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Abstract. Our aim is to verify that the functional in the virial identity
classifies the dynamics for nonlinear Schrödinger equations of local inter-
actions. In particular, we give a condition under that there exist stable
ground states. Our proof of this stability result is based on the ideas in
Colin (Ann Inst H Pincaré 23:753–764, 2006) and Shatah (Math Phys
91:313–327, 1983). However, we emphasize that our argument does not

use the strict convexity of the Ḣ1-norm of ground state with respect to
ω: a key lemma is Lemma 4.8 below. Furthermore, we discuss the limiting
profile of ground states (see Theorem 4.4).
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation:

i
∂ψ

∂t
(x, t) + Δψ(x, t) + f(ψ(x, t)) = 0, (x, t) ∈ R

d × R, (NLS)

where ψ is a complex-valued function of space-time Rd×R with d ≥ 1, Δ is the
Laplace operator on R

d, and f is a complex-valued function on C satisfying
the following conditions:
(N1) f is “super-linear around the origin” in the sense that f(z) = o(|z|) as

|z| → 0. In particular, f(0) = 0.
(N2) f is continuously differentiable in the real-sense. Furthermore, there exist

positive numbers p, q and C1 such that 2 ≤ p + 1 ≤ q + 1 ≤ 2∗ and for
any z ∈ C,

∣
∣
∣
∂f

∂z
(z)

∣
∣
∣ +

∣
∣
∣
∂f

∂z̄
(z)

∣
∣
∣ ≤ C1(|z|p−1 + |z|q−1),
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where

2∗ :=
{∞ if d = 1, 2,

2d
d−2 if d ≥ 3.

(N3) There exists a real-valued function F on C such that F ∈ C2(C,R) in
the real-sense, F (0) = 0, and for any z ∈ C,

2
∂F

∂z̄
(z) = f(z).

(N4) �[zf(z)] = 0 for any z ∈ C.
We introduce a functional K as

K(u) := ‖∇u‖2
L2 − d

2

∫

Rd

G(u(x)) dx, (1.1)

where
G(z) := z̄f(z) − 2F (z). (1.2)

In the study of behavior of solutions to the Eq. (NLS), the following identity,
called the virial identity, plays an important role:

d2

dt2

∫

Rd

|x|2|ψ(x, t)|2 dx = 8K(ψ(t)). (1.3)

Indeed, employing this identity, Glassey proved that some solutions blow up in
finite time (see [13]). Moreover, recently, the importance of the virial identity
has been recognized in the scattering theory (see [1,10,16,17]).

The aim of this paper is to investigate the dynamics for (NLS) under
a certain condition for the functional K, rather than the nonlinearity f . In
particular, we want to clarify that the properties of K determine the dynamics
of the Eq. (NLS) (see Corollary 2.2, Corollary 3.1 and Theorem 4.2).

Now, let us recall basic results for the Eq. (NLS). It is well known that the
Cauchy problem for the Eq. (NLS) is locally well-posed in H1(Rd) under the
conditions (N1) and (N2) (see, e.g., [6,7,15]). Moreover, the Eq. (NLS) is gov-
erned by the Hamiltonian under the condition (N3). Indeed, the Hamiltonian
H : H1(Rd) −→ R is given by

H(u) :=
1
2
‖∇u‖2

L2 −
∫

Rd

F (u(x)) dx, (1.4)

and conserved in time for any H1-solution. The condition (N3) also gives us
the conservation of the momentum

�
∫

Rd

u(x)∇u(x) dx. (1.5)

Under the condition (N4), we have the conservation of the mass

M(u) :=
1
2
‖u‖2

L2 . (1.6)

In addition to these functionals, we also introduce the action Sω:

Sω := ωM + H. (1.7)

Obviously, the action of a solution is conserved in time.
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Next, we recall fundamental notions for solutions. Let ψ be a solution to
(NLS) with the maximal existence interval (Tmin, Tmax). Then, we say that ψ
scatters to a free solution in H1(Rd) forward in time if Tmax = ∞ and there
exists φ ∈ H1(Rd) such that

lim
t→∞ ‖ψ(t) − eitΔφ‖H1 = 0. (1.8)

On the other hand, we say that ψ blows up (grows up, respectively) forward
in time if Tmax < ∞ (Tmax = ∞, respectively) and

lim sup
t→Tmax

‖∇ψ(t)‖L2 = ∞. (1.9)

The corresponding notions for the backward in time are defined similarly. In
addition, we say that ψ is a standing wave of frequency ω, if ψ is of the form
ψ(x, t) = eitωu(x): it is easy to see that u must satisfy the equation

ωu − Δu − f(u) = 0. (1.10)

Note here that
S ′

ω(u)φ = 〈ωu − Δu − f(u), φ〉H−1,H1 (1.11)

for any φ ∈ H1(Rd). Thus, the existence of solution to (1.10) is equivalent to
the existence of critical point of the action Sω. We want to take this opportu-
nity to remember the notions of ground state and its stability. A function Qω

is called a ground state of (1.10) if it is a solution to (1.10) and satisfies

Sω(Qω) = min
{Sω(u) : u is a non-trivial H1-solution to (1.10)

}

. (1.12)

For each ω > 0, we use the symbol Gω to denote the set of all ground states
to (1.10). The set Gω is said to be stable if for any ε > 0, there exists δ > 0
such that if a function ψ0 ∈ H1(Rd) satisfies

inf
Q∈Gω

‖ψ0 − Q‖H1 < δ, (1.13)

then the solution ψ to (NLS) with ψ(0) = ψ0 obeys

sup
t∈Imax

inf
Q∈Gω

‖ψ(t) − Q‖H1 < ε, (1.14)

where Imax is the maximal interval where ψ exists.
Now, we shall give an outline of this paper. In Sect. 2 below, we consider

the case where the functional K is non-negative:

K(u) ≥ 0 for any u ∈ H1(Rd). (K0)

An example of nonlinearity for which (K0) holds is

f(z) = −|z|p−1z − |z|q−1z. (1.15)

We will see that all solutions to (NLS) is uniformly bounded in H1(Rd) un-
der the condition (K0) (see Corollary 2.1 below). Furthermore, we discuss
the global well-posedness and the scattering problem under some additional
assumptions.
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In Sect. 3, we consider the following condition: for any non-trivial function
u ∈ H1(Rd), there exists a unique number λ(u) > 0 such that

K (Tλu)

⎧

⎨

⎩

> 0 if 0 < λ < λ(u),
= 0 if λ = λ(u),
< 0 if λ(u) < λ,

(K1)

where
Tλu(x) := λ

d
2 u(λx). (1.16)

In particular, the condition (K1) implies that

lim
s→∞ G(s) > 0. (1.17)

Typical examples of such nonlinearity are

f(z) = −|z|p−1z + |z|q−1z, (1.18)

f(z) = |z|p−1z + |z|q−1z, (1.19)

where 2+ 4
d < p+1 < q+1 < 2∗. In [2], the condition (K1) was already discussed

and the existence of ground state to the Eq. (1.10) is proved. Furthermore, it is
shown that for any solution ψ below “ground state threshold”, if K(ψ(0)) > 0,
then ψ scatters to a free solution both forward and backward in time; and if
K(ψ(0)) < 0, then ψ blows up or grows up both forward and backward in time.
Recently, we became aware that some condition in [2] is redundant. Hence, we
give a slight refinement of the result in [2] (see Corollary 3.1 below).

Note here that the condition (K0) or (K1) rules out the nonlinearity

f(z) = |z|p−1z − |z|q−1z, (1.20)

where 1 < p < q. Thus, in Sect. 4, we consider nonlinearities including (1.20).
Precisely, we assume that there exists 0 < s1 ≤ s2 such that

G(s)
{

> 0 if 0 < s < s1,
< 0 if s2 < s.

(K2)

Note here that if 2 + 4
d < p + 1 in (N2), then (K2) implies that there exists

a function u0 ∈ H1(Rd) such that K (Tλu0) changes its sign at least twice
as a function of λ. Under this condition (K2), we will see that all solutions
to (NLS) exist globally in time (see Proposition 4.1 below). Moreover, for
d ≥ 3 and ω > 0, we discuss the existence and the stability of ground state
(see Theorems 4.1 and 4.2). Here, we emphasize that our argument for the
stability does not need any “strict convexity” with respect to ω: a key lemma
is Lemma 4.8 below. Furthermore, we discuss a limiting profile of ground states
as frequencies ω tends to ω∗ (see Theorem 4.4).

2. (NLS) under the condition (K0)

In this section, we assume (K0), so that the virial functional K is non-negative.
Then, we see that

0 ≤ λdK(u(λ·)) = λ2‖∇u‖2
L2 − d

2

∫

Rd

G(u) dx (2.1)
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for all u ∈ H1(Rd) and all λ > 0. Furthermore, taking λ → 0, we find that
∫

Rd

G(u) dx ≤ 0 (2.2)

for all u ∈ H1(Rd). Thus, we could conclude:

Lemma 2.1. Let d ≥ 1, and assume the conditions (N1) through (N4). Then,
the condition (K0) is equivalent to

G(z) ≤ 0 (2.3)

for any z ∈ C.

Proof of Lemma 2.1. Obviously, the condition (2.3) implies (K0). The oppo-
site claim would be immediate from (2.2). However, for the sake of complete-
ness, we give a proof. Assume (K0) in addition to (N1) through (N4). Further-
more, suppose for contradiction that (2.3) failed. Then, we could take z0 ∈ C

such that
G(z0) > 0. (2.4)

Let n be a positive integer, and define the complex-valued function un by

un(x) :=

⎧

⎨

⎩

z0 if |x| ≤ n,
(n + 1 − |x|)z0 if n < |x| ≤ n + 1,
0 if n + 1 < |x|.

(2.5)

We consider K(un). We decompose K(un) = In − Jn, where

In :=
∫

n≤|x|<n+1

|∇un(x)|2 dx − d

∫

n≤|x|<n+1

G(un(x)) dx, (2.6)

Jn := d

∫

|x|≤n

G(un(x)) dx. (2.7)

It is easy to verify that

|In| ≤
∫

n≤|x|≤n+1

|z0|2 dx + d

∫

n≤|x|≤n+1

sup
|z|≤|z0|

|G(z)| dx � nd−1. (2.8)

On the other hand, it follows from (2.4) that

Jn = d

∫

|x|≤n

G(z0) dx � G(z0)nd. (2.9)

Hence, we see from (2.8) and (2.9) that for any sufficiently large n, |In| < Jn,
so that K(un) < 0. However, this contradicts the condition (K0). Thus, we
have proved that (2.3) holds. �

In addition to Lemma 2.1, we have:

Lemma 2.2. Let d ≥ 1. Assume the conditions (N1) through (N4). Then, the
condition (K0) implies that F (z) ≤ 0 for any z ∈ C.
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Proof of Lemma 2.2. Since
∂

∂r

F (r)
r2

=
G(r)
r3

(2.10)

for any r > 0, Lemma 2.1 shows that r−2F (r) is non-increasing on (0,∞).
Furthermore, it follows from Lemma A.1 that F (z) = F (|z|). Hence, we find
from (A.8) in Lemma A.2 that F (z) ≤ 0 for any z ∈ C. �

Using Lemma 2.2 and the conservation laws of energy (1.4) and mass
(1.6), we can obtain the uniform boundedness of solutions in H1(Rd):

Proposition 2.1. Let d ≥ 1. Assume the conditions (N1) through (N4) and
(K0). Then, any solution ψ to (NLS) satisfies

sup
t∈Imax(ψ)

‖ψ(t)‖2
H1 ≤ M(ψ(0)) + H(ψ(0)). (2.11)

Next, we discuss the global well-posedness and the scattering problem.
Let us begin with reminding readers the following result by Nakanishi [19]:

Theorem 2.1. Let d ≥ 1. Assume the conditions (N1) through (N4). Further-
more, assume 2 + 4

d < p + 1 ≤ q + 1 < 2∗ in (N2) and

d

ds

F (s)
s2

=
G(s)
s3

≤ 0 (2.12)

for any s > 0. Then, any solution to (NLS) exists globally in time and scatters
to a free solution in H1(Rd) both forward and backward in time.

The condition (2.12) in Theorem 2.1 is equivalent to (K0) (see Lemma
2.1). Hence, we can rephrase Theorem 2.1 in terms of the virial functional K:

Corollary 2.2. Let d ≥ 1. Assume (N1) through (N4) and (K0). Furthermore,
assume 2 + 4

d < p + 1 ≤ q + 1 < 2∗ in (N2). Then, any solution to (NLS)
scatters to a free solution in H1(Rd) both forward and backward in time.

Remark 2.1. In Corollary 2.2, we could include the case q + 1 = 2∗ for radial
solutions, using the argument similar to [21] and assuming that

∣
∣
∣
∂f

∂z
(z) − ∂f

∂z
(w)

∣
∣
∣ +

∣
∣
∣
∣

∂f

∂z̄
(z) − ∂f

∂z̄
(w)

∣
∣
∣
∣
≤ Cf

(

|z − w|p−1 + |z − w| 4
d−2

)

.

3. (NLS) under the condition (K1)

In this section, we consider the Eq. (NLS) under the condition (K1). Our aim
here is to give a slight refinement of the result in [2].

Let us begin with a brief introduction to [2]. In that paper, the following
condition, in addition to (N1) through (N4) and (K1), is assumed:

lim
s→∞

F (s)
s2+ 4

d

= ∞. (3.1)

Then, for any ω > 0, the existence of ground state to the Eq. (1.10) is proved
via the following variational problem

mω := inf
{Sω(u) : u ∈ H1(Rd) \ {0}, K(u) = 0

}

. (3.2)
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Furthermore, it is proved that: if a solution to (NLS) starts from the set

Aω,+ :=
{

u ∈ H1(Rd) : Sω(u) < mω, K(u) > 0
}

, (3.3)

then it scatters to a free solution; and if a solution starts from

Aω,− :=
{

u ∈ H1(Rd) : Sω(u) < mω, K(u) < 0
}

, (3.4)

then it blows up or grows up. Note here that
{

u ∈ H1(Rd) : Sω(u) < mω

}

= Aω,+ ∪ Aω,− ∪ {0}. (3.5)

We became aware that we do not need to assume the condition (3.1).
Indeed, we have:

Lemma 3.1. Let d ≥ 1. Assume the conditions (N1) through (N4) and (K1).
Furthermore assume that 1 < p in (N2). Then, (3.1) holds.

Proof of Lemma 3.1. Let u ∈ H1(Rd) \ {0}. Then, we shall show that

lim
t→∞ t−2− 4

d

∫

Rd

G(tu(x)) dx = ∞. (3.6)

We see from the assumption (K1) that for any a > 0, there exists λ(au) > 0
such that for any λ ≥ λ(au),

K(Tλ(au)) = a2λ2‖∇u‖2
L2 − λ−d d

2

∫

Rd

G(λ
d
2 au(x)) dx ≤ 0. (3.7)

Hence, we find that for any λ ≥ λ(au),

a− 4
d ‖∇u‖2

L2 ≤ (λ
d
2 a)−2− 4

d
d

2

∫

Rd

G(λ
d
2 au(x)) dx. (3.8)

Since a is arbitrary, we obtain (3.6).
Next, let t > 0, and use Lemma A.2 to obtain

F (t)
t2+

4
d

= t−
4
d

∫ t

0

G(s)
s3

ds = t−
4
d

∫ t

0

G+(s)
s3

ds − t−
4
d

∫ t

0

G+(s) − G(s)
s3

ds,

(3.9)
where G+(s) := max{G(s), 0}. Note here that the assumption (K1) implies
that there exists s+ > 0 such that

0 ≤ inf
s≥s+

G(s). (3.10)

Moreover, it follows from G(s) = G+(s) for s ≥ s+, (A.1) and (A.2) with
p + 1 > 2 that

∫ t

0

G+(s) − G(s)
s3

ds ≤
∫ s+

0

G+(s) − G(s)
s3

ds ≤ C(s+) (3.11)

for all t ≥ 0, where C(s+) > 0 is some constant depending only on s+, p, q
and the constant C1 in (N2). Using (3.9), (3.11), substitution of the variables
s = t(1 + r)− d+1

2 and G ≤ G+, we see that



5 Page 8 of 27 T. Akahori, H. Kikuchi, and T. Yamada NoDEA

F (t)
t2+

4
d

≥ t−
4
d

∫ t

0

G+(s)
s3

ds − C(s+)t−
4
d

≥ d + 1
2

t−2− 4
d

∫ ∞

0

G+

(

t(1 + r)− d+1
2

)

rd−1dr − C(s+)t−
4
d

� d + 1
2

t−2− 4
d

∫

Rd

G
(

t(1 + |x|)− d+1
2

)

dx − C(s+)t−
4
d .

(3.12)

Since u(x) := (1+ |x|)− d+1
2 ∈ H1(Rd) \ {0}, we find from (3.12) and (3.6) that

(3.1) holds. �

Now, we restate the result in [2] without assuming the condition (3.1):

Corollary 3.1. Let d ≥ 1. Assume the conditions (N1) through (N4) and (K1).
Furthermore, assume 2 + 4

d < p + 1 < q + 1 < 2∗ in (N2). Then, for any
ω > 0, there exists a ground state Qω to the Eq. (1.10) such that Sω(Qω) = mω.
Furthermore, if ψ0 ∈ Aω,+, then the corresponding solution ψ scatters to a free
solution in H1(Rd) both forward and backward in time; and if ψ0 ∈ Aω,−, then
the corresponding solution ψ blows up or grows up both forward and backward
in time.

4. (NLS) under the condition (K2)

In this section, in addition to (N1) through (N4), we always assume (K2). Our
aim here is to prove the existence and stability of ground state to the Eq. (1.10).
Moreover, we discuss a limiting profile of ground sate under an additional
condition which still includes the nonlinearity (1.20) (see Theorem 4.4).

4.1. Statement of main results

In order to state our main results (Theorems 4.1 and 4.2), we need some
preparations. Let us begin with the following easy fact:

Lemma 4.1. Let d ≥ 1. Assume (N1) through (N4) and (K2). Then, F (s)/s2

is strictly increasing on [0, s1), positive on (0, s1), and strictly decreasing on
(s2,∞). In particular, the function F (s)/s2 takes the positive maximum on
[0,∞).

Proof of Lemma 4.1. The claim follows from the condition (K2), (A.7) and
(A.8) in Lemma A.2. �

Using this lemma, we immediately obtain the uniform boundedness in
H1(Rd):

Proposition 4.1. Let d ≥ 1. Assume (N1) through (N4) and (K2). Then, any
solution ψ to (NLS) satisfies

sup
t∈Imax(ψ)

‖ψ(t)‖2
H1 ≤ 2

(

1 + max
s≥0

F (s)
s2

)

M(ψ(0)) + 2H(ψ(0)). (4.1)

In particular, if q + 1 < 2∗ in (N2), then any solution exists globally in time.



NoDEA Nonlinear Schrödinger equations of local interactions Page 9 of 27 5

Proof of Proposition 4.1. We see from Lemmas A.1 and 4.1 that

1
2
‖∇ψ(t)‖2

L2 = H(ψ(t)) +
∫

Rd

F (|ψ(t)|) dx ≤ H(ψ(t)) + max
s≥0

F (s)
s2

‖ψ(t)‖2
L2 .

(4.2)
Thus, the desired result follows from the mass and the Hamiltonian conserva-
tion laws. �

In order to describe our main results, we need more preparations. Assume
d ≥ 3. Then, any solution Qω to the Eq. (1.10) necessarily satisfies the following
“Pohozaev identity” (see [4]):

1
2∗ ‖∇Qω‖2

L2 = −ωM(Qω) +
∫

Rd

F (Qω) dx = −
∫

Rd

{ω

2
|Qω|2 − F (Qω)

}

dx.

(4.3)
From the point of view of (4.3), we introduce

ω∗ := sup
{

ω > 0: inf
s≥0

[

ωs2 − 2F (s)
]

< 0
}

. (4.4)

Since maxs≥0 F (s)/s2 is finite and positive (see Lemma 4.1), the following
lemma tells us that ω∗ is finite and positive:

Lemma 4.2. Let d ≥ 1. Assume (N1) through (N4) and (K2). Then,

ω∗ = 2max
s≥0

F (s)
s2

. (4.5)

Proof of Lemma 4.2. It follows from Lemma 4.1 that there exists smax ∈
[s1, s2] such that F (smax)/s2

max = maxs≥0 F (s)/s2. Thus, if

ω < 2max
s≥0

F (s)
s2

= 2
F (smax)

s2
max

, (4.6)

then we have

inf
s≥0

[ωs2 − 2F (s)] ≤ s2
max

{

ω − 2
F (smax)

s2
max

}

< 0. (4.7)

On the other hand, if

ω > 2max
F (s)
s2

= 2
F (smax)

s2
max

, (4.8)

then we have

ωs2 − 2F (s) > 2s2

{

max
s≥0

F (s)
s2

− F (s)
s2

}

≥ 0 (4.9)

for any s > 0. Hence, we find that (4.5) holds. �

Now, we are in a position to state our main results:

Theorem 4.1. Assume d ≥ 3, (N1) through (N4) and (K2). Then, for any
ω ∈ (0, ω∗), there exists a ground state Qω to the Eq. (1.10), that is Gω 
= ∅.
Remark 4.1. See [14] for the existence of ground state in the dimension 2.
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Theorem 4.2. Assume d ≥ 3, (N1) through (N4) and (K2). Then, there exists
a sequence {wn} in (0, ω∗) such that limn→∞ ωn = ω∗ and the set Gωn

is stable
for all n.

Remark 4.2. If the ground state is unique up to the phase shifts and the
space-translations, then Theorem 4.2 corresponds with the orbital stability of
the standing wave. It is known that the uniqueness holds for the nonlinearity
(1.20) (see [20]).

We give proofs of Theorems 4.1 and 4.2 in Sect. 4.2 and Sect. 4.3, respec-
tively. Moreover, we discuss a limiting profile of ground state in Sect. 4.4.

4.2. Existence of ground state

In this section, we shall prove Theorem 4.1. From the point of view of (4.3),
we introduce the Pohozaev functional Pω to be that for all u ∈ H1(Rd),

Pω(u) :=
1
2∗ ‖∇u‖2

L2 +
1
2

∫

Rd

{

ω|u|2 − 2F (u)
}

dx

=
1
2∗ ‖∇u‖2

L2 + ωM(u) −
∫

Rd

F (u) dx.

(4.10)

Note here that

Pω(u(λ·)) = λ−d

[
λ2

2∗ ‖∇u‖2
L2 +

1
2

∫

Rd

{

ω|u|2 − 2F (u)
}

dx

]

= λ−d

[
λ2 − 1

2∗ ‖∇u‖2
L2 + Pω(u)

] (4.11)

for any λ > 0 and any u ∈ H1(Rd). Then, we consider the following variational
problem:

d(ω) := inf
{Sω(u) : u ∈ H1(Rd) \ {0}, Pω(u) = 0

}

. (4.12)

A significance of the variational problem (4.12) is as follows:

Proposition 4.2. Assume d ≥ 3, (N1) through (N4) and (K2). Then, any
minimizer of the variational problem (4.12) becomes a ground state to the
Eq. (1.10).

Thus, Theorem 4.1 follows from the following proposition:

Proposition 4.3. Assume d ≥ 3, (N1) through (N4) and (K2). Then, for
any ω ∈ (0, ω∗), there exists a non-trivial function Qω ∈ H1(Rd) such that
Pω(Qω) = 0 and d(ω) = Sω(Qω), that is, Qω is a minimizer for (4.12).

Before proceeding to the proofs, we give a result immediately follows from
these propositions:

Corollary 4.3. Assume d ≥ 3, (N1) through (N4) and (K2). Then, any ground
state to the Eq. (1.10) is a minimizer of the variational problem (4.12).

Proof of Corollary 4.3. Let Qω be a ground state to (1.10). Since Proposi-
tion 4.2 shows that any minimizer is a solution to (1.10), we have d(ω) ≥
Sω(Qω). Furthermore, it follows from the Pohozaev identity (4.3) that Pω(Qω)
= 0. Then, we also have d(ω) ≤ Sω(Qω). Hence, Qω is a minimizer. �
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We will give proofs of Propositions 4.2 and 4.3 after some preparations.
First, we note that

Sω(u) − Pω(u) =
1
d
‖∇u‖2

L2 (4.13)

for any function u ∈ H1(Rd). Considering this relation, we introduce a varia-
tional value

d̃(ω) := inf
{

1
d
‖∇u‖2

L2 : u ∈ H1(Rd) \ {0}, Pω(u) ≤ 0
}

. (4.14)

Lemma 4.3. Assume d ≥ 3, (N1) through (N4), and (K2). Then, for each
ω > 0,

d̃(ω) = d(ω) > 0. (4.15)

Proof of Lemma 4.3. Using (4.13), we can verify that d̃(ω) ≤ d(ω). Let u ∈
H1(Rd) \ {0} be an arbitrary function with Pω(u) ≤ 0. Then, we see from
(4.11) that there exists λ0(u) ≥ 1 such that

Pω(u(λ0·)) = 0. (4.16)

Thus, it follows from the definition of d(ω), (4.13) and λ0 ≥ 1 that

d(ω) ≤ Sω(u(λ0·)) =
1
d
‖∇(u(λ0·))‖2

L2 ≤ λ
−(d−2)
0

1
d
‖∇u‖2

L2 ≤ 1
d
‖∇u‖2

L2 ,

(4.17)
which implies d(ω) ≤ d̃(ω). Hence, d(ω) = d̃(ω). It remains to show that
d̃(ω) > 0. Let u ∈ H1(Rd) \ {0} be a function with Pω(u) ≤ 0. Then, we see
from (A.8) in Lemma A.2, (A.2) and Sobolev’s embedding that

1
2∗ ‖∇u‖2

L2 +
ω

2
‖u‖2

L2 ≤
∫

Rd

F (|u|) dx ≤ ω

4
‖u‖2

L2 + C‖∇u‖2∗
L2 , (4.18)

where C > 0 is some constant depending on ω, but not on u, so that
1
2∗ ≤ C‖∇u‖2∗−2

L2 . (4.19)

This implies that d̃(ω) > 0. �

Now, we are in a position to prove Proposition 4.2:

Proof of Proposition 4.2. Since any solution to the Eq. (1.10) satisfies the Po-
hozaev identity (4.3), it suffices to show that any minimizer becomes a solution
to (1.10). Suppose for contradiction that the claim was false, and let Qω be a
minimizer. Then, we can take a function u0 ∈ H1(Rd) such that

S ′
ω(Qω)u0 = 〈ωQω − ΔQω − f(Qω), u0〉H−1,H1 = −1. (4.20)

For a given λ > 0, we put Qω,λ(x) := Qω(λx). Then, it follows from Pω(Qω) =
0 that

d

dλ
Sω(Qω,λ) = −λ−(d+1)(λ2 − 1)

d − 2
2

‖∇Qω‖2
L2

⎧

⎨

⎩

> 0 if 0 < λ < 1,
= 0 if λ = 1,
< 0 if 1 < λ,

(4.21)
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Hence, we find that
Sω(Qω) = max

λ>0
Sω(Qω,λ). (4.22)

Moreover, since Sω is of class C1, we can take δ0 ∈ (0, 1
2 ) such that if |λ−1| <

δ0,

− 3
2

≤ S ′
ω(Qω,λ)u0 ≤ −1

2
. (4.23)

Let η denote the even function on R such that

η(r) =
{−r + 1 if 0 ≤ r < 1,

0 if 1 ≤ r.
(4.24)

Moreover, let δ ∈ (0, δ0) be a constant to be chosen later, and put

Uω,λ,δ := Qω,λ + δη
(λ − 1

δ

)

u0. (4.25)

Then, we see from Pω(Qω) = 0 that

Pω(Uω,1−δ,δ) = Pω(Qω,1−δ) = {(1 − δ)2−d − (1 − δ)−d} 1
2∗ ‖∇Qω‖2

L2 < 0,

(4.26)

Pω(Uω,1+δ,δ) = Pω(Qω,1+δ) = {(1 + δ)2−d − (1 + δ)−d} 1
2∗ ‖∇Qω‖2

L2 > 0.

(4.27)

Thus, we can take λ0 ∈ (−δ, δ) such that Pω(Uω,λ0,δ) = 0. Hence, we see from
the definition of d(ω), (4.23), elementary calculations and (4.22) that

d(ω) ≤ Sω(Uω,λ0,δ)

= Sω(Qω,λ0) + S ′
ω(Qω,λ0)δη

(λ0 − 1
δ

)

u0 + o(‖Uω,λ0,δ − Qω,λ0‖H1)

≤ Sω(Qω,λ0) − 1
2
δη

(λ0 − 1
δ

)

+ o(δη
(λ0 − 1

δ

)

)

< Sω(Qω) − 1
4
δη

(λ0 − 1
δ

)

< Sω(Qω) = d(ω).
(4.28)

However, this is a contradiction. Hence, the claim of Proposition 4.2 is true. �

Next, we give a proof of Proposition 4.3. Considering a minimizing se-
quence of the variational problem (4.12), we see that Proposition 4.3 immedi-
ately follows from the following lemma:

Lemma 4.4. Assume d ≥ 3, (N1) through (N4) and (K2). Let ω > 0, and let
{un} be a sequence in H1(Rd) such that

lim
n→∞ Sω(un) = d(ω), (4.29)

lim
n→∞ Pω(un) = 0. (4.30)
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Then, there exists a subsequence of {un} (still denoted by the same symbol), a
non-trivial function u∞ ∈ H1(Rd) and sequence {yn} in R

d such that

lim
n→∞ un(· + yn) = u∞ strongly in H1(Rd). (4.31)

In particular, u∞ is a minimizer of the variational problem (4.12).

Remark 4.3. We will also use this lemma in the proof of Theorem 4.2 (see
Sect. 4.3). This is the reason why we consider the condition (4.30), rather
than P(un) = 0 for all n.

Proof of Lemma 4.4. We see from (4.13) and the assumptions (4.29) and (4.30)
that

lim
n→∞

1
d
‖∇un‖2

L2 = lim
n→∞ Sω(un) − lim

n→∞ Pω(un) = d(ω). (4.32)

Thus,
1
10

d(ω) ≤ 1
d
‖∇un‖2

L2 ≤ 2d(ω) (4.33)

for any sufficiently large n.
Fix 1 < q0 < d+2

d−2 . Then, it follows from (A.8) in Lemmas A.2 and 4.1
(or Lemma 4.2) that there exists C0 > 0 such that for any z ∈ Z,

F (z) ≤ ω

4
|z|2 + C0|z|q0+1. (4.34)

Recall that d(ω) > 0 (see Lemma 4.3). Hence, we see from the assumption
(4.30), (4.34) and the Gagliardo-Nirenberg inequality that for any sufficiently
large n,

Pω(un) ≥ 1
2∗ ‖∇un‖2

L2 +
ω

2
‖un‖2

L2 − ω

4
‖un‖2

L2 − C0‖un‖q0+1
Lq0+1

≥ ω

4
‖un‖2

L2 − C‖un‖q0+1− d(q0−1)
2

L2 ‖∇un‖
d(q0−1)

2
L2 ,

(4.35)

where C is some positive constant independent of n. Since q0 +1− d(q0−1)
2 < 2,

this inequality (4.35) together with the assumption (4.30) and (4.33) implies
that

‖un‖2
L2 � 1, (4.36)

where the implicit constant may depend on ω, but is independent of n. More-
over, we find from the first line in (4.35) and (4.33) that

Pω(un) � d(ω) − C‖un‖q0+1
Lq0+1 , (4.37)

which together with the assumption (4.30) yields

d(ω) � ‖un‖q0+1
Lq0+1 (4.38)

for any sufficiently large n. Thus, Lemma B.1 can apply to {un} with p1 = 2,
p2 = q0 + 1 and p3 = 2∗: there exist constants C > 0, η > 0 such that

|{x ∈ R
d : |un(x)| > η}| ≥ C (4.39)
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for any sufficiently large n. Since {un} is bounded in H1(Rd), it follows from
Lemma B.2 that we can extract a subsequence of {un} (still denoted by the
same symbol), a non-trivial function u∞ and a sequence {yn} in R

d such that

lim
n→∞ un(· + yn) = u∞ weakly in H1(Rd). (4.40)

Furthermore, we see from Lemma B.3 that

lim
n→∞

∫

Rd

∣
∣|∇un|2 − |∇{un − u∞}|2 − |∇u∞|2∣∣ dx = 0, (4.41)

lim
n→∞

{Pω(un) − Pω(un − u∞) − Pω(u∞)
}

= 0. (4.42)

Suppose here that Pω(u∞) > 0. Then, we see from (4.42) and the assumption
(4.30) that

lim
n→∞ Pω(un − u∞) = −Pω(u∞) < 0. (4.43)

Thus, it follows from the definition of d̃(ω) and d̃(ω) = d(ω) (see Lemma 4.3)
that

d(ω) ≤ 1
d
‖∇{un − u∞}‖2

L2 (4.44)

for any sufficiently large n. This together with (4.41) and (4.32) shows that
1
d
‖∇u∞‖2

L2 =
1
d

lim
n→∞

{‖∇un‖2
L2 − ‖∇un(· + yn) − ∇u∞‖2

L2

}

≤ d(ω) − d(ω) = 0.
(4.45)

However, this contradicts the non-triviality of u∞. Hence, Pω(u∞) ≤ 0. Then,
we see from the definition of d̃(ω), d̃(ω) = d(ω), ‖∇u∞‖L2 ≤ lim infn→∞
‖∇un‖L2 (see (4.40)) and Pω(u∞) ≤ 0 that

d(ω) ≤ 1
d
‖∇u∞‖2

L2 ≤ d(ω), (4.46)

so that
1
d

lim
n→∞ ‖∇un‖2

L2 = d(ω) =
1
d
‖∇u∞‖2

L2 . (4.47)

This together with (4.40) implies that

lim
n→∞ un(· + yn) = u∞ strongly in Ḣ1(Rd). (4.48)

We also find from (4.36) and (4.48) that for any r ∈ (2, 2∗],

lim
n→∞ un(· + yn) = u∞ strongly in Lr(Rd). (4.49)

Moreover, since Pω(u∞) ≤ 0, we see from (4.11) that there exists λ∞ ≥ 1 such
that

Pω(u∞(λ∞·)) = 0. (4.50)
Thus, it follows from the definition of d(ω), (4.13) and (4.47) that

d(ω) ≤ Sω(u∞(λ∞·)) =
1
d
‖∇{u∞(λ∞·)}‖2

L2 = λ2−d
∞ d(ω), (4.51)

so that λ∞ = 1. Hence, Pω(u∞) = 0, which together with (4.42) and the
assumption (4.30) yields that

lim
n→∞ Pω(un − u∞) = 0. (4.52)
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Furthermore, this together with (4.47) and (4.49) gives us the convergence in
L2(Rd). �

4.3. Stability of standing wave

In this section, we shall prove Theorem 4.2. To this end, we introduce sets

Aω,+ :=
{

u ∈ H1(Rd) : Sω(u) < d(ω),
1
d
‖∇u‖2

L2 < d(ω)
}

, (4.53)

Aω,− :=
{

u ∈ H1(Rd) : Sω(u) < d(ω),
1
d
‖∇u‖2

L2 > d(ω)
}

. (4.54)

Lemma 4.5. Assume d ≥ 3, (N1) through (N4) and (K2). Then, for any ω ∈
(0, ω∗), the sets Aω,+ and Aω,− are invariant under the flow defined by the
Eq. (NLS).

Proof of Lemma 4.5. We shall show the invariance of Aω,+. Let ψ0 ∈ Aω,+,
and let ψ be a solution to (NLS) with ψ(0) = ψ0. Then, it follows from the
conservation law of the action that

Sω(ψ(t)) < d(ω) (4.55)

for all t ∈ R. Moreover, it follows from the identity (4.13) that

1
d
‖∇ψ(t)‖2

L2 = Sω(ψ(t)) − Pω(ψ(t)) < d(ω) − Pω(ψ(t)) (4.56)

for all t ∈ R. Thus, it suffices to show that Pω(ψ(t)) ≥ 0 for all t ∈ R. Since
1
d‖∇ψ0‖2

L2 < d(ω), we see from the definition of d̃(ω) and d(ω) = d̃(ω) (see
Lemma 4.3) that Pω(ψ0) > 0. Suppose for contradiction that there exists
t− ∈ R such that Pω(ψ(t−)) < 0. Then, the continuity of solutions in time
implies that Pω(ψ(t∗)) = 0 for some t∗ between 0 and t−. Furthermore, we see
from the definition of d(ω) that

Sω(ψ(t∗)) ≥ d(ω). (4.57)

However, this contradicts (4.55). Similarly, we can prove the invariance of
Aω,−. �

Lemma 4.6. Assume d ≥ 3, (N1) through (N4) and (K2). Then, we have

lim
ω→ω∗

d(ω) = ∞. (4.58)

Proof of Lemma 4.6. Put

c(ω) := sup
s>0

F (s) − ω
s2

2
s2∗ . (4.59)

Then, we see from (A.8) in Lemma A.2 and Lemma 4.2 that limω→ω∗ c(ω) = 0.
Furthermore, we see that

1
2∗ ‖∇u‖2

L2 ≤
∫

Rd

{F (u) − ω

2
|u|2} dx � c(ω)‖∇u‖2+ 4

d−2

L2 (4.60)
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for all u ∈ H1(Rd) with Pω(u) ≤ 0. Hence, Lemma 4.3 together with (4.60)
gives us that

lim
ω→ω∗

d(ω) = lim
ω→ω∗

d̃(ω) � lim
ω→ω∗

c(ω)− d−2
2 = ∞. (4.61)

Thus, we obtain the desired result. �

Lemma 4.7. Assume d ≥ 3, (N1) through (N4) and (K2). Then, there exists a
constant C(d) > 0 with the following property: let 0 < ω1 < ω2 < ω∗, and let
Qω1 and Qω2 be minimizers of the variational problems for d(ω1) and d(ω2),
respectively. Moreover, assume that

2(ω2 − ω1) <
‖∇Qω1‖2

L2

2∗M(Qω1)
. (4.62)

Then, we have

d(ω1) ≤ d(ω2) − M(Qω2)(ω2 − ω1) + C(d)
M(Qω2)

2

d(ω2)
|ω2 − ω1|2, (4.63)

d(ω2) ≤ d(ω1) + M(Qω1)(ω2 − ω1) + C(d)
M(Qω1)

2

d(ω1)
|ω2 − ω1|2. (4.64)

In particular, d(ω) is continuous and strictly increasing on (0, ω∗).

Proof of Lemma 4.7. Let us begin with a proof of (4.63). Put Qω2,λ := Qω2

(
√

λ·) for λ > 0. Since Pω2(Qω2) = 0, we see that

Pω1(Qω2,λ) =
λ1− d

2

2∗ ‖∇Qω2‖2
L2 + λ− d

2 ω1M(Qω2) − λ− d
2

∫

Rd

F (|Qω2 |) dx

=
λ− d

2

2∗
{

λ‖∇Qω2‖2
L2 − 2∗(ω2 − ω1)M(Qω2) − ‖∇Qω2‖2

L2

}

.

(4.65)
We define λ∗ > 1 by

λ∗ := 1 +
2∗(ω2 − ω1)M(Qω2)

‖∇Qω2‖2
L2

. (4.66)

Then, we see from (4.65) that Pω1(Qω2,λ∗) = 0. Thus,

d(ω1) = d̃(ω1) ≤ 1
d
‖∇Qω2,λ∗‖2

L2 = λ
1− d

2∗
1
d
‖∇Qω2‖2

L2 = λ
− d−2

2∗ d(ω2). (4.67)

Moreover, it follows from Taylor’s expansion that there exists θ∗ ∈ (0, 1) de-
pending on ω1 and ω2,

λ
− d−2

2∗ = 1 − (ω2 − ω1)M(Qω2)
1
d‖∇Qω2‖2

L2

+
2∗

4

{

1 + θ∗
2∗(ω2 − ω1)M(Qω2)

‖∇Qω2‖2
L2

}− d+2
2

( (ω2 − ω1)M(Qω2)
1
d‖∇Qω2‖2

L2

)2

≤ 1 − M(Qω2)
d(ω2)

(ω2 − ω1) + C(d)
M(Qω2)

2

d(ω2)2
|ω2 − ω1|2,

(4.68)
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where C(d) > 0 is some constant depending only on d: note here that we do
not need any assumption like (4.62). Putting (4.67) and (4.68) together, we
obtain the desired inequality

d(ω1) ≤ d(ω2) − M(Qω1)(ω2 − ω1) + C(d)
M(Qω2)

2

d(ω2)
|ω2 − ω1|2. (4.69)

Next, we prove (4.64). Put Qω1,λ := Qω1(
√

λ·) for λ > 0. Since Pω1(Qω1)
= 0, we see that

Pω2(Qω1,λ) =
λ1− d

2

2∗ ‖∇Qω1‖2
L2 + λ− d

2 ω2M(Qω1) − λ− d
2

∫

Rd

F (|Qω1 |) dx

=
λ− d

2

2∗
{

λ‖∇Qω1‖2
L2 + 2∗(ω2 − ω1)M(Qω1) − ‖∇Qω1‖2

L2

}

.

(4.70)
Here, by the assumption (4.62), we can define λ∗ ∈ ( 1

2 , 1) by

λ∗ := 1 − 2∗(ω2 − ω1)M(Qω1)
‖∇Qω1‖2

L2

. (4.71)

Then, we see from (4.70) that Pω2(Qω1,λ∗) = 0. Thus,

d(ω2) = d̃(ω2) ≤ 1
d
‖∇Qω1,λ∗‖2

L2 = λ
1− d

2∗
1
d
‖∇Qω1‖2

L2 = λ
− d−2

2∗ d(ω1). (4.72)

Moreover, it follows from Taylor’s expansion that there exists θ∗ ∈ (0, 1) de-
pending on ω1 and ω2,

λ
− d−2

2∗ = 1 +
(ω2 − ω1)M(Qω1)

1
d‖∇Qω1‖2

L2

+
2∗

4

{

1 − θ∗
2∗(ω2 − ω1)M(Qω1)

‖∇Qω1‖2
L2

}− d+2
2

( (ω2 − ω1)M(Qω1)
1
d‖∇Qω1‖2

L2

)2

,

(4.73)
which together with the assumption (4.62) gives us that

λ
− d−2

2∗ ≤ 1 +
M(Qω1)

d(ω1)
(ω2 − ω1) + C(d)

M(Qω1)
2

d(ω1)2
|ω2 − ω1|2, (4.74)

where C(d) > 0 is some constant depending only on d. Putting (4.72) and
(4.74) together, we obtain the inequality

d(ω2) ≤ d(ω1) + M(Qω1)(ω2 − ω1) + C(d)
M(Qω1)

2

d(ω1)
|ω2 − ω1|2. (4.75)

Hence, the claim (4.64) holds. �

Lemma 4.8. Assume d ≥ 3, (N1) through (N4) and (K2). Then, there exist a
sequence {ωn} in (0, ω∗) and a sequence {Mn} in (0,∞) such that limn→∞ ωn

= ω∗, and
d(ω) > d(ωn) + Mn(ω − ωn) (4.76)

for all n and all ω ∈ (0, ω∗) \ {ωn}. Furthermore,

lim
n→∞ Mn = ∞, (4.77)
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and
M(Qωn

) = Mn (4.78)
for any n and any Qωn

∈ Gωn
.

Proof of Lemma 4.8. Define a sequence {an} by

an :=
2n+1d((1 − 2−n−1)ω∗)

ω∗
. (4.79)

Note here that Lemma 4.6 and the continuity of d(ω) (see Lemma 4.7) imply

lim
n→∞ an = ∞. (4.80)

We shall show that for each number n, there exists a minimizer of d(ω)−
anω − ω2 on (0, ω∗). Put yn(ω) := d(ω) − anω − ω2. It follows from d(ω) > 0
on (0, ω∗) (see Lemma 4.3) and the definition of an (see 4.79) that for any
ω ∈ (0, (1 − 2−n)ω∗),

yn(ω) > −anω − ω2

> −an(1 − 2−n)ω∗ − {

(1 − 2−n)ω∗
}2

> an(2−n − 2−n−1)ω∗ − an(1 − 2−n−1)ω∗ − {

(1 − 2−n−1)ω∗
}2

= yn((1 − 2−n−1)ω∗).

(4.81)

On the other hand, it follows from Lemma 4.6 and the continuity of d(ω) (see
Lemma 4.7) that

lim
ω→ω∗

yn(ω) = ∞, (4.82)

so that for any n, we can take γn ∈ [(1 − 2−n)ω∗, ω∗) such that yn(ω) >
yn((1 − 2−n−1)ω∗) for all ω ∈ (γn, ω∗). Moreover, we can take a minimizer of
yn(ω) on the compact interval [(1 − 2−n)ω∗, γn]. Hence, we are able to take
a minimizer ωn of yn(ω) on (0, ω∗). In particular, we see from (4.81) that
ωn ≥ (1 − 2−n)ω∗ and therefore

lim
n→∞ ωn = ω∗. (4.83)

Next, we shall show that

d(ω) > d(ωn) + (an + 2ωn)(ω − ωn) (4.84)

for all n and all ω ∈ (0, ω∗) \ {ωn}. Since anω + ω2 is convex as a function of
ω, we see that

anω + ω2 > anωn + ω2
n + (an + 2ωn)(ω − ωn) (4.85)

for all ω ∈ (0, ω∗) \ {ωn}. This together with the fact that ωn is a minimizer
of yn(ω) = d(ω) − anω − ω2 shows

d(ω) = d(ω) − anω − ω2 + anω + ω2

> d(ωn) − anωn − ω2
n + anωn + ω2

n + (an + 2ωn)(ω − ωn)

= d(ωn) + (an + 2ωn)(ω − ωn)

(4.86)

for all ω ∈ (0, ω∗) \ {ωn}. Thus, we have proved (4.84). Furthermore, putting
Mn := 2ωn + an, we find from (4.84) and (4.80) that (4.76) and (4.77) holds.
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Finally, we shall prove

Mn = M(Qωn
) (4.87)

for all Qωn
∈ Gωn

. Take an arbitrary ground state Qn ∈ Gωn
. Then, it is also a

minimizer of the variational problem for d(ωn) (see Corollary 4.3). Hence, we
see from (4.63) in Lemma 4.7 and (4.76) that Qn satisfies that for any ω < ωn

sufficiently close to ωn,

M(Qn)(ωn − ω) ≤ d(ωn) − d(ω) + o(ωn − ω)

≤ Mn(ωn − ω) + o(ωn − ω).
(4.88)

Dividing the both sides above by ωn − ω, and then taking ω → ωn, we find
that

M(Qn) ≤ Mn. (4.89)

Similarly, the opposite inequality follows from (4.64) in Lemma 4.7. Hence, we
have completed the proof. �

Lemma 4.9. Assume d ≥ 3, (N1) through (N4) and (K2). Let ω0 ∈ (0, ω∗),
and let Qω0 be a ground state to the Eq. (1.10) with ω = ω0. Moreover, assume
that

d(ω) > d(ω0) + M(Qω0)(ω − ω0) (4.90)

for all ω ∈ (0, ω∗) \ {ω0}. Then, for any ε ∈ (0, ω0), there exists δ > 0 such
that if a function ψ0 ∈ H1(Rd) satisfies

‖ψ0 − Qω0‖H1 ≤ δ, (4.91)

then the solution ψ to (NLS) with ψ(0) = ψ0 obeys that

d(ω0 − ε) <
1
d
‖∇ψ(t)‖2

L2 < d(ω0 + ε) (4.92)

for all t ∈ Imax, where Imax denotes the maximal existence interval of ψ.

Proof of Lemma 4.9. Let ε ∈ (0, ω0), and let δ > 0 be a constant to be chosen
later. Furthermore, let ψ0 be a function in H1(Rd) satisfying

‖ψ0 − Qω0‖H1 ≤ δ. (4.93)

Since Pω0(Qω0) = 0, we see from (4.13) and (4.93) that

d(ω0) = Sω0(Qω0) =
1
d
‖∇Qω0‖2

L2 =
1
d
‖∇ψ0‖2

L2 + O(δ). (4.94)

Furthermore, it follows from Corollary 4.3, (4.63) in Lemma 4.7 and the as-
sumption (4.90) that if δ is sufficiently small dependently on ε, then

d(ω0 − ε) <
1
d
‖∇ψ0‖2

L2 < d(ω0 + ε). (4.95)

Thus, from the point of view of the invariance of Aω0,+ and Aω0,−
(see Lemma 4.5), it suffices for the desired result (4.92) to show that

Sω0+ε(ψ0) < d(ω0 + ε), (4.96)

Sω0−ε(ψ0) < d(ω0 − ε). (4.97)
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We shall prove (4.96). To this end, we put

η(ε) := d(ω0 + ε) − d(ω0) − εM(Qω0). (4.98)

Then, it follows from the assumption (4.90) that η(ε) > 0. Furthermore, we
see from Taylor’s expansion around Qω0 and the assumption (4.90) that

Sω0+ε(ψ0) = Sω0+ε(Qω0) + S ′
ω0+ε(Qω0)(ψ0 − Qω0) + o(‖ψ0 − Qω0‖H1)

= Sω0(Qω0) + εM(Qω0)

+ 〈(ω0 + ε)Qω0 − ΔQω0 + f(Qω0), ψ0 − Qω0〉H−1,H1 + o(δ)

= d(ω0) + εM(Qω0) + ε(Qω0 , ψ0 − Qω0)L2
real

+ o(δ)

≤ d(ω0) + εM(Qω0) + εδ‖Qω0‖L2 + o(δ)

= d(ω0 + ε) − η(ε) + εδ‖Qω0‖L2 + o(δ).
(4.99)

Thus, taking δ sufficiently small dependently on ε and ω0, we find that (4.96)
holds. Similarly, we can verify that if δ is sufficiently small dependently on ε
and ω0, then (4.97) holds. Hence, we have completed the proof. �

Finally, we give a proof of Theorem 4.2:

Proof of Theorem 4.2. Let {ωn} be a sequence found in Lemma 4.8, so that
limn→∞ ωn = ω∗ and

d(ω) > d(ωn) + M(Q)(ω − ωn) (4.100)

for any n, any ω ∈ (0, ω∗) \ {ωn} and any Q ∈ Gωn
. We shall prove that for

each n ≥ 1, the set Gωn
is stable in the sense described in Sect. 4.1. Suppose for

contradiction that there exists a number m such that Gωm
is unstable. Then,

we could take ε0 > 0 with the following property: for any positive integer k,
there exists ψk,0 ∈ H1(Rd) and tk ∈ Imax,k such that

inf
Q∈Gm

‖ψk,0 − Q‖H1 ≤ 1
k

, (4.101)

and
inf

Q∈Gm

‖ψk(tk) − Q‖H1 ≥ ε0, (4.102)

where ψk is the solution to (NLS) with ψk(0) = ψk,0, and Imax,k is the maximal
existence interval of ψk. Since

Sωm
(Q) = d(ωm) (4.103)

for all Q ∈ Gωm
(see Corollary 4.3), we see from the conservation law of action

and (4.101) that

Sωm
(ψk(tk)) = Sωm

(ψk,0) = d(ωm) + ok(1). (4.104)

Moreover, we see from (4.101), Lemma 4.8, 4.9 and the continuity of d(ω) (see
Lemma 4.7) that

1
d
‖∇ψk(tk)‖2

L2 = d(ωm) + ok(1). (4.105)
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Thus, we find from (4.104), (4.105) and (4.13) that

Pωm
(ψk(tk)) = Sωm

(ψk(tk)) − 1
d
‖∇ψk(tk)‖2

L2 = ok(1). (4.106)

Hence, it follows from Lemma 4.4 and Proposition 4.2 that there exists a
subsequence of {ψk(tk)} (still denoted by the same symbol), a ground state
Q∞ and a sequence {yk} in R

d such that

lim
k→∞

ψk(· + yk, tk) = Q∞ strongly in H1(Rd). (4.107)

Since Q∞(· − yk) is still a ground state for any number k, we see that

lim
k→∞

‖ψk(tk) − Q∞(· − yk)‖H1 = 0. (4.108)

However, this contradicts (4.102). Hence, the claim of Theorem 4.2 is true. �

4.4. Limiting profile of ground state

In this subsection, we discuss the limiting profile of ground states. To this end,
we introduce a function Hω on [0,∞) as

Hω(s) :=
1
2
ωs2 − F (s) =

1
2
s2

{

ω − 2
F (s)
s2

}

, (4.109)

so that

Pω(u) =
1
2∗ ‖∇u‖2

L2 +
∫

Rd

Hω(|u|) dx. (4.110)

Recall here that the maximum of the function 2F (s)/s2 is ω∗ (cf. Lemma 4.2),
so that for any ω ∈ (0, ω∗),

inf
s≥0

Hω(s) < 0. (4.111)

Moreover, we see from Lemma 4.1 and Lemma 4.2 that

ω1 := lim
s→∞

2F (s)
s2

< ω∗ (4.112)

and therefore for any ω ∈ (ω1, ω∗), we can take r(ω) > 0 such that

inf
s≥r(ω)

Hω(s) > 0. (4.113)

This together with (4.111) implies that for any ω ∈ (ω1, ω∗), Hω has its mini-
mum.

Lemma 4.10. Assume d ≥ 3, (N1) through (N4) and (K2). Furthermore, let
ω ∈ (ω1, ω∗), Qω be a ground state to the Eq. (1.10), and s(ω) be a point for
which

Hω(s(ω)) = min
s≥0

Hω(s). (4.114)

Then, we have
‖Qω‖L∞ ≤ s(ω). (4.115)
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Proof of Lemma 4.10. Since Qω becomes a minimizer of the variational prob-
lem (4.12) (see Corollary 4.3), we see from Lemma 4.3 that

d̃(ω) =
1
d
‖∇Qω‖2

L2 . (4.116)

We define
Φω(x) := min{|Qω|, s(ω)}. (4.117)

Then, it is easy to verify that Φ ∈ H1(Rd). In particular, we have

∇Φω(x) =
{∇|Qω|(x) when |Qω(x)| ≤ s(ω),

0 when s(ω) < |Qω(x)|. (4.118)

Furthermore, we see that
Pω(Qω)

≥ 1
2∗

∥
∥∇|Qω|∥∥2

L2 +
∫

{|Qω|≤s(ω)}
Hω(|Qω|) dx +

∫

{s(ω)≤|Qω|}
Hω(|Qω|) dx

≥ 1
2∗

∫

{|Qω|≤s(ω)}

∣
∣∇|Qω|∣∣2 dx +

∫

{|Qω|≤s(ω)}
Hω(|Qω|) dx

+
∫

{s(ω)≤|Qω|}
Hω(s(ω)) dx

=
1
2∗

∥
∥∇Φω

∥
∥

2

L2 +
∫

Rd

Hω(Φω) dx = Pω(Φω).

(4.119)

This together with Pω(Qω) = 0 shows that Pω(Φω) ≤ 0. Hence, it follows from
the definition of d̃(ω) (see (4.14)) that

d̃(ω) ≤ 1
d
‖∇Φω‖2

L2 . (4.120)

Moreover, we see from (4.116) and (4.118) that
1
d
‖∇Φω‖2

L2 ≤ 1
d
‖∇Qω‖2

L2 = d̃(ω). (4.121)

Thus, we find from (4.120) and (4.121) that
∫

{s(ω)≤|Qω|}

∣
∣∇|Qω|∣∣2 dx = 0. (4.122)

This implies that the measure of {s(ω) ≤ |Qω|} is zero, or ∇|Qω|(x) = 0 when
s(ω) ≤ |Qω(x)|. In the former case, we have the desired result (4.115). We
consider the latter case. To this end, we define

Ψω(x) := max{|Qω| − s(ω), 0}. (4.123)

Then, we can verify that

∇Ψω(x) =
{

0 when |Qω(x)| ≤ s(ω),
∇|Qω|(x) when s(ω) ≤ |Qω(x)|. (4.124)

Since (4.122) implies that ∇|Qω|(x) = 0 a.e. when s(ω) ≤ |Qω(x)|, we find
from (4.124) that ∇Ψω = 0 a.e. in R

d. Furthermore, since Ψω ∈ L2(Rd), we
conclude that Ψω(x) ≡ 0. This means that |Qω(x)| ≡ s(ω) when {s(ω) ≤ |Qω|}
and therefore we obtain the desired result (4.115). �
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Now, we give the main result in this subsection.

Theorem 4.4. Assume d ≥ 3, (N1) through (N4) and (K2). Furthermore, as-
sume that 2F (s)/s2 takes its maximum at only one point, say s∗, that is,

{

s > 0:
2F (s)

s2
= ω∗

}

= {s∗}. (4.125)

Then, we have the followings:

(i) Let smax(ω) := sup{s ≥ 0: Hω(s) = minr≥0 Hω(r)} and smin(ω) :=
inf{s ≥ 0: Hω(s) = minr≥0 Hω(r)}.

lim
ω→ω∗

smax(ω) = lim
ω→ω∗

smin(ω) = s∗. (4.126)

(ii) Let ω ∈ (0, ω∗), and let Φω be a ground state to the equation (1.10) with
the following properties: Φω is non-negative; radially symmetric about the
origin; and strictly decreasing in the radial direction, that is, x·∇Φω(x) <
0 for x ∈ R

d \ {0}. Then, for any compact subset Ω of Rd,

lim
ω→ω∗

Φω = s∗ (4.127)

uniformly in Ω.

Remark 4.4. (i) The nonlinearity (1.20) satisfies the conditions of Theorem 4.4.
(ii) We can prove in a way similar to the proof of Proposition 2.1 in [3] that
for any ground state Qω to (1.10) there exist θ ∈ R, y ∈ R

d and a ground
state Φω to (1.10) which is positive, radially symmetric about the origin and
strictly decreasing in the radial direction, such that Qω(x) = eiθΦω(x − y) for
all x ∈ R

d.

Proof of Theorem 4.4. Let ε > 0. If ω ∈ (ω∗ − 2ε
(s∗+ε)2 , ω∗) and s ≤ s∗ +ε, then

Hω(s) ≥ 1
2
s2(ω − ω∗) ≥ 1

2
(s∗ + ε)2(ω − ω∗) > −ε. (4.128)

Moreover, it follows from Lemma 4.1 and the assumption (4.125) that there
exists α(ε) ∈ (0, ω∗) such that when |s − s∗| ≥ ε,

2F (s)/s2 ≤ α(ε). (4.129)

Hence, if ω ∈ (α(ε), ω∗) and |s − s∗| ≥ ε, then

Hω(s) ≥ 1
2
s2(ω − α(ε)) > 0. (4.130)

Put δ(ε) := max{2ε/(s∗+ε)2, ω∗−α(ε), ω∗−ω1}, where ω1 := lims→∞ 2F (s)/s2

(see (4.112)). Then, it follows from (4.130) and Hω(s∗) < 0 that if ω ∈
(ω∗ − δ(ε), ω∗), then

s∗ − ε ≤ smin(ω) ≤ smax(ω) ≤ s∗ + ε. (4.131)

Since we can take an arbitrarily small ε and limε→0 δ(ε) = 0, the first claim
follows.
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It remains to prove the second claim. We find from (4.128) and (4.130)
that for any ω ∈ (ω∗ − δ(ε), ω∗),

0 = Pω(Φω)

≥ 1
2∗ ‖∇Φω‖2

L2 +
∫

{s∗−ε≤Φω≤s∗+ε}
Hω(Φω) dx

≥ 1
2∗ ‖∇Φω‖2

L2 −
∫

{s∗−ε≤Φω≤s∗+ε}
ε dx

≥ d − 2
2

d̃(ω) −
∫

{s∗−ε≤Φω}
ε dx

=
d − 2

2
d(ω) − ε

∣
∣{s∗ − ε ≤ Φω}∣

∣.

(4.132)

Since Φω is strictly decreasing in the radial direction, there exists Rω(ε) > 0
such that

{x ∈ R
d : s∗ − ε ≤ Φω(x)} = {x ∈ R

d : |x| ≤ Rω(ε)}. (4.133)

In particular, |x| ≤ Rω(ε) implies

− ε < Φω(x) − s∗. (4.134)

Furthermore, it follows from (4.132) and (4.133) that

Rω(ε) � {ε−1d(ω)} 1
d . (4.135)

On the other hand, Lemma 4.10 together with (4.131) shows that for any
ω ∈ (ω∗ − δ(ε), ω∗),

‖Φω‖L∞ ≤ smax(ω) ≤ s∗ + ε. (4.136)
Putting (4.134) and (4.136) together, we find that when |x| ≤ Rω(ε),

|Φω − s∗| ≤ ε. (4.137)

Since ε is arbitrary, the claim (4.127) follows from (4.135) and (4.137). �
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A. Elementary properties of nonlinear terms

We collect well-known facts derived from assumptions (N1) through (N4).
We see from the conditions (N1) and (N2) that

|f(z)| ≤ C1(|z|p + |z|q) (A.1)

for any z ∈ C. Furthermore, we see from (N3) and (A.1) that

|F (z)| ≤ 2C1(|z|p+1 + |z|q+1) (A.2)

for any z ∈ C.
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Lemma A.1. Let d ≥ 1. Assuming the conditions (N3) and (N4), we have that
for any z ∈ C,

F (z) = F (|z|). (A.3)
Moreover, under the condition (N3), the condition (N4) is equivalent to that
for any z ∈ C,

z̄f(z) = |z|f(|z|). (A.4)
In particular, under the conditions (N3) and (N4), we have that for any θ ∈ R

and any non-zero z ∈ C,
f(eiθz) = eiθf(z). (A.5)

Lemma A.2. Let d ≥ 1, and assume the conditions (N3) and (N4). Further-
more, assume f(0) = 0. Then, we can regard f as a real-valued function on
R. Moreover, for any s ∈ R,

dF

ds
(s) = f(s), (A.6)

d

ds

F (s)
s2

=
G(s)
s3

. (A.7)

Assuming (N1) further, we have that

F (z) = o(|z|2) as |z| → 0. (A.8)

B. Tools for compactness

Lemma B.1. (Fröhlich, Lieb and Loss [11]) Let d ≥ 1, 1 < p1 < p2 < p3, and
let C1, C2, C3 be constants. Then, there exists constants C > 0 and η > 0 such
that for any measurable function u on R

d satisfying

‖u‖Lp1 ≤ C1, (B.1)

C2 ≤ ‖u‖Lp2 , (B.2)

‖u‖Lp3 ≤ C3, (B.3)

we have
|{x ∈ R

d : |u(x)| > η}| ≥ C. (B.4)

Lemma B.2. (Lieb [18]) Let {un} be a bounded sequence in H1(Rd). Assume
that there exists C > 0 and η > 0 such that

|{x ∈ R
d : |un(x)| > η}| ≥ C (B.5)

for all n. Then, there exists a subsequence of {un} (still denoted by the same
symbol), a non-trivial function u∞ ∈ H1(Rd) and a sequence {yn} in R

d such
that

lim
n→∞ un(· + yn) = u∞ weakly in H1(Rd). (B.6)

Lemma B.3. (Brezis and Lieb [5], Coti Zelati-Rabinowitz [9]) Let {un} be a
bounded sequence in H1(Rd) such that

lim
n→∞ un(x) = u∞(x) almost all x ∈ R

d (B.7)
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for some function u∞ ∈ H1(Rd). Then, for any 2 ≤ r ≤ 2∗,

lim
n→∞

∫

Rd

∣
∣|un|r − |un − u∞|r − |u∞|r∣∣ dx = 0 (B.8)

and

lim
n→∞

∫

Rd

∣
∣|∇un|2 − |∇{un − u∞}|2 − |∇u∞|2∣∣ dx = 0. (B.9)

Furthermore, if we assume (N2) and (N3), then

lim
n→∞ {Pω(un) − Pω(un − u∞) − Pω(u∞)} = 0 (B.10)

for all ω > 0.
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