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Existence and asymptotic behavior of
sign-changing solutions for fractional
Kirchhoff-type problems in low dimensions
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Abstract. This paper is dedicated to studying the following fractional
Kirchhoff-type equation(

a + b

∫
RN

|(−�)α/2u|2dx

)
(−�)αu + V (|x|)u = f(|x|, u), x ∈ R

N ,

where a, b > 0, either N = 2 and α ∈ (1/2, 1) or N = 3 and α ∈
(3/4, 1) holds, V ∈ C(RN , [0, ∞)) and f ∈ C(RN × R,R). By combining
the constraint variational method with some new inequalities, we prove
that the above problem possesses a radial sign-changing solution ub for
b ≥ 0 without the usual Nehari-type monotonicity condition on f , and its
energy is strictly larger than twice that of the ground state radial solutions
of Nehari-type. Moreover, we establish the convergence property of ub as
b ↘ 0. In particular, our results unify both asymptotically cubic and
super-cubic cases, which improve and complement the existing ones in
the literature.

Mathematics Subject Classification. 35J20, 35Q55, 35Q51, 53C35.
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1. Introduction

In this paper, we study the existence of sign-changing solutions for the follow-
ing fractional Kirchhoff-type equation(

a + b

∫
RN

|(−�)α/2u|2dx

)
(−�)αu + V (x)u = f(x, u), x ∈ R

N , (1.1)

where a, b are positive constants, either N = 2 and α ∈ (1/2, 1) or N = 3 and
α ∈ (3/4, 1) holds, and V : RN → R and f : RN ×R → R satisfy the following
basic assumptions:
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(V1) V ∈ C(RN , [0,∞)), V (x) = V (|x|), and the operator (−�)α + V (x) :
Hα(RN ) → H−α(RN ) satisfies

inf
u∈Hα(RN )

‖u‖2=1

∫
RN

(
a|(−�)α/2u|2 + V (x)u2

)
dx > 0;

(F1) f ∈ C(RN × R,R), and there exist C0 > 0 and 2 < p < 2∗
α := 2N/(N −

2α) such that

|f(x, t)| ≤ C0

(
1 + |t|p−1

)
, ∀ (x, t) ∈ R

N × R;

(F2) f(x, t) = o(|t|) as t → 0 uniformly in x ∈ R
N .

The fractional Laplacian (−�)α in R
N is a nonlocal pseudo-differential

operator taking the form

(−�)αu(x) = CN,sP.V.

∫
RN

u(x) − u(y)
|x − y|N+2α

dy, x ∈ R
N , u ∈ S(RN ), (1.2)

where P.V. is the principal value, CN,α is a normalization constant and S(RN )
is the Schwartz space of rapidly decaying C1 functions in R

N , see [3,24] for
more details. In this paper, we consider the fractional Laplacian in the weak
sense. As usual, for any α ∈ (0, 1), we let∫

RN

(−�)α/2u(−�)α/2v = CN,α

∫
RN

∫
RN

[u(x) − u(y)][v(x) − v(y)]
|x − y|N+2α

dxdy,

‖(−�)α/2u‖2
2 = CN,α

∫
RN

∫
RN

[u(x) − u(y)]2

|x − y|N+2α
dxdy,

and define the fractional Sobolev space

Hα(RN ) =
{

u ∈ L2(RN ) : (−�)α/2u ∈ L2(RN )
}

endowed with scalar product and norm

(u, v)Hα =
∫
RN

[
(−�)α/2u(−�)α/2v + uv

]
dx,

‖u‖Hα =
(∫

RN

[
|(−�)α/2u|2 + u2

]
dx

)1/2

.

Problem (1.1) has a strong physical meaning because it models, as a
special significant case, the nonlocal aspect of the tension arising from nonlocal
measurements of the fractional length of the string, see Fiscella and Valdinoci
[21] for more details. In particular, when a = 1 and b = 0, (1.1) reduces to the
following fractional Schrödinger equation

(−�)αu + V (x)u = f(x, u), x ∈ R
N , (1.3)

which has been proposed by Laskin [24] in fractional quantum mechanics as
a result of extending the Feynman integrals from the Brownian like to the
Lèvy like quantum mechanical paths. Pioneered from [19,20] via variational
methods, the existence and multiplicity of solutions for problems like (1.3) have
been intensively studied under various hypotheses on V and f . Concerning the
existence of sign-changing solutions, we refer to [10,18,28,40,41] and so on. In
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[10], by using the s-harmonic extension introduced by Caffarelli and Silvestre
[9] (see also [32]), via the method of invariant sets of descent flow, sign-changing
solutions of the following equation{

(−�)su = f(x, u), in Ω,

u = 0, in R
N\Ω,

(1.4)

was obtained, where s ∈ (0, 1) is fixed, N > 2s, Ω denotes an open bounded set
in R

N with smooth boundary. We must note that the s-harmonic extension
transform the nonlocal problem in to a local problem in the half cylinder
Ω × [0,+∞). In this sense the authors in [9] still dealt with a local problem.
While in [18], the authors investigated the existence of sign-changing solutions
of (1.4) directly by the definition (1.2).

If b = 0 and α = 1, then (1.1) formally becomes the semilinear Schrödinger
equation. As far as we know, there are different ways to get the sign-changing
solutions for such a local equation, such as, constructing invariant sets and
descending flow (Bartsch et al. [5]), the Ekeland’s variational principle and
the implicit function theorem (Noussair and Wei [33]), variational method to-
gether with the Brouwer degree theory (Bartsh and Weth [6]), we refer the
reader to the book [46] of Zou for more discussions. These methods rely on
fact that if u belongs to the corresponding nodal Nehari manifold, then u±

belongs to the Nehari manifold related to (1.3) with α = 1 due to the following
decomposition:

‖∇(u+ + u−)‖2
2 = ‖∇u+‖2

2 + ‖∇u−‖2
2, ∀ u ∈ H1(RN ),

where

u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}.

If b > 0 and α = 1, then (1.1) formally reduces to the following well-
known Kirchhoff equation

−
(

a + b

∫
RN

|∇u|2dx

)
�u + V (x)u = f(x, u), x ∈ R

N , (1.5)

which is related to the stationary analogue of the equations

utt −
(

a + b

∫
Ω

|∇u|2dx

)
�u = f(x, u),

when V = 0 and R
N is replaced by a bounded domain Ω ⊂ R

N . Such a
equation is first proposed by Kirchhoff [23] as an extension of the classical
d’Alembert wave equations for free vibrations of elastic strings. For more
mathematical and physical background on Kirchhoff type problems, we refer
the readers to [4,7,8,16] and the references therein. After Lions [26] proposed
an abstract functional analysis framework to Kirchhoff equation (1.5), prob-
lems like (1.5) received more and more attention on mathematical studies. As
far as we know, there are many papers on sign-changing solutions, see e.g.
[15,17,29,30,35,36,44] when f(x, t) is super-cubic or asymptotically cubic at
t = ∞.
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More recently, many researchers began to focus on problems like (1.1),
especially on the existence of positive solutions, multiple solutions and ground
state solutions, see for example, [2,22,27,34,43] and the references therein.
However, there exist very few results on sign-changing solutions of (1.1). In
fact, in the case α ∈ (0, 1), we have the following decomposition:

‖(−�)α/2u+ + (−�)α/2u−‖2
2 = ‖(−�)α/2u+‖2

2 + ‖(−�)α/2u−‖2
2

−4CN,α

∫
R2N

u+(x)u−(y)
|x − y|N+2α

dxdy, ∀ u ∈ Hα(RN ). (1.6)

The difficulty in finding sign-changing solutions of (1.1) results from two non-
local terms: (−�)αu and ‖(−�)α/2u‖2

2(−�)αu. In this sense, (1.1) is different
from the classical case α = 1 and the methods of finding sign-changing solu-
tions for (1.3) with α ∈ (0, 1] and (1.5) can not be directly applied to (1.1). This
causes some mathematical difficulties which make the study of sign-changing
solutions for (1.1) particularly interesting. To the best of our knowledge, there
seems to be only one paper [11] dealing with this problem. More precisely, when
V ∈ C(RN ,R) is coercive and infRN V > 0, inspired by Alves and Nòbrega [1],
by the minimization argument on the nodal Nehari manifold and quantitative
deformation lemma [42], Cheng and Gao [11] proved the existence and asymp-
totic behavior of sign-changing solutions for (1.1), where f satisfies (F1), (F2)
and the following assumptions:

(F3′) lim|t|→∞
f(x,t)

t3 = +∞ uniformly in x ∈ R
N ;

(F4′) f(x,t)
|t|3 is nondecreasing in t on (−∞, 0) ∪ (0,∞) for every x ∈ R

N .

It is easy to see that (F1) and (F3′) imply that 2∗
α = 2N/(N − 2α) > 4, i.e.,

N < 4α, which is the focus of the present paper, and (F4′) implies the weak
Ambrosetti-Rabinowitz type condition:

(AR) f(x, t)t ≥ 4F (x, t) > 0 for x ∈ R
N , t ∈ R\{0},

which would readily imply the boundedness of Palais-Smale sequences. We
point out that the method used in [11] relies heavily on (F3′) and (F4′). Indeed,
because ‖(−�)α/2u‖4

2 is homogeneous of degree 4, in [11], the super-cubic
condition (F3′) plays a crucial role in using Miranda’s theorem [31] to show that
the nodal Nehari manifold related to (1.1) is not empty, and the monotonicity
condition (F4′) is essential to show that the minimizer is a critical point.
Obviously, the method is no longer applicable for (1.1) with more general
nonlinearities, even for the special form f(x, u) = u3.

Now, a natural question is whether (F3′) and (F4′) can be relaxed to
obtain the existence and asymptotic behavior of sign-changing solutions for
(1.1).

Motivated by the above works, in the present paper, we shall solve the
above problem by using the following conditions:

(F3) lim|t|→∞
|t|4α−N f(x,t)

t3 = +∞ uniformly in x ∈ R
N (N < 4α);

(F4) f(x,t)−V (x)t
|t|3 is nondecreasing in t on both (−∞, 0) and (0,∞) for every

x ∈ R
N ,
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instead of (F3′) and (F4′). More precisely, by combining the constraint varia-
tional method with some new inequalities, we will prove that (1.1) with b ≥ 0
has a radial sign-changing solution ub, and its energy is strictly larger than
twice that of the ground state radial solutions of Nehari-type. Furthermore,
we establish the convergence property of ub as the parameter b ↘ 0. Note
that (F3′) implies (F3) due to 2 ≤ N < 4α, and (F4′) implies (F4) due to
infx∈RN V (x) ≥ 0. We would like to mention that the nodal sets and nodal do-
mains of sign-changing solutions for (1.1) is very difficult, even if for Eq. (1.4),
see [18, Remark 1.1].

Throughout this paper, we define

Hα
r (RN ) =

{
u ∈ Hα(RN ) : u(x) = u(|x|)} ,

and denote the fractional Sobolev space for (1.1) by

E =
{

u ∈ Hα
r (RN ) :

∫
RN

V (x)u2dx < ∞
}

equipped with scalar product and norm

(u, v) =
∫
RN

[
a(−�)α/2u(−�)α/2v + V (x)uv

]
dx,

‖u‖ =
(∫

RN

[
a|(−�)α/2u|2 + V (x)u2

]
dx

)1/2

.

The embedding E ↪→ Hα
r (RN ) is continuous due to (V1) and a > 0. In view of

P.L. Lions [25], the embedding E ↪→ Lq(RN ) is compact for 2 < q < 2∗
α when

α ∈ (0, 1) and N ≥ 2.
Define the energy functional Φb : E → R by

Φb(u) =
1
2

∫
RN

[
a|(−�)2/αu|2 + V (x)u2

]
dx +

b

4

(∫
RN

|(−�)2/αu|2dx

)2

−
∫
RN

F (x, u)dx. (1.7)

Using (F1) and (F2), it is easy to see that Φb ∈ C1(E,R). Moreover, for any
u, ϕ ∈ E, we have

〈Φ′
b(u), ϕ〉 =

∫
RN

[
a(−�)2/αu(−�)2/αϕ + V (x)uϕ

]
dx

+ b

∫
RN

|(−�)2/αu|2dx

∫
RN

(−�)2/αu(−�)2/αϕdx −
∫
RN

f(x, u)ϕdx.

(1.8)

Clearly, critical points of Φb are the weak solutions for (1.1) in E. If u ∈ E is
a solution of (1.1) and u± �= 0, we say that u is a radial sign-changing solution
of (1.1). Let

Mb :=
{
u ∈ E : u± �= 0, 〈Φ′

b(u), u+〉 = 〈Φ′
b(u), u−〉 = 0

}
,

mb := inf
u∈Mb

Φb(u), ∀ b ≥ 0,

Nb := {u ∈ E : u �= 0, 〈Φ′
b(u), u〉 = 0} , cb := inf

u∈Nb

Φb(u), ∀ b ≥ 0.



40 Page 6 of 23 S. Chen, X. Tang and F. Liao NoDEA

By (1.6), (1.7) and a simple calculation, one has

Φb(u) = Φb(u+) + Φb(u−) + 2aP (u+, u−) +
b

2
‖(−�)α/2u+‖2

2‖(−�)α/2u−‖2
2

+ 2bP (u+, u−)
[
‖(−�)α/2u+‖2

2 + ‖(−�)α/2u−‖2
2 + 2P (u+, u−)

]

> Φb(u+) + Φb(u−), ∀ u ∈ E, u+, u− �= 0, (1.9)

where

P (u+, u−) := −CN,α

∫
RN

∫
RN

u+(x)u−(y)
|x − y|N+2α

dxdy > 0, ∀ u ∈ E, u+, u− �= 0.

(1.10)
Similarly, one has

〈Φ′
b(u), u+〉 > 〈Φ′

b(u
+), u+〉, 〈Φ′

b(u), u−〉 > 〈Φ′
b(u

−), u−〉, ,
∀ u ∈ E, u+, u− �= 0, (1.11)

which implies that u± �∈ Nb for u ∈ Mb.
To state our results, we introduce the following assumption:

(V2) there exists a sequence {tn} ⊂ (0,∞) such that tn → ∞ and supx∈RN ,n∈N

V (tnx)

tN+2−4α
n V (x)

< ∞.

Now, we state the main results of this paper.

Theorem 1.1. Assume that (V1), (V2) and (F1)–(F4) hold. Then (1.1) with
b ≥ 0 has a radial sign-changing solution ub ∈ Mb such that Φb(ub) =
infMb

Φb > 0.

Theorem 1.2. Assume that (V1), (V2) and (F1)–(F4) hold. Then (1.1) with
b ≥ 0 has a radial solution ūb ∈ Nb such that Φb(ūb) = infNb

Φb > 0. Moreover,
mb > 2cb for all b ≥ 0.

Theorem 1.3. Assume that (V1), (V2) and (F1)–(F4) hold. For any sequence
{bn} with bn ↘ 0 as n → ∞, there exists a subsequence which we label in the
same way such that ubn

→ v0 in E, where v0 ∈ M0 is a radial sign-changing
solution of (1.3) with Φ0(v0) = infM0 Φ0 > 0.

To obtain Theorem 1.1, we prove that the minimizers of mb is radial sign-
changing solutions of (1.1). Here, we must overcome three main difficulties: (I)
showing Mb �= ∅ under (F3) instead of (F3′) (because the term ‖(−�)α/2u‖4

2

is homogeneous of degree 4); (II) verifying the boundedness of the minimizing
sequence of Φb on Mb (due to the lack of the condition (AR)); (III) prov-
ing the minimizer of Φb on Mb is a critical point (because the Nehari-type
monotonicity condition (F4′) is not assumed, and f /∈ C1).

To overcome difficulty I), we first show that for b ≥ 0 the following set

Eb :=
{

u ∈ E : b‖(−�)α/2u‖2
2

∫
RN

(−�)α/2u(−�)α/2u±dx

}

+
∫
RN

[
V (x)(u±)2 − f(x, u±)u±]

dx < 0
}

(1.12)
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is not empty by scaling technique (see Lemma 2.5), then prove that for each
u ∈ Eb, there is a unique pair (s, t) ∈ (R+ × R

+) such that su+ + tu− ∈
Mb by combining some new inequalities with Miranda’s Theorem [31] (see
Lemma 2.6). On the basis of these, we establish the following new minimax
characterization:

mb = inf
u∈Eb

max
s,t≥0

Φb(su+ + tu−), ∀ b ≥ 0,

(see Lemma 2.7). Under (F4) instead of (F4′), we use some new tricks to
overcome difficulties (II) and (III) (see Lemma 2.8).

To prove Theorem 1.2, we consider the minimization problem cb and
prove that the minimizers are ground state solutions for (1.1). To this end, we
construct the following minimax characterization:

cb = inf
u∈Ēλ

max
t≥0

Φb(tu), ∀ b ≥ 0,

where

Ēb :=
{

u ∈ E : b‖(−�)α/2u‖4
2 +

∫
RN

[
V (x)u2 − f(x, u)u

]
dx < 0

}
. (1.13)

To prove Theorem 1.3, different from the super-cubic case, that is (F3′)
holds, we use some new inequalities to prove that there exists a constant Λ0 > 0
independent of b such that Φb(ub) ≤ Λ0 for b ∈ [0, 1], and limn→∞ mbn

= m0

with bn ↘ 0 (see (3.5) and (3.10)).

Example 1.4. If V ∈ L∞(RN ) or V (x) = 1 + |x|N+2−4α for x ∈ R
N , then it

follows from (V1) that (V2) holds naturally. There are also many unbounded
and non-monotonous functions satisfying (V1) and (V2), for example, V (x) =
1 + |x|1−s

[
1 + sin2(π|x|)] with tn = n.

Example 1.5. When infx∈RN V (x) ≥ 0, there are many functions satisfying
(F1)-(F4), but do not satisfy (F3′) or (F4′). Let K ∈ C(RN , [a1, a2]) with
a1, a2 > 0,

f1(x, t) = K(x)t3 − K1(x)|t|q−1t with K1 ∈ C(RN , [0,∞)) and 1 < q < 3;

f2(x, t) = K(x)|t|3t + K2(x)|t|t with K2 ∈ C(RN , (0,∞));

f3(x, t) = K(x)t3 − |t|3/2t + |t|t.
Obviously, f1 satisfies (F1)-(F4) when infx∈RN V (x) ≥ 0, but does not satisfy
(F3′), It is easy to see that f2, f3 satisfy (F1)-(F4) when infx∈RN V (x) ≥ 1.
Moreover, f2 does not satisfy (F4′), and f3 does not satisfy either (F3′) or
(F4′).

Remark 1.6. Due to (F3), we treat asymptotically cubic and super-cubic non-
linearities in a unified way. Our results improve and complement the corre-
sponding ones in the literatures.

Remark 1.7. Our results are available for Kirchhoff-type Eq. (1.5) with slight
modification. In fact, if α = 1, then (F3) becomes the following limits hold
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uniformly in x ∈ R
N

lim
|t|→∞

f(x, t)
t

= +∞ if N = 2; lim
|t|→∞

tf(x, t)
|t|3 = +∞ if N = 3.

From this point of view, we give an extension of the corresponding results in
[15,17,29,30,35,36,44], which considered (1.5) with super-cubic and asymp-
totically cubic nonlinearities respectively.

Throughout this paper, we denote the usual norm of Ls(·) by ‖u‖s for
s ≥ 2, Br(x) = {y ∈ R

3 : |y−x| < r}, and positive constants possibly different
in different places, by C1, C2, . . ..

2. Preliminary lemmas

In this section, we give some preliminary lemmas for proving our results.

Lemma 2.1. [40] For all u ∈ Hα(RN ), the following facts hold.
i. ‖(−�)α/2u±‖2 ≤ ‖(−�)α/2u‖2;
ii.∫
RN

(−�)α/2u(−�)α/2u±dx = ‖(−�)α/2u±‖2
2−2CN,s

∫
R2N

u+(x)u−(y)
|x − y|N+2α

dxdy.

(2.1)

Inspired by [36, Lemma 2.1] (or [13,14,37–39,45]), we establish some new
inequalities, which are key points in the present paper.

Lemma 2.2. Assume that (V1), (F1), (F2) and (F4) hold. Then

Φb(u) ≥ Φb(su+ + tu−) +
1 − s4

4
〈Φ′

b(u), u+〉 +
1 − t4

4
〈Φ′

b(u), u−〉

+
a(1 − s2)2

4
‖(−�)α/2u+‖2

2 +
a(1 − t2)2

4
‖(−�)α/2u−‖2

2,

∀ u ∈ E, s, t ≥ 0. (2.2)

Proof. By (F4), one has

1 − t4

4
τf(x, τ) + F (x, tτ) − F (x, τ) +

V (x)
4

(1 − t2)2τ2

=
∫ 1

t

[
f(x, τ) − V (x)τ

τ3
− f(x, sτ) − V (x)sτ

(sτ)3

]
s3τ4ds ≥ 0,

∀ t ≥ 0, τ ∈ R\{0}. (2.3)

Thus, it follows from (1.6), (1.7), (1.8), (1.10) and (2.3) that

Φb(u) − Φb(su
+ + tu−)

=
a

2

(
‖(−�)α/2u‖22 − ‖s(−�)α/2u+ + t(−�)α/2u−‖22

)

+
1

2

∫
RN

V (x)
[
u2 − (su+ + tu−)2

]
dx

+
b

4

(
‖(−�)α/2u‖42 − ‖s(−�)α/2u+ + t(−�)α/2u−‖42

)
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+

∫
RN

[F (x, su+ + tu−) − F (x, u)]dx

=
a

2

[
(1 − s2)‖(−�)α/2u+‖22 + (1 − t2)‖(−�)α/2u−‖22 + 4(1 − st)P (u+, u−)

]

+
1 − s2

2

∫
RN

V (x)(u+)2dx +
1 − t2

2

∫
RN

V (x)(u−)2dx

+
b

4

[
‖(−�)α/2u+‖22 + ‖(−�)α/2u+‖22 + 4P (u+, u−)

]2

− b

4

[
s2‖(−�)α/2u+‖22 + t2‖(−�)α/2u+‖22 + 4stP (u+, u−)

]2

+

∫
RN

[F (x, su+) + F (x, tu−) − F (x, u+) − F (x, u−)]dx

=
1 − s4

4

{
a‖(−�)α/2u+‖22 + 2P (u+, u−) +

∫
RN

V (x)(u+)2dx

+ b‖(−�)α/2u+ + (−�)α/2u−‖22
[
‖(−�)α/2u+‖22 + 2P (u+, u−)

]

−
∫
RN

f(x, u+)u+dx

}

+
1 − t4

4

{
a‖(−�)α/2u−‖22 + 2P (u+, u−) +

∫
RN

V (x)(u−)2dx

+ b‖(−�)α/2u+ + (−�)α/2u−‖22
[
‖(−�)α/2u−‖22 + 2P (u+, u−)

]

−
∫
RN

f(x, u−)u−dx

}

+
a(1 − s2)2

4
‖(−�)α/2u+‖22 +

a(1 − t2)2

4
‖(−�)α/2u−‖22

+
b(s2 − t2)2

4
[P (u+, u−)]2

+
a

2

[
(s2 − t2)2 + 2(st − 1)2

]
P (u+, u−) +

b(s2 − t2)2

4

‖(−�)α/2u+‖22‖(−�)α/2u−‖22
+

b(s − t)2

2

{[
(s + t)2 + 2s2

]
‖(−�)α/2u+‖22

+
[
(s + t)2 + 2t2

]
‖(−�)α/2u−‖22

}
P (u+, u−)

+

∫
RN

[
1 − s4

4
f(x, u+)u+ + F (x, su+) − F (x, u+) +

(1 − s2)2

4
V (x)(u+)2

]
dx

+

∫
RN

[
1 − t4

4
f(x, u−)u− + F (x, tu−) − F (x, u−) +

(1 − t2)2

4
V (x)(u−)2

]
dx

≥ 1 − s4

4
〈Φ′

b(u), u+〉 +
1 − t4

4
〈Φ′

b(u), u−〉

+
a(1 − s2)2

4
‖(−�)α/2u+‖22 +

a(1 − t2)2

4
‖(−�)α/2u−‖22,

∀ u ∈ E, s, t ≥ 0.

This shows that (2.2) holds. �
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Lemma 2.3. Assume that (V1), (F1), (F2) and (F4) hold. Then

Φb(u) ≥ Φb(tu) +
1 − t4

4
〈Φ′

b(u), u〉 +
a(1 − t2)2

4
‖(−�)α/2u‖2

2,

∀ u ∈ E, t ≥ 0. (2.4)

Proof. From (1.7), (1.8) and (2.3), we can deduce that (2.4) holds. �

Corollary 2.4. Assume that (V1), (F1), (F2) and (F4) hold. Then

Φb(u+ + u−) = max
s,t≥0

Φb(su+ + tu−), ∀ u = u+ + u− ∈ Mb, (2.5)

Φb(u) = max
t≥0

Φb(tu), ∀ u ∈ Nb. (2.6)

Unlike the super-cubic case, to show Mb and Nb are not empty in our
situation, we have to overcome the competing effect of ‖(−�)α/2u‖4

2. To this
end, we establish the following lemma.

Lemma 2.5. Assume that (V1), (V2) and (F1)–(F4) hold. Then Eb �= ∅ and
Ēb �= ∅. Moreover, Mb ⊂ Eb and Nb ⊂ Ēb, where Eb and Ēb are defined by
(1.12) and (1.13).

Proof. Let

φ(u, u±) := ‖(−�)α/2u‖2
2

∫
RN

(−�)α/2u(−�)α/2u±dx, ∀ u ∈ E. (2.7)

Set ut(x) = u(t−1x) for t > 0. For any given u ∈ E with u± �= 0, by (2.7) and
an elementary computation, one has

φ
(
tut, t(u±)t

)
= ‖(−�)α/2(tut)‖2

2

∫
RN

(−�)α/2tut(−�)α/2t(u±)tdx

= t2N+4−4α‖(−�)α/2u‖2
2

∫
RN

(−�)α/2u(−�)α/2u±dx

= t2N+4−4αφ(u, u±), ∀ t > 0. (2.8)

By (V2), there exists β > 0 such that

V (tnx) ≤ βV (x)tN+2−4α
n , ∀ x ∈ R

N , n ∈ N. (2.9)

Then, it follows from (2.8) and (2.9) that

bφ
(
tnutn , tn(u±)tn

)
+

∫
RN

[
V (x)|tn(u±)tn |2 − f(x, tn(u±)tn)tn(u±)tn

]
dx

= t2N+4−4α
n

[
bφ(u, u±) +

∫
RN

V (tnx)

tN+2−4α
n

(u±)2dx −
∫
RN

f(tnx, tnu±)tnu±

tN+4−4α
n

dx

]

≤ t2N+4−4α
n

[
bφ(u, u±) + β

∫
RN

V (x)(u±)2dx −
∫
RN

f(tnx, tnu±)tnu±

tN+4−4α
n

dx

]
,

which, together with (F3) and 2 ≤ N < 4α, yields

bφ
(
tnutn

, tn(u±)tn

)
+

∫
RN

[
V (x)|tn(u±)tn

|2 − f(x, tn(u±)tn
)tn(u±)tn

]
dx → −∞, as n → ∞.
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Taking vn = tnutn
, we have vn0 ∈ Eb for n0 large enough. Since

b‖(−�)α/2v±
n0

‖4
2 ≤ b‖(−�)α/2vn0‖2

2

∫
RN

(−�)α/2vn0(−�)α/2v±
n0

dx

= bφ(vn0 , v
±
n0

),

we have v±
n0

∈ Ēb. Hence, Eb �= ∅ and Ēb �= ∅. By (1.8), we get Mb ⊂ Eb and
Nb ⊂ Ēb. �

With the help of Lemma 2.5, we prove that Mb and Nb are not empty
in the following lemma.

Lemma 2.6. Assume that (V1), (V2) and (F1)-(F4) hold. Then
i. for u ∈ Eb, there exists a unique pair (su, tu) of positive numbers such

that suu+ + tuu− ∈ Mb;
ii. for u ∈ Ēb, there exists a unique t̄u > 0 such that t̄uu ∈ Nb.

Proof. Let

g1(s, t) = 〈Φ′
b(su

+ + tu−), su+〉
= a

∫
RN

(−�)α/2(su+ + tu−)(−�)α/2su+dx

+

∫
RN

[
V (x)(su+)2 − f(x, su+)su+

]
dx

+ b‖(−�)α/2(su+ + tu−)‖22
∫
RN

(−�)α/2(su+ + tu−)(−�)α/2(su+)dx,

(2.10)
g2(s, t) = 〈Φ′

b(su
+ + tu−), tu−〉

= a

∫
RN

(−�)α/2(su+ + tu−)(−�)α/2tu−dx

+

∫
RN

[
V (x)(tu−)2 − f(x, tu−)tu−

]
dx

+ b‖(−�)α/2(su+ + tu−)‖22
∫
RN

(−�)α/2(su+ + tu−)(−�)α/2(tu−)dx.

(2.11)

Using (F4), one has

f(x, sτ)sτ ≥ f(x, τ)τs4−V (x)(s2−1)(sτ)2, ∀ x ∈ R
N , s ≥ 1, τ ∈ R, (2.12)

which implies∫
RN

[
V (x)(su+)2 − f(x, su+)su+

]
dx ≤ s4

∫
RN

[
V (x)(u+)2 − f(x, u+)u+

]
dx,

∀ s ≥ 1. (2.13)

From (2.10) and (2.13), we derive that

g1(s, s) = as2
[
‖(−�)α/2u+‖2

2 + 2P (u+, u−)
]

+ bs4φ(u, u+)

+
∫
RN

[
V (x)(su+)2 − f(x, su+)su+

]
dx
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≤ as2
[
‖(−�)α/2u+‖2

2 + 2P (u+, u−)
]

+ s4
{
bφ(u, u+)

+
∫
RN

[
V (x)(u+)2 − f(x, u+)u+

]
dx

}
,

∀ s ≥ 1. (2.14)

Using (2.14), it is easy to verify that g1(s, s) < 0 for s large due to u ∈ Eb.
Similarly, we have g2(t, t) < 0 for t large. Jointly with (2.10) and (2.11), there
exist 0 < r < R such that

g1(r, r) > 0, g2(r, r) > 0; g1(R,R) < 0, g2(R,R) < 0. (2.15)

By (2.10) and (2.11), we have g1(s, ·) is increasing for any fixed s > 0, and
g2(·, t) is increasing for any fixed t > 0. Thus, it follows from (2.10), (2.11)
and (2.15) that

g1(r, t) > 0, g1(R, t) < 0, ∀ t ∈ [r,R], (2.16)

g2(s, r) > 0, g2(s,R) < 0, ∀ s ∈ [r,R]. (2.17)
Applying Miranda’s Theorem [31], there exists some point (su, tu) with su, tu ∈
[r,R] such that g1(su, tu) = g2(su, tu) = 0. Therefore, suu+ + tuu− ∈ Mb.

Next, we prove the uniqueness. Let (s1, t1) and (s2, t2) such that siu
+ +

tiu
− ∈ Mb, i = 1, 2. In view of Lemma 2.2, one has

Φb(s1u
+ + t1u

−) ≥ Φb(s2u
+ + t2u

−) +
a(s2

1 − s2
2)

2

s2
1

‖(−�)α/2u+‖2
2

+
a(t21 − t22)

2

t21
‖(−�)α/2u−‖2

2,

Φb(s2u
+ + t2u

−) ≥ Φb(s1u
+ + t1u

−) +
a(s2

1 − s2
2)

2

s2
2

‖(−�)α/2u+‖2
2

+
a(t21 − t22)

2

t22
‖(−�)α/2u−‖2

2.

The above inequalities imply (s1, t1) = (s2, t2). This shows that i) holds.
To obtain ii), we let g(t) := 〈Φ′

b(tu), tu〉 for u ∈ Ēb, it follows from (1.8)
and (2.12) that

g(t) ≤ at2‖(−�)α/2u‖2
2 + t4

{
b‖(−�)α/2u‖4

2 +
∫
RN

[
V (x)u2 − f(x, u)u

]
dx

}
,

∀ t ≥ 1, (2.18)

which implies that there exists R0 > 0 large enough such that g(R0) < 0. It is
easy to see that g(r0) > 0 for r0 > 0 small enough. Thus, there exists t̄u > 0
such that g(t̄u) = 0 for u ∈ Ēb. Similar to the proof of i), we can deduce from
Lemma 2.3 that t̄u is unique, and so ii) holds. �

Lemma 2.7. Assume that (V1), (V2) and (F1)–(F4) hold. Then

inf
u∈Mb

Φb(u) = mb = inf
u∈Eb

max
s,t≥0

Φb(su+ + tu−),

inf
u∈Nb

Φb(u) = cb = inf
u∈Ēb

max
t≥0

Φb(tu).
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Proof. Corollary 2.4 and Lemmas 2.5 and 2.6 imply the above lemma. �

Lemma 2.8. Assume that (V1), (V2) and (F1)–(F4) hold. Then mb > 0 and
cb > 0 are achieved.

Proof. By (F1) and (F2), for every ε > 0, there exists Cε > 0 such that

|f(x, t)t| ≤ εt2 +Cε|t|p, |F (x, t)| ≤ εt2 +Cε|t|p, ∀ (x, t) ∈ R
N ×R. (2.19)

By (V1), there exists γ0 > 0 such that

γ0‖u‖2
Hα ≤ ‖u‖2, ∀ u ∈ E. (2.20)

First, we prove that mb > 0 and cb > 0. For u ∈ Mb, by (1.8), (1.10), (2.1),
(2.19), (2.20) and Sobolev embedding theorem, one has

γ0‖u±‖2
Hα ≤ ‖u±‖2 ≤ a‖(−�)α/2(u±)‖2 + 2aP (u+, u−) +

∫
RN

V (x)(u±)2dx

+ b‖(−�)α/2u‖2
2

∫
RN

(−�)α/2u(−�)α/2u±dx

=
∫
RN

f(x, u±)u±dx (2.21)

≤ γ0

2
‖u±‖2

2 + C1‖u±‖p
p ≤ γ0

2
‖u±‖2

Hα + C2‖u±‖p
Hα ,

(2.22)

which implies that there exists a constant � > 0 independent of b such that

‖u±‖ ≥ √
γ0‖u±‖Hα ≥ �, ∀ u ∈ Mb. (2.23)

Similarly, there exists a constant �0 > 0 independent of b such that

‖u‖ ≥ √
γ0‖u‖Hα ≥ �0, ∀ u ∈ Nb. (2.24)

Since Mb ⊂ Nb, we have mb ≥ cb. By (2.4) with t = 0, one has

Φb(u) = Φb(u) − 1
4
〈Φ′

b(u), u〉 ≥ a

4
‖(−�)α/2u‖2

2, ∀ u ∈ Nb, (2.25)

which implies cb = infNb
Φb ≥ 0.

Now, we show that cb > 0. To this end, we choose {un} ⊂ Nb be such
that Φb(un) → cb. There are two possible cases: (1) infn∈N ‖(−�)α/2un‖2 > 0;
(2) infn∈N ‖(−�)α/2un‖2 = 0.

Case 1. infn∈N ‖(−�)α/2un‖2 := �1 > 0. In this case, from (2.25), one
has

cb + o(1) = Φb(un) ≥ a

4
‖(−�)α/2un‖2

2 ≥ a

4
�2
1. (2.26)

Case 2. infn∈N ‖(−�)α/2un‖2 = 0. Since ‖un‖2 ≥ �2
0 > 0, passing to a

subsequence, we have

‖(−�)α/2un‖2 → 0,

∫
RN

V (x)u2
ndx ≥ �2 > 0 (2.27)

for some constant �2 > 0. Let tn = [
∫
RN V (x)u2

ndx]−1/2, then (2.27) implies
that tn ≤ �

−1/2
2 . From (2.19), (2.20) and Sobolev inequality, we derive that
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∣∣∣∣
∫
RN

F (x, tnun)dx

∣∣∣∣ ≤
∫
RN

[γ0

4
t2nu2

n + C3|tnun|2∗
α

]
dx

≤ t2n
4

‖un‖2 + C3|tn|2∗
αS

−2∗
α/2

α ‖(−�)α/2un‖2∗
α

2 ,

(2.28)

where

Sα = inf
u∈Dα,2(RN )

∫
RN |(−�)α/2u|2dx[∫

RN |u|2∗
αdx

]2/2∗
α

.

Since un ∈ Nb, it follows from (1.7), (2.6), (2.27) and (2.28) that

cb + o(1) = Φb(un) ≥ Φb(tnun)

=
at2n
2

‖(−�)α/2un‖2
2 +

t2n
2

∫
RN

V (x)u2
ndx +

bt4n
4

‖(−�)α/2un‖4
2

−
∫
RN

F (x, tnun)dx

≥ t2n
4

∫
RN

V (x)u2
ndx − C3|tn|2∗

αS
−2∗

α/2
α ‖(−�)α/2un‖2∗

α
2 =

1
4

+ o(1).

Cases 1) and 2) show that cb = infu∈Nb
Φb(u) > 0. Hence, mb ≥ cb > 0.

Next, we prove that mb can be achieved. Let {un} ⊂ Mb be such that
Φb(un) → mb. Then, (2.25) implies that

mb + o(1) ≥ Φb(un) − 1
4
〈Φ′

b(un), un〉 ≥ a

4
‖(−�)α/2un‖2

2. (2.29)

This shows that {‖(−�)α/2un‖2} is bounded. To obtain the boundedness of
{‖un‖}, it suffices to show that

∫
RN V (x)u2

ndx is bounded. Arguing by con-
tradiction, suppose that

∫
RN V (x)u2

ndx → ∞. Let tn = 2(mb + 1)1/2[
∫
RN

V (x)u2
ndx]−1/2, then tn → 0, and (2.28) still holds. Thus, it follows from

(1.7), (2.5) and (2.28) that

mb + o(1) = Φb(un) ≥ Φb(tnun)

=
at2n
2

‖(−�)α/2un‖22 +
t2n
2

∫
RN

V (x)u2
ndx +

bt4n
4

‖(−�)α/2un‖42

−
∫
RN

F (x, tnun)dx

≥ t2n
4

∫
RN

V (x)u2
ndx − C3|tn|2∗

αS
2∗

α/2
α ‖(−�)α/2un‖2

∗
α

2 = mb + 1 + o(1).

(2.30)

This contradiction shows that {un} is bounded in E. Passing to a subsequence,
we may assume that u±

n ⇀ u±
b in E and u±

n → u±
b in Lq(RN ) for q ∈ (2, 2∗

α).
Then, by a standard argument, one has∫

RN

f(x, u±
n )u±

n dx =
∫
RN

f(x, u±
b )u±

b dx + o(1). (2.31)
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From (2.21), (2.23) and (2.31), we deduce that

0 < �2 ≤ ‖u±
n ‖2 ≤

∫
RN

f(x, u±
n )u±

n dx =
∫
RN

f(x, u±
b )u±

b dx + o(1), (2.32)

which yields u±
b �= 0. By (2.1), (2.31), the weak semicontinuity of norm and

Fatou’s Lemma, one has

a‖(−�)α/2(u±
b )‖2 + 2aP (u+

b , u−
b ) +

∫
RN

V (x)(u±
b )2dx

+ b‖(−�)α/2ub‖2
2

∫
RN

(−�)α/2ub(−�)α/2u±
b dx

≤ lim inf
n→∞

[
a‖(−�)α/2(u±

n )‖2 + 2aP (u+
n , u−

n ) +
∫
RN

V (x)(u±
n )2dx

+ b‖(−�)α/2un‖2
2

∫
RN

(−�)α/2un(−�)α/2u±
n dx

]

= lim inf
n→∞

∫
RN

f(x, u±
n )u±

n dx =
∫
RN

f(x, u±
b )u±

b dx, (2.33)

which implies
〈Φ′

b(ub), u±
b 〉 ≤ 0. (2.34)

Using (1.8), it is easy to verify that ub ∈ Eb. In view of Lemma 2.6, there exist
ŝ, t̂ > 0 such that ŝu+

b + t̂u−
b ∈ Mb. By (2.3) with t = 0, one has

1
4
f(x, τ)τ − F (x, τ) +

1
4
V (x)τ2 ≥ 0, x ∈ R

N , τ ∈ R. (2.35)

Thus, it follows from (1.7), (1.8), (2.2), (2.34), (2.35), the weak semicontinuity
of norm, Fatou’s Lemma and Lemma 2.7 that

mb = lim
n→∞

[
Φb(un) − 1

4
〈Φ′

b(un), un〉
]

= lim
n→∞

{
a

4
‖(−�)α/2un‖22 +

∫
RN

[
1

4
f(x, un)un − F (x, un) +

1

4
V (x)u2

n

]
dx

}

≥ a

4
‖(−�)α/2ub‖22 +

∫
RN

[
1

4
f(x, ub)ub − F (x, ub) +

1

4
V (x)u2

b

]
dx

= Φb(ub) − 1

4
〈Φ′

b(ub), ub〉

≥ sup
s,t≥0

[
Φb(su

+
b + tu−

b ) +
1 − s4

4
〈Φ′

b(ub), u
+
b 〉 +

1 − t4

4
〈Φ′

b(ub), u
−
b 〉

]

−1

4
〈Φ′

b(ub), ub〉
≥ sup

s,t≥0
Φb(su

+
b + tu−

b ) ≥ Φb(ŝu
+
b + t̂u−

b ) ≥ mb,

which implies that Φb(ub) = mb and ub ∈ Mb. Similar to the above argument,
we can prove that there exists ūb ∈ Nb such that Φb(ūb) = cb. �

In the same way as [15, Lemma 2.7] and [12, Lemma 2.9], we can prove
that the minimizers of infMb

Φb and infNb
Φb are critical points, respectively.
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Lemma 2.9. Assume that (V1), (V2) and (F1)–(F4) hold. Let ub ∈ Mb and
ūb ∈ Nb be such that Φb(ub) = mb and Φb(ūb) = cb, then ub and ūb are critical
points of Φb.

3. Proofs of results

In this section, we give the proofs of Theorems 1.1–1.3.

Proof of Theorem 1.1. In view of Lemmas 2.6, 2.8 and 2.9, there exists ub ∈
Mb ⊂ Eb such that Φb(ub) = mb and Φ′

b(ub) = 0. Thus, ub ∈ Eb is a sign-
changing solution of (1.1). �

Proof of Theorem 1.2. In view of Lemmas 2.6, 2.8 and 2.9, there exists ūb ∈
Nb ⊂ Ēb such that Φb(ūb) = cb > 0 and Φ′

b(ūb) = 0.
In what follows, we let ub ∈ Eb is a sign-changing solution of (1.1) obtained

in Theorem 1.1. Noting that u±
b ∈ Ēb, it follows from (1.6), (1.7), (1.10),

Lemma 2.2, Corollary 2.4 and Lemma 2.7 that

mb = Φb(ub) = sup
s,t≥0

Φb(su
+
b + tu−

b )

= sup
s,t≥0

{
Φb(su

+
b ) + Φb(tu

−
b ) + 2astP (u+

b , u−
b )

+
b

2
s2t2‖(−�)α/2u+

b ‖22‖(−�)α/2u−
b ‖22

+ 2bst
[
s2‖(−�)α/2u+

b ‖22 + t2‖(−�)α/2u−
b ‖22 + 2stP (u+

b , u−
b )

]
P (u+

b , u−
b )

}

> sup
s≥0

Φb(su
+
b ) + sup

t≥0
Φb(tu

−
b ) ≥ 2cb, ∀ b ≥ 0. (3.1)

�

Proof of Theorem 1.3. To obtain the convergence property of ubn
, we now

prove that {ubn
} is bounded in E. In view of Lemma 2.5, we can choose

w0 ∈ E1, then

φ(w0, w
±
0 ) +

∫
RN

[
V (x)(w±

0 )2 − f(x,w±
0 )w±

0

]
dx < 0. (3.2)

By (2.3), one has

F (x, tτ) ≥ t4 − 1
4

f(x, τ)τ + F (x, τ) − 1 − 2t2 + t4

4
V (x)τ2,

∀ x ∈ R
N , t ≥ 0, τ ∈ R,

which implies

1
2
V (x)(tτ)2 − F (x, tτ) ≤ t4

4
[
V (x)τ2 − F (x, τ)

]

+
1
4

[
V (x)τ2 + f(x, τ)τ − 4F (x, τ)

]
, (3.3)

∀ x ∈ R
N , t ≥ 0, τ ∈ R.
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By Young’s inequality, one has

y4
1 + 3y4

2 − 4y1y
3
2 ≥ 0, ∀ y1, y2 ≥ 0. (3.4)

Then it follows from (1.7), (3.3), (3.2), (3.4) and Lemma 2.7 that for all b ∈
[0, 1],

Φb(ub) = mb ≤ max
s,t≥0

Φb(sw+
0 + tw−

0 )

= max
s,t≥0

{
as2

2
‖(−�)α/2w+

0 ‖2
2 +

bs4

4
φ(w0, w

+
0 )

+
∫
RN

[
1
2
V (x)(sw+

0 )2 − F (x, sw+
0 )

]
dx

+
at2

2
‖(−�)α/2w−

0 ‖2
2 +

bt4

4
φ(w0, w

−
0 )

+
∫
RN

[
1
2
V (x)(tw−

0 )2 − F (x, tw−
0 )

]
dx

+2astP (w+
0 , w−

0 ) +
b

4

[
‖(−�)α/2(sw+

0 + tw−
0 )‖4

2

−s4φ(w0, w
+
0 ) − t4φ(w0, w

−
0 )

]}

≤ max
s,t≥0

{
as2

2
‖(−�)α/2w+

0 ‖2
2 +

s4

4
(
φ(w0, w

+
0 )

+
∫
RN

[
V (x)(w+

0 )2 − f(x,w+
0 )w+

0

]
dx

)

+
at2

2
‖(−�)α/2w−

0 ‖2
2 +

t4

4
(
φ(w0, w

−
0 )

+
∫
RN

[
V (x)(w−

0 )2 − f(x,w−
0 )w−

0

]
dx

)

+
1
4

∫
RN

[
V (x)(w+

0 )2 + f(x,w+
0 )w+

0 − 4F (x,w+
0 )

]
dx

+
1
4

∫
RN

[
V (x)(w−

0 )2 + f(x,w−
0 )w−

0 − 4F (x,w−
0 )

]
dx

+ a(s2 + t2)P (w+
0 , w−

0 )

−P (w+
0 , w−

0 )
2

[(
3s4 + t4 − 4s3t

) ‖(−�)α/2w+
0 ‖2

2

+
(
s4 + 3t4 − 4st3

) ‖(−�)α/2w−
0 ‖2

2

]

− (s2 + t2)2

4

{
‖(−�)α/2w+

0 ‖2
2‖(−�)α/2w−

0 ‖2
2 + 8[P (w+

0 , w−
0 )]2

}
:= Λ0, (3.5)

where Λ0 > 0 is a constant independent of b. For any sequence bn with bn ↘ 0
as n → ∞, we deduce from (2.29) and (3.5) that {‖(−�)α/2ubn

‖2} is bounded.
Arguing as in (2.30), we can prove that {ubn

} is bounded in E. Hence, there
exists a subsequence of {bn}, still denoted by {bn}, and v0 ∈ E such that
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ubn
⇀ v0 in E, ubn

→ v0 in Ls(RN ) for s ∈ (2, 2∗
α) and ubn

→ v0 a.e. in
x ∈ R

N . Similar to the proof of (2.31) and (2.32), we conclude that v±
0 �= 0.

Note that

〈Φ′
0(v0), ϕ〉 =

∫
RN

[
a(−�)2/αv0(−�)2/αϕ + V (x)v0ϕ

)
dx −

∫
RN

f(x, v0)ϕdx

= lim
n→∞

[(
a + bn‖(−�)2/αubn

‖2
2

)
(ubn

, ϕ) −
∫
RN

f(x, ubn
)ϕdx

]
,

∀ ϕ ∈ E.

This shows that Φ′
0(v0) = 0, and so v0 ∈ M0 and Φ0(v0) ≥ m0. A standard

argument shows that ubn
→ v0 in E.

Next, we prove that Φ0(v0) = m0. Since u0 ∈ M0 is a sign-changing
solution of (1.1) with b = 0 satisfying Φ0(u0) = m0, then we have

0 = 〈Φ′
0(u0), u±

0 〉
=

∫
RN

[
a(−�)2/αu0(−�)2/αu±

0 + V (x)(u±
0 )2

]
dx −

∫
RN

f(x, u0)u±
0 dx,

which implies∫
RN

[
V (x)(u±

0 )2 − f(x, u±
0 )u±

0

]
dx < −a

2

∫
RN

(−�)α/2u0(−�)α/2u±
0 dx.

(3.6)
Let Λ1 = min

{
a/2‖(−�)2/αu0‖2

2, 1
}

and bn ∈ [0,Λ1] for all n ∈ N. By (3.6),
one has

bnφ(u0, u
±
0 ) +

∫
RN

[
V (x)(u±

0 )2 − f(x, u±
0 )u±

0

]
dx

<
(
Λ1‖(−�)2/αu0‖2

2 − a

2

) ∫
RN

(−�)α/2u0(−�)α/2u±
0 dx ≤ 0. (3.7)

Then, u0 ∈ Ebn
for all n ∈ N. Thus, it follows from (1.7), (1.10), (2.1), (3.3),

(3.4) and (3.7) that there exists K0 > 0 such that for all s ≥ K0 or t ≥ K0,

Φbn
(su+

0 + tu−
0 )

=
as2

2
‖(−�)α/2u+

0 ‖22 + 2astP (u+
0 , u−

0 ) +
at2

2
‖(−�)α/2u−

0 ‖22 +
bns4

4
φ(u0, u

+
0 )

+

∫
RN

[
1

2
V (x)(su+

0 )2 − F (x, su+
0 )

]
dx +

bnt4

4
φ(u0, u

−
0 )

+

∫
RN

[
1

2
V (x)(tu−

0 )2 − F (x, tu−
0 )

]
dx

+
bn

4

[
‖(−�)α/2(su+

0 + tu−
0 )‖42 − s4φ(u0, u

+
0 ) − t4φ(u0, u

−
0 )

]

≤ as2

2
‖(−�)α/2u+

0 ‖22 + a(s2 + t2)P (u+
0 , u−

0 ) +
at2

2
‖(−�)α/2u−

0 ‖22

+
s4

4

{
bnφ(u0, u

+
0 ) +

∫
RN

[
V (x)(u+

0 )2 − f(x, u+
0 )u+

0

]
dx

}

+
t4

4

{
bnφ(u0, u

−
0 ) +

∫
RN

[
V (x)(u−

0 )2 − f(x, u−
0 )u−

0

]
dx

}
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+
1

4

∫
RN

[
V (x)(u+

0 )2 + f(x, u+
0 )u+

0 − 4F (x, u+
0 ) + V (x)(u−

0 )2

+f(x, u−
0 )u−

0 − 4F (x, u−
0 )

]
dx

− bn

2
P (u+

0 , u−
0 )

[(
3s4 + t4 − 4s3t

)
‖(−�)α/2u+

0 ‖22
+

(
s4 + 3t4 − 4st3

)
‖(−�)α/2u−

0 ‖22
]

− bn(s2 + t2)2

4

{
‖(−�)α/2u+

0 ‖22‖(−�)α/2u−
0 ‖22 + 8[P (u+

0 , u−
0 )]2

}
< 0. (3.8)

In view of Lemma 2.6, there exists (sn, tn) such that snu+
0 + tnu−

0 ∈ Mbn
,

which, together with (3.8), implies 0 < sn, tn < K0. Hence, from (1.7), (1.8)
and (2.2), we have

m0 = Φ0(u0)

= Φbn
(u0) − bn

4
‖(−�)α/2u0‖4

2

≥ Φbn
(snu+

0 + tnu−
0 ) +

1 − s4
n

4
〈Φ′

bn
(u0), u+

0 〉 +
1 − t4n

4
〈Φ′

bn
(u0), u−

0 〉

−bn

4
‖(−�)α/2u0‖4

2

≥ mbn
+

1 − s4
n

4
bn‖(−�)α/2u0‖2

2

∫
RN

(−�)α/2u0(−�)α/2u+
0 dx

+
1 − t4n

4
bn‖(−�)α/2u0‖2

2

∫
RN

(−�)α/2u0(−�)α/2u−
0 dx

−bn

4
‖(−�)α/2u0‖4

2

≥ mbn
− K4

0bn

4
‖(−�)α/2u0‖4

2,

which yields

lim sup
n→∞

mbn
≤ m0. (3.9)

Since ubn
→ v0 in E, it follows from (1.7) and (3.9) that

m0 ≤ Φ0(v0) = lim sup
n→∞

Φbn
(ubn

) = lim sup
n→∞

mbn
≤ m0. (3.10)

This shows that Φ0(v0) = m0. �
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