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Abstract. In these notes we discuss two approaches to evolutionary Γ-
convergence of gradient systems in Hilbert spaces. The formulation of the
gradient system is based on two functionals, namely the energy functional
and the dissipation potential, which allows us to employ Γ-convergence
methods. In the first approach we consider families of uniformly convex
energy functionals such that the limit passage of the time-dependent prob-
lems can be based on the theory of evolutionary variational inequalities
as developed by Daneri and Savaré 2010. The second approach uses the
equivalent formulation of the gradient system via the energy-dissipation
principle and follows the ideas of Sandier and Serfaty 2004.
We apply both approaches to rigorously derive homogenization limits
for Cahn–Hilliard-type equations. Using the method of weak and strong
two-scale convergence via periodic unfolding, we show that the energy
and dissipation functionals Γ-converge. In conclusion, we will give spe-
cific examples for the applicability of each of the two approaches.
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1. Introduction

Multiscale problems arise in various applications in mechanics, physics, chem-
istry, and in the natural sciences in general, e.g. classical and stochastic homog-
enization [3,24,38], dimension reduction [13,29,30], atomistic-to-continuous
passages [23], sharp-interface limits [40]. Therefore, the development of new
tools for the treatment of such problems is an important and challenging field.
In particular, tools that are based on variational methods are of great interest
since they usually reflect the physical principle behind the problem, and in
this way they can provide more insight into the problem.

In this text, we are interested in evolutionary problems that have a gradi-
ent structure, i.e. the evolution of the system is written in terms of an entropy
or energy functional E defined on a state space X and a dissipation potential
R in the form of an abstract balance between viscous and potential restoring
forces:

0 = DR
(
u̇(t)

)
+ DE

(
u(t)

)
. (1.1)

Here, we consider “classical” gradient systems (X, E ,R) meaning that the
dissipation potential R is a quadratic functional.

The multiscale nature of the problems under consideration is given by a
small parameter ε > 0, which characterizes the ratio between the microscopic
and macroscopic length scales. Hence, we consider a family of gradient systems
(X, Eε,Rε) and address the central question of characterizing the conditions
on the functionals Eε and Rε that guarantee the convergence of solutions uε of
the multiscale problems associated with (X, Eε,Rε) to solutions of an effective
problem in the limit ε → 0. In particular, as the evolution is entirely driven
by functionals we aim for methods based on Γ-convergence and, following [36],
call this approach evolutionary Γ-convergence, E-convergence for short.

Here, we present two distinct approaches: The first approach is based
on the uniform Λ-convexity of the driving functionals Eε with respect to the
potentials Rε, see Sect. 2.2 for the definition. In this case we can reformulate
the evolution of the system in terms of an Evolutionary Variational Estimate
(EVE), see (2.12). We refer to [4,17,18] for an extensive survey on the topic
of Λ-convex gradient systems.

The second approach to E-convergence is based on the equivalent formu-
lation of (1.1) via the Energy Dissipation Principle (EDP), which reads

Eε

(
uε(T )

)
+
∫ T

0

Rε(u̇ε) + R∗
ε

(
−DEε(uε)

)
dt ≤ Eε

(
uε(0)

)
. (1.2)

In contrast to the first approach based on (EVE), the (EDP) formulation does
not rely on any convexity assumptions of the energy functional and follows from
the Legendre–Fenchel equivalences and the chain rule. An important point
is that in the later application to homogenization problems the lower liminf
estimate for the dissipation potentials with respect to weak convergence in X
is not satisfied. Therefore, we generalize the abstract E-convergence results
via (EDP) in [36] to fit in our setting. Let us remark, that this approach is
related to the well-known Sandier–Serfaty principle [47], which is also based
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on (EDP). However, there the conditions are formulated in a very general
manner. In contrast, we give explicit conditions on the energy and dissipation
potentials to prove E-convergence. Moreover, we do not need to impose two
separate estimates for the primal and dual dissipation potentials.

Having established the two approaches for E-convergence in the abstract
case, we apply both methods to rigorously prove a homogenization result for
the multiscale Cahn–Hilliard-type equation

∂tuε = div
[
Mε(x)∇

(
∂uWε(x, uε) − div(Aε(x)∇uε)

)]
. (1.3)

The multiple scales are given by the rapidly oscillating coefficient functions
Mε(x) = M(x, x/ε) and Aε(x) = A(x, x/ε) as well as the potential Wε(x, u) =
W(x, x/ε, u). We show that limits of (subsequences of) solutions to (1.3) solve
the limiting equation

∂tu = div
[
Meff(x)∇

(
∂uWeff(x, u) − div(Aeff(x)∇u)

)]
, (1.4)

where the effective coefficient functions Meff , Aeff are given via the classical
unit cell problem and Weff(x, u) is the usual average of W over the microscopic
cells for fixed u. We refer to [11,51] for a physical application of this model.
Therein, the dewetting process of thin films on heterogeneous substrates is
modeled via the Cahn–Hilliard equation with nonlinear mobility and spatially
periodic oscillating potential.

It is well-known that (1.3) has the gradient structure (X, Eε,Rε), where
X is isomorphic to the dual of H1-functions with fixed average, Eε is the
classical Allen–Cahn energy functional, and Rε is an H−1-norm-like dissipation
potential, namely

Eε(u) =
∫

Ω

1
2
∇u · Aε(x)∇u + Wε(x, u) dx and

Rε(u̇) =
∫

Ω

1
2
∇ξu̇ · Mε(x)∇ξu̇ dx, where −div(Mε(x)∇ξu̇) = u̇.

(1.5)

Then, the PDE (1.3) is (formally) equivalent to the force-balance formulation

0 = DRε

(
u̇ε(t)

)
+ DEε

(
uε(t)

)
. (1.6)

Using two-scale convergence techniques, we prove that under suitable
assumptions on the potential Wε the energy functionals Eε Γ-converge to an
effective energy functional E0 with respect to the weak topology on H1(Ω).
With the same arguments we can show that the dual dissipation potentials
Γ-converge to an effective potential in the weak topology of X∗ and thus, by a
duality principle for Γ-convergence we obtain the Γ-convergence of the primal
dissipation potentials in the strong topology of X .

In order to apply the abstract E-convergence results based on (EVE), we
assume that the potential Wε is uniformly λ-convex on R. In that case, we
can deduce the uniform Λ-convexity of Eε with Λ related to λ. In particular,
in this case the first approach yields the desired homogenized equation (1.4).

In the second approach, based on the (EDP) formulation, we can drop the
convexity assumption on Wε. However, we need to verify closedness properties
of the subdifferential of Eε. In the concrete case of the Cahn–Hilliard equation
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in (1.3) this follows e.g. from suitable uniform growth estimates for ∂uWε or
uniform λ-convexity of Wε. However, we need to additionally impose the well-
preparedness of the initial conditions, i.e. uε(0) → u(0) in X and Eε(uε(0)) →
E0(u(0)), whereas this condition was not needed in (EVE). In particular, this
means that uε(0) is a recovery sequence for Eε.

We remark that both approaches allow us to consider the classical
logarithmic- and double-well potential. However, we show that there are certain
examples of potentials that highlight the distinction between the approaches.

Finally, let us shortly review the literature on E-convergence and homog-
enization results related to the Cahn–Hilliard equation. An effective macro-
scopic Cahn–Hilliard equation in a porous media setting is derived in [48] via
the method of asymptotic expansion. To our knowledge no rigorous homog-
enization results concerning the Cahn–Hilliard equation exist so far. In [47],
energy-based methods, which we term energy-dissipation principle, are devel-
oped to derive evolutionary Γ-convergence results for gradient flows in an
abstract setting. Based on this, the sharp interface limit of the Cahn–Hilliard
equation is investigated in [28] using the classical Modica–Mortola energy func-
tional. In [49], the abstract scheme for energies defined on spaces with Hilbert
space structure in [47] is generalized to metric spaces. In [7,19], the convergence
of the one dimensional Cahn–Hilliard equation to a Stefan problem is proved
for nonconvex potentials relying once more on [47]. In [42,43], sharp interface
limits are rigorously derived by exploiting the gradient structure of the Cahn–
Hilliard equation, Γ-convergence, and the Rayleigh principle. Finally, let us
mention that the concept of evolutionary Γ-convergence was used in [35] for
Hamiltonian systems. In particular, a homogenization result for the wave equa-
tion was obtained. In [39] E-convergence of rate-independent systems, which
can be seen as generalized gradient systems, was discussed using an energetic
formulation which corresponds to the (EDP) formulation.

This paper is structured as follows. In Sect. 2, we introduce abstract gra-
dient systems (X, E ,R) consisting of a separable Hilbert space X, an energy
functional E , and a quadratic dissipation potential R. We discuss the notion
of evolutionary Γ-convergence in Sect. 2.1 and state the two abstract results
on the (EVE) and (EDP) formulation in Sects. 2.2 and 2.3, respectively. Sec-
tion 3 is devoted to the homogenization of the Cahn–Hilliard-type equation
(1.3). We collect the assumptions on the data in Sect. 3.1, explain the gra-
dient structure in Sect. 3.2, and derive the Γ-convergence of the energy and
dissipation functionals in Sect. 3.3. Finally, we apply the abstract results of
Sect. 2.1 to the concrete setting in Sect. 3.4 and 3.5, respectively. In Sect. 3.6,
we present exemplary potentials Wε, that fit into our theory. Finally, we con-
clude the paper in Sect. 4 by discussing the benefits and differences of the two
approaches via (EVE) and (EDP), respectively. Moreover, we compare our
E-convergence results with that of [47].
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2. Abstract gradient systems

A gradient system is a triple (X, E ,R) consisting of a separable Hilbert space
X, a proper and lower semicontinuous driving functional E : X → R∞ :=
R ∪ {+∞}, and a quadratic dissipation potential R : X → [0,∞). The latter
means that R is of the form R(v) = 1

2 〈Gv, v〉 with 〈·, ·〉 denoting the dual
pairing between X and its dual X∗ (which we do not identify to distinguish
between velocities and forces) and G ∈ Lin(X,X∗) is symmetric and positive
definite. In particular, we assume that R satisfies

∃α, β > 0 : α
2 ‖v‖2

X ≤ R(v) ≤ β
2 ‖v‖2

X for all v ∈ X. (2.1)

The gradient-flow equation associated with E and R is now given in terms
of the force balance, also called Biot’s equation, which reads

0 ∈ DR
(
u̇(t)

)
+ ∂XE

(
u(t)

)
, u(0) = u0, (2.2)

where ∂XE(u) ⊂ X∗ denotes a suitable notion of a set-valued subdifferential of
E . Let us remark that the right notion of subdifferential, e.g. convex, Fréchet,
or strong/weak limiting subdifferential, is dictated by the concrete problem.
On the one hand, it has to be “big” enough such that all relevant limits
are contained. On the other hand it has to be “small” enough to satisfy a
chain rule condition (see below). We refer to [45] for a discussion of sufficient
conditions on E , ∂XE and the data u0 that guarantee the existence of solutions
of (2.2), see also Remark 2.1. In the following we always assume that solutions
u ∈ H1(0, T ;X) of the force-balance formulation in (2.2) exist.

With the primal dissipation potential R we can associate the dual dissi-
pation potential R∗ : X∗ → [0,∞), which is given via the Legendre transform,
i.e.

R∗(ξ) := sup
{
〈ξ, v〉 − R(v) | v ∈ X

}
.

In particular, we have that R∗(ξ) := 1
2 〈ξ,G−1ξ〉 and the estimates α∗

2 ‖ξ‖2
X∗ ≤

R∗(ξ) ≤ β∗

2 ‖ξ‖2
X∗ are satisfied for all ξ ∈ X∗, where α∗ = 1/β and β∗ = 1/α.

For the driving functional E we assume that there exists a reflexive
Banach space Z ⊂ X such that the embedding is compact and

∃ c, C > 0, q ≥ 1 : E(u) ≥ c‖u‖q
Z − C for all u ∈ Z. (2.3)

As usual, we extend E to the bigger space X by setting E(u) = +∞ for
u ∈ X \ Z.

Finally, we make the crucial assumption that ∂XE satisfies a chain rule
condition: If u ∈ H1(0, T ;X), ξ ∈ L2(0, T ;X∗) is such that ξ(t) ∈ ∂XE(u(t))
for a.a. t ∈ [0, T ], and t �→ E(u(t)) is bounded, then it is also absolutely
continuous on [0, T ] and

d
dt

E
(
u(t)

)
= 〈ξ(t), u̇(t)〉 for a.e. t ∈ [0, T ]. (2.4)

Remark 2.1. Our setting can be cast in the framework of [45] by considering
the Hilbert space X with the norm ‖v‖2

G = 〈Gv, v〉 and the corresponding
subdifferential ∂GE = G−1∂XE ⊂ X, meaning that v ∈ ∂GE(u) if and only if
Gv ∈ ∂XE(u).
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If u0 ∈ dom(E), the coercivity and the chain rule conditions in (2.3) and
(2.4) are satisfied, then solutions u ∈ H1(0, T ;X) of (2.2) exist according to
[45, Thm. 3] with ∂XE being the strong-weak limiting subdifferential.

2.1. Evolutionary Γ-convergence for abstract gradient systems

For a parameter ε ∈ [0, 1] we consider a family of gradient systems (X, Eε,Rε),
where X, Eε, and Rε are as above for each ε. Following [36, Def. 2.10] we define
the notion of evolutionary Γ-convergence with or without well-prepared initial
conditions – E-convergence respective well-prepared E-convergence for short.

Definition 2.2. (E-convergence) For ε > 0, let uε : [0, T ] → X be a solution of
(X, Eε,Rε) in the sense of (2.2) and assume that uε(0) → u0 in X. We say that
(X, Eε,Rε) E-converges to (X, E0,R0) if there exists a solution u : [0, T ] → X
of (X, E0,R0) with u(0) = u0 and a subsequence εk → 0 such that uεk

(t) → u(t)
in X and Eεk

(uεk
(t)) → E0(u(t)) for all t ∈ (0, T ].

If we need to impose additionally Eε(uε(0)) → E0(u0) < ∞, we say that
(X, Eε,Rε) E-converges with well-prepared initial conditions to (X, E0,R0).

In the upcoming subsections we discuss two abstract E-convergence
results: In Theorem 2.5 we impose a uniform Λ-convexity condition on Eε to
show the E-convergence of (X, Eε,Rε) using an equivalent formulation based
on evolutionary variational inequalities and without well-preparedness of the
initial conditions. Secondly, we prove the same result in Theorem 2.6 assum-
ing well-preparedness and a closedness property of the subdifferentials instead
of the Λ-convexity condition by passing to the limit in the energy-dissipation
formulation of (2.2). Both approaches are based on the Γ-convergence of the
functionals whose definition we recall here.

Definition 2.3. (Γ- and Mosco convergence) On a reflexive Banach space X we
say that the functionals Eε Γ-converge to E0 in the weak (resp. strong) topology
on X, and write Eε

Γ−⇀ E0 (resp. Eε
Γ−→E0), if the following two estimates are

satisfied

(i) liminf estimate

∀uε ⇀u (resp. uε → u) : lim inf
ε→0

Eε(uε) ≥ E0(u);

(ii) limsup estimate (existence of recovery sequences)

∀ û ∃ ûε ⇀û (resp. ûε → û) : lim sup
ε→0

Eε(ûε) ≤ E0(û).

We say that Eε converges in the sense of Mosco to E0, written Eε
M−→E0, if

(i) holds with respect to the weak convergence in X and (ii) is satisfied with
respect to the strong convergence, i.e. strongly converging recovery sequences
exist.

Let the systems (X, Eε,Rε) satisfy the assumptions (2.1) and (2.3) uni-
formly with respect to ε, i.e. there exist constants α, β,C, c > 0, a reflexive
Banach space Z ⊂ X compactly, and q ≥ 1, all independent of ε, such that

∀ ε ∈ [0, 1] :
{

∀ v ∈ X : α
2 ‖v‖2

X ≤ Rε(v) ≤ β
2 ‖v‖2

X ;
∀u ∈ X : Eε(u) ≥ c‖u‖q

Z − C.
(2.5)
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Moreover, we assume in the following that the driving functionals Eε and the
dissipation potentials Rε Γ-converge in the strong sense on X, respectively,
namely

Eε
Γ−→ E0 in X and Rε

Γ−→ R0 in X. (2.6)

Finally, in the uniform Λ-convex case in Sect. 2.2 we will additionally assume
that the dissipation potentials Rε converge continuously along strongly con-
verging sequences in X, denoted Rε

C−→R0, i.e.

∀uε → u in X : lim
ε→0

Rε(uε) = R0(u). (2.7)

Since Z is compactly embedded in X and the family Eε is equi-coercive
on Z, the weak Γ-convergence on Z is equivalent to Mosco convergence on
X, see e.g. [36, Prop. 2.5]. Moreover, the strong Γ-convergence on X of the
dissipation potentials Rε is equivalent to the weak Γ-convergence of R∗

ε on X∗

due to the continuity properties of the Legendre transform.

Proposition 2.4. [6, pp. 271] Let R∗
ε denote the Legendre transform of Rε, then

Rε
Γ−→R0 in X ⇐⇒ R∗

ε
Γ−⇀R∗

0 in X∗. (2.8)

2.2. A convergence result based on variational inequalities

In this section we state the first abstract Γ-convergence result for the gradient
systems (X, Eε,Rε) in the case that Eε is uniformly Λ-convex with respect to
the dissipation potential Rε, i.e. we assume that there exists a constant Λ ∈ R,
independent of ε, such that

u �→ Eε(u) − ΛRε(u) is convex. (2.9)

If the driving functional Eε is Λ-convex with respect to Rε in the sense of
(2.9) we obtain the equivalent formulation of the (differential) gradient-flow
equation in (2.2) as an evolutionary variational estimate (EVE). We recall that
the Fréchet subdifferential ∂FEε : X ⇒ X∗ is defined via

∂FEε(u) :=
{

ξ ∈ X∗
∣
∣
∣ lim inf

w→u

Eε(w) − Eε(u) − 〈ξ, w−u〉
‖w−u‖X

≥ 0
}

(2.10)

and is in general multi-valued. In particular, in the Λ-convex case we have that
ξ ∈ ∂FEε(u) for u ∈ X if and only if

for all w ∈ X : Eε(w) ≥ Eε(u) + 〈ξ, w−u〉 + ΛRε(w−u). (2.11)

Moreover, if Eε is Λ-convex ∂FEε satisfies the chain rule condition (see e.g. [10,
Lem. 3.3]) as well as the strong-weak closedness condition, cf. Proposition 2.7.

Using this convexity estimate and the gradient-flow equation in (2.2) for
Eε and Rε we arrive at the Evolutionary Variational Estimate (EVE)

∀ t > 0, w ∈ X :
d
dt

Rε(u(t)−w) + ΛRε(u(t)−w) ≤ Eε(w) − Eε(u(t)),

(2.12)
which corresponds to the Hilbert space version of Bénilan’s weak formulation
[8] in the case Λ = 0, see also [4, Ch. 4] and [18]. Multiplying the estimate in
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(2.12) with eΛt and integrating over an interval [r, s], for s > r ≥ 0, gives the
equivalent Integrated Evolutionary Variational Estimate (IEVE)

eΛ(s−r)Rε(uε(s)−w) − Rε(uε(r)−w) ≤ MΛ(s−r)
(
Eε(w) − Eε(uε(s))

)
(2.13)

for all w ∈ X with MΛ(τ) = (eΛτ−1)/Λ for Λ �= 0 and M0(τ) = τ , see also [17,
Prop. 3.1]. Note, that this formulation is only written in terms of functionals
and no derivatives appear.

We state the main result of this subsection on the evolutionary Γ-
convergence of the gradient system (X, Eε,Rε) that can be found in [37].
Therein the result is formulated by assuming Eε

M−→ E0 in X, however in the
proof only Eε

Γ−→E0 in X is used. Nevertheless this discrepancy is not relevant
for our application to the Cahn–Hilliard equation. Note that the following
theorem is a variant of [18, Thm. 2.17], see also [36].

Theorem 2.5. [37, Thm. 3.2] Let Eε and Rε satisfy the equi-coercivity conditions
in (2.5) and assume that Eε

Γ−→ E0 and Rε
C−→R0 in X. Assume moreover that

the convexity property in (2.9) is satisfied and that the initial conditions are

such that uε(0) → u(0) in X with u(0) ∈ dom(E0)
X

. Then, (X, Eε,Rε) E-
converges to (X, E0,R0) and the limit t �→ u(t) satisfies for all t > 0, w ∈ X

d
dt

R0(u(t)−w) + ΛR0(u(t)−w) ≤ E0(w) − E0(u(t)). (2.14)

Moreover, for each t ∈ (0, T ] the energies converge, i.e. Eε(uε(t)) → E0(u(t)).

2.3. A convergence result for the energy-dissipation principle

In this section, we establish the second approach for E-convergence based on
the energy-dissipation principle in (1.2). Indeed, the latter gives an equiva-
lent formulation of (2.2) if the chain rule (2.4) is satisfied. The crucial point
is that for general convex potentials Ψ : X → [0,∞] the Legendre–Fenchel
equivalences hold, namely

v ∈ X, ξ ∈ X∗ : ξ ∈ ∂Ψ(v) ⇔ v ∈ ∂Ψ∗(ξ) ⇔ Ψ(v) + Ψ∗(ξ) ≤ 〈ξ, v〉.

Hence, assuming that uε ∈ H1(0, T ;X) is a solution of the differential formula-
tion (2.2) with respect to Eε and Rε we have Rε(u̇ε)+R∗

ε(ξε) ≤ 〈ξε, u̇ε〉 a.e. in
[0, T ], where ξε ∈ L2(0, T ;X∗) satisfies ξε(t) ∈ ∂XEε(uε(t)) for a.a. t ∈ [0, T ].
Using the chain rule (2.4) we obtain the energy-dissipation principle (EDP)
after integrating over [0, T ]

Eε

(
uε(T )

)
+
∫ T

0

Rε

(
u̇ε(s)

)
+R∗

ε

(
ξε(s)

)
ds ≤ Eε

(
uε(0)

)
,

ξε(t) ∈ ∂XEε

(
uε(t)

)
. (2.15)

Conversely, if (2.15) is satisfied we easily check that uε also solves the dif-
ferential formulation (2.2) (see e.g. [36, Thm. 3.2]). Moreover, note that
estimate (2.15) is in fact an equality. Indeed, by the elementary estimate
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Rε(v) + R∗
ε(ξ) ≥ 〈ξ, v〉 and the chain rule (2.4), we obtain

if û ∈ H1(0, T ;X), ξ̂ ∈ L2(0, T ;X∗), ξ̂(t) ∈ ∂XEε(û(t)) for a.a. t ∈ [0, T ],
then Eε

(
û(t)

)
+
∫ t

s
Rε

( ˙̂u
)
+R∗

ε

(
ξ̂
)
dr ≥ Eε(û(s)) for all 0 ≤ s < t ≤ T.

(2.16)

The following result, being a slight variation of [36, Thm. 3.3 & 3.6], based
on (2.15) is in the spirit of Sandier & Serfaty’s approach [47,49] (see Sect. 4 for a
comparison). Note that in contrast to the subsequent section, we do not require
any convexity properties of Eε and the continuous convergence of Rε to R0 can
be relaxed to strong Γ-convergence. However, we have to impose additionally
well-preparedness of the initial conditions and a closedness condition on the
subdifferential of Eε to be able to identify the limit formulation. The latter is
formulated such that it fits into our general setting and can weakened in more
concrete situations, see e.g. Proposition 2.7. The novelty of the following proof
is to use time-discretizations for the solutions and Jensen’s inequality in order
to derive lim infε→0

∫ T

0
Rε(u̇ε) dt ≥

∫ T

0
R0(u̇) dt although Rε

Γ−→ R0 strongly
and u̇ε ⇀ u̇ weakly in X, only.

Theorem 2.6. Let Eε and Rε satisfy the assumptions (2.5) and (2.6) on equi-
coercivity and Γ-convergence. Moreover, we assume that the initial conditions
are well-prepared, i.e.

uε(0) → u(0) in X and Eε(uε(0)) → E0(u(0)) < ∞, (2.17)

and that the subdifferential ∂XEε is closed in the sense

ûε
∗
⇀ û in L∞(0, T ;Z), ûε ⇀ û in H1(0, T ;X),

ξ̂ε ⇀ξ̂ in L2(0, T ;X∗),
ξ̂ε(t) ∈ ∂XEε(ûε(t)) f.a.a. t ∈ [0, T ]

⎫
⎪⎬

⎪⎭
⇒ f.a.a. t ∈ [0, T ] :

ξ̂(t) ∈ ∂XE0(û(t)).

(2.18)

Then, we have the well-prepared E-convergence of (X, Eε,Rε) to (X, E0,R0).
In particular, the limit t �→ u(t) satisfies

E0(u(T )) +
∫ T

0

R0

(
u̇(t)

)
+ R∗

0

(
ξ(t)

)
dt ≤ E0(u(0)), ξ(t) ∈ ∂XE0

(
u(t)

)
.

(2.19)

Moreover, for each t ∈ [0, T ] the energies converge, i.e. Eε(uε(t)) → E0(u(t)).

Proof. Step 1. Uniform bounds. Using the well-preparedness of the initial
conditions (2.17), we find a constant C > 0 such that Eε(uε(0)) ≤ C.
Since the energy-dissipation estimate (2.15) is satisfied we immediately get∫ T

0
Rε(u̇ε)+R∗

ε(ξε) dt ≤ C such that by the uniform coercivity of Rε and R∗
ε

we obtain uniform bounds for ‖u̇ε‖L2(0,T ;X) and ‖ξε‖L2(0,T ;X∗).
Moreover, the upper bound (2.16) holds for the time-reversed curve

ûε(t) = uε(T − t). Due to the invariance of the dissipation potentials with
respect to this transformation we obtain for t = T

Eε(uε(0)) +
∫ T

0

Rε(u̇ε)+R∗
ε(ξε) dr ≥ Eε(uε(T−s)).
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Thus, the coercivity (2.5), the well-preparedness (2.17) and the uniform bound
for the total dissipation imply supt∈[0,T ] ‖uε(t)‖Z ≤ C. In particular, we have
shown the uniform a priori bounds

‖uε‖L∞(0,T ;Z) + ‖uε‖H1(0,T ;X) + ‖ξε‖L2(0,T ;X∗) ≤ C. (2.20)

Step 2. Convergent subsequence. Due to (2.20) we can extract a converg-
ing subsequence (not relabeled) giving

uε
∗−⇀ u in L∞(0, T ;Z), uε ⇀u in H1(0, T ;X), and

ξε ⇀ ξ in L2(0, T ;X∗).
(2.21)

Moreover, by Arzelà–Ascoli’s theorem and the compact embedding Z ⊂ X,
we have

∀ t ∈ [0, T ] : uε(t) ⇀ u(t) in Z and uε(t) → u(t) in X. (2.22)

Step 3. Passing to the limit. We show that the limit u satisfies (2.19).
The right-hand side in (2.15) converges because of the well-preparedness of
the initial data. Moreover, from uε(T ) → u(T ) in X and Eε

Γ−→ E0 in X (cf.
(2.6)), we obtain E0(u(T )) ≤ lim infε→0 Eε(uε(T )). Thus, it remains to prove
a lower estimate for the total dissipation, namely

lim inf
ε→0

∫ T

0

Rε(u̇ε) + R∗
ε(ξε) dt ≥

∫ T

0

R0(u̇) + R∗
0(ξ) dt. (2.23)

For this, let 0 = tN0 < tN1 < · · · < tNN = T denote an equidistant partition of
the interval [0, T ] with time step τN = T/N , N ∈ N. Then, Jensen’s inequality
yields

∫ T

0

Rε(u̇ε) + R∗
ε(ξε) dt =

N∑

k=1

∫ tN
k

tN
k−1

Rε(u̇ε) + R∗
ε(ξε) dt

≥
N∑

k=1

τN

{
Rε

(
1

τN

∫ tk

tk−1
u̇ε dt

)
+ R∗

ε

(
1

τN

∫ tk

tk−1
ξε dt

)}
. (2.24)

For k = 1, . . . , N we introduce V N,ε
k := (uε(tNk )−uε(tNk−1))/τN ∈ X and

ΞN,ε
k := 1

τN

∫ tN
k

tN
k−1

ξε ds ∈ X∗. Using uε(tNk ) → u(tNk ) in X and ξε ⇀ ξ in

L2(0, T ;X∗) we obtain

V N,ε
k → V N

k :=
u(tNk )−u(tNk−1)

τN
in X, ΞN,ε

k ⇀ ΞN
k :=

1
τN

∫ tN
k

tN
k−1

ξ ds in X∗.

Hence, Rε
Γ−→R0 in X and R∗

ε
Γ−⇀R∗

0 in X∗ (cf. (2.6) and (2.8)) yield the lower
estimate

lim inf
ε→0

∫ T

0

Rε(u̇ε)+R∗
ε(ξε) dt ≥

N∑

k=1

τN

{
R0(V N

k )+R∗
0(Ξ

N
k )
}

. (2.25)

Next, we aim to pass to the limit N → ∞. Let uN ∈ H1(0, T ;X) denote
the piecewise affine interpolant such that uN (tNk ) = u(tNk ) and u̇N (t) = V N

k

for t ∈ (tNk−1, t
N
k ]. Moreover, we denote by ξN ∈ L2(0, T ;X∗) the piecewise
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constant interpolant satisfying ξN (t) = ΞN
k for t ∈ (tNk−1, t

N
k ]. We easily check

that uN ⇀u in H1(0, T ;X) and ξN ⇀ξ in L2(0, T ;X∗) such that by Ioffe’s
lower semicontinuity result [27], we are able to pass to the limit N → ∞ in
(2.25) and finally arrive at

lim inf
ε→0

∫ T

0

Rε(u̇ε)+R∗
ε(ξε) dt ≥

∫ T

0

R0(u̇)+R∗
0(ξ) dt.

By the closedness of the subdifferentials (2.18), we immediately have ξ(t) ∈
∂XE0(u(t)) for a.a. t ∈ [0, T ]. Thus, we have shown that u solves the limiting
energy-dissipation formulation (2.19).

Step 4. Convergence of the energies. Recalling the derivation of (2.15)
resp. (2.19) via the chain rule, we indeed have equality in (2.19) on each time
interval. Since we have the convergence of the initial energies Eε(uε(0)) →
E0(u(0)) by (2.17), the lim inf-estimate derived in Step 3 must actually attain
a limit. Hence, we have for all t ∈ [0, T ]

Eε(uε(t)) → E0(u(t)) and
∫ t

0

Rε(u̇ε) + R∗
ε(ξε) dt →

∫ t

0

R0(u̇) + R∗
0(ξ) dt.

Thus, we have established the well-prepared E-convergence of (X, Eε,Rε). �

Note, that the usual strong-weak closedness of the graph of the subdif-
ferential ∂XEε in the sense of

uε → u in X, Eε(uε) → e0,
ξε ∈ ∂XEε(uε), ξε ⇀ ξ in X∗

}
⇒ e0 = E0(u) and ξ ∈ ∂XE0(u) (2.26)

is in general not sufficient to conclude ξ(t) ∈ ∂XE0(u(t)) for a.e. t ∈ [0, T ]
since we only have weak convergence of ξε in L2(0, T ;X∗). Hence, we need the
stronger assumption (2.18) in Theorem 2.6. However, if we additionally assume
that ∂XE0(u) ⊂ X∗ is convex (e.g. if ∂XE0 is the Fréchet-subdifferential or
actually single-valued) it is indeed sufficient to impose (2.26).

Proposition 2.7. Assume that for each u ∈ X the subdifferential ∂XE0(u) is
convex. Then, the strong-weak closedness of the graph of ∂XEε in (2.26) implies
(2.18).

Proof. Let ξε converge weakly in L2(0, T ;X∗) to ξ and ξε(t) ∈ ∂XEε(uε(t)) for
almost all t ∈ [0, T ]. According to [45, Thm. 3.2] there exists a subsequence
εk → 0 and a family of Young measures μt on X∗ (see e.g. [45, Def. 3.1]) such
that ξ(t) =

∫
X∗ η μt(dη) and μt is concentrated on the set

L(t) =
∞⋂

n=1

{
ξεk

(t) | k ≥ n
}w

⊂ X∗,

where the superscript w refers to the weak closure in X∗. Hence, the strong-
weak closedness (2.26) implies L(t) ⊂ ∂XE0(u(t)) for almost all t and the
convexity of ∂XE0 yields ξ(t) ∈ ∂XE0(u(t)). �

Finally, let us remark that in the Λ-convex setting of Sect. 2.2, condition
(2.26) and hence also (2.18) are always satisfied.
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Proposition 2.8. Let u �→ Eε(u)−ΛRε(u) be convex, Eε
Γ−→ E0 in X, and

Rε
C−→ R0 in X. Then, the Fréchet-subdifferential ∂FEε satisfies (2.26).

Proof. The proof follows along the lines of [36, Prop. 2.9] and [6, Thm. 3.66].
Due to the quadratic structure of Rε and the convexity of Eε any element
ξε ∈ ∂FEε(uε) satisfies

for all w ∈ X : Eε(w) ≥ Eε(uε) + 〈ξε, w−uε〉 + ΛRε(w−uε).

The strong Γ-convergence of Eε implies: For arbitrarily fixed û ∈ X, there
exists a sequence ûε such that ûε → û in X and Eε(ûε) → E0(û). Choosing
w = ûε and passing to the limit ε → 0, we obtain E0(û) ≥ e0 + 〈ξ, û −
u〉 + ΛR0(û − u), where we also used that Rε

C−→ R0. Setting û = u, yields
E0(u) ≥ e0. Finally, we employ the lim inf-estimate for uε → u in X, which
gives lim infε→0 Eε(uε) ≥ E0(u), and hence we arrive at e0 = E0(u). Altogether,
we have shown E0(w) ≥ E0(u) + 〈ξ, w − u〉 + ΛR0(w − u) for all w ∈ X, and
therefore, we conclude with ξ ∈ ∂FE0(u). �

3. Homogenization of a Cahn–Hilliard-type equation

In this section we apply the two approaches established in Sect. 2 to derive
homogenization limits of a Cahn–Hilliard-type equation with a microscopic
and a macroscopic length scale. In the bounded domain Ω ⊂ R

d with Lipschitz
boundary, we consider the fourth order equation written formally as

∂tuε = div
[
Mε(x)∇

(
∂uWε(x, uε) − div(Aε(x)∇uε)

)]
. (3.1)

subject to the usual homogeneous Neumann boundary conditions for u and
the thermodynamic driving force (also called chemical potential) ξ, namely
Aε(x)∇u · ν = 0 and Mε(x)∇ξ · ν = 0 with ν denoting the unit outer normal
vector to ∂Ω. The multiple scales of the problem are encoded in the periodically
oscillating tensors Mε : Ω → R

d×d
sym and Aε : Ω → R

d×d
sym as well as the potential

Wε : Ω × R → R (see subsequent subsection).
Using Theorem 2.5 and Theorem 2.6, we show that solutions uε of the

multiscale Cahn–Hilliard equation (3.1) converge in a suitable sense to a solu-
tion u of an effective equation that reads

∂tu = div
[
Meff(x)∇

(
∂uWeff(x, u) − div(Aeff(x)∇u)

)]
. (3.2)

with Meff , Aeff , and Weff being effective (homogenized) quantities, see Propo-
sitions 3.3 and 3.6 in Sect. 3.3 for the precise definition.

3.1. Notation and assumptions

In this subsection, we introduce the notation and the assumptions on the given
data, that we will use in the subsequent sections to apply the abstract results
from Sect. 2. Let us remark that we do not claim that these assumptions are
sufficient to prove existence of solutions. In fact, our basic assumption is that
solutions of the Cahn–Hilliard equation (3.1) always exist (see Definition 3.2
for the precise notion of solution). We refer to [1,21,25,26] and the survey
article [44] for results in this direction.
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Figure 1. Covering of the domain Ω with microscopic cells.
The light gray region contains all points in Ω−

ε . The dark gray
region depicts all points in Ωε

+ \ Ω−
ε

Following [34], we denote by Y = R
d/Zd the torus (also called periodicity

cell), which can also be obtained by identifying the opposite faces of the unit
cell Y = [− 1

2 , 1
2 )d. For a given point x ∈ Ω, we define [[x/ε]] ∈ Z

d as the
lattice point closest to x/ε ∈ R

d. Thus, we can decompose any x ∈ Ω via
x = ε([[x/ε]] + y) into the macroscopic center ε[[x/ε]] and the fine-scale part
y = x/ε − [[x/ε]] ∈ Y of the microscopic cell Cε(x) = ε([[x/ε]] + Y ) ⊂ R

d. We
emphasize that Cε(x) is in general not fully contained in Ω. In particular, we
introduce the sets

Ω−
ε = int

(
{x ∈ Ω | Cε(x) ⊂ Ω}

)
and Ω+

ε = int
(
{x ∈ R

d |Ω ∩ Cε(x) �= ∅}
)

such that Ω−
ε ⊂ Ω ⊂ Ω+

ε , see Fig. 1. Obviously, the set Ω+
ε is contained in an

ε-neighborhood of Ω.
We are given two-scale tensors M and A which are elements of the space

L∞(Ω×Y; Rd×d
sym), symmetric, and uniformly elliptic with respect to all (x, y) ∈

Ω×Y, i.e.

∃α, β > 0, ∀ η ∈ R
d :

{
α|η|2 ≤ η · M(x, y)η ≤ β|η|2,
α|η|2 ≤ η · A(x, y)η ≤ β|η|2. (3.3)

With M and A we then define Mε ∈ L∞(Ω; Rd×d
sym) and Aε ∈ L∞(Ω; Rd×d

sym) via

Mε(x) := M̂ε(x, x/ε) and Aε(x) := Âε(x, x/ε), where

M̂ε(x, y) :=

⎧
⎨

⎩
−
∫

Cε(x)

M(z, y) dz if x ∈ Ω−
ε ,

αI otherwise,
and

Âε(x, y) :=

⎧
⎨

⎩
−
∫

Cε(x)

A(z, y) dz if x ∈ Ω−
ε ,

αI otherwise.

(3.4)

Here, x/ε as second argument is understood modulo 1 in each component
and I denotes the identity tensor in R

d×d. Since M and A satisfy (3.3) for all
(x, y) ∈ Ω × Y, it is immediate that Mε and Aε satisfy the same estimates
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in (3.3) uniformly with respect to ε > 0 and all x ∈ Ω. In particular, the
extension with α > 0 guarantees the uniform ellipticity up to the boundary of
Ω.

Finally, for a prescribed two-scale potential W : Ω × Y × R → [0,∞) we
introduce its macroscopic counterpart Wε : Ω × R → [0,∞) via

Wε(x, u) := Ŵε(x, x/ε, u) with Ŵε(x, y, u) := −
∫

Cε(x)

Wex(z, y, u) dz, (3.5)

for all u ∈ R, where for F ∈ L1(Ω×Y) the function Fex ∈ L1(Rd×Y) denotes
the extension by 0 on (Rd\Ω) × Y.

The potential W : Ω × Y × [a, b] → [0,∞) is a Carathéodory function,
i.e. for all u ∈ [a, b] the function (x, y) �→ W(x, y, u) is measurable and for a.e.
(x, y) ∈ Ω × Y the function u �→ W(x, y, u) is continuous on [a, b]. If u /∈ [a, b]
we set W(x, y, u) := +∞. Moreover, we make the following assumptions on
growth and uniform continuity. Let W satisfy uniformly for all (x, y) ∈ Ω ×Y

Growth condition:
∃CW ≥ 0, ∀u ∈ [a, b] : |W(x, y, u)| ≤ CW (1 + |u|p),
where p < 2∗ and 2∗ ∈ [1,∞) for d = 1, 2 and 2∗ = 2d

d−2 , for d ≥ 3;
(3.6a)

Uniform modulus of continuity:
∃ω ∈ C(R; [0,∞)) with ω(ū) → 0 for ū → 0, ∀u1, u2 ∈ [a, b] :
|W(x, y, u1) − W(x, y, u2)| ≤ ω(|u1−u2|).

(3.6b)

Observe that for p as in (3.6a), the space H1(Ω) is compactly embedded in
Lp(Ω). The assumptions (3.3)–(3.6) suffice to prove the Γ-convergence of the
energies Eε in the weak topology of H1(Ω) (see Proposition 3.6).

Remark 3.1. Note that the usual ansatz Aε(x) = A(x, x/ε) for the oscillation
coefficients is not well-defined for a general function A ∈ L∞(Ω×Y; Rd×d)
since {(x, x/ε) ∈ R

d ×Y} has null Lebesgue measure. Hence, we are averaging
on the microscopic cells Cε with respect to the macroscopic variable x.

Let us remark that by assuming for all u that (x, y) �→ W(x, y, u) ∈
C(Ω×Y) we can set Wε(x, u) := W(x, x/ε, u), which would allow us to drop the
assumption in (3.6b) and make some of the following proofs more straightfor-
ward. However, we want to deal with macroscopic heterostructures and hence,
we consider the more general case (see also Remark 2.14 in [34]).

3.2. Gradient structure of the Cahn–Hilliard equation

The gradient structure of the Cahn–Hilliard equation in (3.1) respective (3.2) is
well-known (cf. [1,7,26,28,49]). However, in this section we recall its definition
within the framework described in Sect. 2. We allow for ε ∈ [0, 1] and we
identify with ε = 0 the effective quantities Meff , Aeff , and Weff .

Obviously, the Cahn–Hilliard equation leaves the average −
∫
Ω

u(t, x) dx

constant in time. Hence, given an initial value u0 we set 
 := −
∫
Ω

u0(x) dx and
define the natural spaces

L2
�(Ω) :=

{
u ∈ L2(Ω) | −

∫
Ω

u(x) dx = 

}

and Z� := H1(Ω) ∩ L2
�(Ω). (3.7)
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The space Z� is an affine (and closed) subspace of H1(Ω). On Z� the driving
functional Eε : Z� → R is given by the classical Allen–Cahn energy

Eε(u) =
∫

Ω

[1
2
∇u · Aε(x)∇u + Wε(x, u)

]
dx. (3.8)

We denote the linear space associated with Z� by Z0 = H1(Ω) ∩ L2
0(Ω) such

that Z� = 
 + Z0. On Z0 we introduce the (flat) Riemannian structure gε via

∀ v1, v2 ∈ Z0 : gε(v1, v2) =
∫

Ω

∇ξv1 · Mε(x)∇ξv2 dx,

where ξvi
∈ H1(Ω) is the unique solution of − div(Mε(x)∇ξvi

) = vi in Ω,

satisfying (Mε(x)∇ξvi
) · ν = 0 on ∂Ω and −

∫
Ω

ξvi
(x) dx = 0.

(3.9)
Assuming that Mε is symmetric and positive definite, gε clearly defines a scalar
product on Z0. We denote the closure of Z0 with respect to g with X0 and
easily verify that it is given via

X0 :=
{
v ∈ H1(Ω)∗ | 〈v,1〉 = 0

}
, (3.10)

where 〈·, ·〉 denotes the dual pairing between H1(Ω)∗ and H1(Ω) and 1 is the
constant function with value 1. On X0 we define the (primal) dissipation poten-
tial via

Rε(v) =
1
2

∫

Ω

∇ξv · Mε(x)∇ξv dx, (3.11)

where ξv ∈ H1(Ω) is defined as in (3.9). By the usual embedding of L2(Ω) into
H1(Ω)∗ we have that Z0 is densely and compactly embedded in X0.

Let us remark that there are other choices for the space X0, e.g. by
considering ξ ∈ H1(Ω)/R and taking (H1(Ω)/R)∗ as state space. However,
the space (H1(Ω)/R)∗ is isomorph to X0 which becomes clear by uniquely
identifying an equivalence class in H1(Ω)/R with an element in ξ ∈ H1

av(Ω) =
{ξ ∈ H1(Ω) | −

∫
Ω

ξ dx = 0}. As a consequence we identify X∗
0 with the space

H1(Ω)/R and consider the dual dissipation potential R∗
ε on X∗

0

R∗
ε(ξ) =

1
2

∫

Ω

∇ξ · Mε(x)∇ξ dx, (3.12)

which obviously does not depend on the choice of a representative ξ for an
equivalence class in H1(Ω)/R. In particular, we define the map P0 : H1(Ω) →
H1

av(Ω) via P0ξ = ξ − −
∫
Ω

ξ dx, which provides the canonical representative for
ξ.

On X∗
0 we define the norm ‖η‖X∗

0
= ‖∇η‖L2 , which induces the norm

‖v‖X0 = ‖ηv‖X∗
0

on X0. In particular, we immediately obtain the following
uniform estimates for all ε ∈ [0, 1], cf. (2.1),

1
2β ‖v‖2

X0
≤ Rε(v) ≤ 1

2α‖v‖2
X0

and α
2 ‖ξ‖2

X∗
0

≤ R∗
ε(ξ) ≤ β

2 ‖ξ‖2
X∗

0
. (3.13)

For arbitrary functions u ∈ L2(0, T ;Z�) with u̇ ∈ L2(0, T ; (H1(Ω))∗),
we have 0 = d

dt

∫
Ω

u(t) dx = 〈u̇(t),1〉, i.e. u̇(t) ∈ X0 for almost every t ∈
[0, T ]. Therefore, we can consider the projection P0(u) = u−
1 onto the space
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L2(0, T ;Z0) ∩ H1(0, T ;X0). In particular, without loss of generality and for
notational consistency with Sect. 2, we set 
 = 0 from now on and consider
the function spaces

Z := Z0 and X := X0. (3.14)

Moreover, the driving functional Eε is extended to the space X in the usual
way by extending it with infinity outside of Z. We recall, that for u ∈ X we
denote by ∂X

F Eε(u) ⊂ X∗ the Fréchet subdifferential of Eε at u with respect to
X, which is given via the formula in (2.10).

A solution of the Cahn–Hilliard equation is understood in the following
sense.

Definition 3.2. Given an initial value u0 ∈ Z we call a curve t �→ u(t) ∈ X
a solution of the multiscale Cahn–Hilliard equation (3.1), if it satisfies 0 ∈
DRε(u̇(t)) + ∂X

F Eε

(
u(t)

)
in X∗ for a.a. t ∈ [0, T ] with u ∈ L∞(0, T ;Z) ∩

H1(0, T ;X) and u(0) = u0.

3.3. Γ-Convergence of the energy and dissipation functionals

The theory for homogenization problems is vast. Here, we use the notion of
two-scale convergence, which was introduced in [41] and further developed in
[2]. It provides a better description of sequences of oscillating functions and
thus gives rise to the derivation of a new homogenization method. In [32],
an overview of the main homogenization problems which have been studied
by this technique is given. In particular, an important tool from two-scale
homogenization, that we are going to use, is the periodic unfolding operator,
see also [14,15,34]. The latter is defined as a mapping Tε : Lq(Ω) → Lq(Rd×Y),
for 1 ≤ q ≤ ∞, with

(Tε u)(x, y) = uex(ε[[x
ε ]] + εy), (3.15)

where uex ∈ Lq(Rd) denotes as before the extension with 0 outside of Ω. The
unfolding operator Tε : Lq(Ω) → Lq(Rd×Y) is linear, continuous, and norm
preserving. For uε → u in Lq(Ω), we obtain Tε uε → Eu in Lq(Rd×Y), where
E : Lp(Ω) → Lp(Rd×Y) denotes the canonical embedding via (Eu)(x, y) :=
uex(x), see e.g. [34, Prop. 2.4].

The Γ-convergence of the dual dissipation potentials R∗
ε : X∗ → [0,∞)

(cf. (3.12)) in the weak topology of X∗ is well-known. Below, we give a proof
based on the periodic unfolding method.

Proposition 3.3. The dual dissipation potentials R∗
ε : X∗ → [0,∞) Γ-converge

in the weak topology of X∗ to the limit potential R∗
0 : X∗ → [0,∞) given via

R∗
0(ξ) =

1
2

∫

Ω

∇ξ · Meff(x)∇ξ dx,

where the effective mobility is given via the cell minimization problem

η · Meff(x)η = min
φ∈H1

av(Y)
−
∫

Y
(∇yφ + η) · M(x, y)(∇yφ + η) dy. (3.16)
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Proof. Let us remark that the spaces Lq(Ω×Y) and Lq(Ω×Y ) for 1 ≤ q ≤ ∞
can be identified in the definition of Tε, whereas H1(Y ) and H1(Y) clearly
cannot. We make use of the following properties of Tε, cf. [34, Sect. 2]: Let
1 ≤ q1, q2 ≤ ∞ such that 1/q1 + 1/q2 = 1/r ≤ 1, then Tε satisfies

product rule: Tε(g1g2) = Tε(g1) Tε(g2) ∈ Lr(R×Y) ∀ gi ∈ Lqi(Ω),
integral identity:

∫
Ω

F (x) dx =
∫
Rd×Y(Tε F )(x, y) dxdy ∀F ∈ L1(Ω).

(3.17)

The Lipschitz condition for ∂Ω guarantees vol({x ∈ Ω | Cε(x) �⊂ Ω}) → 0
as ε → 0, see [15]. With this, Lebesgue’s differentiation theorem yields the
pointwise convergence

(Tε Mε)(x, y) → Mex(x, y) for a.a. (x, y) ∈ R
d × Y, (3.18)

see e.g. [38, Prop. 5.2]. Thus, the boundedness of Tε Mε in (3.3) and Lebesgue’s
dominated convergence theorem yield the strong convergence Tε Mε → Mex in
Lq(Rd × Y) for all 1 ≤ q < ∞. We now prove the Γ-convergence of R∗

ε to R∗
0

in two steps.
1. lim inf-estimate. Let (ξε)ε ⊂ X∗ be a sequence such that ξε ⇀ ξ in X∗.

According to [34, Thm. 2.8], there exists a subsequence (not relabeled) and
a function Ξ ∈ L2(Ω;H1

av(Y)) such that Tε∇ξε ⇀ E∇ξ + ∇yΞex ∈ L2(Rd×Y).
Using the integral identity and the product rule in (3.17) in the definition of
R∗

ε (cf. (3.12)), we obtain

R∗
ε(ξε) =

1
2

∫

Rd×Y
(Tε∇ξε) · (TεMε)(x, y)(Tε∇ξε) dxdy.

With Ioffe’s lower semicontinuity result [27] and (3.18), we arrive at the lower
estimate

lim inf
ε→0

R∗
ε(ξε) ≥ 1

2

∫

Rd×Y
[E∇ξ+∇yΞex] · Mex(x, y)[E∇ξ+∇yΞex] dxdy.

Finally, we can minimize with respect to the microscopic fluctuations ∇yΞ (see
Definition of Meff in (3.16)) to get lim infε→0 R∗

ε(ξε) ≥ R0(ξ).
2. Recovery sequence. For given ξ̂ ∈ X∗ and x ∈ Ω, let Φ(x, ·) denote the

unique minimizer for η = ∇ξ̂(x) in the unit cell problem (3.16). In particular,
we easily verify that Φ ∈ L2(Ω;H1

av(Y)). Exploiting Proposition 2.9 in [34],
we can find a sequence (ξ̂ε)ε ⊂ H1

av(Ω) such that ξ̂ε ⇀ξ̂ in X∗ and Tε ∇ξ̂ε →
E∇ξ̂ + ∇yΦex in L2(Rd×Y). Therefore, with (3.18) we arrive at

lim
ε→0

R∗
ε(ξ̂ε) = lim

ε→0

1
2

∫

Rd×Y
(Tε ∇ξ̂ε) · (Tε Mε)(Tε ∇ξ̂ε) dxdy

=
1
2

∫

Rd×Y
[E∇ξ̂+∇yΦex] · Mex[E∇ξ̂+∇yΦex] dxdy = R∗

0(ξ̂).

Here, the last identity holds since Φ is a minimizer for the minimization prob-
lem in the definition of Meff . The lim inf-estimate and the existence of a recov-
ery sequence yield R∗

ε
Γ−⇀R∗

0 in X∗. �
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Remark 3.4. The unique minimizer φη ∈ H1
av(Y) of the cell problem (3.16)

solves −divy(M(x, y)(∇yφη+η)) = 0 in Y. It is called corrector as it “corrects”
the macroscopic behavior by taking the local fluctuations due to the microscopic
structure into account.

We note that there also exist homogenization results for functionals in
the case of stochastic microstructures, see e.g. [5,9].

The following result is a direct consequence of the Γ-convergence of R∗
ε

and the continuity properties of the Legendre transform with respect to Γ-
convergence, see Proposition 2.4(b).

Corollary 3.5. The primal dissipation potentials Rε : X → [0,∞) Γ-converge
in the strong topology of X to

v �→ R0(v) = R∗
0(ξv), where − div(Meff(x)∇ξv) = v.

The Γ-convergence result for the driving functionals Eε : Z → R in (3.8)
reads as follows.

Proposition 3.6. The family of driving functionals Eε Γ-converges in the weak
topology of Z to the limit functional

E0(u) =
∫

Ω

[
1
2
∇u · Aeff(x)∇u + Weff(x, u)

]
dx,

where the effective quantities are given via

η · Aeff(x)η = min
φ∈H1

av(Y)
−
∫

Y
(∇yφ + η) · A(x, y)(∇yφ + η) dy, and

Weff(x, u) = −
∫

Y
W(x, y, u) dy.

Proof. For each ε ∈ [0, 1], we split the family of energy functionals into Eε =
Fε + Wε, where

Fε(u) =
1
2

∫

Ω

∇u · Aε(x)∇u dx and Wε(u) =
∫

Ω

Wε(x, u) dx.

Here, we write A0 and W0 for Aeff and Weff , respectively. The convergence
Fε

Γ−⇀F0 in Z can be shown analogously to that of the dual dissipation poten-
tials in Proposition 3.3.

Step 1: Let [a, b] = R. It remains to prove the convergence of the lower
order term Wε(uε) → W0(u) for arbitrary sequences uε ⇀u in Z. Let (uε)ε ⊂
Z be such a sequence and define Uε = Tε uε. Since Z embeds compactly into
Lp

0(Ω) for p < 2∗ as in (3.6a), we have uε → u in Lp(Ω) as well as Uε →
Eu in Lp(Rd×Y). Thus, there exists a subsequence (not relabeled) such that
Uε(x, y) → Eu(x, y) pointwise for a.a. (x, y) ∈ R

d × Y. Therefore, exploiting
the modulus of continuity in assumption (3.6b) gives for a.a. (x, y) ∈ R

d × Y
the convergence
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−
∫

Cε(x)

∣
∣Wex

(
z, y, Uε(x, y)

)
−Wex

(
z, y, Eu(x, y)

)∣∣dz

≤ ω
(
|Uε(x, y)−Eu(x, y)|

)
→ 0. (3.19)

Moreover, Lebesgue’s differentiation theorem yields for a.a. (x, y) ∈ R
d × Y

lim
ε→0

−
∫

Cε(x)

Wex

(
z, y, Eu(x, y)

)
dz = Wex

(
x, y,Eu(x, y)

)
. (3.20)

Using the integral identity (3.17) for Tε and the definition of Wε in (3.5) (see
also [34, Eq. (2.16)]), we have

∫

Ω

Wε

(
x, uε(x)

)
dx =

∫

Rd×Y
−
∫

Cε(x)

Wex

(
z, y, Uε(x, y)

)
dz dxdy.

Exploiting the pointwise convergences (3.19)–(3.20) as well as Lebesgue’s dom-
inated convergence theorem with the integrable (strongly in L1(Rd×Y) con-
verging) majorant CW (1 + |Uε(x, y)|p), we obtain

lim
ε→0

∫

Rd×Y
−
∫

Cε(x)

Wex

(
z, y, Uε(x, y)

)
dz dxdy

=
∫

Rd×Y
lim
ε→0

{

−
∫

Cε(x)

Wex(z, y, Uε(x, y) ± Wex(z, y, Eu(x, y) dz

}

dxdy

=
∫

Rd×Y
Wex(x, y,Eu(x, u)) dxdy =

∫

Ω

Weff(x, u(x)) dx,

which finishes the proof in the case [a, b] = R.
Step 2: Let [a, b] � R. For arbitrary sequences uε ⇀u in Z, the lim inf-

estimate for Eε holds as follows. Subsequences (uεk
)εk

⊂ (uε)ε satisfying the
constraint uεk

(x) ∈ [a, b] for a.a. x ∈ Ω can be treated as in Step 1. And for all
other subsequences (uεl

)εl
, we have Wεl

(uεl
) = +∞ and the lower estimate is

immediately satisfied.
However, for the lim sup-estimate we have to guarantee that the recovery

sequence (ûε)ε for û ∈ Z is lying in [a, b]. Without loss of generality let a <
0 < b. Following the construction in [34, Prop. 2.9], we set

ûε(x) = δε

(
û(x) − mε

)
+ εU(tε, x, x

ε ), (3.21)

where U(t, x, y) =
∫
Rd

∫
Y K(t, x−x̃, y−ỹ)Ûex(x̃, ỹ) dx̃ dỹ is a smooth convolu-

tion with U(t, ·) ∈ C∞(Rd ×Y) for t > 0. Here, K is the heat kernel on R
d ×Y,

Û ∈ L2(Ω;H1
av(Y)) is the solution of the cell problem for η = ∇û in (3.19),

and tε → 0 for ε → 0. Moreover, we choose δε → 1 and mε → 0 accordingly
to get a < uε(x) < b for a.a. x ∈ Ω as well as Tε(∇ûε) → E∇û + ∇yUex in
L2(Rd × Y). With this, we obtain Wε(ûε) → W0(û) as in Step 1. �

3.4. Convergence result based on (EVE)

In this section we prove the evolutionary Γ-convergence of the Cahn–Hilliard
gradient systems (X, Eε,Rε) to the effective system (X, E0,R0) by relying on
the convexity of Eε with respect to Rε. In particular, the key assumption is
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∃λ ∈ R ∀ (x, y) ∈ Ω×Y : u �→ W(x, y, u) − λ

2
|u|2 is convex. (3.22)

The next lemma shows that the λ-convexity of W implies Λ-convexity of the
driving functionals Eε with respect to Rε.

Lemma 3.7. Let (3.22) be satisfied, then there exists Λ ∈ R such that u �→
Eε(u) − ΛRε(u) is convex.

Proof. In this proof, we abbreviate L2(Ω) with L2. It is easy to see that (3.22)
yields the convexity of u �→ Eε(u)− λ

2 ‖u‖2
L2 − α

2 ‖∇u‖2
L2 with α > 0 from (3.3).

Namely, for θ ∈ [0, 1] and u0, u1 ∈ Z we have

Eε(uθ) ≤ (1−θ)Eε(u0) + θEε(u1) − θ(1−θ)
2

(
α‖∇(u0−u1)‖2

L2 + λ‖u0−u1‖2
L2

)
,

where uθ = (1−θ)u0 + θu1. Hence, it remains to show that we can find a
constant Λ ∈ R such that the estimate ΛRε(v) ≤ α‖∇v‖2

L2 +λ‖v‖2
L2 is satisfied

for all v ∈ Z. Indeed, due to the embedding Z ⊂ L2
0(Ω) ⊂ X and Cauchy’s

estimate we obtain

∀ δ > 0 : ‖v‖2
L2 ≤ δ‖∇v‖2

L2 + Cδ‖v‖2
X .

Here, we used Poincaré’s inequality, i.e. ‖v‖L2 ≤ CP‖∇v‖2
L2 for all v ∈ Z.

Hence, in the case λ = −λ− < 0 we fix 0 < δ < α/(λ−) and choose Λ ∈ R

such that Λ ≤ −λ−Cδ/α, whereas for λ ≥ 0 we simply set Λ = 0. With (3.13)
it is now easy to see that Eε − ΛRε is convex. �

We now state the first homogenization result, namely the E-convergence
of the multiscale Cahn–Hilliard system in the semiconvex case.

Theorem 3.8. Let Eε and Rε be as before and let uε(0) → u(0) in X. Under
the additional convexity assumption (3.22) the solutions uε of (3.1) weakly
converge in Z for each t ∈ [0, T ], T > 0, to the unique solution of the effec-
tive Cahn–Hilliard equation (3.2). Moreover, for each t ∈ (0, T ] the energies
converge, i.e. Eε(uε(t)) → E0(u(t)).

Proof. We aim to apply Theorem 2.5. For this it remains to show that
Rε(vε) → R0(v) for vε → v strongly in X. Indeed, let a sequence vε → v
strongly in X be given. Moreover, let ξε ∈ X∗ be the sequence associated with
vε via solving −div(Mε∇ξε) = vε. By standard estimates, we obtain ξε ⇀ ξ in
X∗ with ξ such that −div(Meff∇ξ) = v as in (3.9). Thus, we arrive at

lim
ε→0

Rε(vε) =
1
2

lim
ε→0

〈vε, ξε〉 =
1
2
〈v, ξ〉 =

1
2

∫

Ω

∇ξ · Meff∇ξ dx = R0(v),

where we have used the strong-weak convergence in the duality product. �

3.5. Convergence results based on (EDP)

In this section we prove the E-convergence of the multiscale system (X, Eε,Rε)
using the energy-dissipation principle (EDP) discussed in Sect. 2.3. In contrast
to the previous section we drop the λ-convexity of the potential W. Thus, it
is in general not clear whether the chain rule in (2.4) holds, and we have to
additionally assume it to be satisfied here.
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Regardless of the convexity properties of the energy Eε, the (EDP) formu-
lation requires in any case the well-preparedness of the initial conditions, viz.
limε→0 Eε(uε(0)) = E0(u(0)) < ∞. Moreover, the application of Theorem 2.6
rests upon the closedness of the subdifferential ∂XEε in the sense of (2.18). In
the following two propositions we provide sufficient conditions on the potential
W that guarantee the closedness. In the first proposition, we assume that the
potential W is λ-convex as in (3.22).

Proposition 3.9. Assume that the potential W is λ-convex as in (3.22), then
the closedness of the subdifferential (2.18) holds.

Proof. In Lemma 3.7 and Theorem 3.8 it is shown that u �→ Eε(u)−ΛRε(u)
is convex and Rε

C−→R0 in X. Thus, the Propositions 2.7 and 2.8 yield the
closedness (2.18). �

In the second proposition we replace the convexity assumption with a
growth and continuity condition for the derivative of W. In particular, in
this case the energies are Fréchet differentiable on H1(Ω) with DEε(u) =
−div(Aε(x)∇u)+∂uWε(x, u). Moreover, the growth condition on ∂uW implies
that for W in (3.6a) with the same exponent. We recall that P0 : L1(Ω) →
L1

0(Ω) denotes the canonical projection with P0(ϕ) = ϕ − −
∫
Ω

ϕ dx.

Proposition 3.10. Assume that W : Ω×Y×R → R satisfies W(x, y, ·) ∈ C1(R)
for all (x, y) ∈ Ω×Y as well as

Growth condition:
∃C ≥ 0, ∀u ∈ R :

∣
∣∂uW(x, y, u)

∣
∣ ≤ C(1+|u|p−1),

where p < 2∗ and 2∗ ∈ [1,∞) for d = 1, 2 and 2∗ = 2d
d−2 , for d ≥ 3;

Uniform modulus of continuity:
∃ ω̂ ∈ C(R; [0,∞)) with ω̂(ū) → 0 for ū → 0, ∀u1, u2 ∈ R :
|∂uW(x, y, u1) − ∂uW(x, y, u2)| ≤ ω̂(|u1−u2|).

(3.23)

Then, Eε is Fréchet differentiable on H1(Ω) for all ε ∈ [0, 1] with DEε denoting
the differential. The Fréchet subdifferential of Eε with respect to X is given via

∂X
F Eε(u) =

{{
P0 (DEε(u))

}
if DEε(u) ∈ H1(Ω),

∅ otherwise. (3.24)

Moreover, ∂X
F Eε satisfies the closedness condition in (2.18).

Proof. The Fréchet differentiability on H1(Ω) follows directly from the compact
embedding H1(Ω) ⊂ Lp(Ω) and the continuity of the associated Nemytskii
operator (for fixed ε)

Nε :
{

Lp(Ω) → Lp′
(Ω),

u �→ ∂uWε

(
·, u(·)

)
,

where 1
p + 1

p′ = 1. The characterization of the subdifferential follows immedi-
ately.

It remains to verify the closedness of the Fréchet subdifferential ∂X
F Eε.

Since ∂X
F Eε is convex it is sufficient to prove the strong-weak closedness in

X as in (2.26) according to Proposition 2.7. Hence, let us consider sequences
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uε → u in X and ξε ⇀ ξ in X∗ satisfying Eε(uε) → e0 and ξε ∈ ∂X
F Eε(uε). We

follow the lines of the proof of Proposition 3.6. Since the energies are uniformly
bounded, we can extract a (non-relabeled) subsequence such that uε ⇀ u in Z
and uε → u in Lp(Ω) as well as Tε ∇uε ⇀ E∇u + ∇yUex in L2(Rd×Y) with
U ∈ L2(Ω;H1

av(Y)). Moreover, uε converges to u almost everywhere in Ω.
We consider a sequence vε ⇀v in Z, which additionally satisfies the strong

convergence Tε ∇vε → E∇v + ∇yVex in L2(R×Y) for arbitrary but fixed
V ∈ L(Ω;H1

av(Y)). Let us abbreviate ξW
ε (x) = ∂uWε(x, uε(x)). Due to the

assumptions in (3.23) we can argue as in the proof of Theorem 3.6 to deduce
limε→0

∫
Ω

ξW
ε vε dx =

∫
Ω

ξW
effv dx, where ξW

eff (x) = ∂uWeff(x, u(x)). Moreover,
using the integral identity for the unfolding operator we obtain

〈ξε, vε〉 =
∫

Rd×Y
(Tε ∇vε) · (Tε Aε)(Tε ∇uε) dxdy + 〈ξW

ε , vε〉. (3.25)

Passing to the limit ε → 0 in (3.25) yields

〈ξ, v〉 =
∫

Ω×Y
[E∇v + ∇yV ] · A[E∇u + ∇yU ] dxdy + 〈ξW

eff , v〉, (3.26)

where we have used vε → v in X due to the compact embedding Z ⊂ X.
We point out that v and V are arbitrary test functions in (3.26). On the one
hand, we can set v ≡ 0 which gives

∫
Ω×Y ∇yV · A[∇u + ∇yU ] dxdy = 0 for all

V ∈ L2(Ω;H1
av(Y)). Thus, U is the unique corrector function associated with

u. Indeed, U solves the local problem −divy(A(x, y)[∇u + ∇yU ]) = 0 in Y for
a.e. x ∈ Ω. On the other hand, setting V ≡ 0 yields for all v ∈ Z

〈ξ, v〉 =
∫

Ω×Y
∇v · A[∇u + ∇yU ] + ∂uW(u)v dxdy

=
∫

Ω

∇v · Aeff∇u + ∂uWeff(u)v dx.

Thus, we conclude that ξ = DE0(u) and ξ ∈ ∂X
F E0(u).

Finally, it remains to show Eε(uε) → E0(u). For this, it suffices to prove
the strong convergence Tε ∇uε → E∇u + ∇yUex in L2(Rd×Y). Indeed, using
the uniform ellipticity of Tε Aε and (3.25) gives for Ξε = Tε(∇uε) and Ξ =
E∇u + ∇yUex

α‖Ξε − Ξ‖2
L2(Rd×Y) ≤

∫

Rd×Y
(Ξε−Ξ) · Tε Aε(Ξε−Ξ) dxdy

= 〈ξε−ξW
ε , uε〉 −

∫

Rd×Y

[
2Ξε · (Tε Aε)Ξ − Ξ · (Tε Aε)Ξ

]
dxdy.

Now, as the right-hand side vanishes for ε → 0 using (3.26), we obtain the
strong convergence Ξε → Ξ in L2(Rd×Y). �

Having collected all sufficient assumptions, we are now in the position to
apply Theorem 2.6 to the homogenization of the Cahn–Hilliard equation. In
particular, the assumptions Eε

Γ−→E0 and Rε
Γ−→R0 in X are satisfied according

to the Propositions 3.6 and 3.3.
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Theorem 3.11. Let Eε and Rε be as before. We assume that uε(0) → u(0) in X,
the well-preparedness of the initial conditions, i.e. Eε(uε(0)) → E0(u(0)) < ∞,
the closedness condition (2.18), and the chain rule condition (2.4) are satisfied.
Then, the solutions uε of (3.1) weakly converge in Z for each t ∈ [0, T ], T > 0,
to a solution u of the effective Cahn–Hilliard equation (3.2). Moreover, we have
Eε(uε(t)) → E0(u(t)) for each t ∈ [0, T ].

We complete this subsection by commenting on the well-preparedness
condition.

Remark 3.12. (Choice of the initial conditions) The well-preparedness (2.17)
in Theorem 3.11 is satisfied for the following choice of initial values. For given
u(0) ∈ Z, let uε(0) ∈ Z be the unique solution of the elliptic problem: find
û ∈ Z such that

div
(
Aε(x)∇û

)
= div

(
Aeff(x)∇u(0)

)
in Ω,

(
Aε(x)∇û

)
· ν = 0 on ∂Ω.

Then, standard results in periodic homogenization yield uε(0)⇀ u(0) in Z as
well as

∫
Ω

1
2∇uε(0) · Aε∇uε(0) dx →

∫
Ω

1
2∇u(0) · Aeff∇u(0) dx, see e.g. [2].

Employing the compact embedding Z ⊂ Lp
0(Ω) and treating the nonlinearity

W as in Proposition 3.6, gives the desired convergence of the initial energies
Eε(uε(0)) → E0(u(0)).

In contrast, in the (EVE) formulation in Theorem 3.8, the choice of
constant initial values uε(0) ≡ u0 is admissible, since it is not necessary to
“recover” the microstructure at t = 0. Nevertheless, the convergence of the
energies follows for all later times t > 0.

3.6. Exemplary potentials

In this subsection, we collect three generic potentials as examples which are
covered by our theory.

1. We consider the classical double-well potential

Wdw(u) = 1
4 (u2−1)2, (3.27)

which satisfies the growth estimates in (3.6) and (3.23) for the dimensions
d = 1, 2, 3 (see also [20,22]). Moreover, Wdw is λ-convex for all λ ≤ −1.
To include different spatial scales in the potential we can consider two-
scale functions Φ1,Φ2 ∈ L∞(Ω×Y) and set WΦ(x, y, u) = Φ1(x, y)Wdw(u)
+ Φ2(x, y), which also satisfies the assumptions (3.22)–(3.23). Moreover, for
θ ∈ L∞(Y) with θ ≥ 0, our multiscale analysis allows us to consider the variant

Wθ(y, u) = 1
4

(
u2−θ(y)

)2
,

where the minima are oscillating, i.e. umin(x) = ±(θ(x/ε))1/2. In the limit
ε → 0 we obtain according to Proposition 3.6 the effective potential

Weff(u) = −
∫

Y
1
4 (u2−θ(y))2 dy = 1

4u4 − 1
2θarithu2 + 1

4
−
∫

Y
θ(y)2 dy,

where θarith = −
∫

Y
θ(y) dy denotes the arithmetic mean and the limiting minima

are umin = ±(θarith)1/2. Concluding, the Theorems 3.8 and 3.11 are applicable
for WΦ and Wθ.
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2. Another well-known prototypical example is the logarithmic potential, cf.
[1,12,16], given via

Wlog(u) =
{

(u−a) log(u−a) + (b−u) log(b−u) − κ
2 u2 if u ∈ [a, b],

∞ else, (3.28)

with a < b and κ > 0. Obviously, Wlog is λ-convex for all λ ≤ −κ. Hence, the
Theorems 3.8 and 3.11 apply to Wlog. We refer to [1] for a characterization of
the single-valued Fréchet subdifferential.
An interesting variation of (3.28) is to consider oscillating boundaries aε(x) =
a(x/ε) and bε(x) = b(x/ε), where a, b ∈ L∞(Y) are given with amax < bmin.
However, it is an open problem to determine the effective limit domain [a0, b0]
for ε → 0.
3. As a nonconvex example we consider the potential

Wγ(u) = 1
2u2− 1

γ+1 |u|γ+1 with γ ∈ ( 1
2 , 1). (3.29)

The function Wγ satisfies the assumptions in (3.6) and (3.23) with W ′
γ(u) =

u − |u|γ−1u. Indeed, W ′
γ is globally γ-Hölder continuous as we have

∀ u0, u1 ∈ R :
∣
∣|u0|γ−1u0 − |u1|γ−1u1

∣
∣ ≤ Cγ |u0−u1|γ ,

where Cγ = 1, if u0u1 ≥ 0, and Cγ = 21−γ , if u0u1 < 0. The latter follows from
the concavity of u �→ |u|γ and choosing θ = 1/2 for uθ = (1−θ)u0 + θ(−u1).

However, the function Wγ is clearly not λ-convex for any λ ∈ R since
W ′′

γ (u) = 1−γ|u|γ−1 → −∞ for |u| → 0. In particular, there exists no
Λ ∈ R such that u �→ E(u)−ΛR(u) is convex. To see this, we consider an
arbitrary Λ ∈ R and set FΛ(u) := E(u)−ΛR(u) = QΛ(u)−

∫
Ω

1
γ+1 |u|γ+1 dx,

where QΛ(u) :=
∫
Ω

1
2 [∇u · A∇u+u2] dx−ΛR(u) comprises the quadratic

terms. For smooth functions v, the second variation reads D2FΛ(u)[v, v] =
2QΛ(v) − γ

∫
Ω

|u|γ−1v2 dx and for each Λ ∈ R we can find some u ∈ Z such
that D2FΛ(u)[v, v] < 0 . Hence, the convexity condition (2.9) for the (EVE)
formulation is violated and Wγ is a counterexample, for which Theorem 3.8 is
not applicable.

However, we can still exploit the (EDP) formulation and apply Theorem
3.11 provided we can verify the chain rule (2.4). We refer to [45,46] for gradient
formulations of non-convex driving functionals and the role of the chain rule.
For our particular example, we drop the subscripts and write A for the tensors
Aε and Aeff , respectively, and prove the following theorem for E ≡ Eε with
ε ∈ [0, 1]. The proof can be found in Appendix A.

Theorem 3.13. Assume that ∂Ω is of class C2, A ∈ W1,∞(Ω; Rd×d
spd ), and that

Wγ is as in (3.29). Then, the Fréchet subdifferential (with respect to X) of the
energy functional E : X → R∞ is given by

∂X
F E(u) =

⎧
⎨

⎩

{
−div(A∇u) + P0W

′
γ(u)

} if div(A∇u) ∈ H1(Ω) and
(A∇u) · ν = 0 on ∂Ω,

∅ otherwise.
(3.30)

Moreover, E satisfies the chain rule condition (2.4).
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We conclude that the homogenization result in Theorem 3.11 is applica-
ble.

4. Conclusion

We conclude our text with a comparison of the approaches for evolutionary
Γ-convergence of gradient systems (X, Eε,Rε) in Sect. 2 based on the evolution-
ary variational estimate (EVE) and the energy-dissipation principle (EDP).

1. Both abstract results rely on the strong Γ-convergence of the energy
functionals Eε in X. Let us remark that we even have Mosco convergence
of Eε for the homogenization of the Cahn–Hilliard equation.

2. While the strong Γ-convergence of the dissipation potentials Rε in X is
sufficient for (EDP), we have to assume additionally continuous conver-
gence in the (EVE) formulation. The latter is satisfied for the homoge-
nization of Cahn–Hilliard-type equations in Sect. 3.

3. The initial values, which are assumed to converge strongly in X, have
to be well-prepared in the (EDP) case, i.e. Eε(uε(0)) → E0(u(0)). In
particular, this means that uε(0) ∈ dom(Eε) has to hold for ε ∈ [0, 1] for
(EDP) while (EVE) only requires uε(0) ∈ dom Eε

X
.

4. The identification of the limit system in the (EDP) formulation relies on
the closedness of the subdifferential ∂XEε (see (2.18)), which is automat-
ically satisfied for Λ-convex energy functionals.

5. The (EVE) formulation is based on the convexity of Eε−ΛRε, which is
always satisfied for λ-convex potentials W in the Cahn–Hilliard setting,
see Lemma 3.7. Moreover, the Λ-convexity of Eε implies many desirable
properties of the gradient system, see e.g. [18,45]. In particular, the well-
known double-well and logarithmic potentials Wdw and Wlog fit into this
setting. The (EDP) formulation allows us to consider also energy func-
tionals that are not Λ-convex. In this case, the chain rule condition is
not automatically satisfied and its verification may be cumbersome. For
instance, the potential Wγ in (3.29) is not λ-convex, though the associ-
ated energy functional fulfills the chain rule, see Theorem 3.13.

6. Within the (EDB) formulation, it is possible to consider concentration-
dependent (non-degenerating) mobilities M(x, y, u) satisfying the uniform
ellipticity (3.3) and a uniform continuity as in (3.6b). However, these
mobilities lead to state-dependent dissipation potentials Rε(u, u̇) which
in turn lead to non-trivial metric spaces such that the (EVE) formulation
is not immediately applicable.

Let us remark that our approach is related to [36]. There, Theorem 3.6
gives an abstract E-convergence result based on (EDP). Note, however, that
more general dissipation potentials are considered, which are also allowed to
depend on the state u. However, there it is assumed that the dissipation poten-
tials satisfy lim infε→0 Rε(uε, vε) ≥ R0(u, v) for sequences uε → u in X and
vε ⇀v in X. For the Cahn–Hilliard dissipation potential this lim inf-estimate
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is not satisfied: Indeed, for vε ⇀ v in X, we consider

Rε(vε) =
∫

Ω

1
2∇ξvε

· Mε(x)∇ξvε
dx, where −div(Mε(x)∇ξvε

) = vε

as in (3.9). The boundedness of (vε)ε ⊂ X implies the boundedness of (ξvε
)ε ⊂

X∗ and thus, we obtain ξvε
⇀ξ in X∗ (up to subsequence). For arbitrary test

functions ϕε ∈ X∗, we study the weak formulation
∫

Ω

∇ϕε · Mε(x)∇ξvε
dx = 〈vε, ϕε〉. (4.1)

Since Mε is oscillating and not strongly convergent, the test function ϕε has
to capture the “right oscillations” in order to pass to the limit in the left-hand
side. In particular, ϕε satisfies ϕε ⇀ϕ in X∗ and Tε[∇ϕε] → [E∇ϕ + ∇yΦ] in
L2(Rd×Y). However, since vε is also only weakly converging we cannot pass
to the limit in the right-hand side to establish a connection between the limits
ξ and v. Thus, from the lower estimate

lim inf
ε→0

Rε(vε) = lim inf
ε→0

R∗
ε(ξvε

) ≥ R0(ξ)

we cannot conclude lim infε→0 Rε(vε) ≥ R0(v).
Finally, let us compare our approach to the well-known Sandier & Serfaty

result for evolutionary Γ-convergence in [47]. There, also the (EDP) formula-
tion (Sect. 2.3) is considered in the abstract setting. The crucial conditions
can be formulated as

(i) ∀ s ∈ [0, T ) : lim inf
ε→0

∫ s

0

Rε(vε(s)) ds ≥
∫ s

0

R0(v(s)) ds

(ii) lim inf
ε→0

R∗
ε(−DEε(uε(t))) ≥ R∗

0(−DE0(u(t))).

In particular, the conditions are formulated in a very general manner, e.g. the
precise notion of the convergence of uε and vε is not explicitly stated and
depends on the concrete problem. In contrast, we provide “easy” to check
conditions for Rε and Eε. Moreover, we do not need an independent bound for
each of the terms

∫ T

0
Rε dt and

∫ T

0
R∗

ε dt.

Appendix A. Proof of chain rule for a nonconvex energy

Here, we prove Theorem 3.13, i.e. that the energy functional E given by E(u) =∫
Ω

1
2∇u·A∇u+Wγ(u) dx with Wγ(u) = 1

2u2− 1
γ+1 |u|γ+1 satisfies the following

chain rule: If u ∈ H1(0, T ;X), ξ ∈ L2(0, T ;X∗) such that ξ(t) ∈ ∂X
F E(u(t))

for a.a. t ∈ [0, T ], and the function t �→ E(u(t)) is bounded, then it is also
absolutely continuous on [0, T ] and

d
dt

E
(
u(t)

)
= 〈u̇(t), ξ(t)〉 for a.e. t ∈ [0, T ]. (A.1)

In the proof, we use the following integration by parts formula, which is proven
in [33].
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Theorem A.1. ([33], Thm. 3.1) Let Ω ⊂ R
d with uniform C2 boundary ∂Ω and

A ∈ W1,∞(Ω; Rd×d
sym) be given. Then, for u ∈ W2,r(Ω) with 1 < r < ∞ we have

−(r−1)
∫

Ω

|u|r−2∇u · A(x)∇u dx =
∫

Ω

u|u|r−2 div(A(x)∇u) dx

−
∫

∂Ω

u|u|r−2∇u · A(x)ν dSx. (A.2)

Proof of Theorem 3.13. The proof follows the basic ideas of [45, Thm. 4],
where the sum of a convex functional and a concave perturbation is considered.
Thus, we write Wγ = W1−W2, where W1(u) = 1

2u2 and W2(u) = 1
γ+1 |u|γ+1.

Analogously, we decompose the energy into

E = E1−E2 on Z and E = +∞ on X\Z, where (A.3)

E1(u) :=
∫

Ω

1
2∇u · A(x)∇u + W1(u) dx and E2(u) :=

∫

Ω

W2(u) dx.

(A.4)

We easily check that E , E1, and E2 are Fréchet differentiable on Z. In particular,
if E is Fréchet subdifferentiable in some u ∈ X we have that

∂X
F E(u) =

{
− div(A(x)∇u) + P0W

′
γ(u)

}
⊂ X∗ with A(x)∇u · ν = 0 on ∂Ω.

Moreover, since E1 and E2 are convex, they separately satisfy the chain rule
in (A.1) according to e.g. [10, Chap. III Lem. 3.3] or [50, Chap. IV Lem. 4.3].
Hence, it remains to prove that ξ ∈ L2(0, T ;X∗), satisfying ξ(t) ∈ ∂X

F E(u(t))
for a.e. t ∈ [0, T ] with u ∈ H1(0, T ;X), can be decomposed into ξ = ξ1 − ξ2,
where ξi ∈ L2(0, T ;X∗) and ξi(t) ∈ ∂X

F Ei(u(t)) is satisfied for a.e. t ∈ [0, T ].
First, let us note that the boundedness of t �→ E(u(t)) implies u ∈

L∞(0, T ;Z), which in turn means that t �→ W ′
γ(u(t)) = |u(t)|γ−1u(t) ∈

L2(0, T ; L2(Ω)) is satisfied for 1
2 < γ < 1.

Due to the smoothness of ∂Ω and A we obtain higher regularity of u,
namely u ∈ L2(0, T ; H2(Ω)), see e.g. [31, Thm. 5.11]. Thus, we can apply
Theorem A.1 with r = 2γ ∈ (1, 2) to obtain

α(2γ−1)
∫ T

0

∫

Ω

|u|2(γ−1)|∇u|2 dxdt ≤
∫ T

0

∫

Ω

|u|2γ−1|div(A(x)∇u)|dxdt

≤ C
(
‖u‖2

L2(0,T ;L2(Ω)) + ‖u‖2
L2(0,T ;H2(Ω))

)
,

where α > 0 is from (3.3). Note that the boundary integral in (A.2) vanishes
since u satisfies (A(x)∇u) ·ν = 0 on ∂Ω. Since the right-hand side in the above
estimate is finite we obtain that ξ2 := W ′

2(u) = |u|γ−1u ∈ L2(0, T ; H1(Ω)).
Thus, we have shown the decomposition and therefore also the chain rule. �
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