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Zero Lebesgue measure sets as removable
sets for degenerate fully nonlinear elliptic
PDEs

J. Ederson M. Braga and Diego Moreira

Abstract. Our main result in this note can be stated as follows: Assume
E ⊂ B1 and

F (D2u(x), ∇u(x), u(x), x) ≤ ψ(x) in B1\E (0.1)
holds in the C−viscosity sense where |E| = 0 and F is a degenerate
elliptic operator. This way, (0.1) holds in the whole unit ball B1 (i.e, E
is removable for (0.1)) provided

M−
λ,Λ(D2u) − γ|∇u| ≤ f in B1 (0.2)

where f ∈ Ln(B1). Zeroth order term can appear in (0.2) provided u is
bounded in B1. This extends a result due to Caffarelli et al. proven in
(Commun Pure Appl Math 66(1):109–143, 2013) where a second order
linear uniformly elliptic PDE with bounded RHS appeared in place of
(0.2).
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1. Introduction

In this note we consider the following setting. Let u be a continuous function
in the unit open ball B1 ⊂ R

n. Suppose that F (D2u,∇u, u, x) ≤ ψ(x) in B1\E
in the C−viscosity sense where E is some subset of B1 and F is a degenerate
fully nonlinear elliptic operator. An interesting question is to decide under
what conditions the PDE hold in the whole B1. In other words, when the
set E is a removable set for the equation above. This is a classical important
question in the field of elliptic PDEs and has been studied by many authors
throughout the years for several type of equations. For some results about
remotion of singularities involving fully nonlinear equations see for instance
[1,12,14–17].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-018-0499-5&domain=pdf
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L. Caffarelli, Y. Li and L. Nirenberg addressed this question in a series
of nice articles [7–9]. In fact, in these papers, they also studied many other
important questions related to the validity of the comparison principles, strong
maximum principle for singular solutions, symmetry of solutions, etc. In [9],
they gave an affirmative answer to the removability question mentioned above
in the case where E has zero Lebsegue measure and u also satisfies Lu ≤ D
where D is a positive constant and L is a second order linear uniformly elliptic
operator in nondivergence form like

Lu(x) := trace(A(x)D2u(x)) + 〈B(x),∇u(x)〉 + C(x)u(x) in B1. (1.3)

Here, the coefficient matrix A(x) is uniformly elliptic and all other coefficients
are bounded and measurable (see Theorem 1.2 in [9]).

The analysis of the particular important case where Δu ≤ D was done in
[7]. The proofs in [7,9] are delicate and rest on a careful perturbation argument
for u − ϕ where ϕ is the touching test function from below in the definition
of supersolution. Indeed, the authors there carefully explore the contact set
between a perturbation of this function and its convex envelope. The funda-
mental point there is to prove that the contact set has positive measure. This
is the case once precise estimates can be performed inside the contact set. In
this note, we extend the removability result on Lebesgue sets of measure zero,
i.e, Theorem 1.2 in [9], for the case where the assumption Lu ≤ D is replaced
by

P−
λ,Λ,γ [u] := M−

λ,Λ(D2u) − γ|∇u| ≤ f in B1. (1.4)

Here the RHS f ∈ Ln(B1) and M−
λ,Λ is the negative Pucci extremal operator

that we will recall in the next section. The equation above is understood to hold
in the Ln−viscosity sense. The (possible) unboundedness of the RHS together
with the nonlinear character of equation (1.4) above bring the novelty to our
result.

We can even allow zeroth order term in the equation (1.4) provided our
solution is bounded in B1. In the approach presented in [7,9], the crucial step
towards the estimate of the measure of contact set is the C1,1

loc regularity of the
convex envelope for a perturbation of u − ϕ. In our situation, since the RHS
we are dealing with is not L∞, the convex envelope is no longer C1,1

loc (see [2])
and the argument needs to be changed.

The purpose of this short note is to carefully revisit the approach in [7,9]
and modify the argument accordingly in order to bypass this difficulty. We do
this by using a version of the ABP estimate that appears in [10]. This allows
us to extend Theorem 1.2 in [9] and thus bring the removability results in [7,9]
to the context of fully nonlinear elliptic equations with measurable ingredients
with possibly unbounded coefficients. Finally, we remark that we provide full
details and proofs. This makes this note essentially self contained. Now, we
state our results. Before, as introduced in [3], we recall the class

S(γ, f) =
{

u ∈ C0(B1); P−
λ,Λ,γ [u](x) ≤ f(x) in B1

}
,
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where the differential inequality above is considered to hold in the Ln-viscosity
sense. As a matter of fact, in this paper, we freely use the concepts of the
Ln-viscosity theory as they appear in [10]. For more details on this see next
section.

Theorem 1.1. Let u ∈ C0(B1) be such that u ∈ S(γ, f) in B1 in the Ln-
viscosity sense with f ∈ Ln(B1). Let F be a degenerate elliptic operator, i.e, F
satisfies the conditions (2.6) and (2.7) below. Assume that u is a C-viscosity
solution to F (D2u,∇u, u, x) ≤ ψ(x) in B1\E where E ⊂ B1 is a subset of
zero Lebesgue measure and ψ : B1 → R is an upper-semicontinuous function.
Then, E is a removable subset for the equation above, i.e,

F (D2u,∇u, u, x) ≤ ψ(x) in B1,

in the C-viscosity sense.

From this we obtain the following result which includes fully nonlinear
equations with zeroth order term. We highlight that no sign on the function σ
below is needed.

Corollary 1.1. Let u ∈ C0(B1). In the previous Theorem, we can replace the
condition u ∈ S(γ; f) in B1 with f ∈ Ln(B1) by

M−
λ,Λ(D2u) − γ|∇u(x)| + σ(x)u(x) ≤ f(x) in B1 (1.5)

with f, σ ∈ Ln(B1) provided u is also bounded in B1.

Remark 1.1. In order to put Theorem 1.1 into perspective, let us consider
the following setting. Let u ∈ C0(B1) ∩ W 2,n(B1) be a C−viscosity solution
to F (D2u,∇u, u, x) ≤ 0 in B1\E where E ⊂ B1 with |E| = 0 and F is a
degenerate elliptic operator (i.e, F satisfies conditions (2.6) and (2.7)). Once
u ∈ W 2,n(B1), it follows that u is punctually second order differentiable almost
everywhere in B1. This is a classical special case of a result due to Calderón
and Zygmund (Theorem 12 in [5]). A short and self contained proof can also
be found in Appendix C in [10]. Thus, Lemma 2.1 implies that u satisfies
F (D2u(x),∇u(x), u(x), x) ≤ 0 for almost every x ∈ B1. Now, it follows as
a consequence of the Bony Maximum Principle (see Corollary 3 in [18]) that
F (D2u,∇u, u, x) ≤ 0 in B1 in the viscosity sense, i.e, E is removable. Observe
that a key point in the previous example is the regularity assumed on u, which
indeed implies that D2u ∈ Ln(B1). An interesting question one could raise is
what can be said about the removability of E in the case D2u is a (matricial)
measure which has a nontrivial singular part with respect to the Lebesgue
measure. If not the whole Hessian, at least some operator acting on it (say
Δu for instance). There are concave functions for which the Hessian is a (ma-
tricial) measure that is singular with respect to the Lebsegue measure. One
example is v(x) = −x+

1 . In this case, if F (D2v,∇v, v, x) ≤ 0 in C−viscosity
sense in B1\E with E ⊂ B1 with |E| = 0 then Theorem 1.1 implies that E
is removable since Δv ≤ 0 in B1 (which is a supersolution condition required
for the removability). This way, in a certain sense, Theorem 1.1 provides a
condition, namely P−

λ,Λ,γ [u] ≤ f ∈ Ln(B1), that acts as a substitute for the
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(strong) required regularity assumption u ∈ W 2,n(B1). This new condition al-
lows eventually the possibility of the Hessian to be a measure with nontrivial
singular part with respect to the Lebesgue measure as discussed above. As a
matter of fact, we point out here the work of D. Labutin [16,17] where he stud-
ied conditions under which F (D2u) makes sense as a signed Radon Measure,
discussing in particular the case where F is an extremal Pucci operator.

2. Structural conditions and theorem

Our goal is to prove a result about removable sets for fully nonlinear equations.
For this purpose, it is enough to consider solutions defined only in the open
unit ball of Rn denoted here by B1. Here, we treat fully nonlinear operators
F (D2u,∇u, u, x) and weak solutions u ∈ C0(B1) given in the C−viscosity
sense. We assume that F (M, ξ, r, x) is a degenerate elliptic operator, i.e.,

F ∈ C0(Sn×n × R
n × R × B1) (2.6)

and ∀ (M, ξ, r, x) ∈ Sn×n × R
n × R × B1 and ∀N ∈ Sn×n

+

F (M + N, ξ, r, x) ≥ F (M, ξ, r, x). (2.7)

Here, Sn×n denotes the set of symmetric matrices of order n, and Sn×n
+ the

nonnegative ones. We recall that a function ψ : B1 → R defined everywhere is
said to be upper-semicontinuous if for each x0 ∈ B1

lim sup
x→x0

ψ(x) ≤ ψ(x0).

We observe that for the theory of fully nonlinear operators, it is required in
general the operators F (x, r, p,M) to be proper, i.e, monotone decreasing on
the variable r. This is the case, for instance, if one desires the comparison
principle to hold (see for instance [10]). We do not need this assumption for
our results in this paper. Before we present the proof of the main result, we
recall below some definitions and present some basic lemmas.

Definition 2.1. For E ⊂ B1 let F be a degenerate fully nonlinear elliptic oper-
ator. Let also u ∈ C0(B1) and ψ : B1 → R an upper semicontinuous function.
We say that u is a C−viscosity solution to F (D2u,∇u, u, x) ≤ ψ(x) in B1\E if
for every x0 ∈ B1\E for which there exists ϕ ∈ C2(Ax0) (Ax0 a neighbourhood
of x0 inside B1) such that ϕ ≤ u in Ax0 and ϕ(x0) = u(x0) we have

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≤ ψ(x0).

Remark 2.1. In the definition above, we recover the classical definition of
C−viscosity supersolution of the equation F (D2u(x),∇u(x), u(x), x) ≤ ψ(x)
in B1 for the case where E is the empty set.

We recall the Pucci extremal operators. For 0 < λ ≤ Λ, M−
λ,Λ,M+

λ,Λ :
Sn×n → R are given by

M−
λ,Λ(M) = λ ·

∑
ei>0

ei + Λ ·
∑
ei<0

ei = λ · Tr(M+) − Λ · Tr(M−),
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M+
λ,Λ(M) = Λ ·

∑
ei>0

ei + λ ·
∑
ei<0

ei = Λ · Tr(M+) − λ · Tr(M−),

where ei are the eigenvalues of M . We also set for γ ≥ 0 the following Pucci
operator P±

λ,Λ,γ : Sn×n × R
n × Ω → R given by

P±
λ,Λ,γ(M,p) = M±

λ,Λ(M) ± γ|p|.
In order to simplify matters, we also make use of the following notation

P±
λ,Λ,γ [u](x) := P±

λ,Λ,γ

(
D2u(x),∇u(x), u(x)

)
.

Now we recall the concept of Ln−viscosity supersolutions. There are several
equivalent ways to pose it, but here we follow the definition as introduced in
[10]. We say that P−

λ,Λ,γ [u] ≤ f in B1 in the Ln−viscosity sense if for any
φ ∈ W 2,n

loc (B1) such that u − φ has a local mimimum at x0 ∈ B1 we have

ess lim inf
x→x0

(
P−

γ [φ] − f(x)
)

= ess lim inf
x→x0

(
M−

λ,Λ(D2φ(x)) − γ|∇φ(x)| − f(x)
)

≤ 0.

Remark 2.2. We recall that u ∈ C0(B1) is said to be punctually second order
differentiable at x0 ∈ B1 if there exists a paraboloid (second order polynomial)
P of the form

P (x) = A(x − x0) · (x − x0) + B · (x − x0) + C ∀x ∈ R
n

where A ∈ Sn×n, B ∈ R
n and C ∈ R such that

u(x) = P (x) + o(|x − x0|2) as x → x0.

In this case u is clearly differentiable at x0 (with ∇u(x0) = B) and we define

D2u(x0) := D2P (x0).

We now state two simple lemmas that are needed in the proof of
Theorem 1.1.

Lemma 2.1. Suppose u ∈ C0(B1) satisfies F (D2u,∇u, u, x) ≤ ψ(x) in the
C−viscosity sense in B1\E for some subset E ⊂ B1 where F is a degener-
ate fully nonlinear elliptic operator, i.e, F satisfies the conditions (2.6) and
(2.7) above. Suppose now x0 ∈ B1\E and v ≤ u in a neighbourhood A of x0

with v(x0) = u(x0). Additionally, assume that v is punctually second order
differentiable at x0. Then,

F (D2v(x0),∇v(x0), v(x0), x0) ≤ ψ(x0).

Proof. Let P be the second order polynomial given by the definition of punc-
tually second order differentiability of v at x0. For ε > 0 small enough, we can
find δ = δ(ε) > 0 small such that Bδ(x0) ⊂ B1 and

Q(x) := P (x) − ε|x − x0|2 ≤ v ≤ u ∀x ∈ Bδ(x0)
and Q(x0) = v(x0) = u(x0).
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By definition of C−viscosity supersolution in B1\E,

F (D2v(x0)−2nεI,∇v(x0), v(x0), x0) = F (D2P (x0) − 2εnI,∇P (x0), v(x0), x0)
= F (D2Q(x0),∇Q(x0), u(x0), x0)
≤ ψ(x0) ∀ε > 0 small.

Letting ε → 0, we finish the proof. �

Lemma 2.2. Let u ∈ S(λ,Λ, γ, f) in B1 with f ∈ Ln(B1) and g ∈ W 2,n(B1).
Then,

u − g ∈ S(λ,Λ, γ, f − P−
λ,Λ,γ [g]) in B1. (2.8)

Moreover,

min
{

u − g, 0
}

∈ S(λ,Λ, γ,
(
f − P−

λ,Λ,γ [g]
)+)

in B1. (2.9)

Proof. We prove (2.8) first. We start by recalling that functions in W 2,n(B1)
are twice differentiable almost everywhere (see Appendix C in [10]). Let φ ∈
W 2,n

loc (B1) be such that (u− g)−φ has a local minimum at x0 ∈ B1. This way,
u − φ∗ has a local minimum at x0 ∈ B1 where φ∗ = g + φ ∈ W 2,n

loc (B1). It is
easy to see from the properties of the Pucci extremal operators (see Lemma
2.10 in [4]) that for M,N ∈ Sn×n and p, q ∈ R

n

P−
λ,Λ,γ(M + N, p + q) ≤ P−

λ,Λ,γ(M,p) + P+
λ,Λ,γ(N, q).

In particular, if φ1, φ2 ∈ W 2,n
loc (B1), we have

P−
λ,Λ,γ [φ1 + φ2](x) ≤ P−

λ,Λ,γ [φ1] + P+
λ,Λ,γ [φ2] a.e. x in B1. (2.10)

Also,
P+

λ,Λ,γ [−φ1](x) = −P−
λ,Λ,γ [φ1] a.e. x in B1. (2.11)

Thus by (2.10) and (2.11), we have for a.e. x in B1

P−
λ,Λ,γ [φ](x) −

(
f(x) − P−

λ,Λ,γ [g](x)
)

= P−
λ,Λ,γ [φ∗ − g](x) −

(
f(x) − P−

λ,Λ,γ [g](x)
)

≤ P−
λ,Λ,γ [φ∗](x) + P+

λ,Λ,γ [−g](x) −
(
f(x) − P−

λ,Λ,γ [g](x)
)

= P−
λ,Λ,γ [φ∗](x) − f(x)

Thus, once u ∈ S(γ, f) in B1, we obtain

ess lim inf
x→x0

(
P−

λ,Λ,γ [φ](x) −
(
f(x) − P−

λ,Λ,γ [g](x)
))

≤ ess lim inf
x→x0

(
P−

λ,Λ,γ [φ∗](x) − f(x)
)

≤ 0.

This proves (2.8). Now, (2.9) follows from the following more general fact

u ∈ S(γ; f) and v ∈ S(γ; g) both in B1 =⇒ w

:= min{u, v} ∈ S(γ;max{f, g}) in B1.
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Indeed, we just take v = g = 0 in the implication above. For completeness, we
prove the implication above. Let φ ∈ W 2,n

loc (B1) and suppose w − φ has a local
minimum at x0 ∈ B1. If w(x0) = u(x0), it is easy to see that u − φ has a local
minimum at x0. In particular, since

ess lim inf
x→x0

(
P−

λ,Λ,γ [φ](x) − max{f(x), g(x)}
)

≤ ess lim inf
x→x0

(
P−

λ,Λ,γ [φ](x) − f(x)
)

≤ 0.

On the other hand, if w(x0) = v(x0), it follows that v−φ has a local minimum
at x0 and thus,

ess lim inf
x→x0

(
P−

λ,Λ,γ [φ](x) − max{f(x), g(x)}
)

≤ ess lim inf
x→x0

(
P−

λ,Λ,γ [φ](x) − g(x)
)

≤ 0.

This proves (2.9) and finishes the proof of the Lemma. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. By definition, let x0 ∈ B1 and ϕ ∈ C2(Bδ0(x0)) satis-
fying

ϕ ≤ u in Bδ0(x0) and ϕ(x0) = u(x0) for some 0 < δ0 < 1 − |x0|.
We need to prove that

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≤ ψ(x0). (3.12)

We only need to consider x0 ∈ E and by a suitable translation, we can assume
that x0 = 0.
Now, for 0 < δ < 1

4δ0 we define

ϕδ(x) := ϕ(x) − δ

2
|x|2 for x ∈ Bδ0 . (3.13)

Observe that

u(0) = ϕ(0) = ϕδ(0), u(x) > ϕδ(x) in Bδ0\{0} (3.14)

and
u(x) ≥ ϕδ(x) +

1
2
δκ2 in Bδ0\Bκ for κ < δ0/4. (3.15)

Now, we consider ε ∈ (0, δ3

4 ) and set

wε(x) = wε,δ(x) := min
{

(u − ϕδ)(x) − ε, 0
}

for x ∈ B2δ. (3.16)

Clearly, by (3.16), we conclude that

0 ≥ wε ∈ C0(B2δ). (3.17)

Furthermore, by (3.15) and the choice of ε > 0 above

u − ϕδ − ε ≥ 1
4
δ3 in B2δ\Bδ.
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This way,
wε ≡ 0 in B2δ\Bδ. (3.18)

We now consider the convex envelope of wε given by

Γwε
(x) := sup

{
L(x); L is affine and L ≤ wε in B2δ

}
for x ∈ B2δ.

It follows immediately from (3.17) that

Γwε
≤ 0 in B2δ. (3.19)

Additionally, by (3.14) we conclude

Γwε
(0) ≤ wε(0) = −ε. (3.20)

Since Γwε
is a convex function, Γwε

is continuous (actually locally Lipschitz
inside B2δ). In fact, as in [4], we can easily see that Γwε

∈ C0(B2δ) and also
subharmonic in B2δ by convexity. We observe that{

x ∈ B2δ; Γwε
(x) = 0

}
⊂ ∂B2δ. (3.21)

Indeed, if there exists z0 ∈ B2δ such that Γwε
(z0) = 0, the strong comparison

principle (for the subharmonic function Γwε
and the zero function (harmonic))

applied to Γwε
≤ 0 in B2δ (recall (3.19)) implies Γwε

≡ 0 in B2δ which is a
contradiction to (3.20). This proves (3.21). This information combined together
with (3.18) guarantees that

{
wε = Γwε

}
:=

{
x ∈ B2δ : wε(x) = Γwε

(x)
}

⊂
{

x ∈ Bδ : wε(x) < 0
}

.

(3.22)
Observe also that for z0 ∈ {

wε = Γwε

}
we have by (3.14) that (u−ϕδ)(z0) ≥ 0.

Thus, by the expression given in (3.16), we conclude that

0 ≥ Γwε
(z0) = (u − ϕδ)(z0) − ε ≥ −ε. (3.23)

This implies that,

|Γwε
| ≤ ε in

{
wε = Γwε

}
. (3.24)

Set

Dε :=
{

x ∈ B2δ; Γwε
is differentiable at x

}
.

By convexity, (see for instance Theorem A.1.13 in Appendix of [6]),

x ∈ Dε ⇐⇒ ∂Γwε
(x) =

{∇Γwε
(x)

}
.

Since Γwε
is convex and Γwε

≤ 0 on ∂B2δ, the gradient estimates for convex
functions (Lemma 3.2.1 in [13]) combined together with (3.22) allow us to infer
that

|∇Γε| ≤ ε

δ
in

{
wε = Γwε

}
∩ Dε. (3.25)

Furthermore, since ϕδ ∈ C2(B2δ) ⊂ W 2,n(B2δ), we have by (2.8) in Lemma
2.2 that

u − ϕδ − ε ∈ S
(
γ, f − P−

λ,Λ,γ [ϕδ]
)

in B2δ.
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Moreover, (2.9) also in Lemma 2.2 gives

wε = min
{

(u − ϕδ) − ε, 0
}

∈ S
(
γ, ξ

)
in B2δ, (3.26)

where ξ =
[
f − P−

λ,Λ,γ [ϕδ]
]+

∈ Ln(B2δ).
Now, observe that by (3.18), we obtain

sup
∂B2δ

(wε)− = 0.

This way, taking into account (3.26) and (3.20), the ABP estimate (Proposition
3.3 in [10]) implies that

εn =
((

wε(0)
)−)n

≤
(

sup
B2δ

(
wε

)−)n

≤ C ·
∫

{wε=Γwε}

∣∣ξ(x)
∣∣ndx

where C = C(λ,Λ, γ, n, δ) > 0. This implies that∣∣{wε = Γwε

}∣∣ > 0.

By the Aleksandrov Theorem (Theorem 6.9 - section 6.4 in [11]), we know
that Γε is punctually second order differentiable in B2δ except on a set of zero
Lebesgue measure. Since E has zero Lebesgue measure, for each ε > 0 small
enough, there exists a point xε in

{
wε = Γwε

}\E where Γwε
is punctually

second order differentiable. In particular, xε ∈ Dε. Now, we set the function

Φε(x) := ϕδ(x) + ε + Γwε
for x ∈ B2δ.

Clearly, Φε is punctually second order differentiable at xε. Now, by definition
in (3.16) we see that

u − ϕδ − ε ≥ wε ≥ Γwε
in B2δ.

This way, since xε ∈ {
wε = Γwε

}
, we have by (3.22) (see also (3.23))

u ≥ Φε in B2δ and u(xε) = Γwε
(xε) + ϕδ(xε) + ε = Φε(xε). (3.27)

Since xε /∈ E, Lemma 2.1 assures that

F (D2Φε(xε),∇Φε(xε), u(xε), xε) ≤ ψ(xε). (3.28)

On the other hand, since xε ∈ Dε ∩ {
wε = Γwε

}
(3.24), (3.25) and convexity

of Γwε
imply

|Γwε
(xε)| ≤ ε, |∇Γwε

(xε)| ≤ ε

δ
and D2Γwε

(xε) ≥ 0. (3.29)

We now claim that
xε → 0 as ε → 0. (3.30)

Indeed, if this is not the case, up to a subsequence (that we still denote by
index ε) we can assume that |xε| ≥ μ > 0. Now, the equality in (3.27) together
with (3.15) and the first estimate in (3.29) yield
1
2
δμ2 ≤ u(xε) − ϕδ(xε) = Γwε

(xε) + ε ≤ |Γwε
(xε)| + ε ≤ 2ε → 0 as ε → 0

which is clearly a contradiction. Thus, (3.30) is proven.
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Now, by ellipticity and estimates in (3.29), we can use (3.28) to obtain

ψ(xε) ≥ F (D2Φε(xε),∇Φε(xε), u(xε), xε)
= F (D2ϕδ(xε) + D2Γwε

(xε),∇ϕδ(xε) + ∇Γwε
(xε), u(xε), xε)

≥ F (D2ϕδ(xε),∇ϕδ(xε) + ∇Γwε
(xε), u(xε), xε).

Recalling that ψ is upper semicontinuous and passing to the limit as ε → 0 we
find

ψ(0) ≥ lim sup
ε→0

ψ(xε) ≥ F (D2ϕ(0) − δI,∇ϕ(0), u(0), 0)

Finally, letting δ → 0, we obtain (3.12) and this finishes the proof of the
Theorem. �

Proof of Corollary 1.1

Proof. Indeed, observe that if the equation (1.5) is satisfied then for any φ ∈
W 2,n

loc (B1) such that u − φ has a local minimum at x0 ∈ B1 we have

ess lim inf
x→x0

(
M−

λ,Λ(D2φ(x)) − γ|∇φ(x)| −
(
f(x) + |σ(x)| · ||u||L∞(B1)

))

≤ ess lim inf
x→x0

(
M−

λ,Λ(D2φ(x)) − γ|∇φ(x)| + σ(x)u(x) − f(x)
)

≤ 0.

This way, u ∈ S(γ; f(x)) in B1 where f(x) := f(x) + |σ(x)| · ||u||L∞(B1) ∈
Ln(B1).
Thus, we apply directly Theorem 1.1 and the result follows. �
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