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Abstract. We analyze a certain class of coupled bulk–surface reaction–
drift–diffusion systems arising in the modeling of signalling networks in
biological cells. The coupling is by a nonlinear Robin-type boundary con-
dition for the bulk variable and a corresponding source term on the cell
boundary. For reaction terms with at most linear growth and under dif-
ferent regularity assumptions on the data we prove the existence of weak
and classical solutions. In particular, we show that solutions grow at most
exponentially with time. Furthermore, we rigorously derive an asymptotic
reduction to a non-local reaction–drift–diffusion system on the membrane
in the fast-diffusion limit.
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1. Introduction

The dynamic distribution of proteins within a cell and on the cell membrane
is essential for many biological functions. The spatial localization of GTPase
proteins for example plays an important role in cell signaling and the polar-
ization of cells, and hence contributes for instance to cell movement and dif-
ferentiation [31]. Two particular properties determine the dynamic of GTPase
proteins. Firstly, these proteins cycle between an active and an inactive state,
and secondly, the inactive form can alternate between a membrane bound and
a cytosolic state (where the molecules diffuse in the bulk). In a deterministic
mean field type description these characteristics lead to a spatially coupled
system of bulk–surface partial differential equations. In this article we inves-
tigate the mathematical well-posedness of such systems and rigorously justify
an asymptotic reduction of the model.
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The particular class of bulk–surface reaction–diffusion systems that we
consider here is a generalization of the GTPase cycle model introduced in [34]
and further investigated in [36]. In this model the cell and its outer cell-
membrane are characterized by a domain B ⊂ R

3 and its boundary Γ = ∂B.
We are interested in the evolution of the cytosolic concentration V of the in-
active GTPase, of the concentration u of the membrane-bound active, and of
the concentration v of the membrane-bound inactive GTPase. While V has its
domain of definition in the cell interior, B, the functions u, v live on the cell
membrane, Γ. We assume that V can diffuse in the cell interior, and that V
and v are converted into each other at the membrane by attachment and de-
tachment. Moreover, u, v can diffuse laterally on the membrane and are trans-
formed into each other by activation and deactivation. We therefore obtain the
following coupled system: Given T > 0 we consider the time interval (0, T ),
and look for nonnegative functions V : B × (0, T ) → R, u, v : Γ × (0, T ) → R,
that satisfy the diffusion equation

∂tV = DΔV (1.1)

in B × (0, T ), the flux condition

− D∇V · ν = q1(u, v)V − q2(u, v)v (1.2)

on Γ × (0, T ), and the reaction–diffusion system

∂tu = ΔΓu + f1(u, v)v − f2(u, v)u, (1.3)

∂tv = dΔΓv + (−f1(u, v)v + f2(u, v)u + q1(u, v)V − q2(u, v)v) , (1.4)

on Γ × (0, T ). In (1.3), (1.4) we denote by ΔΓ the Laplace–Beltrami opera-
tor on the manifold Γ = ∂B, and we are assuming d > 0 and D > 0. The
constitutive functions f1, f2 and q1, q2 encode the reaction rates for the ac-
tivation/deactivation of GTPase on the membrane, and for the exchange of
inactive GTPase at the cell membrane. All these constitutive functions are
assumed to be nonnegative and uniformly bounded. This in particular yields
a quasi-positivity property of the nonlinearities (cf. [33]).

In this paper we generalize the system described above and consider a
model with more general and possibly non-smooth drift–diffusion operators
on the cell membrane. The diffusion operators are given by mappings A1, A2 :
Γ × (0, T ) → R

3×3 and the drift by functions b1, b2 : Γ × (0, T ) → R
3, with

Ak(y, t) : TyΓ → TyΓ, bk(y, t) ∈ TyΓ for all (y, t) ∈ Γ × (0, T ), k = 1, 2,
(1.5)

where TyΓ denotes the tangent plane of Γ in y ∈ Γ. We then consider the
following bulk–surface reaction–drift–diffusion system:
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Problem (RDD). We are looking for V : B×(0, T ) → R, u, v : Γ×(0, T ) → R

such that

∂tV = DΔV in B × (0, T ), (1.6)

−D∇V · ν = q1(u, v)V − q2(u, v)v on Γ × (0, T ), (1.7)

∂tu = ∇Γ · (A1∇Γu) + b1 · ∇Γu + f1(u, v)v

− f2(u, v)u on Γ × (0, T ), (1.8)

∂tv = ∇Γ · (A2∇Γv) + b2 · ∇Γv

− f1(u, v)v + f2(u, v)u + q1(u, v)V

− q2(u, v)v on Γ × (0, T ), (1.9)

and such that the initial conditions

V (·, 0) = V0, u(·, 0) = u0, v(·, 0) = v0 (1.10)

are satisfied, where V0 : B → R and u0, v0 : Γ → R are given nonnegative data.

In (1.8), (1.9) the differential operators ∇Γ and (∇Γ·) refer to the tangen-
tial gradient and the tangential divergence on Γ, see also Notation 2.1 below.

The generalized model (RDD) allows to account for heterogeneities of the
membrane. In fact, the outer membrane contains several microdomains [10].
Such domains on membranes show distinct physical properties and in particu-
lar may lead to different diffusion speeds [6]. The drift-terms are included for
mathematical analysis purposes, in particular to prepare the study of problems
with evolving membrane shape: parametrizing such an evolution over a fixed
manifold even in the case of the simpler system (1.1)–(1.4) results in a system
of the type (RDD).

The system (RDD) consists of two parts. Firstly, a reaction–drift–diffusion
system on the membrane for the variables u, v, with a V -dependent source
term, and secondly, a diffusion equation for V in the interior of the cell with a
nonlinear Robin-type boundary condition that depends on u, v. The particular
setup of the model guarantees the conservation of the total mass of GTPase
in the system,∫

B

V (·, t) +
∫

Γ

(u(·, t) + v(·, t)) = const for all t ∈ (0, T ). (1.11)

Moreover, due to the quasi-positivity property of the reaction terms, solutions
stay nonnegative if we start with nonnegative initial values.

In [36] Rätz and the second author have investigated, by a linearized
stability analysis, pattern forming properties of the system (1.1)–(1.4) and of
an asymptotic reduction of this system. The goal of this paper is to complement
this analysis by addressing the well-posedness of such systems. Coupled bulk–
surface systems are not covered by the standard theory of reaction–diffusion
systems. Moreover, even for the case of standard reaction–diffusion systems
positivity preservation and mass conservation are not sufficient to prevent the
blow-up of solutions [33]. For the generalized system (RDD) we prove the
unique existence of weak solutions. For more regular data we also deduce the
existence of classical solutions. Moreover, we justify an asymptotic reduction
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to a nonlocal reaction–drift–diffusion system on the membrane in the limit
of infinite cytosolic diffusion, D → ∞. For volume reaction–diffusion systems
such an asymptotic limit is known as a shadow system. Such systems, their
rigorous justification, and the relation of the large time behavior of the original
and the reduced system have been studied for a long time [19,22,25] and are
still an active field of research [21,27,28].

The mathematical analysis of coupled bulk–surface systems of partial
differential equations has attracted a lot of attention over the last years,
and addresses a variety of different applications for example from cell biol-
ogy [1,7,8,14,15,24,26,30,32,34,36], thermomechanics [17,29], fluid dynam-
ics [4,39], or ecology [3]. The well-posedness of bulk–surface reaction–diffusion
systems with homogeneous diffusion has been recently investigated in [37].
There, under specific conditions on the nonlinearities the global existence
of classical solutions has been shown. Under additional restrictions, in [38]
the uniform boundedness of solutions has been deduced. In [8], for a linear
bulk–surface system, global-in-time existence and rigorous asymptotic limits
in various parameter regimes have been proved. A well-posednesss analysis
for a bulk diffusion–advection system coupled to a surface reaction–diffusion–
sorption system has recently been presented in [4]. For homogeneous diffusion
and under suitable conditions on the reaction and bulk–surface exchange global
existence of Lp solutions is proved. For a two-variable bulk–surface system and
specific nonlinearities, which in particular satisfy a monotonicity condition, the
existence of a unique weak solution and exponential convergence to equilib-
rium via an entropy method is shown in [11]. For linear bulk–surface models
with reaction terms satisfying a complex balance condition global existence of
weak solutions and convergence in a fast reaction limit has been shown in [12],
exponential convergence to equilibrium has been proved by entropy methods
in [13].

This paper is partially based on and extends the work in the PhD thesis
of the first author [20].

2. Main results

Notation 2.1. For a set B ⊂ R
3 we denote by |B| = L3(B) the Lebesgue

measure. For a surface Γ ⊂ R
3 we denote by |Γ| = H2(Γ) its area (i.e. the

2-dimensional Hausdorff measure) and by
∫
Γ

· dH2 the corresponding surface
integral. The differential operators ∇Γ and (∇Γ·) refer to the tangential gra-
dient and the tangential divergence on Γ. For volume integrals over B and
surface integrals over Γ we often simplify the notation and suppress the inte-
gration variables and measure.

We use the standard Sobolev spaces W k,p(B) and Hk(B) = W k,2(B)
over an open set B ⊂ R

3. For a at least Ck-regular surface Γ = ∂B, k ≥ 1
we consider the Sobolev spaces W k,p(Γ) and Hk(Γ) = W k,2(Γ), see for exam-
ple [2]. For a Banach space X we denote by X∗ its dual and by 〈·, ·, 〉X∗,X the
duality product. For functions from a real interval (0, T ) to X we consider the
Bochner spaces Lp(0, T ;X) and the Sobolev spaces H1(0, T ;X). We recall the
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definition of parabolic Sobolev spaces: for a measurable set E ⊂ R
n, T > 0,

1 ≤ p ≤ ∞, k ∈ N we let

W 2k,k
p (E × (0, T ))

:=
{
w ∈ Lp(E × (0, T )) : ∂l

tD
γw ∈ Lp(E × (0, T )) for all 2l

+ |γ| ≤ 2k, l ∈ N0, γ ∈ (N0)n} .

Concerning classical solution spaces we denote, for an open set E ⊂ R
n, by

Ck+α(Ē), k ∈ N0, 0 ≤ α < 1 the set of functions such that all derivatives
up to the order k are α-Hölder continuous on Ē. For α = 1 we use instead
the notation Ck,lip(Ē). Concerning functions defined on a space–time domains
we let C1,0(Ē × [0, T ]) be the space of continuous functions on Ē × [0, T ] with
first spatial derivatives in C0(Ē × [0, T ]) and use for 2k ∈ N0, 0 ≤ α < 1

2 the
parabolic Hölder spaces

C2(k+α),k+α(Ē × [0, T ])

:=
{
w ∈ Cα(Ē × [0, T ]) : ∂l

tD
γw ∈ Cα(Ē × [0, T ]) for all 2l

+ |γ| ≤ 2k, l ∈ N0, γ ∈ (N0)n} .

An open set B as above has Ck+α-regular (or Ck,lip-regular) boundary, if Γ =
∂B can locally be written as the graph of a Ck+α-regular (or Ck,lip-regular)
function that separates B from R

3\B. For B with C2k,lip-regular boundary we
define the spaces C2(k+α),k+α(Γ × [0, T ]) as the space of functions f : Γ ×
[0, T ] → R such that f ◦ ϕ ∈ C2(k+α),k+α(Ē × [0, T ]) for any C2k,lip-local
coordinates ϕ : U → Γ and E ⊂⊂ U ⊂ R

2.

Let us state the main assumptions that we impose in the following.

Assumption 2.2. Let B ⊂ R
3 be an open, bounded, connected set with C2-

regular boundary Γ = ∂B and let T > 0. Assume that the constitutive func-
tions fi, qi : R2 → R are locally Lipschitz continuous and satisfy

0 ≤ fi, qi ≤ K2 on R
2 for i = 1, 2. (2.1)

We further assume that the coefficients of the diffusion and drift operators are
measurable functions, satisfy (1.5) and

|A1(y, t)|, |A2(y, t)|, |b1(y, t)|, |b2(y, t)| ≤ K1 for almost all (y, t) ∈ Γ × (0, T ),

(2.2)

min
ξ∈TyΓ,|ξ|=1

ξ · Ak(y, t)ξ ≥ k1 for almost all (y, t) ∈ Γ × (0, T ), k = 1, 2.

(2.3)

Finally, let nonnegative initial data V0 ∈ L∞(B) and v0, u0 ∈ L∞(Γ) be given.

Our first main result is the existence of weak solutions (see Definition 3.1
below) for the general bulk–surface reaction–drift–diffusion system.

Theorem 2.3. Let Assumption 2.2 hold. Then the system (1.6)–(1.10) has a
unique weak solution (V, v, u) with V ∈ L2(0, T ;H1(B)) ∩ H1(0, T ;H1(B)∗),
u, v ∈ L2(0, T ;H1(Γ))∩H1(0, T ;H1(Γ)∗). Furthermore, solutions are nonneg-
ative and uniformly bounded.
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To prove Theorem 2.3 we characterize the system (1.6)–(1.9) as an evolu-
tion equation for a pseudomonotone operator and obtain the existence of weak
solutions by the general theory developed in [35]. We also show that solutions
depend continuously on the data, see Proposition 3.7. Furthermore, in Theo-
rem 3.6 we prove that the L∞-norm of the solution grows at most exponentially
with time (and therefore remains bounded on bounded time intervals).

In the case of more regular coefficients and data we prove the well-
posedness of classical solutions.

Theorem 2.4. Assume that Γ is C2,lip-regular and that fi, qi ∈ C2(R2), i =
1, 2. For some 0 < α < 1 let A1, A2 ∈ C1+α, 1+α

2 (Γ × [0, T ]), let b1, b2 ∈
Cα, α

2 (Γ × [0, T ]) and assume that u0, v0 ∈ C2+α(Γ) and V0 ∈ C2+α(B) are
nonnegative. Assume further that the initial data satisfy the compatibility con-
dition

− D∇V0 · ν = q1(u0, v0)V0 − q2(u0, v0)v0 on Γ. (2.4)

Then there exists a unique classical solution (V, u, v) of (1.6)–(1.10) with initial
data (V0, u0, v0). This solution satisfies V ∈ C2+α,1+ α

2 (B × [0, T ]) and u, v ∈
C2+α,1+ α

2 (Γ × [0, T ]).

We also prove the continuous dependence of solutions on the initial data,
see Proposition 4.4 below. Theorem 2.4 is derived from higher-regularity prop-
erties of the weak solutions obtained above.

By a bootstrapping argument we deduce the following result for the orig-
inal GTPase cycle model from [36]. Here we need to impose that the initial
data satisfy compatibility conditions to any order k ∈ N0. These are given by
the requirement that

dk

dtk

∣∣∣∣
t=0

[−D∇V · ν − q1(u, v)V + q2(u, v)v] = 0 on Γ. (2.5)

Using the differential equations (1.6), (1.8), (1.9) one can reformulate (2.5) as
a condition on the initial data only, see [23, pp. 319,320].

Theorem 2.5. Let Assumption 2.2 be satisfied. Let the boundary Γ ⊂ R
3, the

nonlinearities fi, qi, i = 1, 2 and the initial data (V0, u0, v0) all be C∞-regular.
Assume that the initial data satisfy the compatibility condition (2.5) on Γ
to any order k ∈ N0. Then there exists a unique classical solution (V, u, v)
of (1.1)–(1.4). The functions V, u, v are C∞-regular, nonnegative and uni-
formly bounded.

Finally, we prove an asymptotic reduction of the system (RDD) to a kind
of shadow system in the large-diffusion limit D → ∞. This reduction is moti-
vated by the application to cell signalling and the fact that cytosolic diffusion
within the cell is by a factor of hundred larger than the lateral diffusion on
the membrane. Formally, in the limit D → ∞ equations (1.8), (1.9) should
still hold. Furthermore, the total mass conservation of GTPase (1.11) should
determine the spatially constant value of V in the limit. These considerations
lead to the following limit problem.
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Problem (rRDD). Let nonnegative initial data u0, v0 : Γ → R and a constant
m ≥ 0, representing the total mass in the system, be given such that

m ≥
∫

Γ

(
u0 + v0

)
. (2.6)

We are looking for functions u∞, v∞ : Γ × (0, T ) → R, V∞ : (0, T ) → R such
that the reduced system

∂tu∞ = ∇Γ · (A1∇Γu∞) + b1 · ∇Γu∞ + f1(u∞, v∞)v∞ − f2(u∞, v∞)u∞,
(2.7)

∂tv∞ = ∇Γ · (A2∇Γv∞) + b2 · ∇Γv∞ − f1(u∞, v∞)v∞ + f2(u∞, v∞)u∞
+ q1(u∞, v∞)V∞ − q2(u∞, v∞)v∞, (2.8)

coupled to the mass conservation condition

|B|V∞(t) = m −
∫

Γ

(
u∞(·, t) + v∞(·, t)) for all t ∈ (0, T ) (2.9)

is satisfied, and such that the initial conditions

u∞(·, 0) = u0, v∞(·, 0) = v0 on Γ (2.10)

hold.

For given m ≥ 0 the system (rRDD) represents a nonlocal reaction–
diffusion system on Γ in the variables u∞, v∞. The nonlocality is just the
remnant of the spatial coupling in the original system (1.6)–(1.9).

Theorem 2.6. Let Assumption 2.2 be satisfied. Consider any sequence Dk → ∞
(k → ∞) and the solutions (Vk, uk, vk) of (1.6)–(1.10) with D replaced by Dk

and fixed initial data (V0, u0, v0). Then for k → ∞
uk → u∞, vk → v∞, Vk → V∞ in L2(Γ × (0, T )),

where u∞, v∞ ∈ L2(0, T ;H1(Γ)) ∩ H1(0, T ;H1(Γ)∗), V∞ ∈ W 1,∞(0, T ) and
(V∞, u∞, v∞) is the unique weak solution of the nonlocal reaction–diffusion
system (2.7)–(2.10) with m :=

∫
B

V0 +
∫
Γ

(
u0 + v0

)
.

Let us finally compare our results to related results presented in [4,37,38],
and give a brief exposition of the main techniques used in the proof of our
results.

In [37,38] bulk–surface systems with general reaction terms and spatially
homogeneous diffusion are considered. An arbitrary number of bulk variables
and an arbitrary number of surface variables is allowed. The main result in [37]
is the global existence of classical solutions and in [38] a uniform L∞-bound
for all times (not only on arbitrary bounded time intervals). Concerning the
assumptions on the nonlinearities any polynomial growth is allowed. On the
other hand, additional balance conditions are imposed and a certain cancella-
tion of higher-order nonlinearities is required. These conditions are in general
not satisfied in the case of the system (1.1)–(1.4). General drift–diffusion op-
erators as in Problem (RDD) and an asymptotic reduction in the case of large
bulk diffusion are not considered in [37,38].
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Another related analysis has been recently contributed in [4], where a gen-
eral bulk–surface reaction–diffusion system with homogeneous diffusion and
with bulk advection has been considered in a cylindrical domain and for non-
linear sorption and reaction terms. Global existence of W 2,1

p -regular solutions
has been shown, with different techniques and under different conditions com-
pared to our analysis. In particular, in [4] a more general growth condition is
imposed, but a monotonicity of the reaction terms and exchange rates that
only depend on one bulk and one surface species are assumed. Again, general
drift–diffusion operators as in Problem (RDD) and an asymptotic reduction
in the case of large bulk diffusion are not considered.

The techniques used in [4,37,38] and in the present paper are different,
though similar tools are used in the auxiliary estimates. In our paper we use the
theory of evolutions by pseudo-monotone operators and first prove the long-
time existence of weak solutions. Using energy methods we then prove uniform
L∞-bounds. These estimates represent the most delicate part of this analysis.
We use the uniform maximum bounds to further prove the W 2,1

p -regularity
of solutions, Hölder regularity, and the existence of classical solutions. The
linear-growth assumption allows us to use energy methods, which are somehow
simpler (and possibly more flexible) as the arguments used in [37,38].

3. Weak solutions of the system (RDD)

We first definition our weak solution concept. We denote by 〈·, ·〉B and 〈·, ·〉Γ
the duality pairing in H1(B)∗ × H1(B) and H1(Γ)∗ × H1(Γ), respectively.

In the following, we combine the reaction terms and the exchange terms
into functions f, q : R2 → R and let

f(u, v) = f1(u, v)v − f2(u, v)u, q(u, v, V ) = q1(u, v)V − q2(u, v)v. (3.1)

Definition 3.1. A triple (V, u, v) with V ∈ L2(0, T ;H1(B))∩H1(0, T ;H1(B)∗)
and u, v ∈ L2(0, T ;H1(Γ))∩H1(0, T ;H1(Γ)∗) is a weak solution of (1.6)–(1.9)
if ∫ T

0

(〈
∂tV, η1

〉
B

+
∫

B

D∇V · ∇η1

)
=

∫ T

0

∫
Γ

−q(V, u, v)η1, (3.2)

∫ T

0

(〈
∂tu, η2

〉
Γ

+
∫

Γ

(∇Γη2 · A1∇Γu − η2b1 · ∇Γu
))

=
∫ T

0

∫
Γ

f(u, v)η2,

(3.3)∫ T

0

(〈
∂tv, η3

〉
Γ

+
∫

Γ

(∇Γη3 · A2∇Γv − η3b2 · ∇Γv)
)

=
∫ T

0

∫
Γ

(q(V, u, v) − f(u, v))η3 (3.4)

is satisfied for all η1 ∈ L2(0, T ;H1(B)), η2, η3 ∈ L2(0, T ;H1(Γ)). A weak
solution in addition satisfies (1.10) if

lim
t↘0

(V, u, v)(t) = (V0, u0, v0) in L2(B) × L2(Γ) × L2(Γ). (3.5)
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Note that the regularity required in the weak solution concept implies
by [9, Theorem 5.9.3] that V belongs to C0([0, T ];L2(B)) and u, v belong to
C0([0, T ];L2(Γ)) and that therefore the left-hand side in (3.5) is well-defined.

We reformulate the weak solution concept in a more concise form that
allows us to apply the general theory of evolutions by pseudomonotone oper-
ators developed in [35]. Therefore, we define the Hilbert space H := H1(B) ×
H1(Γ) × H1(Γ) and define operators Ft : H → H∗, t ∈ (0, T ) by

Ft := F
(1)
t + F

(2)
t , (3.6)

〈
F

(1)
t (w), (η)

〉
:=

∫
B

∇η1 · D∇w1 +
∫

Γ

(∇Γη2 · A1(·, t)∇Γw2

+ ∇Γη3 · A2(·, t)∇Γw3) , (3.7)
〈
F

(2)
t (w), (η)

〉
:=

∫
Γ

(−η2b1(·, t) · ∇Γw2 − η3b2(·, t) · ∇Γw3) +

+
∫

Γ

(q(w1, w2, w3)(η1 − η3) − f(w2, w3)(η2 − η3)) , (3.8)

for w = (w1, w2, w3), η = (η1, η2, η3) ∈ H. We show below in Lemma 3.2 that
Ft is well-defined for almost all t ∈ (0, T ) and satisfies an appropriate growth
condition. Furthermore, (V, u, v) is a weak solution of (1.6)–(1.9) if and only
if (V, u, v) ∈ L2(0, T ;H) ∩ H1(0, T ;H∗) such that for almost all t ∈ (0, T )

∂t

(
V (t), u(t), v(t)

)
+ Ft

(
V (t), u(t), v(t)

)
= 0 in H∗. (3.9)

We first show that the operators Ft are bounded, semi-coercive (i.e. satisfying
a G̊arding inequality) and pseudo-monotone. It is this step that is specific
to the bulk–surface coupling in our particular model, without the presence
of the coupling terms f, q the respective properties are well-known, see for
example [35, Section 2.4].

Lemma 3.2. For almost all t ∈ (0, T ) the following properties hold:
(1) Ft : H → H∗ is well-defined and satisfies ‖Ft(w)‖H∗ ≤ C · (D + K1 +

K2)‖w‖H for all w ∈ H.
(2) F

(1)
t is a monotone mapping, F

(2)
t is totally continuous (i.e. continuous

as a map from H, equipped with the weak topology, to H∗, equipped with
the norm topology), and Ft is pseudo-monotone.

(3) Ft is semi-coercive on H: For any w = (w1, w2, w3) ∈ H

〈Ft(w,w)〉 ≥ D

2

∫
B

|∇w1|2 +
k1

2

∫
Γ

(|∇Γw2|2 + |∇Γw3|2
)

− C(K2, B)
D + 1

D

∫
B

w2
1 − C(K2,K1, k1)

∫
Γ

(w2
2 + w2

3)

(3.10)

holds.

Proof. We fix an arbitrary t ∈ (0, T ) such that |A1(·, t)|, |A2(·, t)|, |b1(·, t)|,
|b2(·, t)| are all uniformly bounded by K1 almost everywhere on Γ and such
that A1(·, t), A2(·, t) are elliptic with ellipticity constant k1 almost everywhere
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in Γ. To improve readability, we omit in the following the t argument in the
coefficients Ai, bi, i = 1, 2.

(1) By Hölder inequality and the continuity of the trace operator from H1(B)
to L2(Γ) we easily deduce that

∣∣〈Ft(w), η
〉∣∣ ≤ D‖∇w1‖L2(B)‖∇η1‖L2(B)

+ K1

(‖∇Γw2‖L2(Γ)‖∇Γη2‖L2(Γ) + ‖∇Γw3‖L2(Γ)‖∇Γη3‖L2(Γ)

)
+ K1

(‖∇Γw2‖L2(Γ)‖η2‖L2(Γ) + ‖∇Γw3‖L2(Γ)‖η3‖L2(Γ)

)
+ 2K2

(‖w1‖L2(Γ) + ‖w2‖L2(Γ) + ‖w3‖L2(Γ)

)(‖η1‖L2(Γ)

+ ‖η2‖L2(Γ) + ‖η3‖L2(Γ)

)
≤ C · (D + K1 + K2)‖w‖H‖η‖H .

This shows the boundedness of Ft : H → H∗.
(2) F

(1)
t is clearly monotone. By the compact embedding H1(Γ) ↪→ L2(Γ),

the growth bound on f , and the generalized Lebesgue Dominated Con-
vergence Theorem, the mapping (u, v) �→ f(u, v) is totally continuous as
a map from H1(Γ)×H1(Γ), equipped with the weak topology, to H1(Γ)∗.
Similarly, using in addition the compact embedding H1(B) ↪→ Ls(Γ) for
any 1 ≤ s < 4, we also have that the mapping (V, u, v) �→ q(V, u, v) is
totally continuous as mapping from H1(B) × H1(Γ) × H1(Γ) to H1(Γ)∗

and as a mapping to H1(B)∗. This yields that F
(2)
t is totally continuous.

By [35, Lemma, 2.11, Corollary 2.12], Ft is pseudo-monotone.
(3) Concerning the coercivity of the operator we compute that

〈
Ft(w), w

〉
H∗,H

=
∫

B

D|∇w1|2 +
∫

Γ

(∇Γw2 · A1∇Γw2 + ∇Γw3 · A2∇Γw3

)

+
∫

Γ

(
b1 · w2∇Γw2 + b2 · w3∇Γw3 +

(
q(w2, w3, w1)(w1 − w3)

− f(w2, w3)(w2 − w3)
))

≥
∫

B

D|∇w1|2 +
∫

Γ

(
k1

(|∇Γw2|2 + |∇Γw3|2
))

+
∫

Γ

(−K1

(|w2| |∇Γw2| + |w3| |∇Γw3|
)

+
(
q(w2, w3, w1)(w1 − w3)

− f(w2, w3)(w2 − w3)
))

. (3.11)

To control the last integral on the right-hand side we first use Young’s inequal-
ity to obtain

K1

(|w2| |∇Γw2|+|w3| |∇Γw3|
) ≤ k1

2

(
|∇Γw2|2+|∇Γw3|2

)
+

K2
1

2k1

(
|w2|2+|w3|2

)
.
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Next, we observe that by (2.1), (3.1)

q(w2, w3, w1)(w1 − w3) − f(w2, w3)(w2 − w3)

= −(
q2(w2, w3) + q1(w2, w3)

)
w3w1 − (

f2(w2, w3) + f1(w2, w3)
)
w2w3

+ q1(w2, w3)w2
1 + q2(w2, w3)w2

3 + f2(w2, w3)w2
2 + f1(w2, w3)w2

3

≥ −2K2(|w3||w1| + |w2||w3|)
≥ −K2

(
w2

1 + w2
2 + 2w2

3

)
.

Furthermore, by [18, Theorem 1.5.1.10] we deduce∫
Γ

w2
1 ≤

∫
B

(
D

2
|∇w1|2 +

C(B)
D

w2
1

)
. (3.12)

The inequalities (3.11)–(3.12) yield that〈
Ft(w1, w2, w3), (w1, w2, w3)

〉
≥ +

D

2

∫
B

|∇w1|2

+
k1

2

∫
Γ

(|∇Γw2|2 + |∇Γw3|2
)

− C(K2, B)
D + 1

D

∫
B

w2
1 − C(K2,K1, k1)

∫
Γ

(w2
2 + w2

3). (3.13)

This proves the semi-coercivity of the operator F . �

The existence of weak solutions for the system (RDD) can now be proved
by using an implicit time-discretization, as elaborated in [35, Section 8].

Proposition 3.3. There exists a weak solution (V, u, v) of (1.6)–(1.10) in the
sense of Definition 3.1.

Proof. The conclusion follows by [35, Theorem 8.9]. There the autonomous
case of coefficients Ai, bi, i = 1, 2 independent of t is covered, but the result also
holds in the non-autonomous case, see [35, Remark 8.21]. The theorem is here
applied to the Gelfand triple (H,H0,H

∗) with H0 := L2(B) × L2(Γ) × L2(Γ).
The required growth condition is satisfied by item (1) in Lemma 3.2, the
required pseudo-monotonicity and semi-coercivity was also shown in the same
lemma. �

In the following we collect further properties of solutions.

Proposition 3.4. Assume that (V, u, v) is a weak solution of (1.6)–(1.10). Then
there exists a constant C5 = C5(K1,K2, k1, B, T,D) such that the following
estimate holds,

‖V ‖L∞(0,T ;L2(B)) + ‖u‖L∞(0,T ;L2(Γ)) + ‖v‖L∞(0,T ;L2(Γ))

+
√

D‖∇V ‖L2(0,T ;L2(B)) + ‖∇Γu‖L2(0,T ;L2(Γ)) + ‖∇Γv‖L2(0,T ;L2(Γ))

+
1
D

‖∂tV ‖L2(0,T ;H1(B)∗) + ‖∂tu‖L2(0,T ;H1(Γ)∗) + ‖∂tv‖L2(0,T ;H1(Γ)∗)

≤ C5

(
‖V0‖L2(B) + ‖u0‖L2(Γ) + ‖v0‖L2(Γ)

)
. (3.14)
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holds. The constants C5 can be chosen non-increasing in D. If the initial data
V0, u0, v0 are all nonnegative, then also V, u, v are all nonnegative.

Proof. By (3.9), the semi-coercivity (3.10), and [9, Theorem 5.9.3] we first
deduce that in L1(0, T )

d

dt

1
2

(∫
B

V 2(·, t) +
∫

Γ

(u2 + v2)(·, t)
)

= −
〈
Ft

(
(V, u, v)(·, t)), (V, u, v)(·, t)

〉

≤ −
(

D

2

∫
B

|∇w1|2 +
k1

2

∫
Γ

(|∇Γw2|2 + |∇Γw3|2
))

(·, t)

+ C(K1,K2, k1, B)
(

D + 1
D

∫
B

V 2 +
∫

Γ

(u2 + v2)
)

(·, t).

Using Gronwalls inequality yields the required bounds on V, u, v and their
gradients. The estimates for the time derivatives follows from the bound on
Ft proved in Lemma 3.2, (3.9) and the bounds on V, u, v and their gradients.
Altogether, (3.14) follows.

For nonnegative initial data we follow the usual technique to prove a
maximum principle in spaces of weakly differentiable functions (see for exam-
ple [5, Theorem 11.9]). For that matter, similarly as above, we control the time
derivative of the spatial square integrals of the negative parts V−, u−, and v−
of V, u, v by using the quasi-coercivity and, in addition, the quasi-positivity of
f, q that implies

− q(u, v, V )(V − − v−) + f(u, v)(u− − v−)

≥ q2(u, v)vV − + q1(u, v)V v− + f1(u, v)vu− + f2(u, v)uv−

≥ −K2

(
(V −)2 + (u−)2 + 2(v−)2

)
.

Following the estimates above this shows by a Gronwall argument that V− = 0
in B × (0, T ) and u− = v− = 0 on Γ × (0, T ). �

The key step for the higher regularity results below is a uniform maximum
bound for the solutions. We fix an arbitrary λ > 0 (to be chosen below) and
derive first suitable estimates for the modified system

∂tV = DΔV − λV, (3.15)
−D∇V · ν = q(u, v, V ), (3.16)

∂tu = ∇Γ · (A1∇Γu) + b1 · ∇Γu + f(u, v) − λu, (3.17)
∂tv = ∇Γ · (A2∇Γv) + b2 · ∇Γv − f(u, v) + q(u, v, V ) − λv (3.18)

on B × (0, T ) and Γ × (0, T ), respectively, and subject to prescribed initial
data (1.10).

Theorem 3.5. Let nonnegative initial data V0, u0, v0 be given with

sup
B

V0 + sup
Γ

u0 + sup
Γ

v0 ≤ Λ0 (3.19)
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for some Λ0 > 0. Then there exists λ0 > 0 only depending on B,D,K1, k1,K2,
such that for any λ > λ0 and any weak solution of (3.15)–(3.18) with initial
data V0, u0, v0

sup
B×(0,T )

V + sup
Γ×(0,T )

u + sup
Γ×(0,T )

v ≤ Λ0 (3.20)

holds. Moreover, λ0 can be chosen non-increasing in D.

Proof. Step (1): Let κ > 0 be arbitrary, to be chosen below. Then there exists
a function φ ∈ C2(B̄) such that

1 ≤ φ ≤ 2 and |∇φ|, |D2φ| ≤ C(B)
κ

D
in B̄, (3.21)

φ = 1 and − D∇φ · ν = κ on Γ. (3.22)

In fact, by [16] there exists δ0 > 0 such that the signed distance function
ϑ := dist(·, Bc) − dist(·, B) to Γ is C2-regular in the set {|ϑ| < δ0}. We then
set δ := min{D

κ , δ0} and define

φ := 1 +
κ

D
ϑ in

{|ϑ| <
δ

4
}.

In the set {|ϑ| < δ
4} we then have

|φ − 1| ≤ κ

D

δ

4
≤ 1

4
, ∇φ =

κ

D
∇ϑ, |∇φ| ≤ κ

D
, |D2φ| ≤ C(B)

κ

D
.

Since ∇ϑ = −ν on Γ we obtain (3.22). Moreover, we see that there exists a
C2 regular extension of φ on B̄ with (3.21).
Step (2): We compute that Ṽ := φV solves the equation

∂tṼ − DΔṼ + 2D
∇φ

φ
· ∇Ṽ −

(
2D

|∇φ|2
φ2

− D
Δφ

φ
− λ

)
Ṽ = 0 in B × (0, T )

(3.23)
and satisfies

− D∇Ṽ · ν = q(u, v, V ) + κV on Γ × (0, T ). (3.24)

By (3.21) we deduce that

2D
|∇φ|2

φ2
− D

Δφ

φ
≤ C(B)

(
2κ2

D
+ κ

)
. (3.25)

We assume from now on that λ0 > 0 satisfies, for C(B) from (3.25),

C(B)
(

2κ2

D
+ κ

)
≤ 1

2
λ0. (3.26)
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Step (3): Next we consider an arbitrary M > 0 (to be chosen below) and
test (3.23) by (Ṽ − M)+. Using (3.24) we then obtain, in a weak sense,

d

dt

1
2

∫
B

(Ṽ − M)2+ +
∫

B

D|∇(Ṽ − M)+|2

= −2D

∫
B

(Ṽ − M)+
∇φ

φ
· ∇(Ṽ − M)+

+
∫

B

(
2D

|∇φ|2
φ2

− D
Δφ

φ
− λ

)
Ṽ (Ṽ − M)+

−
∫

Γ

(
q(u, v, V )(V − M)+ + κV (V − M)+

)

=: IB + IΓ. (3.27)

For the sum of the integrals over B that are collected in the term IB we further
deduce from (3.21) and (3.25), (3.26) that

IB ≤ D

2

∫
B

|∇(Ṽ − M)+|2 + C(B)
κ2

D

∫
B

(Ṽ − M)2+

−λ

2

∫
B

(
(Ṽ − M)2+ + (Ṽ − M)+M

)
.

We assume from now on that λ0 satisfies (3.26) and in addition

λ0 ≥ 4C(B)
κ2

D
. (3.28)

Then

IB ≤ D

2

∫
B

|∇(Ṽ − M)+|2 − λ

4

∫
B

(
(Ṽ − M)2+ + 2(Ṽ − M)+M

)
. (3.29)

We next consider the term IΓ, representing the integral over Γ on the right-
hand side of (3.27). For an arbitrary m2 > 0 we set κ := max{1,K2

m2
M }. This

implies that

IΓ ≤
∫

Γ

(
q2(u, v)v(V − M)+ − κV (V − M)+

)

≤
∫

Γ

(
K2(v − m2)+(V − M)+ + K2m2(V − M)+

− κ(V − M)2+ − κM(V − M)+
)

≤
∫

Γ

(
K2

2

2
(v − m2)2+ − 1

2
(2κ − 1)(V − M)2+

−(Mκ − K2m2)(V − M)+

)

≤
∫

Γ

(K2
2

2
(v − m2)2+ − 1

2
(V − M)2+

)
. (3.30)
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We therefore conclude from (3.27), (3.29), (3.30) that

d

dt

1
2

∫
B

(Ṽ − M)2+ +
D

2

∫
B

|∇(Ṽ − M)+|2

≤ −λ

4

∫
B

(
(Ṽ − M)2+ + (Ṽ − M)+2M

)

+
∫

Γ

(K2
2

4
(v − m2)2+ − 1

2
(V − M)2+

)
. (3.31)

Step (4): We next test for an arbitrary m2 > 0 equation (3.18) with (v −m2)+
and obtain

d

dt

1
2

∫
Γ

(v − m2)2+ + k1

∫
Γ

|∇Γ(v − m2)+|2

≤ d

dt

1
2

∫
Γ

(v − m2)2+ +
∫

Γ

∇Γ(v − m2)+ · A2∇Γ(v − m2)+

=
∫

Γ

(
b2 · ∇Γ(v − m2)+ − f(u, v) + q(u, v, V ) − λv

)
(v − m2)+

≤ k1

2

∫
Γ

|∇Γ(v − m2)+|2 +
∫

Γ

K2
1

2k1
(v − m2)2+

+
∫

Γ

(
q1(u, v)V + f2(u, v)u

)
(v − m2)+

−
∫

Γ

(
λ(v − m2)2+ + λm2(v − m2)+

)
. (3.32)

For an arbitrary m1 > 0 we compute for the first integral in the last line∫
Γ

(
q1(u, v)V + f2(u, v)u

)
(v − m2)+

≤
∫

Γ

K2

((
(V − M)+ + (u − m1)+

)
(v − m2)+ + K2(M + m1)(v − m2)+

)

≤
∫

Γ

(1
2
(V − M)2+ +

K2

2
(u − m1)2+ +

K2

2
(K2 + 1)(v − m2)2+

)

+
∫

Γ

K2(M + m1)(v − m2)+. (3.33)

We next prescribe that λ0 satisfies (3.26), (3.28) and

λ0 ≥ max
{

K2
1

k1
+ K2(K2 + 1),K2

M + m1

m2

}
(3.34)

and obtain from (3.32), (3.33) that

d

dt

∫
Γ

(v − m2)2+ +
k1

2

∫
Γ

|∇Γ(v − m2)+|2 ≤
∫

Γ

(
1
2
(V − M)2+

+
K2

2
(u − m1)2+ − λ

2
(v − m2)2+

)
. (3.35)
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Step (5): Next, we test for an arbitrary m1 > 0 equation (3.17) with (u−m1)+.
By similar calculations as in the previous step we derive the inequality

d

dt

1
2

∫
Γ

(u − m1)2+ +
k1

2

∫
Γ

|∇Γ(u − m1)+|2

≤
∫

Γ

K2
1

2k1
(u − m1)2+ +

∫
Γ

f1(u, v)v(u − m1)+

−
∫

Γ

(
λ(u − m1)2 + λm1(u − m1)+

)

≤
∫

Γ

K2
1

2k1
(u − m1)2+ +

∫
Γ

(
K2

2
(v − m2)2+ +

K2

2
(u − m1)2+

+K2m2(u − m1)+

)

−
∫

Γ

(
λ(u − m1)2 + λm1(u − m1)+

)
. (3.36)

If we prescribe that λ0 in addition to (3.26), (3.28), (3.34) satisfies

λ0 ≥ K2
m2

m1
(3.37)

the estimate (3.36) yields

d

dt

1
2

∫
Γ

(u − m1)2+ +
k1

2

∫
Γ

|∇Γ(u − m1)+|2 ≤
∫

Γ

(
K2

2
(v − m2)2+

−λ

2
(u − m1)2+

)
. (3.38)

Step (6): Summing up the inequalities (3.31), (3.35) and (3.38) we conclude
that

d

dt

1
2

(∫
B

(V − M)2+ +
∫

Γ

(u − m1)2+ +
∫

Γ

(v − m2)2+

)

≤
∫

Γ

(
1
2
(K2 − λ)(u − m1)2 +

1
4
(K2

2 + 4K2 − 2λ)(v − m2)2+

)
≤ 0,

(3.39)

if in addition to (3.26), (3.28), (3.34), (3.37) λ0 satisfies

λ0 ≥ 2K2 +
1
2
K2

2 . (3.40)

Hence for M,m1,m2 > 0 with

m1 ≥ sup
Γ

u0, m2 ≥ sup
Γ

v0, M ≥ sup
B

V0 (3.41)

and λ0 complying with all the above constraints, we deduce from (3.39) that

(V − M)+ = 0 in B × (0, T ), (u − m1)+ = (v − m2)+
= 0 in Γ × (0, T ) (3.42)

hold. We note that λ0 depends through the conditions (3.26), (3.28), (3.34),
(3.37) and (3.40) on B, on D (this dependence can be chosen nonincreasing in
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D), on K2,
m2
M ,K1, k1,

M+m1
m2

, m2
m1

. In particular, choosing M = m1 = m2 = Λ0,
we see that λ0 can be chosen independently of Λ0 and we deduce from (3.42)
the claimed maximum bounds. �

The previous theorem yields that any weak solution of the system (RDD)
grows at most exponentially with time.

Theorem 3.6. Let nonnegative initial data V0, u0, v0 be given that satisfy (3.19)
and let λ0 be chosen as in Theorem 3.5. Then for any weak solution of (1.6)–
(1.10)

sup
B×(0,T )

V + sup
Γ×(0,T )

u + sup
Γ×(0,T )

v ≤ eλ0T Λ0 (3.43)

holds.

Proof. For λ ≥ λ0 consider the functions

Ṽ (x, t) = e−λtV (x, t) for 0 < t < T, x ∈ B,

ũ(y, t) = e−λtu(y, t), ṽ(y, t) = e−λtv(y, t), for 0 < t < T, y ∈ Γ.

Then (Ṽ , ũ, ṽ) is a weak solutions of the system (3.15)–(3.18) with initial data
V0, u0, v0, where the nonlinearities f, q are replaced by functions f̃ , q̃

f̃(t, ũ, ṽ) = f1(eλtũ, eλtṽ)ṽ − f2(eλtũ, eλtṽ)ũ,

q̃(t, ũ, ṽ, Ṽ ) = q1(eλtũ, eλtṽ)Ṽ − q2(eλtũ, eλtṽ)ṽ.

Since f̃ , q̃ satisfy the same bounds as required for f, q, Theorem 3.5 (the ad-
ditional time-dependence of f̃ , q̃ does not affect the arguments in the proof)
yields that

sup
B×(0,T )

Ṽ + sup
Γ×(0,T )

ũ + sup
Γ×(0,T )

ṽ ≤ Λ0.

Scaling back to the original variables this implies (3.43).

To complete the proof of well-posedness of problem (RDD) we show the
uniqueness and the continuous dependence of solutions on the initial data.

Proposition 3.7. For any Λ0 > 0 there exists a constant C6 = C6(B,D,K1, k1,
K2, T,Λ0) with the following property: For any two weak solutions (V, u, v) and
(Ṽ , ũ, ṽ) of (1.6)–(1.10) with initial data (V0, u0, v0) and (Ṽ0, ũ0, ṽ0), respec-
tively, that both satisfy the maximum bound (3.19) the estimate

‖V − Ṽ ‖L2(0,T ;H1(B))∩L∞(0,T ;L2(B)) + ‖u − ũ‖L2(0,T ;H1(Γ))∩L∞(0,T ;L2(Γ))

+ ‖v − ṽ‖L2(0,T ;H1(Γ))∩L∞(0,T ;L2(Γ))

≤ C6

(
‖V0 − Ṽ0‖L2(B) + ‖u0 − ũ0‖L2(Γ) + ‖v0 − ṽ0‖L2(Γ)

)
(3.44)

holds. The constants C6 can be chosen non-increasing in D.

Proof. We consider the difference between the two solutions, the triplet (Z,w, z)
with

Z := V − Ṽ , w := u − ũ, z := v − ṽ.
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We then have

∂tZ = DΔZ, (3.45)

−D∇Z · ν = q(u, v, V ) − q(ũ, ṽ, Ṽ ), (3.46)
∂tw = ∇Γ · (A1∇Γw) + b1 · ∇Γw + f(u, v) − f(ũ, ṽ), (3.47)
∂tz = ∇Γ · (A2∇Γz) + b2 · ∇Γz − f(u, v) + f(ũ, ṽ)

+q(u, v, V ) − q(ũ, ṽ, Ṽ ). (3.48)

By Theorem 3.6 both weak solutions are uniformly bounded by some con-
stant C4 depending on B,D,K1, k1,K2, T,Λ0 (again, C4 can be chosen non-
increasing in D). Using that both q and f are locally Lipschitz continuous we
can therefore follow the calculations in Proposition 3.4 and in the proof of the
quasi-coercivity property of Ft to obtain the estimate (3.44).

Proof of Theorem 2.3. Proposition 3.3 gives the existence of a solution, Propo-
sition 3.4 the nonnegativity, Theorem 3.6 the uniform boundedness of so-
lutions, and Proposition 3.7 the uniqueness of solutions and the continuous
dependence on the initial data. �

4. Classical solutions of the system (RDD)

In this section we will consider the case of more regular coefficients and prove
the existence of classical solutions. With this aim we start from the weak so-
lution obtained in the previous section and first deduce some higher regularity
properties.

Proposition 4.1. Consider initial data (V0, u0, v0) that satisfy (3.19) and let
(V, u, v) be the weak solution of (1.6)–(1.10).
(1) Let Γ be C2-regular, let A1, A2 ∈ C1,0(Γ × [0, T ]) and b1, b2 ∈ C0(Γ ×

[0, T ]), fix any 1 < p < ∞ and assume that u0, v0 ∈ W 2,p(Γ). Then u, v ∈
W 2,1

p (Γ×(0, T )) and there exists C7, only depending on B,D,A1, A2, b1, b2,
K2, T, p, with

‖u, v‖W 2,1
p (Γ×(0,T )) ≤ C7

(
Λ0 + ‖u0‖

W
2− 2

p
,p

(Γ)
+ ‖v0‖

W
2− 2

p
,p

(Γ)

)
. (4.1)

If in addition p > 4 and 0 ≤ β < 1 − 4
p then there exists a constant C8

depending only on B,D,A1, A2, b1, b2,K2, T, p and β, such that

‖u, v‖
C1+β,

1+β
2 (Γ×[0,T ])

≤ C8

(
Λ0 + ‖u0‖

W
2− 2

p
,p

(Γ)
+ ‖v0‖

W
2− 2

p
,p

(Γ)

)
. (4.2)

(2) Let 0 < α < 1 and assume that Γ is C2,lip-regular, that A1, A2 ∈
C1+α, 1+α

2 (Γ × [0, T ]) and b1, b2 ∈ Cα, α
2 (Γ × [0, T ]). Furthermore, as-

sume that V ∈ Cα, α
2 (B × [0, T ]) and that u0, v0 ∈ C2+α(Γ). Then u, v ∈

C2+α,1+ α
2 (Γ × [0, T ]) holds with

‖u, v‖
C2+α,1+ α

2 (Γ×[0,T ])
≤ C9

(
‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

+‖V ‖
Cα, α

2 (B×[0,T ])

)
(4.3)
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for some C9 = C9(B,D,K1, k1,Λ0,K2, T, α).

Proof. (1) We divide the proof into several steps.
Step (i): We consider an open subset W ⊂ Γ and a C2-diffeomorphism ϕ :
B2(0, 2) → W , where B2(0, r) ⊂ R

2 denotes the ball with radius r > 0 and
center 0. Then ũ := u ◦ ϕ : B2(0, 2) → R, ṽ := v ◦ ϕ : B2(0, 2) → R satisfy the
system

∂tũ = ∇ · (
Ã1∇ũ

)
+ b̃1 · ∇ũ + f(u, v) ◦ ϕ in B2(0, 2) × (0, T ), (4.4)

∂tṽ = ∇ · (
Ã2∇ṽ

)
+ b̃2 · ∇ṽ +

(
q(u, v, V )

− f(u, v)
) ◦ ϕ in B2(0, 2) × (0, T ), (4.5)

where with G := DϕT Dϕ and denoting by Dϕ−1(z) the inverse of Dϕ(z) :
R

2 → Tϕ(z)Γ, for i = 1, 2

Ãi = Dϕ−1(Ai ◦ ϕ)DϕG−1,

b̃i = G−1DϕT (bi ◦ ϕ) − G−1
(
Dϕ−1(Ai ◦ ϕ)Dϕ

)T √
det G ∇

( 1√
det G

)
.

By our assumptions on the data Ãi ∈ C1,0(B2(0, 2) × [0, T ]) and b̃i ∈ C0(B2

(0, 2) × [0, T ]) hold for i = 1, 2.
Step (ii): We prove that ũ, ṽ are W 2,1

2 -regular in B2(0, 1) and belong to L4(0, T ;
W 1,4(B2(0, 1))). In order to apply results for parabolic equations with (zero)
Dirichlet boundary data we first multiply ṽ with a cut-off function. Therefore,
consider an arbitrary ψ ∈ C2

c (B2(0, 2)) with 0 ≤ ψ ≤ 1 and ψ = 1 in B2(0, 1).
We find from (4.5) that for w := ψṽ

∂tw − ∇ · (
Ã2∇w

) − b̃2 · ∇w = F in B2(0, 2) × (0, T ), (4.6)

where

F :=−ṽ
(
(∇·Ã2)∇ψ+Ã2 : D2ψ+b̃2·∇ψ

)−2∇ṽ·Ã2∇ψ+4
(
q(u, v, V )−f(u, v)

)◦ϕ.

By the L∞-bounds proved in Theorem 3.6 the first and the third term are
controlled. However, due to the localization the second term includes ∇ṽ
that is only controlled by the uniform energy bounds (3.14). Therefore, F ∈
L2(B2(0, 2) × (0, T )) holds with

‖F‖L2(B2(0,2)×(0,T ) ≤ ‖(q(u, v, V ) − f(u, v)
) ◦ ϕ‖L2(B2(0,2)×(0,T ))

+ C(ϕ,A2, b2)‖ṽ‖L2(0,T ;H1(B2(0,2))

≤ C(ϕ,A2, b2,K2)
(‖V ‖L2(Γ×(0,T )) + ‖u‖L2(Γ×(0,T ))

+ ‖v‖L2(0,T ;H1(Γ))

)
≤ C(T,K2, ϕ,A2, b2, C5,Γ)Λ0. (4.7)
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By [23, Theorem III.6.1, Remark III.6.3 and (6.10)] we deduce that w ∈
W 2,1

2 (B2(0, 2) × (0, T )), with

‖w‖W 2,1
2 (B2(0,2)×(0,T )) ≤ C(T, ϕ,A2, b2)

(‖F‖L2(B2(0,2)×(0,T ))

+ ‖w(·, 0)‖H1(B2(0,2))

)
≤ C(T,K2, ϕ,A2, b2, C5,Γ)

(
Λ0 + ‖v0‖H1(Γ)

)
,

where we have used (4.7) in the last step. This yields ṽ ∈ W 2,1
2 (B2(0, 1)×(0, T ))

and, by [23, Lemma II.3.3] we have ṽ ∈ L4(0, T ;W 1,4(B2(0, 1))), with

‖ṽ‖L4(0,T ;W 1,4(B2(0,1))) ≤ C(T )‖ṽ‖W 2,1
2 (B2(0,1)×(0,T ))

≤ C(T )‖w‖W 2,1
2 (B2(0,2)×(0,T ))

≤ C(T,K2, ϕ,A2, b2, C5,Γ)
(
Λ0 + ‖v0‖H1(Γ)

)
. (4.8)

Arguing in the same way, we deduce the corresponding regularity properties
and the corresponding estimate also for ũ.
Step (iii): Using that v = ṽ ◦ ϕ−1, u = ũ ◦ ϕ−1, the previous estimates show
that u, v ∈ L4(0, T ;W 1,4(ϕ(B2(0, 1))). Since Γ is compact there exists a finite
family {ϕi}N

i=1 of local parametrizations as above such that Γ is covered by⋃N
i=1 ϕi(B2(0, 1)). We then deduce from (4.8) and the corresponding estimate

for ũ that

‖u, v‖L4(0,T ;W 1,4(Γ))

≤ C(T,K2,Γ, A1, A2, b1, b2, C5)
(
Λ0 + ‖u0‖H1(Γ) + ‖v0‖H1(Γ)

)
. (4.9)

Step (iv): We again consider (4.6) for an arbitrary ψ ∈ C2
c (B2(0, 2)) with

0 ≤ ψ ≤ 1 and ψ = 1 in B2(0, 1). By (4.9) we have F ∈ L4(B2(0, 2) × (0, T )),
with

‖F‖L4(B2(0,2)×(0,T ))

≤ ‖(q(u, v, V ) − f(u, v)
) ◦ ϕ‖L4(B2(0,2)×(0,T ))

+ C(ϕ,A2, b2)‖ṽ‖L4(0,T ;W 1,4(B2(0,2)))

≤ C(K2, ϕ,A2, b2)
(‖V ‖L4(Γ×(0,T )) + ‖u‖L4(Γ×(0,T )) + ‖v‖L2(0,T ;W 1,4(Γ))

)
≤ C(T,K2,Γ, A1, A2, b1, b2, C5)

(
Λ0 + ‖u0‖H1(Γ) + ‖v0‖H1(Γ)

)
.

From maximal regularity results, see [23, Theorem IV.9.1], we conclude that
w ∈ W 2,1

4 (B2(0, 2) × (0, T )), with

‖w‖W 2,1
4 (B2(0,2)×(0,T )) ≤ C(A2, b2, ϕ, T )

(‖F‖L4(B2(0,2)×(0,T ))

+ ‖w(·, 0)‖
W

3
2 ,4(B2(0,2))

)
≤ C(T,K2,Γ, A1, A2, b1, b2, C5)

(
Λ0

+ ‖u0‖H1(Γ) + ‖v0‖
W

3
2 ,4(Γ)

)
.
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This in particular implies ṽ ∈ W 2,1
4 (B2(0, 1) × (0, T )). The embedding [23,

Lemma II.3.3] yields ṽ ∈ Lp(0, T ;W 1,p(B2(0, 1))) for any 1 ≤ p < ∞, with

‖ṽ‖Lp(0,T ;W 1,p(B2(0,1))) ≤ C(p, T )‖w‖W 2,1
4 (B2(0,2)×(0,T ))

≤ C(p, T,K2,Γ, A1, A2, b1, b2, C5)
(
Λ0 + ‖u0‖H1(Γ)

+ ‖v0‖
W

3
2 ,4(Γ)

)
.

Step (v): By the corresponding estimate for ũ, and the same arguments as in
Step (iii) we deduce that for any 1 < p < ∞

‖u, v‖Lp(0,T ;W 1,p(Γ)) ≤ C(p, T,K2,Γ, A1, A2, b1, b2, C5)
(
Λ0

+‖u0‖
W

3
2 ,4(Γ)

+ ‖v0‖
W

3
2 ,4(Γ)

)
. (4.10)

Step (vi): Repeating the procedure once more, we now conclude that the right-
hand side F in (4.6) belongs to Lp(B2(0, 2) × (0, T )) for any 1 ≤ p < ∞, with

‖F‖Lp(B2(0,2)×(0,T )

≤ ‖(q(u, v, V ) − f(u, v)
) ◦ ϕ‖Lp(B2(0,2)×(0,T ))

+ C(ϕ,A2, b2)‖ṽ‖Lp(0,T ;W 1,p(B2(0,2)))

≤ C(K2, ϕ,A2, b2, p)
(‖V ‖Lp(Γ×(0,T )) + ‖u‖Lp(Γ×(0,T )) + ‖v‖Lp(0,T ;W 1,p(Γ))

)
≤ C(p, T,K2,Γ, A1, A2, b1, b2, C5)

(
Λ0 + ‖u0‖

W
3
2 ,4(Γ)

+ ‖v0‖
W

3
2 ,4(Γ)

)
,

where we have used (4.10) and Theorem 3.6. By maximal Lp(Lp) regular-
ity [23, Theorem IV.9.1] we deduce that w ∈ W 2,1

p (B2(0, 2) × (0, T )) and
ṽ ∈ W 2,1

p (B2(0, 1) × (0, T )) for any 1 < p < ∞, with an estimate

‖ṽ‖W 2,1
p (B2(0,1)×(0,T ))

≤ ‖w‖W 2,1
p (B2(0,1)×(0,T ))

≤ C(p, T, ϕ,A2, b2)
(

‖F‖Lp(B2(0,1)×(0,T ) + ‖w(·, 0)‖
W

2− 2
p

,p
(B2(0,1))

)

≤ C(p, T,K2,Γ, A1, A2, b1, b2, C5)
(

Λ0 + ‖u0‖
W

3
2 ,4(Γ)

+ ‖v0‖
W

2− 2
p

,p
(Γ)

)
.

Step (vii): Analogously, we derive a corresponding estimate for ũ. Covering
Γ with a suitable collection of local parametrizations, as above, we conclude
that (4.1) holds.
Step (viii): For any 4 ≤ p < ∞ the embedding into Hölder spaces [23, Lemma

II.3.3] and (4.1) imply that u, v ∈ C1+β, 1+β
2 (Γ × [0, T ]) for any 0 < β < 1 − 4

p

and that the estimate (4.2) holds.
(2) We again consider a local parametrization and the solution w of (4.6), for
ψ ∈ C∞

c (B2(0, 2)) with 0 ≤ ψ ≤ 1 and ψ = 1 on B2(0, 1). By our assump-
tions on the data, Ã2 ∈ C1+α, 1+α

2 (Γ × [0, T ]) and b̃2 ∈ Cα, α
2 (Γ × [0, T ]) hold.

From (4.2) we deduce that F in (4.6) belongs to Cα, α
2 (B2(0, 2) × [0, T ]). Ap-

plying [23, Theorem IV.5.2] we obtain that w ∈ C2+α,1+ α
2 (B2(0, 2) × [0, T ])
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holds, with

‖w‖
C2+α,1+ α

2 (B2(0,2)×[0,T ])
≤ C(α, T )

(
‖F‖

Cα, α
2 (B2(0,2)×[0,T ])

+ ‖w(·, 0)‖C2+α(B2(0,2))

)
.

This further implies ṽ ∈ C2+α,1+ α
2 (B2(0, 1) × [0, T ]) and a bound

‖ṽ‖
C2+α,1+ α

2 (B2(0,1)×[0,T ])

≤ C(α,Γ, T,Λ0)
(
‖V ‖

Cα, α
2 (B×[0,T ])

+ ‖v‖
C1+α, 1+α

2 (Γ×[0,T ])

+ ‖u‖
Cα, α

2 (Γ×[0,T ])
+ ‖v0‖C2+α(Γ)

)

≤ C(α,Γ, T,Λ0, C8)
(
Λ0 + ‖V ‖

Cα, α
2 (B×[0,T ])

+ ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ) ),

where we have used that, by (4.2), ‖u, v‖
C1+α, 1+α

2 (Γ×[0,T ])
is controlled by Λ0

and the initial data u0, v0. Covering Γ by a suitable family of parametrizations
we deduce the estimate (4.3) for v and, by similar arguments, for u. �

Proposition 4.2. Consider the weak solution (V, u, v) of (1.6)–(1.10) with ini-
tial data (V0, u0, v0) that satisfy (3.19) and the compatibility condition (2.4).
Let 0 < α < 1 and assume that Γ is C2,lip-regular, that u, v ∈ C1+α, 1+α

2 (Γ ×
[0, T ]) and that V0 ∈ C2+α(B). Then V ∈ C2+α,1+ α

2 (B × [0, T ]) holds with

‖V ‖
C2+α,1+ α

2 (B×[0,T ])

≤ C10

(
‖u‖

C1+α, 1+α
2 (Γ×[0,T ])

+ ‖v‖
C1+α, 1+α

2 (Γ×[0,T ])

+‖V0‖C2+α(B)

)
(4.11)

for some C10 = C10

(
B,D,K2, T, α, ‖u, v‖

C1+α, 1+α
2 (Γ×[0,T ])

)
.

Proof. We observe that V is a weak solution of the parabolic equation with
Robin boundary condition

∂tV = DΔV in B × (0, T ),

D∇V · ν + dV = g on Γ × (0, T ),

where d = q1(u, v) and g = q2(u, v)v are considered as given functions on
Γ × [0, T ]. By our assumptions we have d, g ∈ C1+α, 1+α

2 (Γ × [0, T ]) and we
deduce from [23, Theorem IV.5.3] that V ∈ C2+α,1+ α

2 (B × [0, T ]) holds with

‖V ‖
C2+α,1+ α

2 (B×[0,T ])

≤ Cα(B, T, ‖d‖
C1+α, 1+α

2 (Γ×[0,T ])
,D)

(
‖g‖

C1+α, 1+α
2 (Γ×[0,T ])

+ ‖V0‖C2+α(B)
)
.

This proves (4.11). �

Proposition 4.3. Let the assumptions in Theorem 2.4 be satisfied and let Λ1 >
0 be given with

‖V0‖C2+α(B) + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ) ≤ Λ1. (4.12)
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Consider the weak solution (V, u, v) of (1.6)–(1.10). Then V ∈ C2+α,1+ α
2 (B ×

[0, T ]) and u, v ∈ C2+α,1+ α
2 (Γ× [0, T ]) hold, and (V, u, v) is a classical solution

of Problem (RDD). Moreover, there exists a constant C11 = C11(B,D,K1, k1,
K2,Λ1, T, α) such that

‖V ‖
C2+α,1+ α

2 (B×[0,T ])
+ ‖u, v‖

C2+α,1+ α
2 (Γ×[0,T ])

≤ C11

(‖V0‖C2+α(B) + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

)
.

Proof. We let Λ0 := ‖V0‖L∞(B) + ‖u0‖L∞(Γ) + ‖v0‖L∞(Γ) and note that Λ0 ≤
Λ1. Applying first Proposition 4.1, (4.2) we obtain u, v ∈ C1+α, 1+α

2 (Γ × [0, T ])
with

‖u, v‖
C1+α, 1+α

2 (Γ×[0,T ])
≤ C8

(
Λ0 + ‖u0‖C2+α(Γ×[0,T ]) + ‖v0‖C2+α(Γ×[0,T ])

)
.

(4.13)
Then Proposition 4.2 and (4.13) imply that V ∈ C2+α,1+ α

2 (B × [0, T ]) with

‖V ‖
C2+α,1+ α

2 (B×[0,T ])

≤ C(C10)
(
‖V0‖C2+α(B) + ‖u0‖C2+α(Γ×[0,T ]) + ‖v0‖C2+α(Γ×[0,T ])

)
.

Finally, Proposition 4.1, (4.3) implies u, v ∈ C2+α,1+ α
2 (Γ × [0, T ]) and

‖u, v‖
C2+α,1+ α

2 (Γ×[0,T ])

≤ C(C9, C10)
(‖V0‖C2+α(B) + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

)
.

By (4.13) the ‖u, v‖
C1+α, 1+α

2 (Γ×[0,T ])
dependence of C10 can be replaced by a

dependence on Λ1.
By standard arguments the C2+α,1+ α

2 -regular weak solution (V, u, v) is
in fact a classical solution of the system (RDD). �
Proposition 4.4. For any Λ1 > 0 there exists a constant C12 = C12(B,D,K1,
k1, f, q, T, α,Λ1) with the following property: Assume that A1, A2, b1, b2 and
f, q satisfy the assumptions of Theorem 2.4. Let two tuples of initial data
(V0, u0, v0) and (Ṽ0, ũ0, ṽ0) are given that both satisfy the assumptions of The-
orem 2.4, and both satisfy (4.12).

Then the solutions (V, u, v) and (Ṽ , ũ, ṽ) of system (RDD), with initial
data (V0, u0, v0) and (Ṽ0, ũ0, ṽ0), respectively, satisfy the estimate

‖V − Ṽ ‖
C2+α,1+ α

2 (B×[0,T ])
+ ‖u − ũ‖

C2+α,1+ α
2 (Γ×[0,T ])

+ ‖v − ṽ‖
C2+α,1+ α

2 (Γ×[0,T ])

≤ C12

(
‖V0 − Ṽ0‖C2+α(B̄) + ‖u0 − ũ0‖C2+α(Γ) + ‖v0 − ṽ0‖C2+α(Γ)

)
.

(4.14)

Proof. As in Proposition 3.7 we consider the differences

Z := V − Ṽ , w := u − ũ, z := v − ṽ

and observe that they satisfy (3.45)–(3.48). Using the C2-regularity of f1, f2, q1,
q2 we show as in Proposition 4.1 that for some constant C ′

9 independent of
(Z,w, z)



17 Page 24 of 32 S. Hausberg and M. Röger NoDEA

‖w, z‖
C2+α,1+ α

2 (Γ×[0,T ])
≤ C ′

9

(
‖w0‖C2+α(Γ) +‖z0‖C2+α(Γ) +‖Z‖

Cα, α
2 (B×[0,T ])

)
(4.15)

holds. Using similar arguments as in Proposition 4.2 in the first inequality and
similar arguments as in Proposition 4.1 in the second inequality we obtain

‖Z‖
C2+α,1+ α

2 (B×[0,T ])

≤ C ′
10

(
‖w‖

C1+α, 1+α
2 (Γ×[0,T ])

+ ‖z‖
C1+α, 1+α

2 (Γ×[0,T ])
+ ‖Z0‖C2+α(B)

)

≤ C ′
10(1 + 2C ′

9)
(
‖w0‖C2+α(Γ) + ‖z0‖C2+α(Γ) + ‖Z‖

Cα, α
2 (B×[0,T ])

+ ‖Z0‖C2+α(B)

)
. (4.16)

By Ehrling’s Lemma [35] and by Proposition 3.7 we finally deduce

C ′
10(1 + 2C ′

9)‖Z‖
Cα, α

2 (B×[0,T ])

≤ 1
2
‖Z‖

C2+α,1+ α
2 (B×[0,T ])

+ C(C ′
9, C

′
10)‖Z‖L2(B×(0,T ))

≤ 1
2
‖Z‖

C2+α,1+ α
2 (B×[0,T ])

+ C(C ′
9, C

′
10, C6)

(
‖Z0‖L2(B×(0,T )) + ‖w0‖L2(Γ×(0,T ))

+ ‖z0‖L2(Γ×(0,T ))

)
.

This inequality, together with (4.15), (4.16) proves (4.14). �

Proof of Theorem 2.4. The claim follows by Theorem 2.3 on the existence of
weak solutions, and Propositions 4.3, 4.4. �

Proof of Theorem 2.5. This follows by bootstrapping and the arguments used
in Propositions 4.1 and 4.2. �

5. Asymptotic reduction in the infinite cytosolic diffusion limit

We finally study the asymptotic limit of solutions to (1.6)–(1.10) for D → ∞.
As a first step in the proof of Theorem 2.6 we show the convergence to solutions
of the reduced system (rRDD) .

Proposition 5.1. Consider any sequence Dk → ∞ (k → ∞) and the solu-
tions (Vk, uk, vk) of (1.6)–(1.10) with D replaced by Dk and fixed initial data
(V0, u0, v0) that satisfy (3.19). Then there exists a subsequence k → ∞ (not re-
labeled) and a solution (V∞, u∞, v∞) of (2.7)–(2.10) with m =

∫
B

V0+
∫
Γ

(
u0+

v0

)
, such that u∞, v∞ ∈ L2(0, T ;H1(Γ))∩H1(0, T ;H1(Γ)∗), V∞ ∈ W 1,∞(0, T )

and
uk → u∞, vk → v∞, Vk → V∞ in L2(Γ × (0, T )).

Proof. By Proposition 3.4 and Theorem 3.6 the sequences (uk)k and (vk)k are
uniformly bounded in L∞(Γ × (0, T )) ∩ L2(0, T ;H1(Γ)) ∩ H1(0, T ;H1(Γ)∗).
Furthermore, (Vk)k is uniformly bounded in L∞(B × (0, T ))∩L2(0, T ;H1(B))
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with a uniform bound on
√

Dk‖∇Vk‖L2(B×(0,T )). We claim that there exist
u∞, v∞ ∈ L2(0, T ;H1(Γ)) ∩ H1(0, T ;H1(Γ)∗) and V∞ ∈ L2(0, T ;H1(B)) such
that for a subsequence k → ∞ (not relabled)

Vk ⇀ V∞ weakly in L2(0, T ;H1(B)), (5.1)

uk ⇀ u∞ weakly in L2(0, T ;H1(Γ)) ∩ H1(0, T ;H1(Γ)∗), (5.2)

uk → u∞ in L2(0, T ;L2(Γ)), (5.3)

vk ⇀ v∞ weakly in L2(0, T ;H1(Γ)) ∩ H1(0, T ;H1(Γ)∗), (5.4)

vk → v∞ in L2(0, T ;L2(Γ)). (5.5)

The compactness of (Vk)k in L2(0,
T ;H1(B)) and of (uk)k, (vk)k in L2(0, T ;H1(Γ)) and in H1(0, T ;H1(Γ)∗) fol-
low from the estimates in Proposition 3.4 and the weak precompactness of
bounded sets in reflexive Banach spaces. The energy bounds (3.14) and the
Aubin–Lions Lemma furthermore imply (5.3), (5.5).

As another consequence of (3.14) we have
∫ T

0

∫
B

|∇V∞|2 ≤ lim inf
k→∞

∫ T

0

∫
B

|∇Vk|2 = 0,

and for almost all t ∈ (0, T ) the functions V∞(·, t) are constant almost every-
where in B.

Next we observe from (1.6), (1.7) that in a weak sense

d

dt

∫
B

Vk =
∫

Γ

(
− q1(uk, vk)Vk + q2(uk, vk)vk

)

holds. By Theorem 3.6 the right hand side is uniformly bounded and we obtain
that

∫
B

Vk, as a function of time, is uniformly bounded in W 1,∞(0, T ) and
hence converges to some limit w ∈ W 1,∞(0, T ) strongly in Cα([0, T ]) for any
0 ≤ α < 1. Furthermore, by (5.1) for any η ∈ L2(0, T )

∫ T

0

η(t)
(
w(t) − V∞(t)|B|) dt

= lim
k→∞

∫ T

0

η(t)
∫

B

Vk(x, t) dx dt − lim
k→∞

∫ T

0

∫
B

η(t)Vk(x, t) dx dt = 0,

which shows that w = V∞|B| almost everywhere in (0, T ). In particular we
have V∞ ∈ W 1,∞(0, T ) and

V∞|B| = lim
k→∞

∫
B

Vk(x, ·) dx in Cα([0, T ]),

for all 0 ≤ α < 1. Analogue arguments yield that t �→ ∫
Γ

u∞(·, t) and t �→∫
Γ

v∞(·, t) belong to W 1,∞(0, T ).
Letting k → ∞ in the mass conservation property (1.11) implies (2.9).
In order to show that (u∞, v∞, V∞) solves (2.7), (2.8) we first show that

V∞ is also the limit of the traces of Vk on Γ. In fact, we have by the continuity
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of the embedding H1(B) ↪→ L2(Γ) and the Poincaré inequality for functions
in H1(B) with vanishing mean that∫ T

0

∥∥Vk(·, t) − 1
|B|

∫
B

Vk(·, t)∥∥2

L2(Γ)
dt ≤ C

∫ T

0

‖∇Vk(·, t)∥∥2

L2(B)
dt → 0

and conclude that
Vk → V∞ in L2(Γ × (0, T )). (5.6)

From (5.3), (5.5), and (5.6) we deduce that (possibly passing to another
subsequence)

q(uk, vk, Vk) → q(u, v, V ) pointwise almost everywhere in Γ × (0, T ).

Moreover, the estimate |q(uk, vk, Vk)| ≤ K2

(|Vk|+ |vk|) gives an L2(Γ× (0, T ))
convergent sequence of majorants and from the generalized Lebesgue Conver-
gence Theorem we deduce that

q(uk, vk, Vk) → q(u, v, V ) in L2(Γ × (0, T )).

Similar arguments show that f(uk, vk) → f(u, v) in L2(Γ × (0, T )).
Using in addition (5.2)–(5.5) we therefore can pass to the limit in the

weak formulation of equations (1.8), (1.9) and deduce that (2.7), (2.8) are
satisfied in a weak sense.

We finally prove that the prescribed initial data are attained. From [9,
Theorem 5.9.3] we deduce that u∞, v∞ ∈ C0([0, T ];L2(Γ)). Next, for any η ∈
C∞

c ([0, T ) × Γ) a partial integration, (1.10) and (5.2), (5.3) imply that

−
∫

Γ

η(x, 0)u0(x) dH2(x)

= lim
k→∞

∫ T

0

(
〈∂tuk(·, t), η(·, t)〉H1(Γ),H1(Γ)∗ +

∫
Γ

uk(x, t)∂tη(x, t) dH2(x)
)

dt

=
∫ T

0

(
〈∂tu∞(·, t), η(·, t)〉H1(Γ),H1(Γ)∗ +

∫
Γ

u∞(x, t)∂tη(x, t) dH2(x)
)

dt

= −
∫

Γ

η(x, 0)u∞(x, 0) dH2(x),

which shows that u∞(·, 0) = u0 holds. The proof that also v∞(·, 0) = v0 holds
is analogue. �

It remains to prove the uniqueness of solutions to the reduced system
(rRDD). We first prove the nonnegativity and uniform boundedness for any
weak solution of this system. We use the same methods as in Proposition 3.4
and in Theorems 3.5, 3.6 but now applied to (2.7), (2.8) and the following
initial value problem for V∞,

d

dt
V∞ =

d

dt

1
|B|

∫
Γ

−(u∞ + v∞)

= − 1
|B|

(∫
Γ

q1(u∞, v∞)
)

V∞ +
1

|B|
∫

Γ

q2(u∞, v∞)v∞, (5.7)

V∞(0) =
1

|B|m −
∫

Γ

(u0 + v0). (5.8)
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We start with the nonnegativity of solutions.

Proposition 5.2. Let nonnegative initial data (u0, v0) and a constant m ≥ 0 be
given that satisfies (2.6). Then any weak solution (u∞, v∞, V∞) of (2.7)–(2.10)
is nonnegative.

Proof. To prove the nonnegativity we follow the proof of Proposition 3.4 and
test (2.7) with (u∞)−, (2.8) with (v∞)− and (5.7) with (V∞)−, where for
convenience we drop the index ∞ in the following. This gives

d

dt

∫
Γ

1
2

(
u2

− + v2
−

)
= −

∫
Γ

(∇Γu− · A1∇Γu− + ∇Γv− · A2∇Γv−)

+
∫

Γ

(b1 · u−∇Γu− + b2 · v−∇Γv− − q(u, v, V )v−

− f(u, v)(u− − v−))

≤ −k1

2

∫
Γ

(|∇Γu−|2 + |∇Γv−|2) + C(K1, k1)
∫

Γ

(
u2

− + v2
−

)

+
∫

Γ

(
q1(u, v)V−v− +

(
f1(u, v) + f2(u, v)

)
u−v−

)

≤ K2|Γ|V 2
− + C(K1, k1,K2)

∫
Γ

(
u2

− + v2
−

)
(5.9)

and
d

dt

|B|
2

V 2
− = V−

d

dt

∫
B

V− =
∫

Γ

V−
( − q1(u, v)V− − q2(u, v)v

)

≤
∫

Γ

q2(u, v)V−v− ≤ K2|Γ|
2

V 2
− +

K2

2

∫
Γ

v2
−.

Adding this inequality to (5.9) we deduce from Gronwalls inequality that
u, v, V remain nonnegative. �

By similar arguments we obtain, as in the fully coupled system, that any
weak solution of the reduced system is uniformly bounded.

Proposition 5.3. Let nonnegative initial data u0, v0 and a constant m ≥ 0 be
given that satisfies (2.6). Further assume that for some Λ0 > 0

1
|B|m + sup

Γ
u0 + sup

Γ
v0 ≤ Λ0.

Then there exists λ0 > 0 only depending on B,K1, k1,K2, such that for any
weak solution (u∞, v∞, V∞) of (2.7)–(2.10)

sup
(0,T )

V∞ + sup
Γ×(0,T )

u∞ + sup
Γ×(0,T )

v∞ ≤ eλ0T Λ0 (5.10)

holds.

Proof. For convenience, we again drop the index ∞. We follow the proof of
Theorems 3.5, only the treatment of the V equation is different. For λ > 0,
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to be fixed below, we consider the modified system (3.17), (3.18) coupled with
the following initial value problem

d

dt
V = −

(
λ +

1
|B|

∫
Γ

q1(u, v)
)
V +

1
|B|

∫
Γ

q2(u, v)v in (0, T ), (5.11)

V (0) =
1

|B|m −
∫

Γ

(u0 + v0). (5.12)

We fix arbitrary M,m2 > 0 (to be chosen below) and deduce from (5.11) that

|B|
2

d

dt
(V − M)2+ ≤ −λ|B|V (V − M)+ +

∫
Γ

K2v(V − M)+

≤ −λ|B|V (V − M)+ + K2

∫
Γ

(
(v − m2)+(V − M)+

+ m2(V − M)+
)

≤
(

− λ|B| +
1
2
|Γ|

)
(V − M)2+ +

∫
Γ

K2
2

2
(v − m2)2+

−
(
λ|B|M − K2m2|Γ|

)
(V − M)+

≤ −1
2
|Γ|(V − M)2+ +

∫
Γ

K2
2

2
(v − m2)2+ (5.13)

for all λ ≥ λ0, if λ0 satisfies

λ0|B| ≥ |Γ| and λ0|B|M ≥ K2m2|Γ|. (5.14)

We next test for an arbitrary m1,m2 ≥ 0 equation (3.17) with (u − m1)+ and
equation (3.18) with (v − m2)+. We consider λ0 that, in addition to (5.14),
satisfies the conditions (3.34) and (3.37). Then, we follow the proof of Theo-
rem 3.5 and deduce that for any λ ≥ λ0 the estimates (3.35) and (3.38) hold.
Summing up the inequalities (5.13), (3.35) and (3.38) we conclude as in the
proof of Theorem 3.5 that for M = m1 = m2 = Λ0 and λ0 sufficiently large
(where λ0 can be chosen independently of Λ0) the functions V, u, v stay below
Λ0. As in the proof of Theorem 3.6, this implies the maximum bound (5.10).

�

Proposition 5.4. For any Λ0 > 0 there exists a constant C13 = C13(B,K1, k1,
K2, T,Λ0) with the following property: Consider initial data (u0, v0) and (ũ0, ṽ0)
and any m, m̃ that satisfy (2.6) and

0 ≤ 1
|B|m + u0 + v0 ≤ Λ0, 0 ≤ 1

|B| m̃ + ũ0 + ṽ0 ≤ Λ0.

Let (V∞, u∞, v∞) and (Ṽ∞, ũ∞, ṽ∞) be weak solutions of (2.7)–(2.9) with ini-
tial data (u0, v0) and (ũ0, ṽ0), and with total mass m and m̃, respectively. Then
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‖V∞ − Ṽ∞‖L∞(0,T ) + ‖u∞ − ũ∞‖L2(0,T ;H1(Γ))∩L∞(0,T ;L2(Γ))

+ ‖v∞ − ṽ∞‖L2(0,T ;H1(Γ))∩L∞(0,T ;L2(Γ))

≤ C13

(
|m − m̃| + ‖u0 − ũ0‖L2(Γ) + ‖v0 − ṽ0‖L2(Γ)

)

holds.

Proof. Using similar modifications as above we can adopt the proof of Propo-
sition 3.7, where we instead of (1.6), (1.7) use (5.7). �

Proof of Theorem 2.6. The assertions follow immediately from Propositions
5.1–5.4. �
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