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Semi-linear fractional o-evolution equations
with mass or power non-linearity
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Abstract. In this paper we study the global (in time) existence of small
data solutions to semi-linear fractional o-evolution equations with mass
or power non-linearity. Our main goal is to explain on the one hand
the influence of the mass term and on the other hand the influence of
higher regularity of the data on qualitative properties of solutions. Using
modified Bessel functions we prove some polynomial decay in L — L9
estimates for solutions to the corresponding linear fractional o-evolution
equations with vanishing right-hand sides. By a fixed point argument the
existence of small data solutions is proved for some admissible range of
powers p.
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1. Introduction

Recently, in [3] the authors studied the following Cauchy problem for semi-
linear fractional wave equations

O u — Au = |ul?,

u(0,z) = uo(x), u(0,2) =0, (1.1)
where o € (0,1), 9}"“u = D§(u;) with
D&(f) = 0,(I}~“f) and Itﬁf = %ﬁ) /t(t — )P 1f(s)ds for §> 0.
0

Here D2(f) and I/ f denote the fractional Riemann-Liouville derivative and
the fractional Riemann—Liouville integral of f on [0, t], respectively. Moreover,
I' is the Euler Gamma function. The authors proved the following results.

For the first author the financial support was provided by Erasmus+ project KA 107 -
collaboration with Algeria.
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Proposition 1.1. Let

1
11—«

2(1+a)
n—=2)1+a)+2
Then there exist positive constants € and 0 such that for any ug € LY(R™) N
L>®(R™) with ||uo||pinp~ < € and for any 6 € (0,0) there exists a uniquely
determined global (in time) Sobolev solution

u € C([0,00), L*(R™) N L>=(R™))
to (1.1). The solution satisfies the following estimate for any t > 0:

p > P:= max {pa(n); }, where po(n) =1+

lut. Ylze < CL+ )Pt ugl| prssnpe, g € 14800, (1:2)
where
. n(l + a) 1 1
Bq = ﬂq(é) = Il’llIl{2 <1_'_6 _ q> ,1} )

Proposition 1.2. Let p € (1,ps(n)] and ug € L*(R™) be such that

/n uo(x) dz > 0.

Then there does not exist any global (in time) Sobolev solution

ue LY ([0,00) x R"™).

loc

This paper is devoted to the Cauchy problem for the semi-linear fractional
o-evolution equations with mass or power non-linearity

U + (=A)u + mPu = |ul?,
u(0,2) = uo(z), u(0,2) =0,

where a € (0,1), m > 0, ¢ > 1, (t,z) € [0,00) x R™. Our main goal is to
understand on the one hand the improving influence of the mass term and
on the other hand the influence of higher regularity of the data wug on the
solvability behavior.

First of all we explain Cauchy conditions. We will construct solutions u =
u(t,z) in evolution spaces C([0,00), B), where B is a suitable Banach space.
Different results base on different Banach spaces B. The continuity in ¢ allows
to understand the Cauchy condition u(0,2) = ug(z) as the restriction of the
solution u as an element of the evolution space to t = 0.

Now, let us come to the second Cauchy condition u;(0,2) = 0. This condition
is understood in a very weak sense. To explain it we use the integro-differential
equation

(1.3)

o= I (— (—A)7u — m*u + [u|?)
= I3 (= (—A)7u—mPu) + I (Jul?).
We have solutions u in C([0,00), B), where B stands for a space L7(R™) or

a space HY(R™). Then, depending on the case with or without mass, we may
conclude

—(=A)u —m*u € C([0,00), By), |ulf € C(]0,00), Bs),
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where in the massless case B stands for HY 27 (R™) or for H27(R™) (depends
on the regularity of the data) and B stands for a suitable space LY(R™). In the
case of models with mass B; stands for HY~29(R") or for H,2° (R") (depends
on the regularity of the data) while By stands for a suitable space LZ(R™).
Using the weak singular structure of I* and the continuity up to ¢t = 0 of the
integrand we verify lim;_, ¢ ||Ozu(t, )|, =0 for & =1,2.

Consequently, if we interpret u;(0,2z) = 0 in this weak sense, then the Cauchy
problem (1.3) may be written in the form of the following Cauchy problem for
an integro-differential equation:

ou=I(— (—A)7u— mPu+ |uf?), (1.4)

(0, 2) = ug(x). (1.5)

A solution to (1.3) is defined as a solution of (1.4). For this reason we may
restrict ourselves in the further considerations to the study of (1.4) to obtain

results for (1.3). Our results of global (in time) existence of small data Sobolev
solutions are given in the next section.

2. Main results

2.1. Fractional o-evolution models
In the first two results we assume low regularity for the data ug. We distinguish
between conditions for the spatial dimension n.

Theorem 2.1. Let us assume 0 < a <1, a < A < HO‘, oc>1landr >1. We

T2
assume that n > . Moreover, the exponent p satisfies the condition

207
T+a
- 1
P > Parer(n) = max {pu7A70(n); 1_)\} ,
n(r—1)(1+a)+ 20r(1+ A)
(n—20r)(1+a)+20r(l+a—A)
Then there ezists a positive constant € such that for any data
ug € L"(R™) N L¥(R™)  with ||ugl|prare <€

we have a uniquely determined global (in time) Sobolev solution

u € C([0,00), L"(R™) N LY(R™)) for all q € [r,o0)
to the Cauchy problem

O+ (=A)u = |u?, u(0,2) =uo(z), wu(0,x)=0.

Moreover, the solution satisfies the following estimate for any t > 0 and for
all sufficiently small 6 >0 :

lu(t, )zs < O+ ) 50et gl prape for all q € [, o],

. 1 1 1
;"flazzmin{n( +a) (—);1—5}.
b 20 r o q

The constant C' is independent of ug.

where pg, 5 ,(n) =1+

where
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Theorem 2.2. Let us assume 0 < a < 1, a < A < HT", 1<o< ‘“2—";\1 and

1<r< °2‘T+§ We assume that 1 < n < 121:; Moreover, the exponent p satisfies
the condition

n(r—1) 1+ a) +20r(1 + A)
(n—20r)(1+a)+20r(l+a—A)
Then there exists a positive constant € such that for any data

o € L"(R™) N L¥(R™)  with |[uol|zrnr~ < &

D> pg},\’g(n)7 where pg, 5 ,(n) =1+

we have a uniquely determined global (in time) Sobolev solution
u € C([0,00), L"(R™) N LY(R™)) for all q € [r,o0)
to the Cauchy problem
O+ (=A)u = |ul?, u(0,2) =uo(z), wu(0,x)=0.
Moreover, the solution satisfies the following estimate for any t > 0:

lu(t, )l|zs < C(1+ 1)~ Poar ™ |ug]

LraLee for all q € [r, o],

. n(l+a) /1 1
©LT T 9y r o q)

The constant C' is independent of ug.

where

In the next two results we assume higher regularity for the data uy but
with additional regularity L>°. We distinguish between conditions for the spa-
tial dimension n.

Theorem 2.3. Let us assumeO<a<1,a§/\<1+TO‘,021, 1<r<ooand

v > 0. We assume that n > 121; The exponent p satisfies the condition

2
P> Parory = Max {p’&,x,a(n); -V v} ;

where

n(r—1)(1+a)+20r(1+ )
(n—20r)(1+a)+20r(1+a—N)
Then there exists a positive constant € such that for any data

p;,)\,a(n) =1+

we have a uniquely determined global (in time) Sobolev solution
u e C([0,00), HY(R™) N LYR™)) for all q € [r,o0)
to the Cauchy problem
O U+ (=A)u = |u?, u(0,z) =uo(z), wu(0,x)=0.

The solution satisfies the following estimate for any t > 0 and for all suffi-
ciently small § > 0:

_gmé
lut, )lze < O+ 1) 0ot ol rare, g € [r,00],
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where

1 1 1
27ZJ::miH{M <_>;1_5}‘
o 20 r o q

Moreover, the solution satisfies the estimate
lu(t, ez < O+ uoll -

The constants C' are independent of ug.

Theorem 2.4. Let us assume 0 < o < 1, o« < A < 42 1 <5 <

2 7

a+1
2X 7

1 <r < 2 gnd ~v > 0. We assume that 1 < n < 201 Moreover, the

20
exponent p satisfies the condition

p > max{p;, » ,(n);7},

1+a

n(r—1)(1+a)+20r(1+N)

h T =1
where py, 5 (1) + (n—20r)(14+a)+20r(1+a—

Then there exists a positive constant € such that for any data
up € HI(R") N L>®(R") with |uollgrnr~ <€
we have a uniquely determined global (in time) Sobolev solution
u e C([0,00), HY(R") N LYR™)) for all q € [r,00)
to the Cauchy problem
O u+ (=A)u = |ul’, u(0,2) =uo(z), wu(0,x)=0.
The solution satisfies the following estimate for any t > 0:
lu(t, )ze < O+ ) Poaat ol gy, g € [r,00],
where

n(1+a)<1 1)

T — - =
Pogo: 20 r o q
Moreover, the solution satisfies the estimate
lult, My < CQ+ ) uoll grape-
The constants C' are independent of ug.

2.2. Fractional o-evolution models with mass term

Theorem 2.5. Let us assume 0 < a < 1,0 > 1,7 > 1 and p >
there exists a positive constant € such that for any data

ug € L"(R™") N L>®(R™)  with ||lug||prare <€
we have a uniquely determined global (in time) Sobolev solution
u € C([0,00), L"(R™) N L>(R™))
to the Cauchy problem

N

1

1—

O u+ (—A)u +mPu = [ulP, w(0,2) =wuo(x), u0,z)=0.

Moreover, the solution satisfies the decay estimate

lu(t,)||re < COA+t)* Hugllprape forall t>0, qé&[r, o0

. Then
«@
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The constant C' is independent of ug.

Theorem 2.6. Let us assume 0 < a < 1, 0 > 1, v > 0,1 <r < oo and
p > max{2; ﬁ; ~v}. Then there exists a positive constant € such that for any
data

wo € HYR™) NL®(RY)  with [Juollmznr~ < &,
we have a uniquely determined global (in time) Sobolev solution
u € C([0,00), HY(R") N L>(R™))

to the Cauchy problem

O u + (—A)u +mPu = [ulP, w(0,2) =wuo(x), u0,z)=
Moreover, the solution satisfies the decay estimate

Jult, Mgz < O+ 82 ol gz

The constant C' is independent of ug.

Remark 2.7. If we compare Theorem 2.1 with the corresponding result for
(1.1) from [3], then we feel the improving influence of the power o and the
order of regularity r in two facts. On the one hand py a,1,1(n) =P and on the
other hand u € C([0, 00), L"(R"™) N LZ(R™)) for all ¢ < co. In Theorem 2.3 we
explain the influence of the regularity of the data on the critical exponent and
we have py,a,1,1(n) > P. If we compare Theorem 2.5 with the corresponding
result for (1.1) from [3], then we feel the improving influence of the mass term
in three facts. On the one hand p = 1~ , u € C([0,00), L"(R™) N L>(R"))
and on the other hand 3, = 1 in (1.2). In the case of Theorem 2.6 we also
feel the influence of the regularity of the data on the exponent and we obtain
an exponent larger then p. Besides some stronger restrictions to the critical
exponent the statements of Theorems 2.3, 2.4 and 2.6 are regularity results.
If the data wug is more regular, then we expect more regularity with respect to
the spatial variables for the solution.

3. Some preliminaries

The Cauchy problem (1.4) with o > 1 and m > 0 can be formally converted
to an integral equation and its solution is given by

u(t,z) = (GW (1) % uo)(t, x) + Ni', (u)(t, x) (3.1)

with
G (t.) = [ e Ean(~ Q) de (32)
N () (1, ) = /0 (G (t— )% I2(ulP)) (1, 5,2) ds,  (3.3)

where {G},(t)}:>0 denotes the semigroup of operators which is defined via
Fourier transform by

—_— ~

(Crg (1) % F)(18) = Baia (— 1" ()2,6) F(€) with ()75 = [ +m?.
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Here Eg(z) = Z F(,Hk+1 y» B € C with ®3 > 0, denotes the Mittag-Leffler

function (see Sect 7.2).
A representation of solutions of the linear integro-differential equation associ-
ated to (1.4) or (1.3) with ¢ > 1 and m > 0 (and without the term |u|?) is
given by
u(t,r) = (G, (t) * uo)(t, ).
Indeed, we put
u(t,€) = Fome(u(t, 2))(t,8) = Fome (G245 () + uo) (£, 2)) (¢, €)
= Eap1 (=121 o )uo(€).
By using (1.4) and (7.1) we have

F.Z, (Fw—>£ (/O IH(=(=A)7u — m*u)(s, z) d5> (t, 5)) (t, )

= Fg_—mc <<§>m 0’/ Ia((Ga 0'/(77* UO)(Tv 5)) dS) (t’ ZC)

- F£;w< ?(327)“ /O (=) G o)) drds> (t,)

- R, (@g; [ [ 6=t Eaer e, i ar ds> (.2)
-, (ﬁf;{’ [ s B (7 002,70 dT> (%)
= (Ffj’j;l) [ Ean (50 dT> (.2)
= ((Em(—ta“m,a) : 1) m)) (.2)

-, (Ea+1<ta+1<s>i,g>fo<s> : m)) (.7)

=P, (406 - (O ) () = u(t.0) ~ walo)

Consequently, we have shown (after application of the Fourier inversion for-
mula in S”) that

u =Gy, (t) *uo

is a formal solution to

u=up(z) + /0 I%(—(=A)7u — m*u) ds.
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In the moment we will not provide any function spaces to which the formal
solution will belong.

But, as pointed out by the referee the continuity of solutions with respect to
the time variable requires a special treatment. Later we will come back to
this issue. But, from the above considerations we can formally conclude the
following relation (if the convolution really exist)

’ll,(t, ) — Ug
= T L D (O B (7 ©2,) o)

(3.4)

Later we will use this relation for the discussion of continuity in time of solu-
tions for models with mass.

4. L? estimates for model oscillating integrals

At first we derive LP estimates for the model oscillating integral
F (Bapr (1 1E)27).
Proposition 4.1. The following estimate holds in R™ for o >0, a > 0:

- o o _n(+4o)q_1
1ECL, (ot (1P (8, ) e S 7720 079

forpe[l,00], t >0 and for all n > 1 satisfying n(1 — %) < 20.

(4.1)

Here and in the following we use for non-negative functions f and g the
notation f < g if there exists a constant C' which is independent of y € D such
that f(y) < Cg(y) for all y € D.

Proof. The proof of (4.1) uses the Propositions 5 and 12 of [12]. In a first step
we estimate the following oscillating integrals:

Fg_{z(e_cltlglzpcos(02t|§|2”)) and Fg_lmﬁ(e_rtlﬂzp)7

where ¢; = —cos(175),c2 = /1 — ¢, p = 175 and 7 > 0. We prove instead

of (4.1) the polynomial type decay estimates

IFt (e cos(eatlg20)) (1, )l or S €5 07%) (4.2)
1L (e ™) (1, | e < (rt) "2 () (4.3)

for all p € [1,400] and ¢ > 0. Then, we deduce (see Sect. 7.2)
— lta ) o EE -2y _nUta) g 1
||Fg—1>m(exp (al-‘r(x(t 2 |§| )) + exp (b1+a(t 2 |§| )))(t,')HL,, ,S t 2 (173)

(4.4)
for all p € [1,400] and ¢ > 0. It remains to prove that (see Sect. 7.2)

€|J))(ta ')HLP 5 t

14+

[P (gt

-2 a-)

(4.5)
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for all p € [1,4o00] and ¢ > 0. Therefore we use the formula (see Sect. 7.2)

20 1
I (t#|€|a)~/oo exp ( — tf¢| 577
t o 8§24 2scos((1+a)m)+1

Taking account of the definition of modified Bessel functions (see Sect. 7.1) we
get

F2 (a5 1E17) (¢ 2)

00 o €XD (trlzfaslia>
n—17
- Jn _ d d
/0 </0 52+25005((1+a)7r)+1r 2 1(r|z]) T) S
_ /°° 1
Jo 82+ 2scos((1+a)m)+1
X </ exp < trlzf“slia)rnljg1(r|:c|)dr> ds
0
- /OO : Pl (e e ) (4] s
o 8242scos((14+a)m)+1\ & .

The estimate

|Et, (e e ) 1, ), S s O D)
implies
172, (a5 1E1)) &)
gy [T Ry
~ o s2+2scos((1+a)m)+1 ™
if n(1— 1) < 20. O

Now let us turn to LP estimates for the model oscillating integral (see
Sect. 7.2)

Fi! (Bagpa (—t'7(€)2, ,)) with m > 0.

§—w

At the first glance one might expect an exponential type decay estimate. We
are able to prove a potential type decay estimate only.

Proposition 4.2. The following estimate holds in R™ for o > 0, m > 0, a €
[0,1) and for alln > 1:

||ij (Ea+1( t1+a<£>m a) HLP ~ (1 +t) (I+e) (46)
forpe[l,00] and t > 0.

Proof. The proof of (4.6) uses ideas of [10]. In a first step we estimate the
following oscillating integrals:

Fg__lw(e*d@izo cos(t(f)f,’f,[7 1702)) and F.

€—>1

_r 25
( t<§>m,g)

i
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where ¢ = —cos(;),k = 1_%& € (3,1) and 7 > 0. We shall derive the
exponential type decay estimate
H 5~>a:( N I, 7 COb(t<§>3.:70_ 1- 62))(t’ .)HLP
+[|1Fe (e ’”“””)(tw)Hm Se (4.7)

with a suitable positive C' = C(m,a), for p € [1,00] and ¢ > 0. By using
modified Bessel functions (see Sect. 7.1) we have for n = 3

2K
Fﬁ_—m( —ct(&)7r 5 cos(t(@frﬁav 1-— 02)) (t,x)
= / e etr)o cos(t(r),%f)a\/ 1—c2)r?J
0

1 (rfa]) dr
1 o0 -

= _W/ e~ o cos(t<r>%f[,\/ 1— 02)7‘67,1]7% (r|z|) dr
T 0 ’

= _\F\|f2|2/ e et cos(t{r)2" /1 — c2)rd,(cos(r|z|)) dr
e 0 ’

Using twice integration by parts we obtain

_ ﬁ\);4Fij (e—€t<§)m o cos(t(ﬁ)?r'zam» (t,z)

= [ ()20 )R B 2

+ 2 <h4(r)r40—2<r)?n’(, + hs (T)Tﬁa—z) <r>%€;6 + 3N (T)T60—2<r>6m—6)

m,o

x e~ cos(r|x|) dr,
(4.8)
where h;(r) = a; cos(g(r)) + bisin(g(r)), i = 1,--+,6, g(r) = t(r)2r V1 — 2
and a;,b;, 1 =1,--- ,6, are constants which depend on a and ¢ only.
To estimate (4.8) we use the inequality
(), =201 (r) 38 o, 5 + 27 IMPE (4.9)
Then, we get
_C¢m?2e
- —C K € 2
|Fg_1>x (e U COS(t@)zn,a V31— CQ))(@@’ S RO
For the oscillating integral ij( 771:(5)7:0) we have
FE;;;U( 7Tt<E> v )(t ZL‘) /O e*"'t<r>m,iﬂr2 ~% (’I"‘.ZEDd’/‘

1 o0
= ——/ e U r 0, J 1 (rlal)dr
ER

2 o "
= [T costrel) ar
™| 0
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Using twice integration by parts we obtain

N
\/i E—x

= / ( —20(40% — V)krtr? =2(r)25 2 — 2403k (K — 1)7tri7 =2 (r)25 4
0

(e‘”mm ) (t, x)

m,o m,o

—803k(k — 1)(k — 2)Tt7‘60_2<7’>72,:i;6 + 2403 222 pA0 72 () dnmd

m,o
+ 80 Kk% (K — 1)72t2r6072(r>frﬁ;6 — 803H373t37’6”72(r>2’f’;6)
x e~ TH) cos(r|x|) dr

This leads to the estimate

2
e—%tm "

()h
Summarizing all estimates we proved the statement (4.7) in the case n = 3.
Now, let us study the case n odd and n > 4. Then we carry out ”TH steps of
partial integration. We obtain after "T_l steps and by applying the rules (see
Sect. 7.1)

== (6—7t<5>i’:g)(t’$)’ <

- 1 -
Ju+1(7”|33|) = —W&Ju(rm)

for real non-negative u the relation
ngz (e_Ct@m v cos(H{&)2 /1 —c2))(t, z)
o0
:/ et o cos(t ro V1 — )" 1Jn, (r|x]) dr
0

- (1)"211_/000(;1714)%1(@%<T>350c08(t< Ja V1= )

|:L-|n 1

X Jl%(rm) dr
B 1 1 9 1\ "5 —et(r)2" . 2% 2),n—1
0 o [ () T (e ettt V=@

|1.|n 1

x cos(r|z|) dr

nt1 1 2
=(—=1) 2 ——4/ —
(=1) |zt \/;

G G T (e otz V)

x cos(r|z|) dr.

All integrals have the form

/ (P)8, 13U cos(t(r)25, /T — ) cos(rlz) dr
0
or / (r)fmgr‘se_d( Yove sm(t(r),%i(,\/ 1 — ¢?) cos(r|z|) dr
0
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where p is a negative integer depending on x and n and ¢ is non-negative real

depending on ¢ and n. For this reason we conclude the estimate
67§tm2"

—
(@)m"

|Ft, (et e cos(t(€)2 /1 — ) (t,2)| S

Analogously, we obtain the same estimate for

F! (67Tt<§>?:v") (t,x).

E—w

All together implies the statement (4.7) for odd n > 4.
For n = 2 we have

Fl, (70 cos(t(€)2, /1 — ¢2)) (1, )
_ / e cos(t(r)2 /1 — Yo (rl]) dr.
0

From the relation (see Sect. 7.1)

Tols) = éJl(s) + %Jl(s)

it follows that
- - - 1 -
Jo(r|z]) = 2J1(r|z]) + 70, J1 (r]z|) = ;8T(T2J1(r|:r|)).
Then, we get

Ft, (e 1O cos(t(E) 20 /1 — 2)) (L, z)

2k

— Yot 4o—1 2k—=2 ,—ct(r), 7 . (t 2K 1 — ¢2 i )
/0 Kotr (r)m’g e cos <r>m70 c? + T a
x Ji (r|z]) dr
T .
= —/ 2/{01&7“40_1(r)f,f;Qe_c“T)iw cos (t(r)?,ﬁfg 1—c2+ )
0 ’ ’ 1+«
x Ji (r|z]) dr
. kot 4o—1 2k—2 7ct<r>ifya (t 2K 1 — ¢2 ﬂ— )
" Kotr <7’>m76 e cos <r>m,g c2 + T a
x Jy (r|z|) dr.

Using the boundedness of .J;(s) for s € [0,1] (see Sect. 7.1) the first integral
can be estimated by

e—gtmz" <w>—(40+2n—2)
m .

Remark that 40 + 2k — 2 > 2. To estimate the second integral we apply the
following asymptotic formula (see Sect. 7.1) for Ji(s) for s > 1:

_3 3 _s
J1(s) = cs™ 2 cos (S - 177) + O(|s|”2).
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Consequently, the integral can be estimated as follows:

2K

oo
[ e e O((rfal) ) dr € Jaf e i
1

Jo]

It remains to estimate

1 [ s
7/ P2 ()22l (o (t< )26 V1 -2+ HLQ) cos(rlz|) dr

3 m,o
|2

1 s &
| | / TSTO"}%';UZ —ct(r)ir o cos (t<r>727f(r 1—c2+ %) sin(r|z|) dr
x 1 ’ «

T

We explain only the first integral because the second one can be treated in the
same way. We write the first integral as follows:

1 * 80
7/ TBTWQK 2,2 o cos (t(rﬁ% 1_02+1+La) cos(r|z|) dr

3 m,o
|2

1 1 80-5 B 2k m
7|9E| /Lr 2 (r)?,ff t{r)m.o cos (t(rﬁfia 1—c2+ Toa a) cos(r|x|) dr

- (4.10)

I [T so-s, 9 —ct(r)2 (
. 7 ()26 2= et s (1t 1— 2 7) S(rl|) dr-
+ |m|3/ r <r>mg e coS <>7,“7 c®+ T+ a cos(r|z|) dr
(4.11)

The integral in (4.10) is equal to

1 ! s
|x/ TST<T>3fU2e_°t< Mo Cos (t(r}%{ja 1—c2+ H%)ar(sin(r\ﬂ)) dr
el
(4.12)

After partial integration and by using (4.9) the limit terms can be estimated
by |x|’ge*5tm2m. The new integral is equal to

1 [t o
/ (clrg o <7‘>if;2 cos (t(r}ifg 1—c2+ il
B ’ ’ 1+

2|2 ) 1 o
Foegr T (ry2r -t cos (t(r) 1—c2+ 7>
Fogr T (rym>tsin (t( ARV RS 7)
120 =7 4,'1 4 ( 2K 2 )) —ct(r)
2 t 1 [ m,o
+ car (7") cos (r)m’g c? + T a e sm( ||) dr

It can be estimated by |z|~ Ze—5tm™” , too. After integration by parts the inte-
gral in (4.11) can be estimated by

1 o0 120 -7 2K
—| |5/ r7<r)f,ﬁ;2€_d<r>mvd dr.
x| 2
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The latter integral can be estimated by ||~ Fe—5tm™ . Finally, we have for the
oscillating integral ngw (e‘”mfrﬁ“) the relation

FL (e ™o (¢, z) = /0 e THO e Jo (r|]) dr

E—a
:/ e THr "“’5‘ (r Jl( ||)) dr
0

m,o

:/ Qo kTtr?t (p) 22 THr >m”J1( |x|) dr
0

Then, we derive the same estimates as we did before for estimating the oscil-
lating integral

FZ', (e~ MO cos(t(E) 2 \/1 - 2)).

Summarizing all estimates yields the statement (4.7) for n = 2.

Now for the case of even n > 4 we carry out 5 — 1 steps of partial integration.
In this way we obtain

ngz (e_Ct<€>"L s cos( (5),2,’;0\/ 1-— 02))(t7 x)
:/ e~ cos(H(r)2F \/1 " Jn g (r]a]) dr
0

1 /OOO (%%) S (e—ct@")ff,(, cos(t(rﬁf’g 1- 02)7“"_1) ~0(7"|33|) dr

e
! T(ol % —ct(r)2r K n—
- T/ (5:7) © (e cos(tir)Z /1= 2t

X %ar“”l(rlwl))dr
“ =), (aaﬁ)f(e‘°“”mcos<t< 2T ) 2ol
0

Hoo 1y ~
0

(4.13)

1 Xr 0 1N\3 —ct(r)2r 2K 2\,.n—1\),.2 7
|x"2/1(3r1") (e 7 cos(t(r), V1 —c)r )r Ji(r|x]) dr.
(4.14)

For the integral in (4.13) we are able to derive the following estimate:

1 2k .
/ (8{1 r) (e t{r)m,o cos(t(r)?,’f,a 1-— 02)7“n_1)7“2J1(7“|$D dr
0

|$|n72

1
< ‘ |711—2 e—gtm“/"‘r2a+1<r>if;2 dr < e 51" (g) = (n42n+20-2)
xr 0 ’
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For the integral in (4.14) we follow the same arguments to obtain the estimate

1 0 INZ [/ _pim2e B )
)W/; (ar r) (e Ml cos(t(r) g, V1 — )" 1)T2J1(r|x|)d7“‘

|z

M\n —
5
S
x
—~
3
3L
3
+

Se”

In the same way we can estimate the oscillating integral F, ij( —THE, v) All
together implies the statement (4.7) for even n > 4. To complete the proof it
remains to show

14+«

[Ft (o (@ mo)) ()], S L+~ 0F

for p € [1,00] and ¢t > 0. Therefore we use the formula (see Sect. 7.2)

e *_owp (-t FTsH)
hva(t> (E)m.o) ~ /0 s2 4+ 2scos((1 + a)m) + 1

Taking account of the definition of modified Bessel functions (see Sect. 7.1) we
get

1+

Ft (ot (©mo)) ()
e s
_/0 (/0 52+2$cos((1+a)7r)+1r 1‘]%71(7“|917|)d7“) ds

> 1
B /0 s2+2scos((1 4+ a)m) + 1
o0 2 -
x(/ exp(ft(r)ﬁ“sﬁ)r”ﬂ:]g_l(rm)dr) ds
0

o 1 1+«
) Fol (s t&mis (¢ ds.
/0 524 2scos((1+a)m) +1 ( E—a (6 )( ,l‘)) s

The estimate

Rt e O o, bt
implies
’|ij(l1+a(tHTa< > ) HLP

<[ L —sﬁt@#ﬂfﬁ
N/o 52+25c08(1 a)m) +1H 5%06( ' )(t")HLPdS

2

[o'e) e~ 2 s 1+a t +a
< / ds.
~Jo s2+2scos((1+a)m)+1
For t € (0,1] we may conclude

14+ 1

HFiz (Zl+a(tT<§>m7U))(t’ .)HLP < /0 524 2scos((1 4+ a)m) +1 ds S 1.
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For t > 1 we have

e —LlsTHagmT+a
—1 1ta . < e 2
IFee (o= {ma)) ()] s S /0 s?2 +2scos((1+ a)m) + 1 ds

o ~ 1
< / exp ( - C’ltsm) ds.
0

After the change of variables 7 := tsThe it follows

1F (et (€ mo)) (8] 0 S / exp (— Cytsta )ds
St / m@exp (— Ci7)dr St~ 0Fe),
0

We deduce for all p € [1, 00] the estimate

1+0<

1F s (a2 (©mo)) ()| o S @487+ forall ¢ > 0.

Summarizing all the estimates we may conclude

[Fes (Bra (=7 ) (6 ) 1
SIFE (e (a1+a<t“T“<5>m>) (&) e
+I|Fﬂ(e><p(bl+a( O m)) ()
I F (a2 ) o)) ()
S (4T g (14170,
This completes the proof. U

The following proposition is helpful for the treatment of o-evolution mod-
els with a mass term.

Proposition 4.3. The following estimate holds in R™ for o > 0, m > 0, a €
[0,1) and for alln > 1:

[Fe e () o Bra (= (€0 ) ()] 1 S (1 +1)0F) (4.15)
forp e [l,00] and t > 0.

Proof. The proof is similar to the proof of the previous proposition. In a first
step we estimate the oscillating integrals
Jot!

§—w

2K 2K
(). e™ O cos(t(€) o V1 = ) and  FL ({€)7, 0 T me),

g

where ¢ = cos(Ha) K = 13z € (3,1) and 7 > 0. Following the approach

from the previous proof we may conclude an exponential type decay estimate

|Ft, (602, ject e cos<t<f>%':m — )|

+|l gﬂ( (o ), S e
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with a suitable positive constant C' = C'(m, «), and for p € [1,00] and ¢ > 0.
Let us make some comments to the third oscillating integral. Following the
same steps of treatment of the previous proof we may conclude

1+a

1F, ()2 ohiralt 2 (€ me)) ||y S (14 1)~ 0F)

for p € [1,00] and ¢ > 0. Indeed, we use the formula
14+

Lo o0 exp ( —t<€>71n+33 +‘*)
Ot F Ome) ~ [ (0o rge T

Taking account of the definition of modified Bessel functions we get

P (10205 () )

) /OOO (/OOO<T>72n,U exp (— t<7’>$1+a 51+a) rn_1j%71(r|x‘) dr) N

52 4+ 2scos((1+a)m) + 1

o 1
N /0 s2+2scos((1+ a)m) + 1
e e B
X </ (r) .0 XD ( —Hr)m SHI‘*)T’”IJ’;—l(HxD d’”) ds
0

o 1
B /0 524+ 2scos((1+a)m) +1

<F§;Z(<s>fmge-5”“f<f>*'f°f‘ )(t, w>> ds.

The estimate

ol 2 7814%“1‘/(5%1"%
|Fe (9% e )(t

m,o

1 2
< ,—3sitatmita
Y .) HLp ~
implies

< > ))(ta ')HLP
1 S

< - Fl (e s8OS Y (4. M0 d
N/O 52 + 2scos((1 + ))+1” _)x(e )(’)”LP 5

2

|| E—)x( 7rz,al1+a(

oo e~ 2% i tm 1+
< / 5 ds
o $2+2scos((14+a)m)+1
As in the previous proof we conclude the desired estimate. O

5. L" — L1 estimates for the formal solutions from Sect. 3

5.1. Models without any mass term
Proposition 5.1. Let ug € L"(R*) N L>®R"), n > 1, r > 1 and a € (0,1).
Then the function

u=u(t,z) = (Gg’g(t) * uo) (t,x)
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satisfies the following L™ — L9 estimates:

n(lte) (1 1

lult, Mpa S =27 557 |lug | (5.1)
for allr <m < q < oo provided that n(% — %) < 20.
Let ug € HY(R") NL®R™), n>1,1<r <oo,v>0, and o € (0,1). Then
the function
u=u(t,z) = (Gg’a(t) * uo) (t,x)
satisfies the following estimates:
lu(t, Mery S luolly and [lult, )l gy S lluoll g - (5.2)

Proof. The inequality (5.1) follows from Young’s inequality and Proposition
4.1. Applying these tools to the relation

[DI(G,6 () % uo)(t, ) = (F_y (Baga (= t°7HEP)) * [ Do) (¢, 2)

toa
implies the inequality (5.2). This completes the proof. O
Proposition 5.2. Let ug € L"(R") N L*(R™), n > 1, r > 1 and a € (0,1).
Then the function
u=u(t,x) = (G () *uo)(t, )

satisfies the following estimate for any fized § > 0 small enough:

Jults Mo S (00 (uollr + liolza) for all a € el (53)
where

e min{m(l - é);l—é}.

x40 20 r

Proof. To get (5.3) we use ideas of D’Abbicco (cf. with [3]). For ¢ € (0,1] we
set m = ¢ in (5.1) to get the LY — L9 estimate

[ult, lze < [luollza-
For t > 1 we choose m = r in (5.1) if n(% — 1) < 20. Otherwise, in (5.1) the

q
parameter m is chosen as the solution to

1 1 1
n(l+a) (--1)=1-3
20 m q
with a fixed sufficiently small positive §. In this way, we may conclude the
L™ — L9 estimate
lu(t, ze < ¢~ a uo L.
Gluing both estimates together we derive the desired estimate (5.3). O

Remark 5.3. The last two statements are valid for » = 1, too, in contrary
to the paper [3]. In this paper the authors use estimates in scales of Morrey
spaces from the paper [1], where = 1 is excluded. For this reason the positive
parameter ¢ appears in Proposition 1.1.

The statements of the Propositions 5.1 and 5.2 allow to conclude the
following result.
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Corollary 5.4. Let ug € L"(R")NL*®(R"), n>1,r>1 and o € (0,1). Then
the function
u=u(t,x) = (Ggw(t) * uo) (t, )
belongs to
L>((0,T),L"(R") N L>(R™)) for all T > 0.
Let ug € HY(R")NL®R"), n>1,1<r <oo,v >0 and o € (0,1). Then
the function
u=u(t,xz) = (Gg’a(t) ) (t, )
belongs to
L>((0,T),H] (R™) N L®(R™)) for all T > 0.

The next result contains even the continuity property with respect to the
time variable.

Proposition 5.5. Let ug € L"(R") N L*(R™), n > 1, r > 1 and a € (0,1).
Then the function
u=u(t,xz) = (Gg’a(t) % ug) (¢, x)
belongs to
C([0,00), L"(R™) N LY(R™)) for all q € [r,00).
Let ug € HY(R")NL®(R"), n > 1,1 <r < oo,y >0 and a € (0,1). Then
the function
u=u(t,z) = (Gg’g(t) * uo) (t,z)
belongs to
C([0,00), HY(R™) N LYR™)) for all q € [r,o0).
Proof. The second statement follows immediately from the first statement by

using only the higher regularity H)) instead of L". The first statement follows
from Proposition 7.9 of the Appendix. O

5.2. Models with a mass term
Proposition 5.6. Let ug € L"(R") N L>*(R"), n > 1, r > 1 and a € (0,1).
Then the function

u=u(t,x) = (G, (t) * uo) (t, )
belongs to

C(0,00), L (R") N L% (R"))

and satisfies the following L™ — L7 estimates:

lu(t, )lze S (14870 ug| - (5.4)

foralll <r <gq<oo.
Let up € HY(R")NL*®[R"),n>1,1<r <oo,vy >0 and a € (0,1). Then
the function

u=u(t,z) = (G;’L’U(t) * uo) (t,x)
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belongs to
C(0,00). HY (") 1 L (B")
and satisfies the following estimates:
lu(t, Mz S O+ 0" N ol and [lult, ) g2 S (1 +t)_(1+“)||uo||%v-5)

Proof. The proof follows immediately from (3.1), (3.2), Proposition 4.2 and

Lemma 7.10. To verify the last inequality we use
DGR (1) uo) (t, @) = (F, (Bas (= t°THE ) * | DTuo) (¢, ).

E—x m,o

The continuity of solutions follows from (3.4) and Proposition 4.3. This com-
pletes the proof. O

6. Proofs of the main results

6.1. Proof of Theorem 2.1

For any n > 1212 and sufficiently small § € (0,1) there exists a parameter
G =q(6) € (r,00) such that
1 1 1
M(,_:):l_& 6.1)
20 roq

We define the space
X(T) := L>((0,T), L™ (R") N L= (R™))
with the norm
[ull x (1) := esssupe o, { (1 +8) " Mult, )| -
F A (s + <) -
For any u € X (T') we consider for m = 0 the operator
P:X(T)— X(T), Pu:= (vaa(t) xug)(t, x) + Ngﬂ(u)(t,x).
We shall prove that
[1Pullx(ry S lluollzrnze + lull ), (6.2)
1Pu— Pollx(r) S llu—vllx) ([ulli g + ol )- (6.3)

For the proof of (6.2), after taking into consideration the estimates (5.3), we
have

1G5,0(8) = wollx(r) = esssupeo,7) { (1 + ) (Go o (1) * uo) (¢, ) [ -
(1 )TTA(I(GR () £ uo)(t, )| 27 + (Ga,o (1) * uo)(t ) L) }
< lluollzrazes-
It remains to prove that [|[N9 , (u)||xr) < ||u\|§((T). If w € X(T), then we

derive by interpolation the following estimate:

s
lu(t, Mz S A+ 0o fulx(ry forall gefro.  (64)
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Consequently,

s
u(t, )Pllee S lwt, M pe S (1+8)7PPabae ™ |lu] x ()

S+ t)_p(ﬁ"‘?”~"_”||U|\X(T) (6.5)
for any ¢ € [r,00] and due to 850, , > B9 ,. Thanks to (5.3) and (6.5) we

can estimate
||Ngﬁg(u)(t, Nira S llullxeryly(t) forall te[0,T] and ¢ € [r,00], (6.6)

where
t T
I,(t) = / (14— 7) B / (7 — 5)* (1 + 5) PG5 ds dr.
0 0

We are interested to estimate the function I,(t) in (6.6). For this we apply
Lemma 7.11. We notice that p(859 . — A) > 1 if and only if

apo

1
P > Paxo.rs(n) = max {pZ,A,a(n)% m}

Consequently, by using Lemma 7.11 we may estimate I,(¢) as follows:

I,(t) S /Ot(lthT)ﬁ?ﬂiﬁ(Hr)al dr < (14 ) Peheta < (1 4 ) BalotH,

thanks to the fact that g7 q - €(0,1—0] and a € (0, 1). Therefore (6.5) gives
IN, @lxery S Nl er-

Finally, it remains to show (6.3). Let ¢ € [r,o0]. By Holder’s inequality, for
u,v € X(T), and if p’ denotes the conjugate to p, then we have

s, )" = (s, )7l s

S ( [u(s, z) — v(s, z)|* (|u(=<>’,ﬂﬁ)|p_1 + |v(s,x)|p_1> dgc)
e

1

—vs;z:pqasE u(s, z)|P~ +|u(s, 2)|P! qpxw
5<RJ“<S"J”) (5, d) (/Rn(u,n Hlo(s, ) )d)

< lluls, ) = v(s, lzesl[[uls, Y~ + vs, )P L

S Hu(57 ) - U(S’ ')Hqu (”|u(57 ')|p71”L(1P’ + H|’U(S, ')|p71||Lqp/)
< Jluts, ) fv<s,~>||m(||u< MED o+ e NP 1>)
< fhus, ) —v(s,~>||m(||u( Mz + o, )Hm)

—p(B7° _—A »
< (1+5) PP )||7.L—UHX(T)<||U‘H§((;") + H””X(T)>
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Hence,
INO () () = NO o ()t Yo S T (®)lu = ol (lullBeh + [0l
< (750N u = vl (il + ol ) forall ¢ € 0,7
We deduce that
[Pu— Pollx(r) = [|Ng o (u) = No o ()| x(r)
< lu = vllxry (all iy + ol ).
Notice that p > pa x,0,rs for all 6 > 0 if and only if p > pa x0,r-

Remark 6.1. All the estimates (6.2) and (6.3) are uniformly with respect to
T € (0,00) if p > par.or(n).

From (6.2) it follows that P maps X (7) into itself for all 7" and for small
data. By standard contraction arguments (see [5]) the estimates (6.2) and (6.3)
lead to the existence of a unique solution to u = Pu and, consequently, to (1.3)
with m = 0, that is, the solution of (1.3) with m = 0 satisfies (5.3). Since all
constants are independent of T" we let T tend to co and we obtain a global (in
time) existence result for small data solutions to (1.3).

Finally, let us discuss the continuity of the solution with respect to ¢t. The
solution satisfies the operator equation

u(t) = Gg o (t) * uo + Ny o (u)(t).

The above estimates for N{ ,(u) and the integral term fg in N9, (u) imply
forall T >0

NJ ,(u) € C([0,T], L"(R™) N L=(R™))
with T N2, (u)(t, ) |-z = 0. (6.7)
Proposition 5.5 gives
GY, ,(t) xug € C([0,T], L"(R™) N LI(R™)) for all g € [r,00). (6.8)
Consequently,
u € C([0,00), L"(R™) N LY(R™)) for all ¢ € [r,c0)

what we wanted to have.
If the data are large, then instead we get for p > 1 the estimates

|Pullxry < Clluollrmz= + ()l i,
|Pu— Pollxcry < CD)lu— vl (allfhy + o5y,

where C(T) tends to 0 for T"— +0. For this reason we can have for general
(large) data a local (in time) existence result of weak solutions only. The proof
is complete.



NoDEA Fractional o-evolution equations Page 23 of 43 42

6.2. Proof of Theorem 2.2

Ifl1<n< 12_‘;7’ , then for all ¢ € [r, oo] we obtain
wida) 1 1y, nlde)

20 roq 20q

Hence, we can choose a positive ¢ such that there does not exist any g € [r, o]

which satisfies (6.1). For this reason,

8 == MO (1

a,q,0 — Fa,q,0 T 20

g
We define the space
X(T):= Lm((O,T),LT(R”) N L>(R™))
with the norm
+ (L4 t) M fult, )| },

where 3, . , = % For any u € X (T'), we consider for m = 0 the operator

P:X(T) — X(T), Pu:= (G ,(t)*uo)(t,x)+ N3 ,(u)(t,z).
We shall prove that

l[ull x 7y := esssup,e o,y { (1 + ) Mult, )|z

[1Pullx(r) S luollzraze + l[ull% g, (6.9)
1Pu— Pollx(r) S llu—vllxe) (el + 1ol ) - (6.10)

For the proof of (6.9), after taking into consideration the estimates (5.3), we
have

1G9, 5 (t) * uol| x (1)
= esssupye o, ry{ (1 + ) (G, (8) % uo)(t, )| -
+ (14 1) (G, (1) % uo) (£, ) 1= }
S lluollzrazes.

It remains to prove that [|N9 , (u)||xr) < ||uHX(T). If u € X(T), then we
derive by interpolation the following estimate:

[lu(t, e < (14 t)_B;~4>U+A||u||X(T) for all ¢ € [r, o). (6.11)
Consequently,
u(t, ) Pllee S lwt, N ee S (1+8)7PPowae ™ |lu] x ()
S (1 +4)7PPare ™ Vllul| x o)

for any ¢ € [r,oc] and due to 3, > Bp.po- Thanks to (5.3) and (6.12) we
can estimate

1N (w)(t, Lo < lullx(r)Io(t) forall te€[0,T] and g€ [r,00], (6.13)

where

(6.12)

«,pq,0 —

t T
Iq(t):/(l—l—t—T)_ﬂ;va“/ (7 — 8)* (1 + 5)PBone= ds dr.
0 0
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We notice that p(85 , . —A) > 1 if and only if

«,p,0
nr—1)(1+a)+20r(1+ )
n—20r)(1+a)+20r(l+a—2N)

p > pg,)\,a(n) =1+ (

under the assumptions 1 < o < "2—';1 and 1 <r < % Consequently, by using
Lemma 7.11 we may estimate as follows:

t
Ii(t) S / (14t —7)Poae(1+7) Tdr < (14 t) Paaot?
0

thanks to the fact that 57 € (0,1) and « € (0,1). Therefore, (6.12) gives

«,q,0
[ Newo (@l xcry S Nl -

The proof of (6.10) is similar to the proof of (6.3) of Theorem 2.1. Then we
may conclude a uniquely determined solution

we L®((0,T), L"(R™) N L=(R™)) for all T > 0.

As at the end of the proof of Theorem 2.1 we verify that the solution u belongs
even to

C([0,00), L"(R™) N LY(R™)) for all ¢ € [r,c0).
The proof is complete.
6.3. Proof of Theorem 2.3
We define the solution space
X(T) = L((0,7), H} (R") 1 L (&"))
with the norm
[ull x (1) = esssupe (o { (1 + ) Mult, )
+ (LA (ult, e + [fult,)llz=) }.

where @ is defined as in Sect. 6.2. For any u € X(T'), we consider for m = 0
the operator

P:X(T)— X(T), Pu:= (G ,(t)*uo)(t,x)+ N3 ,(u)(t,z).
We shall prove that

1Pullxry S lluollsznz~ + [ullf 7y, (6.14)
1Pu— Pollx(r) S llu—vllxr) ([ulir + ol )- (6.15)

For the proof of (6.14), after taking account of the estimates (5.3) and (5.2)
we have

G2, 5 (t) = uoll x (1)
= esssupg< i< { (1 + ) (G2, (1) * uo) (£, )|z
+ 1+ 1) (G, (1) * uo) (t, )l o + [1(G, 4 (1) * uo) (t, )| o) }

S ol gy ape-
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It remains to prove for m = 0 that [|NJ , (u)||x ) < ||u||X(T). If u e X(T),
then we derive by interpolation the following estimate:

.6
lult, e S (L+8) o™ ful x(r) forall g € [r,o0]. (6.16)

Moreover, we have

lult, Mgz S 1+ OMullx)- (6.17)
As in Sect. 6.1 we deduce

INSo ()t lze S 1+~ ul| ¢y forall ¢ € [0,7] and q € [r, o],

if and only if

1
P > Pao,r,s = Max {PZ,A,U(TL); HH\}

Now let us turn to the desired estimate of the norm [NJ', (u)(t,-)| z. We
need to estimate the norm |||u(t,-)||| ;. Applying Proposition 7.6, with p >
max{2; v}, we obtain

Mt VP gz S Mt ) g e, )=
— — —1
(L4 8)M ullx ) (L + 67D 57

S
S (14 emDizes A)H“HX(T)
S

(141)~(@=DA==0=D g 1B ) (6.18)
Then
INg.o (W)t g S NlullxryIn(t) forall ¢ e 0,T], (6.19)
where
t T
P = / / (7 — 8)21(1 4 5)~(@=DO=3-2=3) g g (6.20)
If

p> maX{p()()\a 6)7’7}3
where po(A, 0) =1+ 7225 then
L) SA+8)* S0+
We remark that p(A, §) > ﬁ and also pg(A, §) > 2. Then we deduce that
INg o (Wllx(r) S Nl e
if and only if

p> pé,)\,a,r,'y,é i= max{py,  ,(n);po(X,d); 7}
Finally, we have to show (6.15). From Sect. 6.1 we get for m = 0 the estimate

I Nao (w)(t,) = Nay o (0)(¢, )| o

L
S @+ u = oy (lullB by + ol )
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for all ¢ € [0,T] and ¢ € [r, 00]. It remains to prove
INg o (w)(t,+) = Na o (0)(E, ) 7
S (1M = vl (% + ol forall ¢ € (0,7
From the above considerations it is sufficient to prove that

s, P = ols, )Pl
< @4 PO o (fulB ik + ol ).

By using the integral representation

lu(s, )[P=lv(s, )P :p/o (u(s,-)—v(s,))Q(wu(s, ) +(1-w)v(s, ")) dw, (6.21)
where Q(u) = u|u[P~2, we obtain

s, " = Jos, )Pl gz
< Jo NIDP ((us, ) = (s, ))Qwuls, ) + (1 = w)v(s, )| - dw.

Applying the fractional Leibniz formula from Proposition 7.8 to estimate a
product in HY(R"™) we get

[fuls, )" = Tos, )Pl gz

)l
/ 11D (u(s, ) = v(s, ) o [Qwuls, x) + (1 = w)v(s, )|l L~ dw

(6.22)

/ (s, ) = vls, e 1D Qwuls, ) + (1 = w)v(s, o o
< DD (uls, ) = (s, >>||Lr<||u< I+ (s, =)

T llu(s, ) = v(s, )l / 11D Qwu(s, ) + (1 = w)u(s, )
S lluls,-) = v(s, )z (luls, )<+ llo(s, )=

+llu(s, ) = vls. )l / 11D Qwu(s. ) + (1 —w)o(s, )|z do

< (U4 MDDy ooy ([l + 0%k

Lr dw

1
+ (L4 u = ollx ) /0 IDI"Q(wu(s, ) + (1 = w)v(s, )| Lr dw.

We apply again Proposition 7.6 to estimate the term inside of the integral. In
this way we obtain

/0 D" Q(wuls, ) + (1 = w)uv(s, )|l Lrdw

Lr

< /0 D[ (wu(s,-) + (1 = w)o(s, )|
x Jlwu(s, ) + (1 = w)v(s, )= dw
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1
< / (1+ 5P Jwu + (1 - w)ollxcr)

0
X (14 8)PDOH D Jlpu 4+ (1 — w)ol 5 7 dow

~

1
< /0 (14 )M E=DOHD w4 (1 = w)o|[5 7 dw

< (14 ) E=DOHED (P70 || 3 )-
[u(s, )P = [v(s, )Pl g S (1 + s)“(p*”(”‘“)(IluH?{&) + Hvll’}’{(;))

NG (w)(t,) = N 5 (0)(t, ) g
< (L4 Ml = ollxer) (lulli oy + 0l g))  forall &€ [0,T).

~

We deduce that
[Pu— Pl xry = [INg»(w) = N§ o ()] x 1)
S = vl (luller + Iol%ry)-

Notice that p > péy/\ygm,y,é for all § > 0 if and only if p > py A c.ry. Then we
may conclude a uniquely determined solution

we L>((0,T), HY(R") N L>(R™)) for all T > 0.

As at the end of the proof of Theorem 2.1 we verify that the solution u belongs
even to

C([0,00), HY(R™) N LY(R™)) for all g € [r, 00).
If the data are large, then instead we get for p > 2 the estimates
[1Pullx(r) < Clluollmzar= + C(D)|ull 1),
1Pu— Pollx iy < C(D)lu—ollxey (lulls iy + 1ol

where C(T) tends to 0 for T"— +0. For this reason we can have for general
(large) data a local (in time) existence result of weak solutions only. This
completes the proof.

6.4. Proof of Theorem 2.4
We define the solution space
X(T) = £((0,T), H] (R") N L=(R"))

with the norm

lullx(ry = esssupye oy { (1 + ) Mult, ez + (1+) 0 M ut, )|},

where ], ., is defined as in Sect. 6.2. For any u € X(T'), we consider for
m = 0 the operator

P:X(T)— X(T), Pu:=(GY,(t)*uo)(t,x)+ N3 ,(u)(t,z).
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We shall prove that
[Pullx(r) S + lull (6.23)
1Pu— Pollxcr, S Ju—ollx T>(||u||xm + ||v||X(T ) (629)

For the proof of (6.23), after taking account of the estimates (5.3) and (5.2)
we have

||Gg,a(t) * Uol| x (1)
= esssupye(o,1) 1 (1 + 1) (G0 (1) * wo)(t, )|z
(14 8) oo “A(G o () wo) () <) }
S llwollayape-
It remains to prove for m = 0 that |NQ ,(u)llx(r) < ull% g If w € X(T),
then we derive by interpolation the following estimate:
lw(t, e S (1+ t)_BQva“+’\||u||X(T) for all ¢ € [r, x0]. (6.25)

Moreover, we have

lult, Mgz S 1+ OMullx1)- (6.26)
As in Sect. 6.2 we deduce

ING o (W) (8, 2o S (L) Poae M fullx ¢y forall t € [0,7] and g € [r, 0],
if and only if
P> Pore(n)-

Now let us turn to the desired estimate of the norm [[N3 ,(u)(t,-)| 7. We
need to estimate the norm |[[|u(t, -)[?|| z». Applying Proposition 7.6 with p >
max{2;7} we obtain

et )Pl gy S Ml ) g lludt, 1
_1)(—38" -1
(1+ t>)\||u||X(T)(1 + t)(p 1 ﬁ"'W’“-‘V\)||“H§((T)

S

A=(p=1) (B 0.0 —A
<(1+1) (P=1)(Ba 00,0 )||u||§((T)
S

(1+ t)—((p—l)(ﬁl,m,g—/\)—k)HUHS)((T)_ (6.27)
Then
INgo (W)t ) g S MlullxcryIn(t) forall ¢ € [0,T], (6.28)

@

where
t T
Ir(t):// (71— 5)* 11 + 5) " (P DBa 0.0 ==Y g5 dr., (6.29)

Notice that (p — 1)(8} 0.0 — A) — A > 1if and only if

20r(1+\)
(n—20r)(14+a)+20r(l+a— X))

p> pé;)\;agr(n) =1+
under the assumptions 1 < o < ‘E—f\l and 1 <r < ‘;%\1 If

p> piy;/\;a;r (n)’
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then
L(t) S (1 +t)N
We remark that p,  ,(n) > pi;/\;a;r(n) > 2. Then we deduce that
||N2,J(U)HX(T) S ||U||§((T)
if and only if

p > max{p, \ 5(n);7}-
Finally, we have to show (6.15). From Sect. 6.1 we get for m = 0 the estimate

INgo (w)(t,) = Na o (0)(¢, )|z
S+t Paae - U||X(T)(HU||1;(1T) + ||UH§<7(;))
for all ¢ € [0,7] and ¢ € [r, o0]. It remains to prove
ING o (w)(t,) = Na o ()t ) 72
S+ u— v||x<T><Hu||X<T> + ol ry) forall ¢ e [0,T].
From the above considerations it is sufficient to prove that
(s, )P = Jv(s, )Pl
< (14 DI etV — o oy ([l by + [l -

By using the integral representation
1
Ju(s, )P =[v(s, )| =p/o (u(s,-)=v(s,))Qwuls, ) +(1-w)v(s,-)) dw, (6.30)

where Q(u) = u|u[P~2, we obtain

Ifus, )P = To(s, )Pl

S Jo DI ((uls, ) = v(s, )Qwuls, ) + (1 —w)o(s, ) |- dew.

Applying the fractional Leibniz formula from Proposition 7.8 to estimate a
product in HY(R™) we get

I, P = los, )Pl 2z

/|||D|7 )= (s,

/ [[u(s, 8, ML= [P Q(wus, -) + (1 = w)v(s, )| - dw
S D (uls, <) = v(s, ))IILT(IIU M+ llols, ) I2<)
+IIU(8,~)*U(S,~)IIL«”/ D" Q(wu(s, ) + (1 —w)u(s, )|
S lluls, ) = o(s, Mgz (luls, M=+ llos, )lIz=)
+ lluls, <) = vls, L= /O D] Q(wufs, ) + (1 —w)v(s,-))| L dw

(6.31)

Qs ) + (1 - w)o(s, 2) | 1~ dw

LT dw
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A —1 —1
S (14 5DtV = oy (el + ol )

1
+(1+ 8)’5‘*’°°'U“Ilu—v||X<T>/0 D" Q(wu(s, )+ (1 = w)v(s,-))|| - dw.

We apply again Proposition 7.6 to estimate the term inside of the integral. In
this way we obtain

1
/0 D" Q(wuls, ) + (1 = w)v(s, )| Lrdw
S /O D[ (wu(s,-) + (1 —w)o(s, )l Lr

X Jlwu(s, ) + (1 = w)v(s,)||2>2 dw

1
< / (1+ 5 Jwu+ (1 - w)ollxcr)

0
X (1 8) 2otV + (1= ol

1
< / (14 )M P=DEF oot |y 4 (1 — )U”X(T) dw
0

S (14 )OO N (it + o5 hy )
s, )P = [o(s, )Py S (14 )XV D (|57 20 + ([0l )

INS () (t, ) = N2 (0) (1, 2
S W+ 0 = vllxeny (lul5h + ol h) forall te[0,7].
We deduce that
|1Pu— Pollx(r) = [INg o (w) = Ng 5 ()l x )
< = vllxery (lulli ey + ol r)-
Summarizing we may conclude a uniquely determined solution
we L>((0,T), H)(R™) N L>(R™)) for all T > 0.

As at the end of the proof of Theorem 2.1 we verify that the solution u belongs
even to

C([0,00), H)(R™) N LY(R™)) for all ¢ € [r,00).
If the data are large, then instead we get for p > 2 the estimates
I1Pullx(r) < Clluollmyare + C(D)|ully 7y,
|Pu — Pollxry < CT) |l — vllxery (ell%eghy + [ol5 k).

where C(T) tends to 0 for T"— +0. For this reason we can have for general
(large) data a local (in time) existence result of weak solutions only.
This completes the proof.



NoDEA Fractional o-evolution equations Page 31 of 43 42

6.5. Proof of Theorem 2.5
We recall that the solution of (1.3) is given by

u(t,x) = (G, (t) * uo)(t,x) + Ny (u)(t, ).
Let T > 0. We define the space
X(T) = (0, T); L' (R") N L (R™))
with the norm

lullx(ry = sup {1+ )" ([Ju(t,)]
0<t<T

e+ llult )l o) }-
For any u € X(T) we consider the operator

P:X(T)— X(T), Pu:=(Gy,(t)*uo)(t,z)+ Ny (u)(t,z).
We shall prove that

[Pullx (1) S luollzraze + l[ull% g, (6.32)
1Pu— Pollxr) S lu—vllxer) (lulfy + ol ). (6.33)

After proving (6.32) and (6.33) we may conclude the global (in time) result of
small data solutions in Theorem 2.5. Due to Proposition 5.6 we know that

G () * ug € C([0,00), L"(R™) N L= (R™)).

By using (5.4) we have
IG5 () * ol x (1)
= sup {A+ ) (G2 (1) xuo) (¢, ) Lr +[(Go o (1) % uo) (¢, )| L) }

0<t<

< sup {(L+6) 7@+ )7 Hjugl| Lrape
0<t<T

S sup {+ )@+ )7 Yugl| panpee < lluollzrnre- (6.34)
t>0

It remains to prove || N7, ullx 1) < ||u||§((T). If w € X(T), then by interpola-
tion we derive
lew(t, ) pe S (1 —|—t)"_1||uHX(T) forall ¢€[0,7] and gq € [r,o].

On the other hand, we have

() Pllee < lut, Wpee S @+l o0

forall ¢t€0,7] and ¢ € [r,o0]. (6:35)

Thanks to (5.4) and (6.35) we may derive the estimate
NG pu(t,)|Le S ||u||§((T)I(t) forall ¢€0,T] and gq € [r,o0], where

_ ! _ (e ! r_ gyl $)~P—=9) ds dr.
I(t)—/0(1+t ) /0( ) (1 +s) d(6d36)
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We are interested to estimate the right-hand side of (6.36). For this we
need the Lemma 7.11. We put

w(r) = /OT(T —5)27 11+ 5)PU=) g,

Thanks to Lemma 7.11 we obtain
(14 7)ot if p>

1-a oc’
wr) S A+ @2 +7)if p= 1y, (6.37)
(1 +r)erl=af p<
If we assume that p > 1—, then we obtain w(r) < (1+7)*"1.
Hence,

t t
I(t)§/ (1+t—¢)*<1+a>w(f)d75/ 1+t—7)"0FQ ) dr
0 0
(6.38)

Once more we apply Lemma 7.11 to (6.38) to obtain I(t) < (1 +¢)> 1.
Hence, [N, ullx ) < ||u||§((T). Finally, it remains to show (6.33). Let r €

[¢, 00]. By Holder’s inequality, for u,v € X (T), and if p’ denotes the conjugate
to p, then we have

luls, ) = fo(s, )|l a

(/ u(s, @) — v(s, )|? (lu(s )P+ Jo(s, )P 1) dx>q
—vsa:pqasE u(s, )P~ +|u(s, z) [Pt qpxw
( s, ) >|d) (/Rn(u,n o5, ) )d)

S llus, <) = v(s, Yl poallluls, )P+ o, )P~ o
S lluls, <) = v(s, ) lzes (Iuls, )P gar + HoCs )P | o)
< luls, ) = v(s, lzes (1uls, MG ioony + 10080 o)
< lluds, ) = v(s, lzes (luls, ) m + llols, Iz
S 1+ 8) P lu = vl x oy (B dy + 1015 ry)-
Hence,
INZ () (1) = N2 )t llzo < IOl — ollxcry (Tl + o5 )
S (1407 = ol (lullih + ol ) forall ¢ [0,7)
We deduce that
|Pu— Pollxery = 1N (w) = N2 (0) ey

< Hu - v”X(T)(H“Hx(T) + ||'Ullx(T )

N

N

2

Remark 6.2. All estimates (6.32) and (6.33) are uniformly with respect to
T € (0,00) ifp>%
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From (6.32) it follows that P maps X (7') into itself for all T" and for small
data. By standard contraction arguments (see [5]) the estimates (6.32) and
(6.33) lead to the existence of a unique solution to u = Pu and, consequently,
to (1.3), that is, the solution of (1.3) satisfies (6.34). Since all constants are
independent of T we let T tend to oo and we obtain a global (in time) existence
result for small data solutions to (1.3).

If the data are large, then instead we get for p > 1 the estimates

1Pullx(r) < Clluollzraz + C@)|ull% 7,
1Pu— Pollx(ry < Ol = vllxery (lul %y + 1015,

where C(T) tends to 0 for T — +0. For this reason we can have for general
(large) data a local (in time) existence result of weak solutions only. This
completes the proof.

6.6. Proof of Theorem 2.6
Let T > 0. We define the space

X(T) = C([0,T), H) (R") N L™ (R"))
with the norm

lullxry == sup {(L+6)'"*(lult, )z + lult, )llL=<)}
0<t<T

For any u € X(T') we consider the operator
P:X(T)— X(T), Pu:=(G3,(t)*uo)t,z)+ Ny, (u)(t,z).
We shall prove that

1Pullxry S ol mzon + lullery, (6.39)
1Pu = Pollcry 5 = ollcry (Il + 10l ). (640

After proving (6.39) and (6.40) we may conclude the global (in time) existence
result of small data solutions in Theorem 2.6. Due to Proposition 5.6 we know
that

G, (t) x ug € C([0,00), H)(R™) N L™(R™)).
By using (5.4) we have
1Go & (1) * uollx (1)
= sup {1+ 0P (G2 0 w0 ) s + (G (0) # o)1) 1)

0
< sup {(L+0)TQ 44T H|uol| gz
0<t<T
N sup {@+6)7 1+ )" Mol g S llwoll grape- (6.41)

It remains to prove ||Ny', ullx ) < Hu||’;((T). If uw e X(T), then we derive

lult, Mazaze < @+ Hlulx -
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On the other hand, applying Proposition 7.5 with p > max{2;~} we obtain
e, Pl ez < Nt )z e, )1
S A+ 0" ullxry (1 + O DD ul L
<A+ ul - (6.42)
Moreover, we have
ult, Pl S (lult, <) S @+ 8P ul . (6.43)
Thanks to (5.5), (6.42) and (6.43) we may derive the estimates
INGut, ey S lull oy I(t)  forall ¢ € [0,T],
[N u(t, Y e S Tl gy 1) for all ¢ € 0,7,

where I(t) is as in (6.36). We recall that we obtain I(t) < (1+¢)*~! for
p > 1. Hence, [N ullx ) S ||u||§((T). Finally, it remains to show (6.40).
We have

lu(s; )P = [o(s, ~)|”||Loo<IIU( ) = 0(s,lzee (Jluls, E= + llo(s, ) I2<)
S W+ 8) 7P u = vl (lulli e + lollir)-

NG () (t, ) = N3l ()t )l zoe S T w = ollx () ([ulli gy + 1015 7))
S+ 0 o = vl xer) (lull + lvlig) forall te(o,T].
It remains to prove
INZ ()(t,) = N2 @) (&) a2 S IOl — ollxry (Tl + Tollfdy)
< @+D" = vllxery (hul by + o5y forall ¢ e [0,7].
We have
||N(;7,la(u)(t7 ) - N(LY,LU(U)(Q )”H;Y
~ NGl (W) (t, ) = N (0) (&)L + [ING () () = Noto (0) (& )l -
Here f =~ g means that g < f < g. As above we have
[Nao (u)(t,-) = N (v) (&, )l
< W0 = vl (lullf by + el forall ¢ € [0.7].
It remains to prove
[Naio () (t,-) = Ny (0) (& )| i1
S @+ u— vl ([l + lollh,) for all ¢ € [0,7],
that is, it is sufficient to prove that

u(s, )P = [v(s, )Pl gz S (14 8) 7P flu = ol x oy (el gy + 015 )
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By using the integral representation

lu(s, )" = lv(s,)[? ZP/O (u(s,-) = v(s,))Qwu(s, ) + (1 = w)v(s,)) dw,
where Q(u) = u|u|P~2, we obtain

([fu(s; )P = fo(s, )Pl iz
/ D[ ((uls, ) = v(s, )NQwu(s, ) + (1 = w)v(s, ) |- dw.

Applying the fractional Leibniz formula from Proposition 7.8 to estimate a
product in H) we get

s, )P = Tos, )Pl

/ DI (u(s, ) = v(s, ) - 1Qwuls, 2) + (1 = w)v(s, z))|| L~ dw

[ o) = ol o I1DP QUn(s,) + (1 = el D
SIHD\”((w)—v(w))\lu(IIU( I + ol )
) = ot M [ NIPP Qs ) + (1 = et o
S lato) = ol (o R + s, 72
s, )~ ot [ NIDP Qs ) + (1~ puts, )

« 1
S (14 8) 7P lu = vy (Julli gy + 015 1)

LT dw

+ (14870 lu = vl xry /O D" Q(wu(s, ) + (1 —w)u(s, )| Lr dw.

We apply again the Proposition 7.6 to estimate the term in the integral. In
this way we may conclude

1
/ DI Qwuls, ) + (1 — w)v(s, )| o dw
0
1
< / 11D (wu(s, <) + (1 = w)v(s, )] -
X lwu(s, ) + (1 — wyo(s, ) |52 dw
1
S [ s 0 o+ (- welxa
0
(p— —a —92
X (145)” P20 lwu 4+ (1 - w7y dw
1
< / (14 )~ D0 o 4 (1= W)l by doo
0

S (L8P DED (lul B + [loll5r)-
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Then

(s, )P = o, WPz S (14 8) P07 ([lullfqy + Iolifr)-

[N () (2, ) = N2 (0) (8 )l
S @402 u— vl ([l + lolldy) forall ¢ e [0,7].

We deduce that
[Pu— Pvlxr) = [[NJs(u) = Ny'o (0) | x (1)
S Ml = vllxery (lul e + ol

Remark 6.3. All estimates (6.39) and (6.40) are uniformly with respect to
T € (0,00) if p > max{2;v; -1}

From (6.39) it follows that P maps X (T) into itself for all 7" and for small
data. By standard contraction arguments (see [5]) the estimates (6.39) and
(6.40) lead to the existence of a unique solution to u = Pu and, consequently,
to (1.3), that is, the solution of (1.3) satisfies the desired decay estimate. Since
all constants are independent of T, after letting T tend to oo we obtain a
global (in time) existence result for small data solutions to (1.3). If the data
are large, then instead we get for p > 2 the estimates

| Pul| x 7y < Cllug|

HinL> + C(T)||u||§((T),
1Pu = Pollxry < C(D)lu = vllxer ([ullmy + 1015 )

where C(T) tends to 0 for T'— +0. For this reason we can have for general
(large) data a local (in time) existence result of weak solutions only. By the
same argument as above we obtain the desired results. The proof is complete.
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7. Appendix

7.1. Modified Bessel functions
Here we review basic properties of modified Bessel functions. These properties
can be found in [8] and [14].

Definition 7.1. The Bessel function J,, of first kind and of order 1 € R is
defined by

LS (W ey
W =3 g na)

where p is not allowed to be a negative integer. The modified Bessel function
Ju(s) is defined by J,(s) := J‘S—,(f)

Lemma 7.2. Let f € LP(R™), p € [1,2], be a radial function. Then the inverse
Fourier transform is also a radial function and it satisfies

FH(f)(x) = /0 g(r)yr" My (rlal) dr,  g(|z]) = f(a).
Lemma 7.3. Assume that u is not a negative integer. Then the following rules
hold:
1. sdsJyu(s) = Ju—1(s) = 2uJu(s),
2. dsJyu(s) = —sdyuyi1(s),
8. T_aa(s) = /2 cosls),
4. we have the relations
‘j;t(5)| < CerISn] if |s| <1,
Ju(s) = Cs™ 7 cos (s B z) + O(|s|_%) if sl > 1,

5. Jura(rlz]) = —2n0, . (rlz]), r#0,2 #0.

T rlz|?
7.2. Mittag-Leffler function
Here we review basic properties of Mittag-Leffler functions. These properties

can be found in [6] and [9]. The Mittag-Leffler function E3 allows the following
implicit definition:

A /t B-1 8 8
— t—s Eg(\s”)ds = Eg(AtP) — 1. 7.1
T3 J, (t—s) 3(As”) 3(At7) (7.1)
The Mittag-Leffler function Eg(—t7(£)Z, ) with
& k
z .

may be written in the following form:

B(—t%(€)3.0) = = (exp (ap(t5 (€)m.)) + exp (b(t

A
152 (E)moo),

<2 8
2 2

(©m.o)))



42 Page 38 of 43 A. Kainane Mezadek and M. Reissig NoDEA

where
2 %3
ap(y) = y® exp(7) for y >0,
2 T
bs(y) =y exp(—75) for y >0,
sin(f87) /OO yQSﬁ—l exp(—s) ds
T Jo 82P 4 2y2sP COS(Z/BW) + yt
ls(y) = sn(sm) [ exp(—y7s?)
= ds fi > 0,
pr / 52 4 2scos(frm) + 1 sony
1-—- % for y = 0.

Here 3 =1+ «. The proof can be found in the paper [6].
Remark 7.4. We have also the relation

exp (ag(t2 ()mo)) + exp (b5(t2 (E)mo))

_2 Py
= 26 x5 cos (1) s sin (1))
e cos [ t{&)m & sin T+ a

Tt 2
= 2e~HOS cos (t({)}nff; V1-— 02), where ¢ = — cos (

7.3. Results from Harmonic Analysis

)
1+a/

We recall some results from Harmonic Analysis (cf. with [11]).

Proposition 7.5. Let r € (1,00),p > 1 and o € (0,p). Let Q(u) denote one of
the functions |u|?, £ulu[P=1. Then the following inequality holds:

-1
Qg < llullag llullz

for any w € HZ(R™) N L>*(R™). Here we use for v > 0 and 1 < ¢ < oo the
fractional Sobolev spaces or Bessel potential spaces

HI(R") == {f € S'(R") : | flay = IF~ ()" F(f))llze < oo}

Moreover, (D)"Y stands for the pseudo-differential operator with symbol (£)7
and it is defined by (D)Yu = F~1((£)7F(u)).

Proof. This result is a special case of the following more general inequality for
Triebel-Lizorkin spaces F)7 :

1QW)l|rg, < llullrg, llullj=" for any we F7, N L,
where ¢ > 0, whose proof may be found in [13, Theorem 1 in Section 5.4.3]. O

Proposition 7.6. Let r € (1,00),p > 1 and o € (0,p). Let Q(u) denote one of
the functions |u|P, £ulu[P~1. Then the following inequality holds:

Q)| o S llull o llulf=
for any w € HZ (R™) N L>®(R™), where
HY(R") = {f € S'R") : | fll g7 = IIF " (|€P F(f)) ]| £a < o0}

Here |D|Y stands for the pseudo-differential operator with symbol ||Y and it is
defined by |D|Yu = F~L(|¢[VF(u)).



NoDEA Fractional o-evolution equations Page 39 of 43 42
Proof. We will use a homogeneity argument. For any positive A we define
uy(z) = u(Az). Applying Proposition 7.5 to uy we get
-1

1Q(u) g S lluallmg lluallf - (7.2)

Since for r € (1, 00) we have the decomposition
lvllzg = [[vllge + [0l for any v e HY

and the scaling properties

_n
r=AT"

_n
[urll g = A7 llull g llual uflr and fual|pee = [luf|

diving both sides of (7.2) by A°~* and taking the limit as A\ — oo we obtain
the desired inequality. O

Proposition 7.7. Let r € (1,00) and o > 0. Then the following inequality holds:
luvllg < Nullag l[vllzee + llull Lo o]l g
for any u,v € HZ N L*°.

Proof. The result that we want to prove is a special case of the following
inequality for Triebel-Lizorkin spaces F7 :

lwvlleg, S llullrg vl + llullzelv]lFg,

for any u,v € F7, N L, where ¢ > 0, whose proof can be found in [13,
Theorem 2 in Section 4.6.4]. O

~ Finally let us state the corresponding inequality in homogeneous spaces
H?. For the proof it is possible to follow the same strategy as in the proof of
Proposition 7.6.

Proposition 7.8. (Fractional Leibniz formula) Let r € (1,00) and o > 0. Then
the following inequality holds:

lwvll g S Null g llollzee + llullzee 0]l g
for any u,v € HZ(R™) N L®°(R™).

The following result was proposed and proved by Marcello D’Abbicco
(University of Bari) and already used in a special case in [4]. We present the
proof to make the paper more self-contained.

Proposition 7.9. Let ug € L"(R™) N L>®(R™), n > 1, r > 1 and a € (0,1).
Then the function

u=u(t,r) = (va,,(t) * uo) (t,x)
belongs to

C([0,00), L"(R™) N LI(R™)) for all q € [r, ).
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Proof. Due to (3.2) we have
Goo(ti) = [ e B (= e de

The estimate (4.1) from Proposition 4.1 implies G, ,(t,-) € L'(R™) for all
t > 0. Moreover, Ggyg (t,-) has the following scale-invariant property:

GO (tw) = t7"PG0 (1,67%%) with § = O‘;{;l. (7.3)
Consequently, we conclude for all ¢ > 0 the relations
1Goo(t e = 11Go o (1) (7.4)
and
Gy ot x)de = Gy (1, z)de = 1. (7.5)

R R
Let us choose a positive zero sequence {t;};. We want to prove for a given
g € LP(R™), p € [1,00), that the sequence {7} * g}; tends to g, where T}(-) :=
Gg,o(tl, ). We have lim;_.T; = dp in the distributional sense. Hence,
lim;_, . 17 * g = g in distributional sense, too. But, this implies the desired
relation [, GY ,(t, x)dz = 1. Otherwise, if we would have for ¢ > 0 the rela-
tion

G o (t,x)de = G, (1,z)de = M € C,

R R

then we might conclude lim;_.., 77 *x ¢ = Mg in the distributional sense, in
contradiction to lim;_,., T} = dp in the distributional sense.
The scale-invariant property (7.3) implies for all positive §

/|.|>(S |Ti(z)|dx — 0 for I — oo. (7.6)

Indeed, the relation (7.6) holds after taking account of

[ el = [ 168, e

BE

=[G —o.
ly|>t; %6

Let us choose a function ¢ having the additional regularity ¢ € C(R™) N
L*°(R™). We prove that the sequence {(T;*g)(x)}; tends to g(z) for all x € R™.
Using (7.5) we obtain

(T; * 9)(a) — g(z) = / (9(z — y) — (=) Ti(y)dy.

n

For a fixed positive € we choose k = k(e, z) such that |g(z —y) — g(x)| < € for
ly| < K. Then,

(Th * 9)() — g(a)] gs/

ly|<r

ITy()|dy + 2] gll / ()l dy

ly|>r
<e(1G2 (1, )z +2llgllze)
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for sufficiently large I = I(k). This implies the desired relation lim; (7} *
9)(x) = g(z) for all z € R".
Applying Holder’s inequality gives

(T g)(x) = g(@)] < [[(g(x =) — 9(2)Ta() [ »

z o
<|llgx =) = g@PTLONLIT O 2
where p’ is the conjugate exponent to p. From this estimate it follows

s g=9)Ol <o [ MWI( [ lote =) - alw)Pde)ay

—cp [ DWle-0)dy = (1T )(0)

where we introduced
o(—y) = /R l9(z —y) — g(z)[Pdz.

The function ¢ = ¢(—y) is bounded and continuous. Consequently, we get
limy_ o0 [|[(T7 * g — ¢)(-)||L» = 0 what we wanted to have for all bounded and
continuous functions g € C(R™) N L (R™). Taking the set Co(R™) N L>(R™)
of such functions with compact support, then a density argument in LP(R™)
completes the proof. O
7.4. Inequalities

First we recall Young’s inequality.

Lemma 7.10. Let u € LP(R") and v € L"(R") with 1 < p,r < oco. Then
u*v € LI(R"), wherel+%=%+% and

luxvllLa S llullze (o]l
Finally, we recall the following lemma from [2].

Lemma 7.11. Suppose that 0 € [0,1),a > 0 and b > 0. Then there exists a
constant C' = C(a,b,0) > 0 such that for all t > 0 the following estimate
holds:

St—T) A+t —T) 1+ T)dr
C(1+1t)~ min{a+0;b} if max{a+0;b} > 1, (7.7)
<9 O +t)~minfat0bh 1n(2 4 ¢) if max{a+0;b} =1, '
C(1 +t)tma-0-b if max{a+6;b} < 1.
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