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Mathematics Subject Classification. 35R03, 65N99, 35H20.

Keywords. Existence, Uniqueness, Variational solutions, Nonlinear Neu-
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1. Introduction

Two of the fundamental boundary value problems in PDE are the Dirichlet
and Neumann problems. They have profound influences in the development
of the theory of PDE. Aside from their theoretical applications, they describe
many physical models. In the classical setting, these two problems have been
advanced to a far extent. We would not attempt to give a bibliography here
since we would inadvertently omit some of the important ones. Boundary value
problems for Sub-elliptic operators were initiated by the pioneering works of
Kohn and Nirenberg, Bony, Gaveau and complemented later by two important
works of Jerison. These works established some fundamental aspects of sub-
elliptic equations such as the Harnack inequality, smoothness of the Green’s
function up to the boundary, for boundaries that are nowhere characteristic
with respect to the operator [2,26], explicit formula for the harmonic mea-
sure at the center of the Koranyi ball in the Heisenberg group H

n [18] and
the behavior of solutions to the Dirichlet problem near characteristic points
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[22,23]. Of course, we only highlight those that are closely related to our de-
velopment in this paper. For other early relevant results, the reader can see
[1,14,29,30]. These pioneering works subsequently drawed a significant atten-
tion to boundary value problems in the sub-elliptic setting, see for instance
the works [3–5,7,9–11,15,16,20,33] and the references therein. However, none
of the works cited above addressed the Neumann problem.

Our purpose is to establish existence and uniqueness of variational solu-
tions of the Neumann problem associated to the non-linear sub-elliptic pth-
Laplacian arising from a system of Hörmander vector fields. This is a contin-
uation and extension of the works [28] and [13].

To set the stage we fix an open set U ⊂ R
n with diam(U) < ∞ and

X = (X1, . . . , Xm) a system of vector fields with smooth coefficients satisfying
Hörmander’s finite rank condition at every point x ∈ U :

rankLie[X1, . . . , Xm] ≡ n

Fix 1 ≤ p < ∞. Let Lp be the pth-sub-Laplacian associated to the system of
vector fields X = (X1, . . . , Xm) defined on smooth functions u by

Lp u = −
m∑

j=1

X∗
j (|Xu|p−2Xju)

on R
n. In the above the Xj =

∑n
k=1 b

(j)
k (x) ∂

∂xk
are smooth vector fields on R

n

(satisfying Hörmander’s finite rank condition though such an assumption is not
necessary to introduce the operator) and X∗

j is the formal adjoint of Xj given

by X∗
j g(x) = −

∑n
k=1

∂
∂xk

(b(j)
k (x)g(x)). We have also indicated by |Xu| =

(∑m
j=1(Xju)2

) 1
2
. For a smooth (at least C2) domain, the classical Neumann

problem for Lp consists of seeking a function u that can be differentiated
enough times and satisfying

{
Lpu = f in Ω,∑m

j=1 |Xu|p−2(Xj · η)Xju = ν on ∂Ω
(1.1)

where η is the unit outer (Euclidean) normal of ∂Ω, ν and f are continuous
functions satisfying the compatibility condition

〈ν, 1〉 =
∫

Ω

f dx. (1.2)

When ν = g for some function g, then (1.2) simply becomes
∫

∂Ω

g dμ =
∫

Ω

f dx.

In the above, the notation 〈, 〉 indicated the pairing between an element
x ∈ Z and ν ∈ Z∗ for some Banach space Z and its dual Z∗ [we make use of
an abstract description of the left hand side of (1.2) in preparation for a more
general statement later]. For the sake of convenience, we would also indicate
the sum

∑m
j=1(Xju)(Xjv) by the notation 〈Xu,Xv〉, as long as it is clear from

the context.
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In the case p = 2, the operator Lp is known as the (real part of the) Kohn-
Laplacian. Our results here extend the ones established for p = 2 in [13,28]. In
the classical setting, the method of layer potentials has met success in tackling
such problems. However, even in the simplest prototype of the Hörmander type
vector field, that is, the Heisenberg group, one faces significant difficulties in
inverting the corresponding operators on the boundary of the domain (for an
appropriate class of functions) due to the presence of characteristic points, see
[22]. Besides, layer potentials will not help in dealing with the case p 	= 2. In
view of this obstacle, we seek a different method to establish the problem of
existence of the non-linear Neumann problem in this broad context.

One approach to the problem (1.1) is to broaden the class and the concept
of solutions in such a way that existence can be established. One would then
establish that solutions are regular in some context. It is our purpose to explore
the first aspect in this paper and devote the second one to another occasion
[12]. We now introduce variational solutions.

Definition 1.1. Fix 1 ≤ p < ∞, 1 ≤ q < ∞, f ∈ Lq′
(Ω, dx), ν ∈ Bq

1− s
q
(∂Ω, dμ)∗

where 1/q+1/q′ = 1. A function u ∈ L1,q(Ω, dx) is called a variational solution
of (1.1) if for any φ ∈ L1,q(Ω, dx)

∫

Ω

|Xu|p−2〈Xu,Xφ〉dx = 〈ν, Tr(φ)〉 −
∫

Ω

f φ dx (1.3)

In the above, Ω ⊂ R
n is a domain for which there is a continuous (trace)

operator Tr : L1,q(Ω, dx) → Bq
1− s

q
(∂Ω, dμ).

In the above, L1,q(Ω, dx) denotes the by now standard sub-elliptic Sobolev
space associated to the system of vector fields X.

For the definition and some properties of the Besov spaces Bq
1− s

q
(∂Ω, dμ)

we refer the reader to Sect. 2 below. The measure μ is an s-Ahlfors measure
(again see Sect. 2 for the definition) supported in ∂Ω with 0 < s < min(q, n+q

2 )

Remark 1.2. In order for Definition 1.1 to make sense, it is required that the
continuous operator Tr exists and this was established in [13, Theorem 10.6]
under the assumptions

1. Ω is an extension domain (i.e. X − (ε, δ)-domain) and
2. μ satisfies the estimate (see definition 2.1)

μ(B(x, r)) ≤ M
|B(x, r)|

rs
. (1.4)

In particular, 1. and 2. are fulfilled when Ω = {ρ < 1} where ρ is
the homogenous gauge in a Carnot group of step two and when

dμ = |Xρ| dσ

where dσ is the surface measure on ∂Ω, and s = 1 in (1.4), see e.g. [3,4]
and [5]. Therefore, in the sequel we will work under such hypothesis.
Whenever an expression involves function values on the boundary, we
mean the trace of such function. When the context is clear, we will omit
the Tr notation.
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3. By taking the test function φ(x) ≡ 1 in (1.3), we arrive at the compati-
bility condition (1.2), which is necessary for the existence of solutions to
the above variational Neumann problem.

The close subspace of L1,q(Ω, dx) defined by

L̃1,q(Ω, dx) =
{

f ∈ L1,q(Ω, dx)
∣∣∣ fΩ =

1
|Ω|

∫

Ω

f(x) dx = 0
}

is an appropriate space to treat the Neumann problem.

Remark 1.3. Due to the Poincaré inequality (see Theorem 2.9 below), an equiv-
alent norm on L̃1,q(Ω, dx) is given by

‖f‖L̃1,q(Ω) =
(∫

Ω

|Xf |q dx

) 1
q

.

Our aim is to establish the existence and uniqueness of variational solu-
tion in such spaces:

Theorem 1.4. Let U be as in Theorem 2.8. Fix 1 < p < ∞ and 1 < q ≤ p. Let
f ∈ Lq′

(Ω, dx), Ω ⊂ U ⊂ R
n be an X − (ε, δ) domain with diam(Ω) < Ro/2,

|Ω| > 0, μ an upper s-Ahlfors measure and ν ∈ Bq
1−s/q(∂Ω, dμ)∗ satisfying the

compatibility condition (1.2). There exists a unique u ∈ L̃1,p(Ω, dx) that solves
the Neumann problem for Lp in the sense of Definition 1.1. In the above,
the parameter Ro is from Definition 2.1 below. Furthermore, the solution u
satisfies the estimate

‖Xu‖Lp(Ω,dx) ≤ C (‖ν‖Bq
1−s/q(∂Ω,dμ)∗ + ‖f‖Lq′ (Ω,dx))

1
p−1 , (1.5)

where C depends on Ω and various parameters such as Ro, p, q and so on but
does not depend on u, ν, f .

To establish this main result, we show that the functional Jp defined
in (3.1) has a unique minimum and it is the variational solution of (1.1).
Conversely, variational solutions of (1.1) are minimizers of Jp. The proof of
this fact follows the classical approach of the direct method of Calculus of
Variations. First, we show that the functional Jp is sequentially lower semi-
continuous in the weak topology of L1,q(Ω, dx). This is valid for all 1 ≤ q < ∞.
We then establish the coercivity of Jp in L1,q(Ω, dx). At the moment, this is
limited to the range 1 < q ≤ p. A weakness as it may seems in comparison
to its Euclidean counterpart. However, in the Euclidean setting, for the case
p = 2 on Lipschitz domains, similar result only holds for 1 < q < 2 + ε where
ε depends on the domain. The class of domains [the X − (ε, δ) domains] that
we treat here have characteristic points on the boundary. Such singular points
act as corners (or perhaps as cusps) of the domain if seen from the Euclidean
perspective. It is well-known that in the Euclidean case the inclusion of the
classes of domains

Lipschitz ⊂ NTA ⊂ (ε, δ) (1.6)
hold. The so call (ε, δ) domains were introduced in [25] and they are the largest
class on which Sobolev functions can be extended. It is important to observe



NoDEA Variational solution to the Neumann problem Page 5 of 14 44

that for a Carnot–Carathéodory space the last inclusion of (1.6) continue to
hold, see [6]. A version of Jerison and Kenig’s theory on the boundary be-
haviour of harmonic functions [24] has been extended to the case of Carnot
groups of step two [3] on X − NTA domains. Contrary to the Euclidean case
where Lipschitz domains are probably the largest class of domains where a
rich theory of boundary value problems can be developed, the analogue notion
of Lipschitz domain in the sub-elliptic setting even in the simplest case of the
Heisenberg group is almost non-existence, see [3]. Therefore part of our task
is to identify a class of domains, as large as possible for which a theory of
boundary value problems can be developed. The examples in [6] and [3] are
an indication that the class of X − (ε, δ) domains treated here is reasonably
large. Due to the inclusion (1.6), the domains considered in this paper, when
confined to the Euclidean case, is larger than the Lipschitz domains. Hence, it
is not supprising if a limitation on the parameter q occurs. However, we have
not been able to determine the sharp range at this moment.

We start with some background materials in Sects. 2 and 3 is devoted in
establishing our main result. Finally, we like to point out that, to the best of
our knowledge, the results here are new even in the classical setting, as far as
the class of domains treated is concerned.

2. Preliminaries

We collect previously established results needed for subsequent developments.
Some of these results are more general than what is required here. We present
the version that is already adapted to our setting and omit the details that
are relevant in a broader context.

Let d be the Carnot–Carathéodory distance associated with the system
X. It is by now well known that if the system X satisfies Hörmander’s finite
rank condition [21], then d(x, y) < ∞ for any x, y ∈ R

n ([8,27,31]) and the
metric balls B(x, r) of d satisfy a doubling condition [27]. Denote the Borel
measures on the metric space (Rn, d) by Bd. For a set E ⊂ R

n, |E| denotes
the Lebesgue measure of E.

Definition 2.1. ([13]) Given s ≥ 0, a measure μ ∈ Bd will be called an upper
s-Ahlfors measure, if there exist M,Ro > 0, such that for x ∈ R

n, 0 < r ≤ Ro,
one has

μ(B(x, r)) ≤ M
|B(x, r)|

rs
.

We will say that μ is a lower s-Ahlfors measure, if for some M,Ro > 0 one has
instead for x and r as above

μ(B(x, r)) ≥ M−1 |B(x, r)|
rs

.

The (dual of the) following sub-elliptic Besov space will serve as the space
for the Neumann datum on the boundary.
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Definition 2.2. ([13]) Let μ ∈ Bd having supp μ ⊆ F , where F is a closed
subset of Rn. For 1 ≤ p < ∞, 0 < β < 1, we introduce the semi-norm

N p
β (f, F, dμ) =

{∫

F

∫

F

(
|f(x) − f(y)|

d(x, y)β

)p
d(x, y)s

|B(x, d(x, y))| dμ(y) dμ(x)
} 1

p

.

The Besov space on F , relative to the measure μ, is defined as

Bp
β(F, dμ) = {f ∈ Lp(F, dμ) | N p

β (f, F, dμ) < ∞}.

If f ∈ Bp
β(F, dμ), we define the Besov norm of f as

‖f‖Bp
β(F,dμ) = ‖f‖Lp(F,dμ) + N p

β (f, F, dμ).

We note in passing the following result [13, Theorem 11.1], which moti-
vates the use of Besov spaces (since their dual are larger) instead of Lebesgue
spaces on the boundary for the Neumann data. However, our main result here
does not make use of Theorem 2.3 below. Note also that since we only needed μ
to be an upper s-Ahlfors measure, a comparison between Besov and Lebesgue
spaces as candidates for the boundary datum also require that we assume μ to
be a lower s-Ahlfors measure as well. In the sub-elliptic settings, ample supply
of measures that satisfy both an upper and lower s-Ahlfors condition are found
in [13] and the references therein.

Theorem 2.3. (Embedding a Besov space into a Lebesgue space) Given a
bounded set U ⊂ R

n having characteristic local parameters C1, Ro, and local
homogeneous dimension Q, let Ω ⊂ Ω ⊂ U be an open set with diam Ω < Ro/2.
Let p ≥ 1, 0 < β < 1. Suppose μ is a lower s-Ahlfors measure with

0 < s ≤ n + βp, s < Q − βp ,

and such that supp μ = F ⊂ Ω. There exists a continuous embedding

Bp
β(F, dμ) ⊂ Lq(Ω, dμ), where q = p

Q − s

Q − s − βp
,

and, in fact, for f ∈ Bp
β(F, dμ) one has

‖f‖Lq(Ω,dμ) ≤ C

{(
1 +

diam(Ω)β

µ(F )β/(Q−s)

)
N p

β (f, F, dµ) +
1

µ(F )β/(Q−s)
‖f‖Lp(Ω,dμ)

}
,

where C = C(Ω, C1, Ro, p, β, s,M) > 0. Furthermore,
(∫

Ω

|f(x) − fΩ,μ|q dμ(x)
) 1

q

≤ C

(∫

F

∫

F

|f(x) − f(y)|p d(x, y)s−β p

|B(x, d(x, y))| dμ(y) dμ(x)
) 1

p

,

where fΩ,μ denotes the average 1
μ(Ω)

∫
Ω

f dμ.

A wide class of domains to which our results hold is the following.
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Definition 2.4. ([13,28]) An open set Ω ⊂ R
n is called an X − (ε, δ)-domain if

there exist 0 < δ ≤ ∞, 0 < ε ≤ 1, such that for any pair of points p, q ∈ Ω,
if d(p, q) ≤ δ, then one can find a continuous, rectifiable curve γ : [0, T ] → Ω,
for which γ(0) = p, γ(T ) = q, and

l(γ) ≤ 1
ε

d(p, q), d(z, ∂Ω) ≥ ε min {d(p, z), d(z, q)} for all z ∈ {γ}.

The following compact embedding theorem [17, Theorem 1.28] plays an
important role in our proof.

Theorem 2.5. (Compact embedding) Let Ω ⊂ R
n be an X − (ε, δ) domain with

diam(Ω) < R0
2 . Then, one has the following:

(I) The embedding BVX(Ω, dx) ↪→ Lq(Ω, dx) is compact for any 1 ≤ q <
Q

Q−1 .
(II) For any 1 ≤ p < Q the embedding L1,p(Ω, dx) ↪→ Lq(Ω, dx) is compact

provided that 1 ≤ q < Qp
Q−p .

(III) For any Q ≤ p < ∞ and any 1 ≤ q < ∞, the embedding L1,p(Ω, dx) ↪→
Lq(Ω, dx) is compact.

As an easy consequence of the above theorem we have

Theorem 2.6. With the same assumptions in Theorem 2.5, for any 1 ≤ p < ∞
the embedding L1,p(Ω, dx) ↪→ Lp(Ω, dx) is compact.

We can deduce from Theorem 2.6 easily the following

Corollary 2.7. For any 1 < p < ∞, if {uh}∞
h=1 is a sequence in L1,p(Ω, dx)

such that uh ⇀ u for some u ∈ L1,p(Ω, dx) then uh → u in Lp(Ω, dx) hence
uh → u in L1(Ω, dx) also. (We note explicitly the notation ⇀ means weak
convergence whereas → means convergence in norm).

The proof of this fact is rather standard but we include it here for the
sake of convenience of the reader.

Proof. The weak convergence assumption together with the Banach–Steinhaus
(uniform boundedness principle) theorem implies that {uh}∞

h=1 is bounded in
L1,p(Ω, dx). Now Theorem 2.6 implies that if {uhj

} is any sub-sequence of
{uh}, {uhj

} has a sub-sequence we denote it by {vhj
} such that vhj

→ v ∈
Lp(Ω, dx) for some function v. Since uh ⇀ u in Lp(Ω, dx), we must have u = v
and the original sequence {uh} converge in norm to u in Lp(Ω, dx). �

The traces of Sobolev functions on the boundary of a domain is a delicate
matter. It was the purpose of [13] to develop such a theory in the setting of a
Carnot–Carathéodory space. It is also an indispensable tool in dealing with the
Neumann problem, even the non-linear version. We thus recall [13, Theorem
10.6]:

Theorem 2.8. (Trace theorem on the boundary) Let U ⊂ R
n be a bounded

set with characteristic local parameters C1, Ro, and let p > 1. There is σ =
σ(X,U) > 0 such that, if Ω ⊂ U is a bounded X −(ε, δ)-domain with rad(Ω) >
0, diam(Ω) < Ro

2σ , dist(Ω, ∂U) > Ro, and μ is an upper s-Ahlfors measure for
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some 0 < s < p, having supp μ ⊆ ∂Ω, then for every 0 < β ≤ 1 − s/p there
exist a linear operator

T r : L1,p(Ω, dx) → Bp
β(∂Ω, dμ),

and a constant C = C(U, p, s,M, β, ε, δ, rad(Ω)) > 0, such that

‖Tr f‖Bp
β(∂Ω,dμ) ≤ C ‖f‖L1,p(Ω,dx). (2.1)

Furthermore, if f ∈ C∞(Ω) ∩ L1,p(Ω, dx), then T r f = f on ∂Ω.

Our final pillar is the following result [17, Corollary 1.6] specialized to
our setting:

Theorem 2.9. Let Ω be an X − (ε, δ) domain, 1 ≤ p < Q. There exists some
constant C = C(ε, δ, p, n) > 0 such that for any 1 ≤ k ≤ Q

Q−p and any
u ∈ L1,p(Ω)

(
1

|Ω|

∫

Ω

|u − uΩ|kp dx

) 1
kp

≤ C diam(Ω)
(

1
|Ω|

∫

Ω

|Xu|p dx

) 1
p

.

3. Existence and uniqueness of solutions to the Neumann
problem

Let Ω be an X − (ε, δ) domain. Consider the functional Jp : L1,q(Ω, dx) → R
given by

Jp(u) =
∫

Ω

1
p
|Xu(x)|p + f(x)u(x) dx − 〈ν, Tr(u)〉. (3.1)

Note that in a priori, unless q = p or u ∈ C∞(Ω) ∩ L1.q(Ω, dx), the
functional Jp can take on the value of ±∞ and the assumption that Ω is an
X − (ε, δ) domain is necessary for the trace operator tr (as in Definition 1.1)
to be defined. Hence, this assumption is needed in the above definition and
throughout the paper.

Lemma 3.1. Let Ω be an X − (ε, δ) domain. For any q ≥ 1 the functional Jp

given by (3.1) is convex on L1,q(Ω, dx). If in addition we assume that |Ω| > 0
and p > 1 then the functional Jp is strictly convex in the subspace L̃1,q(Ω, dx).

Proof. It suffices to establish the proposition for the non-linear part of Jp,
namely

I(u) =
1
p

∫

Ω

|Xu(x)|p dx. (3.2)

It is an elementary fact that the function g : Rm → R given by g(z) = |z|p
is convex for 1 ≤ p < ∞ (see e.g., [32, Theorem 5.1] and the remark there).
This implies that any functional of the form F(u) =

∫
Ω

g(Xu)(x) dx is convex.
Hence, I is convex. We turn to the second part of the proposition. For p > 1 the
function g is strictly convex. Hence for any 0 < t < 1 and any u, v ∈ L̃1,q(Ω, dx)
we have g(t(Xu) + (1 − t)(Xv)) < tg(Xu)|(1 − t)g(Xv) unless Xu = Xv, that
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is, for all i = 1, . . . ,m, Xi(u − v) = 0. To continue, observe that the system of
Hörmander vector field X = (X1, . . . , Xm) satisfy the property that

∀i = 1, . . .m, for a.e. x ∈ Ω : Xig(x) = 0 implies g(x) = constant for a.e. x ∈ Ω .

This imply u = v + c for some constant c. Since u, v ∈ L̃1,p(Ω, dx), taking into
account that |Ω| > 0, we see that c must be zero. �
Remark 3.2. Two remarks are in order.

(i) The uniqueness of minimizer would follow from the strict convexity of
Jp, that is, minimizer would be unique in the spaces L̃1,q(Ω, dx).

(ii) Due to the compatibility condition (1.2), we have for any constant c ∈ R

and any u ∈ L1,q(Ω, dx), Jp(u+c) = Jp(u). Hence, if a (unique) minimizer
uo ∈ L̃1,q(Ω, dx) exists for Jp, then uo remains to be a minimizer for Jp

in L1,q(Ω, dx) since for any u ∈ L1,q(Ω, dx), Jp(u) = Jp(u−uΩ) ≥ Jp(uo)
and that for any constant c ∈ R, uo + c is also a minimizer for Jp in
L1,q(Ω, dx).

Next, we turn to the (sequential) lower semi-continuity of the functional
Jp. The following result (in many equivalent form) from Calculus of Variations
is valuable to us and is available from many sources. For the sake of our
purpose, we apply the following theorem from [19, Theorem 4.5].

Theorem 3.3. Let Ω be an open set in R
n, M a closed set in R

N , and let
F (x, u, z) be a function defined in Ω × M × R

l such that
(i) F is a Carathéodory function, that is measurable in x for every (u, z) ∈

M × R
l and continuous in (u, z) for almost every x ∈ Ω.

(ii) F (x, u, z) is convex in z for almost every x ∈ Ω and for every u ∈ M .
(iii) F ≥ 0.
Let uh, u ∈ L1(Ω,M), zh, z ∈ L1(Ω,Rl) and assume that uh → u and zh ⇀ z
in L1

loc(Ω, dx). Then,
∫

Ω

F (x, u, z) dx ≤ lim inf
h→∞

∫

Ω

F (x, uh, zh) dx

Corollary 3.4. Let Ω be an X − (ε, δ) domain with diam(Ω) < Ro

2 (and f ∈
Lq′

(Ω, dx)). The functional Jp defined in (3.1) is (sequentially) lower semi-
continuous on the spaces L1,q(Ω, dx) for any 1 ≤ q < ∞ with respect to the
weak topology, that is, if {uh}∞

h=1 is a sequence in L1,q(Ω, dx) such that uh ⇀ u
for some u ∈ L1,q(Ω, dx) then

Jp(u) ≤ lim inf
h→∞

Jp(uh) .

Proof. By assumption u ∈ L1,q(Ω, dx), f ∈ Lq′
(Ω, dx) and ν ∈ Bq

1− s
q
(∂Ω, dμ)∗

the linear part of J is bounded by Hölder’s inequality and the trace inequality
(2.1) therefore continuous. The sum of two lower semi-continuous function is
lower semi-continuous. Hence, it suffices to establish the lower semi-continuity
of the non-linear part of Jp, namely I defined in (3.2). Let u, {uh}∞

h=1 be as
in the hypothesis. By Corollary 2.7 we have uh → u in L1(Ω, dx) and also
Xjuh ⇀ Xju in Lq

loc(Ω, dx) hence also in L1(Ω, dx) for j = 1, . . . m. Now we
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apply Theorem 3.3 with N = 1,M = R, l = m, z = Xu = (X1u, . . . ,Xmu)
and F (x, u, z) = |z|p to reach the conclusion. �

Lemma 3.5. Let 1 ≤ q < ∞, f ∈ Lq′
(Ω, dx), Ω be X − (ε, δ) domain. A

function u ∈ L1,q(Ω, dx) minimizes the functional Jp given by (3.1) if and
only if it is a variational solution to the Neumann problem (1.1) in the sense
of Definition 1.1.

Proof. Let u ∈ L1,q(Ω, dx) be a minimizer of Jp. We have for any ε > 0 and
any φ ∈ L1,q(Ω, dx) the function ψ(ε) = Jp(u + ε φ) reaches a local minimum
at ε = 0. Therefore ψ′(0) = 0. On the other hand, differentiating under the
integral sign yields

ψ′(ε) =
∫

Ω

|Xu + εXφ|p−2〈Xu + εXφ,Xφ〉 + f(x)φ(x) dx − 〈ν, φ〉.

Hence

0 = ψ′(0) =
∫

Ω

|Xu|p−2〈Xu,Xφ〉 + f(x)φ(x) dx − 〈ν, φ〉,

which is (1.3) in Definition 1.1.
We now prove the converse. Let u ∈ L1,q(Ω, dx) be a variational so-

lution in the sense of Definition 1.1. For any v ∈ L1,q(Ω, dx) we let φ =
u − v ∈ L1,q(Ω, dx) in (1.3), adding and subtracting the terms

∫
Ω

1
p′ |Xu|p dx,∫

Ω
1
p |Xv|p dx we obtain the identity

Jp(u) = Jp(v) −
∫

Ω

1
p
|Xv|p +

1
p′ |Xu|p − |Xu|p−2〈Xu,Xv〉 dx

= Jp(v) −
∫

Ω

1
p
|Xv|p − 1

p
|Xu|p − |Xu|p−2〈Xu,Xv − Xu〉 dx.

To show that the last term in the above is non-negative, we recall that the
convexity of the function g(z) = |z|p for p ≥ 1 can be rephrase as: for every
z, w ∈ R

m, z 	= 0 then

1
p

|w|p ≥ 1
p
|z|p + |z|p−2

m∑

i=1

zi (wi − zi). (3.3)

Letting zi = Xiu and wi = Xiv in the inequality (3.3) and integrating
we have∫

Ω

1
p
|Xv|p − 1

p
|Xu|p − |Xu|p−2 〈Xu,Xv − Xu〉 dx ≥ 0.

Hence, we have Jp(u) ≤ Jp(v) and this completes the proof. �
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Our final result leading to the existence of minimizers of Jp [hence, vari-
ational solutions to the Neumann problem in L1,q(Ω, dx)] is the following

Lemma 3.6. Let Ω be an X − (ε, δ) domain. For any 1 ≤ q ≤ p and f ∈
Lq′

(Ω, dx), the functional Jp is coercive in L̃1,q(Ω, dx), that is, if {uh} is a se-
quence in L̃1,q(Ω, dx) such that limh→∞ ‖uh‖L̃1,q(Ω,dx) = limh→∞ ‖Xuh‖Lq(Ω,dx) =
∞ then limh→∞ Jp(uh) = ∞.

Proof. Observe that due to the Trace Theorem 2.8 and the fact that f ∈
Lq′

(Ω, dx), the linear part of Jp is bounded. Therefore, it suffices to establish
the lemma for the non-linear part of Jp, namely I given by (3.2). Let {uh} be
a sequence in L̃1,q(Ω, dx) such that limh→∞ ‖Xuh‖Lq(Ω,dx) = ∞. By Hölder’s
inequality, we have for 1 ≤ q ≤ p that ‖Xuh‖Lq(Ω,dx) ≤ |Ω| 1

q − 1
p ‖Xuh‖Lp(Ω,dx)

hence limh→∞ I(uh) = limh→∞ ‖Xuh‖Lp(Ω,dx) = ∞ as well. �
We now come to our main result which follows from a standard line of

argument of the Calculus of Variations, Lemma 3.6 and Corollary 3.4. We
include the proof for the sake of completeness.

Theorem 3.7. Let 1 < q ≤ p, Ω be an X − (ε, δ) domain with diam(Ω) <

Ro/2, |Ω| > 0, f ∈ Lq′
(Ω, dx), ν ∈ Bq

1− s
q
(∂Ω, dμ)∗ satisfying the compatibility

condition (1.2). The functional Jp given by (3.1) has a unique minimizer in
L1,q(Ω, dx).

Proof. Let l = inf{Jp(u) |u ∈ L̃1,q(Ω, dx)} > −∞ since the linear part of
Jp is bounded and the non-linear part I given by (3.2) is non-negative. Let
{uh} ⊂ L̃1,q(Ω, dx) be a minimizing sequence, that is limh→∞ Jp(uh) = l.
Clearly, Jp(uh) is bounded and hence Lemma 3.6 implies that {uh} is a
bounded sequence in L̃1,q(Ω, dx). Since for q > 1, the balls in L̃1,q(Ω, dx)
are weakly compact, {uh} contains a sub-sequence (still denoted by {uh}) and
∃uo ∈ L̃1,q(Ω, dx) such that uh ⇀ uo. Corollary 3.4 then imply

l ≤ Jp(uo) ≤ lim inf
h→∞

Jp(uh) = lim
h→∞

Jp(uh) = l,

hence Jp(uo) = l. Now from Remark 3.2, uo remains to be a minimizer of Jp

in L1,q(Ω, dx). �
Finally, we now come to the proof of our main result.

Proof of Theorem 1.4. Theorem 3.7 and Lemma 3.5 yield a unique solution
u ∈ L̃1,q(Ω, dx) in the sense of Definition 1.1. To establish the estimate (1.5)
we take φ = u in Definition 1.1 and recalling Remark 1.3 we have
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‖Xu‖p
Lp(Ω,dx) =

∫

Ω

|Xu|p−2 〈Xu,Xu〉 dx

≤ |〈ν, tr(u)〉| +
∣∣∣∣
∫

Ω

f u dx

∣∣∣∣

≤ ‖ν‖Bq
1−s/q(∂Ω,dμ)∗ ‖tr(u)‖Bq

1−s/q(∂Ω,dμ)

+ ‖f‖Lq′ (Ω,dx) ‖u‖Lq(Ω,dx)

(by Theorems 2.8, 2.9) ≤ C ‖ν‖Bq
1−s/q(∂Ω,dμ)∗ ‖u‖L̃1,q(Ω,dx)

+ ‖f‖Lq′ (Ω,dx) ‖Xu‖Lq(Ω,dx)

(by Remark 1.3) ≤ C (‖ν‖Bq
1−s/q(∂Ω,dμ)∗ + ‖f‖Lq′ (Ω,dx)) ‖Xu‖Lq(Ω,dx)

(since q ≤ p) ≤ C (‖ν‖Bq
1−s/q(∂Ω,dμ)∗ + ‖f‖Lq′ (Ω,dx)) ‖Xu‖Lp(Ω,dx)

and therefore

‖Xu‖Lp(Ω,dx) ≤ C (‖ν‖Bq
1−s/q(∂Ω,dμ)∗ + ‖f‖Lq′ (Ω,dx))

1
p−1 .

In view of Remark 1.3 again this shows u ∈ L̃1,p(Ω, dx) and the proof is
now complete. �

Remark 3.8. Some intermediate results such as Lemmas 3.1, 3.5 and Corol-
lary 3.4 hold for any q ≥ 1. The limitation of 1 < q ≤ p comes in Lemma 3.6
and therefore also in Theorem 1.4. The case for q < p can also be infered
from the case q = p due to the containment of the spaces Bq

1−s/q(∂Ω, dμ)∗ ⊂
Bp

1−s/p(∂Ω, dμ)∗ and L̃1,p(Ω, dx) ⊂ L̃1,q(Ω, dx).
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