the position x ∈ Ω and can be expressed in terms of
the Lamé coefficients of the material λ, μ ∈ R by

CF:= λtr(F) I+2μF for every F ∈ M
2
sym, (2.1)

where tr(F) denotes the trace of the matrix F. We work under the typical
hypotheses that μ > 0 and λ + μ > 0, which ensure the positive definiteness
of the elasticity tensor C.

Furthermore, we suppose that the elastic body Ω presents a crack along
a smooth set Γ, which is a simple and closed C∞-curve, having one endpoint
on ∂Ω and the other one, the crack tip, in the interior of Ω. Without loss
of generality, we assume that the crack tip is at the origin 0 and that, if we
choose the arc length parametrization of the crack set which starts on ∂Ω and
ends at the origin, the unit tangent vector to Γ at 0 is − e1 = (− 1, 0). These
assumptions are summarized in Fig. 1.

−e1

Ω

Γ

0

Figure 1. The crack tip is assumed to be at the origin 0, and
the tangent vector to Γ at 0 is assumed to be −e1

In this framework, the energy of Ω subject to a displacement u ∈
H1(Ω\Γ;R2) is given by the functional

E(u,Γ):=
1
2

∫
Ω\Γ

CEu : Eu dx, (2.2)

where the colon denotes the scalar product between matrices and Eu stands
for the symmetric part of the gradient of u, namely Eu := (Du + DuT )/2.

Given a Dirichlet boundary datum g ∈ H1(Ω\Γ;R2), we consider the
usual elasticity equilibrium problem

min {E(u,Γ) : u ∈ H1(Ω\Γ;R2), u = g on ∂Ω}. (2.3)

Clearly, a solution to (2.3) exists and is unique, by strict convexity of the
integral functional E(·,Γ), ensured by the positive definiteness of C. More-
over, (2.3) is equivalent to the PDE system⎧⎨

⎩
divσ(u) = 0 in Ω\Γ,
u = g on ∂Ω,
σ(u)νΓ = 0 on Γ,

(2.4)
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where σ(u) := CEu denotes the stress tensor induced by the displacement u
and νΓ is the unit normal vector to Γ.

In order to describe the regularity of u, we first reduce (2.4) to the bihar-
monic problem. To this aim we make use of the so called Airy function (see,
e.g., [3]), whose construction is possible thanks to the absence of external vol-
ume forces.

Lemma 2.1. Let u ∈ H1(Ω\Γ;R2) be the solution of the minimum problem
(2.3). Then there exists a function wu ∈ H2(Ω\Γ) solution of the system⎧⎪⎨

⎪⎩
Δ2w = 0 in Ω\Γ,
w = 0 on Γ,
∂w

∂ν
= 0 on Γ,

(2.5)

and such that

σ(u) =
(

D22wu −D12wu

−D12wu D11wu

)
. (2.6)

Proof. Even if the statement is well-known, for the benefit of the reader, we
recall the proof. Since Ω\Γ is simply connected, the divergence free condition
on σ(u) in (2.4) implies that

σ(u) =
(−D2φ D1φ

−D2ψ D1ψ

)
,

for some φ, ψ ∈ H1(Ω\Γ). The same trick can be applied a second time:
since σ(u) is symmetric, the vector field (φ, ψ) is divergence free in Ω\Γ, thus
there exists w ∈ H2(Ω\Γ) such that φ = −D2w and ψ = D1w, namely (2.6)
holds true. In particular, w is biharmonic: given a test function ϕ ∈ D(Ω\Γ),
we have

〈Δ2w, ϕ〉 =

∫
Ω\Γ

∇2w : ∇2ϕ dx =

∫
Ω\Γ

σ(u) : (∇2ϕ)⊥ dx =

∫
Ω\Γ

σ(u) : ∇V dx

= − 〈divσ(u), V 〉 = 0,

where V is a suitable vector field in D(Ω\Γ;R2), the brackets denote the duality
product in the distributional sense, and

M⊥ :=
(

M22 −M12

−M12 M11

)
, for M ∈ M

2.

Here we have exploited again the fact that Ω\Γ is simply connected: since the
rows of (∇2ϕ)⊥ are irrotational, there exists a potential V such that (∇2ϕ)⊥ =
∇V .

As it is clear from its construction, because of three constants of inte-
gration, the function w is not unique. In particular, in view of the boundary
condition σ(u)νΓ = 0, we infer that ∇w is constant on Γ; therefore, by choos-
ing such a constant to be zero, we may impose w and its normal derivative to
be zero on the crack. To sum up, w solves (2.5). �

As an immediate consequence, we have the following result.
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Proposition 2.2. Let u ∈ H1(Ω\Γ;R2) be the solution of (2.3) and let wu ∈
H2

0 (Ω\Γ) be the associated Airy function found in Lemma 2.1. Then, for every
open subset Ω′ ⊆ Ω, u ∈ H2(Ω′\Γ;R2) if and only if wu ∈ H3(Ω′\Γ).

Proof. Let Ω′ be an open subset of Ω. The statement follows immediately
from the identity (2.6) and from the invertibility of the elasticity tensor C.
Indeed, the latter allows us to express the elements Eiju of the symmetric
gradient Eu in terms of the stress components σij(u). Therefore, taking the
derivatives DkEij(u) and combining them, we obtain that all the third deriva-
tives of u belong to L2(Ω′\Γ) whenever wu ∈ H3(Ω′\Γ). The converse impli-
cation is obvious. �

The regularity of the Airy function far from the crack tip is described
in the following proposition, and follows from standard regularity theory in
fourth order systems (see [4]).

Proposition 2.3. Let w ∈ H2(Ω\Γ) be a solution of (2.5). Let Ω′ and Ω′′ be
two open subsets of Ω such that 0 ∈ Ω′ ⊂ Ω′′ ⊂⊂ Ω. Then, for every ϕ ∈
C∞

c (Ω′′\Ω′) we have ϕw ∈ H3(Ω\Γ).

By combining Propositions 2.2 and 2.3, we infer that the displacement u
belongs to H2 far from the tip. In order to complete the regularity analysis, we
shall describe the behavior of wu close to the origin. To do this, we introduce
the polar coordinates system (ρ, ϑ), where ρ stands for the usual distance
from the origin, and ϑ is the determination of the angle between x−0 and the
vector e1 continuous in Ω\Γ. Furthermore, we set

φ1(ρ, ϑ) := ρ3/2

(
2

3
sin

3ϑ

2
− 2 sin

ϑ

2

)
and φ2(ρ, ϑ) := ρ3/2

(
cos

3ϑ

2
− cos

ϑ

2

)
.

(2.7)
With this notation, we have the following result, whose proof is postponed to
Sect. 3.

Theorem 2.4. Let Γ be a C∞-crack set with a vertex in the origin, and let wu ∈
H2(Ω\Γ) be the Airy function determined in Lemma 2.1. Then, there exist
unique two constants C1 and C2 such that

wu − C1φ1 − C2φ2 ∈ H3(Ω′\Γ) (2.8)

for every Ω′ ⊂⊂ Ω.

Thanks to Proposition 2.3 and Theorem 2.4, we deduce the decomposition
result for the displacement u, solution to (2.3).

Theorem 2.5. Let Γ ⊆ Ω be a C∞-crack set with a vertex in the origin and
let u ∈ H1(Ω\Γ;R2) be the solution of (2.3). Let us set

ψ1(ϑ) :=

⎛
⎜⎜⎝

λ + μ

2
cos

3ϑ

2
− 5λ + 9μ

2
cos

ϑ

2
λ + μ

2
sin

3ϑ

2
+

λ − 3μ

2
sin

ϑ

2

⎞
⎟⎟⎠ ,
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ψ2(ϑ) :=

⎛
⎜⎜⎝

−λ + μ

2
sin

3ϑ

2
− λ + 5μ

2
sin

ϑ

2
λ + μ

2
cos

3ϑ

2
+

3λ + 7μ

2
cos

ϑ

2

⎞
⎟⎟⎠ , (2.9)

and
Φ1(ρ, ϑ) := ρ1/2ψ1(ϑ), Φ2(ρ, ϑ) := ρ1/2ψ2(ϑ). (2.10)

Then, there exist unique two constants Q1 and Q2 such that

u − Q1Φ1 − Q2Φ2 ∈ H2(Ω′\Γ;R2) (2.11)

for every Ω′ ⊂⊂ Ω.

Remark 2.6. In the language of Grisvard [12], if Γ is straight, say Γ ⊆ {x2 =
0, x1 ≥ 0}, the functions Φ1 and Φ2 are the singular solutions of the elasticity
system. Indeed, for every R > 0, Φ1 and Φ2 belong to H1(BR\{x2 = 0, x1 ≥
0};R2)\H2(BR\{x2 = 0, x1 ≥ 0};R2) and solve{

div σ(Φ) = 0 in D′(R2\{x2 = 0}),
σ(Φ)e2 = 0 on {x2 = 0},

where e2 := (0, 1).

Remark 2.7. In literature the stress intensity factors Q1 and Q2 are related
to Mode-I and Mode-II crack growth, respectively: indeed, as it can be seen
from formulas (2.9)–(2.10), the function Φ1 corresponds to a pure opening of
the fracture, while Φ2 describes a sliding of the fracture lips in the plane of Ω
(see, for instance, [21]).

We now prove Theorem 2.5.

Proof of Theorem 2.5. By a direct computation it can be shown that

μ(λ + μ)D2φ1 = −σ(Φ2)⊥ and 2μ(λ + μ)D2φ2 = σ(Φ1)⊥, (2.12)

where Φ1 and Φ2 have been defined in (2.9) and (2.10), respectively.
Let us fix Ω′ ⊂⊂ Ω. By Theorem 2.4 we know that there exist two

constants C1 and C2 such that

wu − C1φ1 − C2φ2 ∈ H3(Ω′\Γ). (2.13)

Exploiting the equalities (2.12) and Proposition 2.2, we easily deduce (2.11)
for

Q1 :=
C2

2μ(λ + μ)
and Q2 := − C1

μ(λ + μ)
.

The uniqueness follows by the uniqueness of the decomposition (2.13). �

Remark 2.8. The hypothesis of constant Lamé coefficients is here important
to determine the functions ψ1 and ψ2 in (2.9) and to prove the relation (2.12),
involving the functions φi and Φi, i = 1, 2. Indeed, if λ and μ were not constant,
in (2.12) we would have some extra terms depending on their derivatives, so
that the splitting (2.11) would not follow.
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We conclude the section by briefly describing the strategy of the proof of
Theorem 2.4. First, we localize the biharmonic system (2.5) around the crack
tip by multiplying the Airy function wu by a cut-off function η ∈ C∞

c (Ω),
which is identically 1 in a neighborhood of 0 and has compact support in Ω.
The product wu,η := ηwu solves{

Δ2w = f in Ω\Γ,
w ∈ H2

0 (Ω\Γ), (2.14)

where f ∈ H−1(Ω\Γ) is such that 0 /∈ supp(f). System (2.14) is obtained
by taking into account that wu solves (2.5) and by splitting its bilaplacian
as Δ2wu,η = ηΔ2wu + [Δ2, η]wu, where [Δ2, η] is a differential operator of
order 3 whose coefficients contain the derivatives of the cut-off function η.
Note that, by construction, the forcing term f depends on the cut-off function
chosen.

As a second step, we introduce a change of variables that straightens
the crack close to the origin and keeps the domain Ω unchanged far from it.
Without loss of generality, we may assume that in the open ball Bδ of center 0
and radius δ > 0 the crack set Γ can be extended to a C∞-curve Λ in such a
way that Λ is the graph of a C∞-function ζ = ζ(x1) in Bδ with ζ ′(0) = 0. We
consider S: Bδ → R

2 given by

S(x) := (l(x1, ζ(x1)), x2 − ζ(x1)), (2.15)

being l(x1, ζ(x1)) :=
∫ x1

0

√
1 + ζ ′(t)2 dt the signed length of the portion of Γ

between the origin and the point (x1, ζ(x1)). It is clear that S is a C∞-
diffeomorphism such that S(Γ ∩ Bδ) ⊆ {x2 = 0, x1 ≥ 0}, that is, S straightens
the crack close to the tip. Moreover, we can extend S to a C∞-diffeomorphism
on the whole domain Ω in such a way that S is the identity in a neighborhood
of ∂Ω. Note that, thanks to the regularity of ζ and to the conditions S(0) = 0
and ∇S(0) = I, we have ‖∇S − I ‖L∞(Ω) < Cδ, for some constant C > 0. We
recall that I denotes the identity matrix.

By applying the change of variables S, system (2.14) becomes a fourth
order problem set in the fractured domain Ω\Γ̂, with Γ̂ := S(Γ) horizontal
near the origin, of the form{

(Δ2 + B)w = f̂ in Ω\Γ̂,

w ∈ H2
0 (Ω\Γ̂),

(2.16)

where B is a fourth order differential operator with C∞-coefficients and f̂ is a
suitable element of H−1(Ω\Γ̂) such that 0 /∈ supp(f̂).

Remark 2.9. For the sake of completeness, we show here the variational formu-
lation of (2.16), which can be directly deduced by the variational formulation
of (2.14): for every v ∈ H2

0 (Ω\Γ̂),∫
Ω\Γ̂

[
MT ∇2w M + Q∇w

]
:
[
MT ∇2v M + Q∇v

]
det ∇S(x)−1 dx

(2.17)
= 〈f, v ◦ S〉 ,
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where the brackets in the right-hand denote the duality product in H−1-H1
0

over Ω\Γ, and M , Q∇v (and, similarly, Q∇w) are the matrices

M(x) := ∇S(S−1(x)),
(2.18)

(Q∇v)ij(x) :=
∑

k

(∇2Sk)ij(S−1(x))Dkv(x) for every x ∈ Ω\Γ̂.

In view of (2.17) and (2.18) we could also deduce the explicit formula of the
differential operator B, but we limit ourselves to notice that its coefficients of
order 4 are δ-close to 0 in Ω\Γ̂ and that B(0) contains only terms of order less
than or equal to 3.

Remark 2.10. We mention that the results of Theorems 2.4 and 2.5 do not
depend on the choice of the extension Λ, which is only needed to define in a
rigorous way the change of variable (2.15).

3. The Airy function close to the tip

This section is devoted to the proof of Theorem 2.4. In view of the discussion
in Sect. 2, we will deduce the decomposition (2.8) by investigating the behavior
of the solution of the auxiliary “perturbed” biharmonic problem (2.16), related
to the Airy function wu through the localized system (2.14) and the change of
variables S defined in (2.15). We refer to Theorem 3.12 below for the precise
statement.

We start by recalling some notation and results concerning differential
operators with smooth coefficients in domains with conical points. Since we
are interested in an asymptotic expansion close to the tip 0 of the straightened
crack Γ̂ in the domain Ω\Γ̂, we will adapt all the results to our particular
setting. For further details and more general assumptions we refer to [16,
Section 6].

Since S is such that S(Γ ∩ Bδ) ⊆ {x2 = 0, x1 ≥ 0}, it is convenient
to represent, in a neighborhood of the origin, the domain Ω\Γ̂ in the polar
coordinates (ρ, θ) ∈ [0,+∞) × (0, 2π), where ρ denotes the distance of x ∈ R

2

from the origin and θ is the usual angle between the vector x−0 and e1, having
its discontinuity line on the set {x2 = 0, x1 ≥ 0}. For simplicity of notation,
we denote by Kr a neighborhood of the crack tip in Ω\Γ̂ described by (ρ, θ),
namely,

Kr := {(ρ, θ) : 0 ≤ ρ ≤ r, θ ∈ (0, 2π)}
for a suitable r > 0. We also set K∞ := R

2\{x2 = 0, x1 ≥ 0}.

Remark 3.1. We notice that the angle θ used above and the angle ϑ introduced
in (2.7) do not coincide, since they have two different lines of discontinuity
({x2 = 0, x1 ≥ 0} and Γ, respectively).

We now define a family of weighted Sobolev spaces in Kr. The same
definition can be given in K∞.
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Definition 3.2. For every integer � ≥ 0 and every β ∈ R we set

V
�

β (Kr) :=

{
v : K → R :

∫
Kr

ρ
2(β−�+|α|)|Dα

v|2 dx < + ∞ for every multi-index α, |α| ≤ �

}
.

The space V �
β (Kr) is a Hilbert space endowed with the norm

‖v‖2
V �

β (Kr)
:=
∑

|α|≤�

∫
Kr

ρ2(β−�+|α|)|Dαv|2 dx.

For � < 0, the space V �
β (Kr) is defined as the dual space of V − �

− β (Kr).

Remark 3.3. We notice that, in view of [12, Theorem 1.2.16], we have
that H2

0 (Kr) ⊂ V 2
0 (Kr). Moreover, every element of V −1

0 (Kr) with compact
support belongs to H−1(Kr).

The following embeddings hold true.

Proposition 3.4. Let β1, β2 ∈ R and �1 ≥ �2 ≥ 0 be such that β1 − �1 ≤ β2 − �2.
Then V �1

β1
(Kr) is continuously embedded in V �2

β2
(Kr).

The following two definitions are given for a general differential operator
of order k

P(x, ∂x) :=
∑

|α|≤k

pα(x)∂α
x (3.1)

with coefficients pα ∈ C∞(Ω) (see, e.g., [17, Chapter 6]). We will later on
specify them in our setting.

Definition 3.5. Given a differential operator P(x, ∂x) as in (3.1), we define the
leading part of P in the origin 0 as

P◦(∂x) :=
∑

|α|≤k

p̄α(0, θ) ∂α
x ,

where the coefficients p̄α ∈ C∞((0,+∞) × (0, 2π)) are such that

pα(x) = ρ|α|−kp̄α(ρ, θ),
(ρ∂ρ)j∂γ

θ (p̄α(ρ, θ) − p̄α(0, θ)) → 0 as ρ → 0, for every j, γ ∈ N.

Definition 3.6. We say that a differential operator P(x, ∂x) of the form (3.1)
is δ-admissible in the origin if the following conditions are satisfied:

(a) the coefficients pα(x) are of class C∞ in Ω\{0};
(b) there exist pα,0 ∈ C∞([0, 2π]) and pα,1 ∈ C∞((0,+∞) × [0, 2π]) such

that, in a neighborhood of the origin, we can write

pα(x) = ρ|α|−k
(
pα,0(θ) + ρδpα,1(ρ, θ)

)
;

(c) for every pair of non negative integers j and γ, there exists a positive
constant C such that

|(ρ∂ρ)j ∂γ
θ pα,1(ρ, θ)| ≤ C for every (ρ, θ) ∈ (0,+∞) × [0, 2π].
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Remark 3.7. If the coefficients pα belong to C∞(Ω), then the operator P(x, ∂x)
in (3.1) is δ-admissible with δ = 1 and its leading part reads

P◦(∂x) :=
∑

|α|=k

pα(0) ∂α
x .

The last definition we give here involves a general boundary condition
problem {

L(x, ∂x)u = f in Ω\Γ̂,

Ck(x, ∂x)u = gk on ∂Ω ∪ Γ̂, k = 1, . . . , m,
(3.2)

where L(x, ∂x) is a differential operator of order 2m with coefficients in C∞(Ω)
and Ck(x, ∂x) are differential operators of order μk < 2m with smooth coef-
ficients. We rewrite the leading parts L◦(∂x) and C◦

k(∂x) of L and Ck in the
origin 0, respectively, in the polar coordinates (ρ, θ) ∈ Kr as follows:

L◦(∂x) = ρ−2mL◦(θ, ∂θ, ρ∂ρ),

C◦
k(∂x) = ρ−μkC◦

k(θ, ∂θ, ρ∂ρ).

In order to study the behavior of solutions of a boundary value problem of the
form (3.2) close to the origin, it is customary to introduce the so called pencil
operator.

Definition 3.8. Given λ ∈ C, we define the pencil operator U(λ) of (3.2) in 0
as the map U(λ) : H2m(0, 2π) → L2(0, 2π) × C

2m such that

U(λ) v :=
(
L◦(θ, ∂θ, λ)v, C◦

1 (θ, ∂θ, λ)v|θ=0, C◦
1 (θ, ∂θ, λ)v|θ=2π, . . . ,

C◦
m(θ, ∂θ, λ)v|θ=0, C◦

m(θ, ∂θ, λ)v|θ=2π

)
.

We say that λ ∈ C is an eigenvalue of the pencil operator U if kerU(λ) �= {0}.

According to the definitions above and to Remark 3.7, the differential
operators defining the boundary value problems (2.16) are 1-admissible in the
origin 0. From the properties of B (see Remark 2.9), we have that the leading
part of Δ2 + B at the origin coincides with Δ2 and the corresponding pencil
operator U(λ) reads

U(λ)v :=
(
(∂2

θ + (λ − 2)2)(∂2
θ + λ2) v, v(0), v(2π), ∂θ v(0), ∂θ v(2π)

)
, (3.3)

for every v ∈ H4(0, 2π). As it can be checked in [17, Chapter 7], the set of
eigenvalues of (3.3) is

S =
{

1 +
k

2
: k ∈ Z\{0}

}
. (3.4)

We now state two results that relate the operator pencil U(λ) with the
solvability of the system (2.16), and that will be exploited in the proof of
Theorem 3.11. The first proposition asserts that the system{

Δ2φ = 0 in D′(K∞),
φ(ρ, 0) = φ(ρ, 2π) = 0, ∂θφ(ρ, 0) = ∂θφ(ρ, 2π) = 0,

(3.5)
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admits a unique solution φ ∈ V �
β (K∞) for every l ∈ Z and every β ∈ R out of

a countable set. The proof can be found, for instance, in [16, Chapter 6].

Proposition 3.9. Let � ∈ Z and β ∈ R be such that −β + � − 1 /∈ S. Then, the
system (3.5) admits only φ = 0 as a solution in V �

β (K∞).

For the following theorem, it is useful to introduce some notation: for
every λ ∈ S, we denote by m(λ) the algebraic multiplicity of the eigenvalue λ

and by u
(i)
λ , 1 ≤ i ≤ m(λ), the family of linearly independent functions solving

U(λ)u
(i)
λ = 0. Notice that all the eigenvalues of the operator pencil (3.3) have

multiplicity 2, except for λ = 0 and λ = 2, which are simple.

Theorem 3.10. Let �1, �2 ∈ Z and β, γ ∈ R be such that 0 < (�2−γ)−(�1−β) <
1 and that

−β + �1 − 1 /∈ S and − γ + �2 − 1 /∈ S.

Moreover, assume that

S ∩ (−β + �1 − 1, − γ + �2 − 1) = {λ1, . . . , λN}.

If w ∈ V �1
β (Kr) is a solution of (2.16) with f̂ ∈ V �2−4

γ (Kr), then there exist a
function wR ∈ V �2

γ (Kr) and constants ci
j, i = 1, . . . , m(λj), j = 1, . . . , N such

that

w = wR +
N∑

j=1

m(λj)∑
i=1

ci
j ρλj u

(i)
λj

.

Proof. We refer to [16, Theorem 6.4.1]. �

For the sake of clearness, we introduce two auxiliary functions φ̂1 and φ̂2,
which simply correspond to φ1 and φ2 computed in the usual angular coordi-
nate θ (continuous in Bδ\Γ̂, for δ small enough). Namely, we set

φ̂1(ρ, θ) := φ1(ρ, θ) and φ̂2(ρ, θ) := φ2(ρ, θ). (3.6)

Although this notation seems to be redundant, it will be very useful in Propo-
sition 3.13. We clarify the difference between the angles θ and ϑ in Fig. 2.

We are now in a position to state the main result of the section.

Bδ(0)

Γ

Γ

ϑ = θ

ϑ = θ − 2π

0

Bδ(0)

Γ

Γ

ϑ = θ − 2πϑ = θ

0

Figure 2. Relation between ϑ and θ in Bδ(0), when Γ ⊂
{x1 ≥ 0, x2 ≥ 0} (left) and Γ ⊂ {x1 ≥ 0, x2 ≤ 0} (right)
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Theorem 3.11. Let ŵ ∈ H2
0 (Ω\Γ̂) be the solution of (2.16). Then, there exist

unique two constants C1 and C2 such that

ŵ − C1φ̂1 − C2φ̂2 ∈ H3(Kr). (3.7)

Proof. In view of Remark 3.3, since ŵ ∈ H2
0 (Kr), we have ŵ ∈ V 2

0 (Kr).
Moreover, since f̂ ∈ H−1(Kr) has support far from the origin, we deduce
that f̂ ∈ V −1

−ε (Kr) for every ε > 0.
Choosing 0 < ε < 1/2, we are in a position to apply Theorem 3.10

with �1 = �2 = 2, β = 0 and γ = −ε. Since the set of eigenvalues S in (3.4)
does not intersect the interval (1, 1 + ε), we conclude that ŵ ∈ V 2

−ε(Kr).
We now apply a second time Theorem 3.10 with β = −ε, �1 = 2, �2 = 3,

and −ε < γ < 0. Since

S ∩ (1 + ε, 2 − γ) =
{3

2
, 2
}

,

there exist C1, C2, C3 ∈ R such that

ŵ − C1ρ
3/2u

(1)
3
2

(θ) − C2ρ
3/2u

(2)
3
2

(θ) − C3ρ
2u2(θ) ∈ V 3

γ (Kr), (3.8)

where u
(1)
3
2

, u
(2)
3
2

, and u2 are the eigenfunctions of the pencil operator (3.3)

associated to the eigenvalues 3
2 (with multiplicity 2) and 2 (simple). By Propo-

sition 3.4, we have that V 3
γ (Kr) embeds in V 3

0 (Kr) and, recalling Remark 3.3,
V 3

0 (Kr) ⊆ H3(Kr). Therefore, the difference in (3.8) belongs to H3(Kr).
By standard computations regarding the bilaplacian (see, for instance, [17,

Section 7]), we have that

u
(1)
3
2

(θ) =
2
3

sin
3θ

2
− 2 sin

θ

2
, u

(2)
3
2

(θ) = cos
3θ

2
− cos

θ

2
, u2(θ) = 1 − cos 2θ.

Clearly, the function ρ2u2(θ) belongs to H3(Kr). Hence, (3.8) reduces to (3.7).
The uniqueness of the constants C1 and C2 follows by Proposition 3.9.

Indeed, if C1, C2 ∈ R are such that (3.7) is satisfied, we deduce from (3.8) that

(C1 − C1)φ̂1 + (C2 − C2)φ̂2 ∈ V 3
γ (Kr). (3.9)

By a direct computation, it can be shown that the functions φ̂1 and φ̂2 extended
to the whole of K∞ are solutions of the Dirichlet problem (3.5), so that the
same holds for the function in (3.9). Since 2− γ /∈ S, applying Proposition 3.9
we get that

(C1 − C1)φ̂1 + (C2 − C2)φ̂2 = 0,

that is, C1 = C1 and C2 = C2, and the proof is thus concluded. �

Thanks to Theorem 3.11, we can easily deduce the next regularity result
regarding the Airy function wu ∈ H2(Ω\Γ) defined in Lemma 2.1.

Theorem 3.12. Let Γ ⊂ Ω be a C∞-crack set with a vertex in the origin, and
let wu ∈ H2(Ω\Γ) be the Airy function satisfying (2.5) and (2.6). Then, there
exist unique two constants C1 and C2 such that

wu − C1φ̂1 ◦ S − C2φ̂2 ◦ S ∈ H3(Ω′\Γ) (3.10)
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for every Ω′ ⊂⊂ Ω.

Proof. We recall that, with the notation introduced in Sect. 2, wu,η = ηwu

(for a suitable cut-off function η) solves the system (2.14) and is related to the
solution ŵ ∈ H2

0 (Ω\Γ̂) of (2.16) by the change of variable wu,η = ŵ ◦S. Hence,
Theorem 3.11 implies that

wu,η − C1φ̂1 ◦ S − C2φ̂2 ◦ S ∈ H3(Kr),

with the same constants C1 and C2 determined in (3.7). Proposition 2.3 allows
us to get rid of the cut-off function, since wu is an H3-function far from the
crack tip. Hence we deduce (3.10). �

As in [18, Proposition 1.6], the last step of the proof of Theorem 2.4 con-
sists in showing that the singularities (3.10) of the Airy function wu ∈ H2(Ω\Γ)
can be expressed by the simpler functions φ1(ρ, ϑ) and φ2(ρ, ϑ) introduced in
Theorem 2.4. We stress that the advantage of using φ1, φ2 instead of φ̂1, φ̂2 is
that they do not require the explicit computation of the change of variables S
in (2.15). In order to make the presentation simpler, in the following proposi-
tion we assume that, at least in a neighborhood of the origin, the crack Γ is
contained in the cone {x1 ≥ 0, x2 ≥ 0}. We will briefly specify in Remark 3.14
what happens in the other scenario, when Γ ⊆ {x1 ≥ 0, x2 ≤ 0} (see also
Fig. 2).

Proposition 3.13. Let Γ ⊂ Ω be a C∞-crack set with a vertex in the origin and
assume that, in a neighborhood of the origin, it is contained in the cone {x1 ≥
0, x2 ≥ 0}. Then φi + φ̂i ◦ S ∈ H3(Ω′\Γ), for i = 1, 2, and for every Ω′ ⊂⊂ Ω.

Proof. Let us consider i = 1. Since both the functions φ1 and φ̂1 ◦ S belong
to H2(Ω\Γ) and are regular far from the origin, we only have to estimate the
sum of their third derivatives Djklφ1 + Djkl(φ̂1 ◦ S) close to 0. By a direct
computation, we have that

|Djklφ1 + Djkl(φ̂1 ◦ S)|
≤
∣∣∣Djklφ1 +

∑
n,m,r

Dnmrφ̂1(S(x))DjSnDkSmDlSr

∣∣∣

+
∣∣∣∑

m,r

Dmrφ̂1(S(x))DlSrDjkSm

∣∣∣+
∣∣∣∑

m,r

Dmrφ̂1(S(x))DkSmDjlSr

∣∣∣

+
∣∣∣∑

m,r

Dmrφ̂1(S(x))DjSmDklSr

∣∣∣+
∣∣∣∑

r

Drφ̂1(S(x))DjklSr

∣∣∣.
(3.11)

Adding and subtracting in (3.11) the term
∑

n,m,r Dnmrφ1DjSnDkSmDlSr and
taking into account the smoothness of S, we deduce that there exists a positive
constant C such that
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|Djklφ1 + Djkl(φ̂1 ◦ S)|
≤ C

(|∇φ̂1| + |∇2φ̂1|)
+
∑

n,m,r

|Dnmrφ1||δn
j δm

k δr
l − DjSnDkSmDlSr|

+
∑

n,m,r

|DjSnDkSmDlSr||Dnmrφ̂1(S(x)) + Dnmrφ1(x)|, (3.12)

where δj
i denotes the usual Kronecker delta. In view of the 3/2-homogeneity

of φ̂1 (see (3.6)), of the regularity of S, and of the fact that ∇S(0) = I, we
easily see that, at least in a neighborhood of the origin,

∑
n,m,r

|Dnmrφ1||δn
j δm

k δr
l − DjSnDkSmDlSr| ≤ C|x|− 3

2 |x| = C|x|− 1
2 , (3.13)

for some positive constant C independent of x. In particular, we notice that
the function x �→ |x|− 1

2 is square integrable in Ω\Γ.
We now estimate the last term in the right-hand side of (3.12). Of course,

|DjSnDkSmDlSr| is uniformly bounded by definition of S (2.15). Therefore,
it remains to estimate the sum |Dnmrφ̂1(S(x)) + Dnmrφ1(x)| for x ∈ Ω\Γ.
To this end, we notice that, by definition of the angles θ and ϑ and of S
in (2.15), we have either ϑ(x) = θ(x) − 2π or θ(S(x)) = ϑ(S(x)) + 2π. In view
of these relations, we can always find a new function φ1 continuous on the
segment [x,S(x)] and such that

φ1(x) = φ1(x) ⇐⇒ φ1(S(x)) = −φ̂1(S(x)). (3.14)

Indeed, when the segment [x,S(x)] meets Γ, we set φ1(y) : = −φ̂1(θ(y)),
while we define φ1(y) : = φ̂1(ϑ(y)) whenever [x,S(x)] ∩ Γ = ∅. By direct
comparison, it is easy to check that (3.14) holds true. Therefore, the sum
|Dnmrφ̂1(S(x))+Dnmrφ1(x)| takes the form |Dnmrφ1(S(x))−Dnmrφ̄1(x)| and,
in view of the above discussion, the angle used to define φ1 is continuous along
the segment [x,S(x)].

Applying the mean value theorem to φ1, we find a point x̄ ∈ [x,S(x)]
such that

|Dnmrφ̂1(S(x)) + Dnmrφ1(x)| = |Dnmrφ1(S(x)) − Dnmrφ1(x)|
≤ |∇Dnmrφ1(x̄)||x − S(x)|. (3.15)

Since S ∈ C∞ with S(0) = 0 and ∇S(0) = I, we have that, close to the origin,

|x − S(x)| ≤ L|x|2, (3.16)

for L := Lip(∇2S)/2, Lip(·) denoting the Lipschitz constant of a function. If
we indicate with d the distance between the origin 0 and the segment [x,S(x)],
by [18, Lemma 1.7] we have that, at least for |x| small enough, d ≥ 1

2 |x|. Hence,
we deduce that

|x̄|− 5
2 ≤ d− 5

2 ≤ 2
5
2 |x|− 5

2 . (3.17)
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Combining (3.16) and (3.17) with the behavior of the fourth order derivatives
of φ1 and the estimate (3.15), we get that

|Dnmrφ̂1(S(x)) + Dnmrφ1(x)| ≤ C|x|− 1
2 , (3.18)

for some positive constant C.
Finally, inserting (3.14) and (3.18) in (3.12), we deduce that the sum

|Djklφ1−Djkl(φ̂1◦S)| is square integrable close to the origin, and this concludes
the proof of the proposition. �

Remark 3.14. If the crack set Γ is contained, at least close to its tip, in the
cone {x1 ≥ 0, x2 ≤ 0}, the statement of Proposition 3.13 needs to be slightly
modified: we can prove that φi − φ̂i ◦ S ∈ H3(Ω′\Γ), for i = 1, 2 and for
every Ω′ ⊂⊂ Ω. The strategy of the proof remains the same, apart from (3.14).
In this case, we can find a function φ1 such that

φ1(x) = φ1(x) ⇐⇒ φ1(S(x)) = φ̂1(S(x)).

The immediate consequence of this fact is that the constants appearing in the
decomposition (2.8) of Theorem 2.4 could not coincide with the ones found
in Theorem 3.12. Precisely, as shown in the proof of Proposition 3.13, the
definition of the angle ϑ could result in a change of sign in the definition of the
constants C1, C2 when passing from φ̂i◦S (Theorem 3.12) to φi (Theorem 2.4).

Nevertheless, we stress that this possible “uncertainty” of the sign of
the constants C1 and C2 does not affect the results in Sect. 4. Indeed, in
Theorem 4.1, only the squares of the stress intensity factors Q1 and Q2 appear.
Hence, their sign, which depend on C1, C2, is not of particular interest for us.

Proof of Theorem 2.4. The splitting (2.8) follows from Theorem 3.12, Propo-
sition 3.13, and Remark 3.14. �

4. The energy release rate

In this section we are concerned with the computation of the so called energy
release rate, i.e., the opposite of the derivative of the elastic energy with respect
to the crack elongation. In order to define it rigorously, we first need to prove
that the elastic energy at the equilibrium is in some suitable sense differentiable
with respect to the crack length parameter. To do this, we start by considering
an increasing family of C∞-curves Γs parametrized by their arc-length s ∈
[0, L], L > 0, and having an endpoint in ∂Ω. It will be useful to write the
curves Γs in the form

Γs := {γ(σ) : 0 ≤ σ ≤ s}, (4.1)
where γ is the arc-length parametrization of Γs, with γ(0) ∈ ∂Ω. Given s ∈
[0, L], we denote by us ∈ H1(Ω\Γs;R2) the solution to the minimum problem

min {E(u,Γs) : u ∈ H1(Ω\Γs;R2), u = g on ∂Ω},

where g ∈ H1(Ω\ΓL;R2) is the usual boundary datum. For what follows, it
is not restrictive to assume that 0 /∈ supp(g). Moreover, we set Emin(Γs) : =
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E(us,Γs) and we notice that the functions s �→ Emin(Γs) and s �→ us are
continuous from R to R and from R to H1, respectively.

Let us fix s0 ∈ (0, L). Without loss of generality, we may assume that
γ(s0) = 0 and γ′(s0) = −e1. Therefore, Theorem 2.5 ensures that there exist
two constants Q1 and Q2, which depend on Γs0 , such that

us0 = uR + Q1Φ1 + Q2Φ2, (4.2)

where uR ∈ H2(Ω′\Γs0 ;R
2) for every Ω′ ⊂⊂ Ω and Φ1, Φ2 are defined in (2.9)–

(2.10). With this notation, the following result holds.

Theorem 4.1. The energy Emin is differentiable at s0 and

dEmin(Γs)
ds

∣∣∣
s=s0

= − 2π
(
Q2

1(Γs0) + Q2
2(Γs0)

)
μ(λ + μ)(λ + 2μ), (4.3)

where λ and μ are the Lamé coefficients.

Proof. In order to prove the differentiability of the energy s �→ Emin(Γs) in s0

we adapt the argument of [18, Theorem 2.1]. For simplicity, we adopt here the
Einstein notation of summation over repeated indices.

In order to make explicit computations, for r > 0 small enough we may
assume that the curve Γs ∩ Br, s ≥ s0, is the graph of a C∞-function ζ in a
neighborhood of γ(s0) such that ζ ′(γ1(s0)) = 0. For δ > 0 small, we introduce
a C∞-diffeomorphism Fs0,δ that maps Γs0 in Γs0+δ and coincides with the
identity of R2 far from the origin (see, e.g., [1,14]). Therefore, for x ∈ Br/2 we
set

Fs0,δ(x) := x +
(

(γ1(s0 + δ) − γ1(s0))ϕ(x)
ζ(x1 + (γ1(s0 + δ) − γ1(s0))ϕ(x)) − ζ(x1)

)
, (4.4)

where ϕ ∈ C∞
c (Br/2) is a suitable cut-off function equal to 1 close to the origin

and such that

supp(ϕ) ∩ supp(g) = ∅. (4.5)

We extend Fs0,δ with the identity out of Br/2.
By the regularity of ζ, we deduce that Fs0,δ is a C∞-diffeomorphism of R2

such that Fs0,δ(Γs0) = Γs0+δ. Moreover, the following equalities hold:

ρs0(x) := ∂δ(Fs0,δ(x))|δ=0 = γ′
1(s0)ϕ(x)

(
1

ζ ′(x1)

)
= −ϕ(x)

(
1

ζ ′(x1)

)
,

(4.6)
∂δ(det ∇Fs0,δ)|δ=0 = divρs0 ,

(4.7)
∂δ(∇Fs0,δ)|δ=0 = − ∂δ(∇Fs0,δ)−1|δ=0 = ∇ρs0 .
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For what follows, let us denote by Us0+δ := us0+δ◦Fs0,δ ∈ H1(Ω\Γs0 ;R
2).

Since Fs0,δ = id on ∂Ω, we clearly have Us0+δ = g on ∂Ω. Moreover, it is easy
to check that

Us0+δ = arg min

{
1
2

∫
Ω\Γs0

C(∇v(∇Fs0,δ)−1) : ∇v(∇Fs0,δ)−1 det ∇Fs0,δ dx :

(4.8)

v ∈ H1(Ω\Γs0 ;R
2), v = g on ∂Ω

}
.

In particular,

Emin(Γs0+δ) = E(us0+δ,Γs0+δ)

=
1

2

∫
Ω\Γs0

C
(∇Us0+δ(∇Fs0,δ)

−1) : ∇Us0+δ(∇Fs0,δ)
−1 det ∇Fs0,δ dx.

We also notice that, since us0+δ → us0 in H1 as δ → 0, Us0+δ → us0

in H1(Ω\Γs0 ;R
2).

We now show that the function δ �→ Us0+δ is differentiable in δ = 0.
Indeed, by definition of us0 , the finite difference (Us0+δ − us0)/δ satisfies, for
every v ∈ H1(Ω\Γs0 ;R

2) with v = 0 on ∂Ω,∫
Ω\Γs0

C

(
∇Us0+δ − us0

δ

)
: ∇v dx

=
∫

Ω\Γs0

C∇Us0+δ

δ
: ∇v dx =

∫
Ω\Γs0

C

(
∇Us0+δ

(I−(∇Fs0,δ)−1)
δ

)
: ∇v dx

+
∫

Ω\Γs0

C
(∇Us0+δ(∇Fs0,δ)−1

)
: ∇v

(I−(∇Fs0,δ)−1)
δ

dx

+
∫

Ω\Γs0

C
(∇Us0+δ(∇Fs0,δ)−1

)
: ∇v(∇Fs0,δ)−1 (1 − det ∇Fs0,δ)

δ
dx.

The previous equality implies that (Us0+δ − us0)/δ is the solution of

min
{1

2

∫
Ω\Γs0

C∇v : ∇v dx −
∫

Ω\Γs0

C

(
∇Us0+δ

(I−(∇Fs0,δ)−1)
δ

)
: ∇v dx

−
∫

Ω\Γs0

C
(∇Us0+δ(∇Fs0,δ)−1

)
: ∇v

(I−(∇Fs0,δ))−1)
δ

dx

−
∫

Ω\Γs0

C
(∇Us0+δ(∇Fs0,δ)−1

)
: ∇v(∇Fs0,δ)−1 (1 − det ∇Fs0,δ)

δ
dx :

v ∈ H1(Ω\Γs0 ;R
2), v = 0 on ∂Ω

}
.
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Thus, we deduce that the function δ �→ Us0+δ−us0
δ is bounded in

H1(Ω\Γs0 ;R
2) and, up to a subsequence, it converges weakly to some function

U̇ ∈ H1(Ω\Γs0 ;R
2) as δ → 0. Since it turns out that U̇ is such that

U̇ = arg min

⎧⎨
⎩

1
2

∫
Ω\Γs0

C∇v : ∇v dx −
∫

Ω\Γs0

C∇us0∇ρs0 : ∇v dx

−
∫

Ω\Γs0

C∇us0 : ∇v∇ρs0 dx

+
∫

Ω\Γs0

C∇us0 : ∇v divρs0 dx : v ∈ H1(Ω\Γs0 ;R
2), v = 0 on ∂Ω

⎫⎬
⎭ ,

(4.9)

we also deduce that

lim
δ→0

Us0+δ − us0

δ
= U̇ strongly in H1(Ω\Γs0 ;R

2). (4.10)

We now estimate the finite difference quotient

Emin(Γs0+δ) − Emin(Γs0)
δ

=
E(us0+δ,Γs0+δ) − E(us0 ,Γs0)

δ
.

By the minimality of us0 , we have

Emin(Γs0) =
1
2

∫
Ω\Γs0

CEus0 : Eus0 dx =
1
2

∫
Ω\Γs0

CEus0 : Eg dx. (4.11)

In a similar way, recalling (4.4) and (4.5), we deduce that

Emin(Γs0+δ) =
1
2

∫
Ω\Γs0

CEus0+δ : Eg dx =
1
2

∫
Ω\Γs0

CEUs0+δ : Eg dx. (4.12)

Combining (4.11) and (4.12) we get that

Emin(Γs0+δ) − Emin(Γs0)
δ

=
1
2δ

∫
Ω\Γs0

CE(Us0+δ − us0) : Eg dx.

Passing to the limit as δ → 0 in the previous equality and taking into account
the convergence (4.10), we obtain that δ �→ Emin(Γs0+δ) is differentiable in δ =
0 and

dEmin(Γs)
ds

∣∣∣
s=s0

=
dEmin(Γs0+δ)

dδ

∣∣∣
δ=0

=
1
2

∫
Ω\Γs0

CEU̇ : Eg dx. (4.13)
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Considering the minimum problem (4.9) and the Euler-Lagrange equation
associated to it and recalling that U̇ = 0 on ∂Ω, we can rewrite (4.13) as

dEmin(Γs)
ds

∣∣∣
s=s0

=
1
2

∫
Ω\Γs0

CEU̇ : E(g − us0) dx

=
1
2

∫
Ω\Γs0

C(∇us0∇ρs0) : ∇(g − us0) dx

+
1
2

∫
Ω\Γs0

C∇us0 : ∇(g − us0)∇ρs0 dx

− 1
2

∫
Ω\Γs0

C∇us0 : ∇(g − us0)divρs0 dx.

(4.14)

In view of (4.5) we have that supp(ρs0) ∩ supp(g) = ∅, so that (4.14) can be
rewritten as

dEmin(Γs)
ds

∣∣∣
s=s0

= −
∫

Ω\Γs0

CEus0 : ∇us0∇ρs0 dx

+
1
2

∫
Ω\Γs0

CEus0 : ∇us0divρs0 dx

= −
∫

Ω\Γs0

σ(us0) : ∇us0∇ρs0 dx

+
1
2

∫
Ω\Γs0

σ(us0) : ∇us0 divρs0 dx,

(4.15)

where we have used the notation σ(u) := CEu.
In order to compute explicitly the right-hand side of (4.15), we first inte-

grate out of the closure of the ball Bε centered in the origin and of radius ε
and then pass to the limit as ε → 0. By integration by parts and writing the
integrands in components, we get

−
∫

(Ω\Γs0 )\Bε

σ(us0) : ∇us0∇ρs0 dx +
1
2

∫
(Ω\Γs0 )\Bε

σ(us0) : ∇us0divρs0 dx

=
∫

(Ω\Γs0 )\Bε

Djσij(us0)Dkus0,iρs0,k dx

+
∫

(Ω\Γs0 )\Bε

σij(us0)DjDkus0,i ρs0,k dx

+
∫

∂Bε

σij(us0)ν∂Bε,jDkus0,i ρs0,k dH1

+
∫

Γs0\Bε

σij(us0)νΓs0,j
Dkus0,i ρs0,k dH1

− 1
2

∫
(Ω\Γs0 )\Bε

Dkσij(us0)Djus0,i ρs0,k dx (4.16)
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− 1
2

∫
(Ω\Γs0 )\Bε

σij(us0)DkDjus0,i ρs0,k dx

− 1
2

∫
∂Bε

σij(us0)Djus0,i ρs0,kν∂Bε,k dH1

− 1
2

∫
Γs0\Bε

σij(us0)Djus0,i ρs0,kνΓs0 ,k dH1,

where ν∂Bε
denotes the outer unit normal to the ball Bε and νΓs0

is the unit
normal vector to Γs0 . In the right-hand side of (4.16) we have that, by definition
of us0 , divσ(us0) = 0, so that∫

Ω\Bε

Djσij(us0)Dkus0,iρs0,k dx = 0.

The remaining volume integrals sum up to
1
2

∫
Ω\Bε

σij(us0)DjDkus0,i ρs0,k dx − 1
2

∫
Ω\Bε

Dkσij(us0)Djus0,i ρs0,k dx.

Recalling the definitions of the stress σ(us0) = CEus0 and of the elasticity
tensor in terms of the Lamé coefficients (2.1), we can show that

σij(us0)DjDkus0,i ρs0,k − Dkσij(us0)Djus0,i ρs0,k = 0 in Ω\Bε.

Hence, the sum of the volume terms in (4.16) is zero.
As for the surface integrals, due to the stress free condition σ(us0)νΓs0

=
0 on Γs0 , we obtain that∫

Γs0

σij(us0)νΓs0,j
Dkus0,i ρs0,k dH1 = 0.

Moreover, since Γs0 is the graph of the function ζ close to the crack tip, we
have that νΓs0

=
√

1 + ζ ′2(ζ ′,−1). Hence, recalling the definition (4.6) of ρs0 ,
ρs0 · νΓs0

= 0 and ∫
Γs0

σij(us0)Djus0,i ρs0,kνΓs0 ,k dH1 = 0.

Collecting all the previous equalities, (4.16) reduces to

−
∫

Ω\Bε

σ(us0) : ∇us0∇ρs0 dx +
1
2

∫
Ω\Bε

σ(us0) : ∇us0divρs0 dx

=
∫

∂Bε

σ(us0)ν∂Bε
· ∇us0ρs0 dH1 − 1

2

∫
∂Bε

σ(us0) : ∇us0 ρs0 · ν∂Bε
dH1.

(4.17)

To compute the limit as ε → 0 of the right-hand side of (4.17), we recall
the splitting (4.2), which, combined with (4.15) and (4.17), allows us to write

dEmin(Γs)
ds

∣∣∣
s=s0

= lim
ε→0

aε + bε + cε + dε, (4.18)
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where we have set

aε := Q2
1

∫
∂Bε

σ(Φ1)ν∂Bε
· ∇Φ1ρs0 dH1 − Q2

1

2

∫
∂Bε

σ(Φ1) : EΦ1ρs0 · ν∂Bε
dH1

+ Q2
2

∫
∂Bε

σ(Φ2)ν∂Bε
· ∇Φ2ρs0 dH1 − Q2

2

2

∫
∂Bε

σ(Φ2) : EΦ2ρs0 · ν∂Bε
dH1,

bε := Q1Q2

∫
∂Bε

σ(Φ1)ν∂Bε
· ∇Φ2ρs0 dH1 + Q1Q2

∫
∂Bε

σ(Φ2)ν∂Bε
· ∇Φ1ρs0 dH1

− Q1Q2

∫
∂Bε

σ(Φ1) : EΦ2ρs0 · ν∂Bε
dH1,

cε := Q1

∫
∂Bε

σ(Φ1)ν∂Bε
· ∇uRρs0 dH1 + Q1

∫
∂Bε

σ(uR)ν∂Bε
· ∇Φ1ρs0 dH1

− Q1

∫
∂Bε

σ(Φ1) : EuRρs0 · ν∂Bε
dH1 + Q2

∫
∂Bε

σ(Φ2)ν∂Bε
· ∇uRρs0 dH1

+ Q2

∫
∂Bε

σ(uR)ν∂Bε
· ∇Φ2ρs0 dH1 − Q2

∫
∂Bε

σ(Φ2) : EuRρs0 · ν∂Bε
dH1,

dε :=
∫

∂Bε

σ(uR)ν∂Bε
· ∇uRρs0 dH1 − 1

2

∫
∂Bε

σ(uR) : EuRρs0 · ν∂Bε
dH1.

Here, for brevity, we have omitted the dependence of Qi on Γs0 .
In view of the regularity of Fs0,δ and of ρs0 (see (4.6)), we have that

ρs0(x) → (−1, 0) uniformly as x → 0. Therefore, by a long but elementary
computation, we can show that

lim
ε→0

aε = − 2π(Q2
1 + Q2

2)μ(λ + μ)(λ + 2μ),

lim
ε→0

bε = 0.
(4.19)

It remains to prove that cε, dε → 0 as ε → 0. Let us consider the first term
in cε. By Hölder inequality, by the regularity of uR, and by definition (2.10)
of Φ1, we have that

∣∣∣
∫

∂Bε

σ(Φ1)ν∂Bε
· ∇uRρs0 dH1

∣∣∣ ≤ C

ε1/2
‖∇uR‖L1(∂Bε)

≤ C

ε1/2
H1(∂Bε)1/2‖∇uR‖L2(∂Bε)

= C‖∇uR‖L2(∂Bε)

for some positive constant C independent of ε. The same estimate can be
obtained for the remaining terms of cε, so that

|cε| ≤ C‖∇uR‖L2(∂Bε).

As for dε, again by Hölder inequality we simply get

|dε| ≤ C‖∇uR‖2
L2(∂Bε).
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Therefore, we are led to prove that ‖∇uR‖L2(∂Bε) → 0 as ε → 0. Employing
the change of variable y = x

ε and defining v(y) := uR(εy), we can write

‖∇uR‖2
L2(∂Bε) =

1
ε

∫
∂B1

|∇v|2 dH1.

By the continuity of the trace operator (recall that v ∈ H2(B1;R2)), there
exists a positive contant C such that

‖∇uR‖2
L2(∂Bε) ≤ C

ε

∫
B1

|∇2v|2 dy +
C

ε

∫
B1

|∇v|2 dy

= Cε

∫
Bε

|∇2uR|2 dx +
C

ε

∫
Bε

|∇uR|2 dx. (4.20)

By Sobolev embedding and Hölder inequality, we may further estimate (4.20)
with

‖∇uR‖2
L2(∂Bε) ≤ Cε‖∇2uR‖2

L2(∂Bε) + C‖∇uR‖2
L4(Bε).

By the absolute continuity of the integral and the H2-regularity of uR, passing
to the limit in the previous inequality we finally get ‖∇uR‖L2(∂Bε) → 0 as
ε → 0. This concludes the proof of the theorem. �

Remark 4.2. Although the theory of pencil operators exploited in Sect. 3 has
been developed for PDE systems with smooth coefficients, and, as a conse-
quence, our analysis only applies to the class of C∞-crack sets, we notice that
the sole proof of Theorem 4.1 works even if we consider a C1,1-extension of
a C∞-crack set Γs0 . Indeed, repeating all the computation above, we would
obtain exactly the same result, since the splitting (4.2) of us0 only depends
on Γs0 and not on Γs for s ∈ (s0, L), and since the derivatives in (4.6)–(4.8)
are defined for almost every x and are uniformly bounded. This allows us to
give a definition of energy release rate as the opposite of the derivative of the
elastic energy Emin with respect to the crack elongation:

G(Γs0) := −dEmin(Γs)
ds

∣∣∣
s=s0

= 2π
(
Q2

1(Γs0) + Q2
2(Γs0)

)
μ(λ + μ)(λ + 2μ).

From formula (4.15) in the proof of Theorem 4.1 we also deduce an inte-
gral formula for G. Namely,

G(Γs0) =
∫

Ω\Γs0

σ(us0) : ∇us0∇ρs0 dx − 1
2

∫
Ω\Γs0

σ(us0) : ∇us0 divρs0 dx, (4.21)

where ρs0 has been defined in (4.6). Moreover, we notice that (4.3) and (4.21)
are actually independent of the choice of the cut-off function ϕ made in (4.6).

We conclude the paper by proving the continuity of the energy release
rate G with respect to the Hausdorff convergence of the fractures, always under
the assumptions that the crack sets are smooth. Let us fix g ∈ H1(Ω\Γ0;R2),
M > 0, and Γ0 a closed C∞-curve without self-intersection, contained in Ω
except for its initial point (belonging to ∂Ω), and such that Ω\Γ0 is the union
of two Lipschitz sets. We define RM as the set of closed and simple C∞-curves
in Ω containing Γ0 and such that
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• Γ\Γ0 ⊂⊂ Ω;
• denoted by γ : [0,H1(Γ)] → R

2 the arc-length parametrization of Γ,
‖γ(k)‖∞ ≤ M for every k ∈ {0, 1, 2},

where the superscript (k) denotes the k-th derivative. It is clear that RM is
compact with respect to the Hausdorff convergence of sets.

Given a sequence Γn ∈ RM converging in the Hausdorff metric of sets to
some Γ∞ ∈ RM as n → +∞, we denote by un ∈ H1(Ω\Γn;R2) the solution
of

min {E(u,Γn) : u ∈ H1(Ω\Γn;R2), u = g on ∂Ω}. (4.22)
Similarly, we indicate with u∞ ∈ H1(Ω\Γ∞;R2) the solution of the same
minimum problem for n = +∞.

Moreover, if sn : = H1(Γn) and γn : [0, sn] → Ω is the arc-length
parametrization of Γn and, similar to (4.6), we assume that Γn, in a neighbor-
hood Br(γn(sn)) of its tip, is the graph of a suitable C∞-function ζn, and we
set

ρn = (γn
1 )′(sn)ϕn

(
1

(ζn)′

)
(4.23)

for a suitable cut-off function ϕn ∈ C∞
c (Br/2(γn(sn))). Recalling (4.21), we

can write

G(Γn) =
∫

Ω\Γn

σ(un) : ∇un∇ρn dx − 1
2

∫
Ω\Γn

σ(un) : ∇un divρn dx. (4.24)

Formulas similar to (4.23) and (4.24) hold also for Γ∞, setting s∞ := H1(Γ∞),
denoting by γ∞ : [0, s∞] → R

2 its arc-length parametrization, and assuming
that Γ∞ is the graph of a C∞-function ζ∞ in Br(γ∞(s∞)). In view of the
convergence of Γn to Γ∞ in the Hausdorff metric, we notice that, at least
for n sufficiently large, in the definition (4.23) of ρn and of ρ∞ we could fix a
common cut-off function ϕ, independent of n.

We are now ready to prove the continuity of the energy release rate G
with respect to the Hausdorff convergence of sets in the class RM .

Corollary 4.3. Let M > 0 and Γn,Γ∞ ∈ RM be such that Γn → Γ∞ as
n → +∞ with respect to the Hausdorff metric of sets. Then, G(Γn) → G(Γ∞).

Proof. Following the lines of [20, Lemma 3.7] and of [2, Lemma 5.5], it is possi-
ble to construct a family of C2-diffeomorphisms Ψn : Ω → Ω which, for every n,
map Γn into Γ∞, keep the boundary ∂Ω fixed, and such that Ψn and (Ψn)−1

converge to the identity function in C1(Ω;R2). With the notation introduced
in (4.22), setting un

∞ : = u∞ ◦ Ψn we clearly have that un
∞ ∈ H1(Ω\Γn;R2),

un
∞ → u∞ in L2(Ω;R2), and ∇un

∞ → ∇u∞ in L2(Ω;M2) as n → +∞.
We now prove that ∇un → ∇u∞ in L2(Ω;M2). In view of (4.22) and of

Korn inequality (see, e.g., [8, Theorem 4.2]), we have that, up to a subsequence,
∇un ⇀ ∇v weakly in L2(Ω;M2) for some v ∈ H1(Ω\Γ∞;R2). Again by (4.22)
and by lower semicontinuity, we have that

E(v,Γ∞) ≤ lim inf
n

E(un,Γn) ≤ lim sup
n

E(un,Γn) ≤ lim sup
n

E(un
∞,Γn)

= E(u∞,Γ∞),
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from which we deduce that v = u∞ and that ∇un → ∇u∞ in L2(Ω;M2) as
n → +∞.

In view of the Hausdorff convergence of Γn to Γ∞ and of the regularity of
the family RM , we have that, up to a reparametrization, γn converges to γ∞

weakly* in W 2,∞([0, s∞];R2) and (ζn)′ → (ζ∞)′ uniformly in Br(γ∞(s∞)).
Therefore, ρn → ρ∞ in W 1,∞(Ω;R2) and, passing to the limit in the expres-
sion (4.24) of G(Γn), we deduce that G(Γn) → G(Γ∞) as n → +∞. �
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