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Abstract. Motivated by problems arising in nonlinear optics and Bose–
Einstein condensates, we consider in R

N (N ≤ 3) the following n × n
system of coupled Schrödinger equations{−ε2Δui + Vi(x)ui = ui

∑n
�=1 βi�u

2
� ,

ui > 0, lim|x|→∞ ui(x) = 0,
i = 1, . . . , n,

where ε > 0 is a parameter, βij are constants satisfying βii > 0, and Vi

are positive potentials that admit some common critical points a1, . . . , ak

satisfying certain non-degenerate assumption. Then for any subsets J ⊂
{1, 2, . . . , k}, using a Lyapunov–Schmidt reduction method, we prove the
existence of multi-bump bound solutions which as ε → 0 concentrate on
∪j∈Jaj .
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1. Introduction

In this paper, we consider the following n × n system of coupled Schrödinger
equations in R

N{−ε2Δui + Vi(x)ui = ui

∑n
�=1 βi�u

2
� ,

ui > 0, lim|x|→∞ ui(x) = 0, i = 1, . . . , n, (Sε)

where ε > 0 is a parameter, N ≤ 3, βij are physical constants satisfying

βii > 0, βij = βji.
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Problem (Sε) arises in the Hartree–Fock theory for a double condensate i.e. a
binary mixture of Bose–Einstein condensate in two different hyperfine states
|1〉 and |2〉(see [11]). This system can be described by considering the con-
densate amplitudes (u1, u2), and the βii and β12 are the intraspecies and in-
terspecies scattering lengths. The sign of the scattering length β12 determines
whether the interactions of states |1〉 and |2〉 are repulsive (β12 > 0) or attrac-
tive (β12 < 0).

For n = 1, the system (Sε) reduces to a scalar semilinear problem with a
subcritical nonlinearity

− ε2Δu + V (x)u = up, x ∈ R
N , (1.1)

which has been extensively investigated under various assumptions. In [12],
Floer and Weinstein considered Problem (1.1) in R with a bounded function
V having a non-degenerate critical point. Using a Lyapunov–Schmidt reduc-
tion, they established for small ε > 0 the existence of solutions uε to (1.1)
which concentrate near the given non-degenerate critical point of V as ε tends
to 0. Their method and results were later generalized by Oh [19,20] to the
higher-dimensional case who also obtained the existence of multi-bump solu-
tions concentrating near several non-degenerate critical points of V as ε tends
to 0.

This strategy of finding solutions using a Lyapunov–Schmidt reduction
has been applied successfully for bounded potentials by Ambrosetti et al. [1],
Del Pino and Felmer [9,10], Cao et al. [6], Ambrosetti et al. [2], Cao and Heinz
[7]. In [13] Li and in [14] considered Problem (1.1) on R

N with a potential
allowed to be unbounded. By pushing further the Lyapunov–Schmidt reduction
used previously, they proved existence of multi-bound solution for the scalar
case.

The system (Sε) with n = 2 with trap potentials (possibly unbounded)
satisfying

0 < inf
x∈RN

Vi(x) < lim inf
|x|→∞

Vi(x), i = 1, 2

has been considered by Lin and Wei [17]. In a range of the parameter β12

−∞ < β12 < β0,

where β0 ∈ (0,
√

β11β22) is a constant depending only on N , they proved ex-
istence of a least energy solution and study also its asymptotic behavior as
ε → 0. They proved how trap potentials and the interspecies scattering length
affect the locations of spikes. They used the Nehari’s manifold to construct
least energy solutions and derive their asymptotic behaviors by some tech-
niques of singular perturbation problems.

Several results have also been obtained for the system (Sε) with constant
potentials Vi = λi. Firstly, almost the same condition on β, Lin and Wei [15]
obtained the least energy solution by minimizing the certain Nehari manifold.
For λ1 = 1, Sirakov [24] discussed the problem for all β12 ∈ R and analyzed for
which β12 Problem (Sε) admits a least energy solution. We also refer to Lin
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and Wei [16], Bartsch et al. [4] for the existence of bound states of Schrödinger
systems.

For more recent work, we first want to refer the readers to work by Long
and Peng [18], where segregated vector solutions were obtained for a class of
Bose–Einstein systems related to (Sε). One also can refer to the work by Peng
et al. [22], where the authors considered the existence of multiple solutions
for linearly coupled nonlinear elliptic systems with critical exponent. For more
results related to elliptic systems, one can refer the work by Peng et al. [23].

In the present paper, we aim to prove existence of multi-bump bound
states to system (Sε) for potentials V1, . . . , Vn that admit some common critical
points which satisfy certain non-degenerate assumption, but without assum-
ing any behavior at infinity. More precisely, we will work under the following
assumptions:

(A1) Vi ∈ C2(RN ,R) and infx∈RN Vi(x) > 0;
(A2) There exists a finite set A ⊂ R

N for which

∇V1(a) = · · · = ∇Vn(a) = 0, ∀a ∈ A,

and for each a ∈ A, we can find a non-degenerate solution Ua(x) =
(Ua,1(x), . . . , Ua,n(x)) in [H1(RN )]n to the following n × n system in
R

N ⎧⎪⎪⎨
⎪⎪⎩

−Δui + Vi(a)ui = ui

∑n
�=1 βi�u

2
� ,

ui > 0, ui(0) = maxx∈RN ui(x),

lim|x|→∞ ui(x) = 0;

(1.2)

(A3) For each a ∈ A, the matrix
∑n

�=1

(‖Ua,�‖2L2 D2V�(a)
)

is invertible.

Remark 1.1. We say that a solution U := (U1, . . . , Un) of (1.2) is
non-degenerate, if the set of solutions f ∈ [H2(RN )]n to the following n × n
linear system:

Δfi − Vi(a)fi +

⎛
⎝3βiiU

2
i +
∑
� �=i

βi�u
2
�

⎞
⎠ fi + 2Ui

∑
� �=i

βi�U�f� = 0, (1.3)

are given by f ∈ span
{

∂Ua

∂y1
, . . . , ∂Ua

∂yN

}
.

Remark 1.2. (i) When (1.2) is a 2 × 2 system, it is known by a result of
Dancer and Wei [8] that Problem (1.2) has a non-degenerate solution for
all β ∈ (0,+∞)\(Ia ∪Ea) for some interval Ia and countable set Ea that
depend on the values of (V1(a), V2(a)).
More recently, for constant potentials Vi ≡ 1 (i = 1, 2), Peng and Wang
[21] have proved that Problem (1.2) has a non-degenerate solution for all
β12 ∈ (0,+∞)\I, where I = [a, b] is an interval with a = min{β11, β22}
and b = max{β11, β22}. Furthermore, one can check that system (1.2)
admits no positive solution when β12 ∈ (a, b).

(ii) Assume D2Vi(a) is positive definite (resp. negative definite) for some
i ∈ {1, . . . , n}, and D2Vj(a) is semi-positive definite (resp. semi-negative
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definite) for j �= i. Then in this case the condition (A3) is satisfied since
we easily verify
n∑

i=1

tiD
2Vi(a) is positive definite, ∀ti > 0 (resp. negative definite).

Under these assumption, we will prove that for ε small enough, the sys-
tem (Sε) admits solutions uε that are small perturbation of

∑
a∈A Ua

(
x−a

ε

)
.

More specifically, given η > 0, we introduce a cut-off function Xη : Rn → [0, 1]
that satisfies

Xη ∈ C∞(R), Xη(x) =

{
1 for x ∈ Bη(0),

0 for x ∈ R
N\B2η(0),

|∇Xη(x)| ≤ C

η
, (1.4)

with η := η(ε) > 0 chosen in such a way to ensure the supports of the functions
Xη(x)Ua

(
x−a

ε

)
to be disjoint.

Using a Lyapunov–Schmidt reduction method, we will be able to use the
family of compactly supported function (χηUa)a∈A to construct solutions to
Problem (Sε) that concentrate at the points a ∈ A as ε → 0. Our main result
reads more precisely as follows.

Theorem 1.3. Suppose that assumptions (A1) to (A3) hold. Then, there exists
ε0 > 0 such that for each 0 < ε < ε0 the system (Sε) admits a solution of the
form

uε(x) =
∑
a∈A

αa(χηUa)
(

x − a

ε
+ Pa

)
+ wε

(x
ε

)
with

|α − 1|2 +
n∑

�=1

∫
RN

{|∇w�|2 + V�(εx)w2
�

}
= O(ε4) and |Pa| = O(ε). (1.5)

Since the assumptions (A1)–(A3) also hold with each non-empty subset
A0 ⊂ A, Theorem 1.3 can be applied with A0 and provides the following
multiplicity result.

Corollary 1.4. Suppose that (A1) to (A3) hold. Then (Sε) has at least 2|A| − 1
solutions.

Henceforth, the same C will stand for a various positive constant, and
we will use the asymptotic notation f = O(t) to denote a quantity such that
| f

t | ≤ C.

2. Functional framework and decomposition lemma

By considering the rescaled function u(εx), one easily check that Problem (Sε)
is equivalent to the following n × n system{−Δui + Vi(εx)ui = ui

∑n
�=1 βi�u

2
� ,

ui > 0, lim|x|→∞ ui(x) = 0,
i = 1, . . . , n. (2.1)



NoDEA Multi-bump bound states for a Schrödinger system Page 5 of 22 65

This nonlinear problem will be handled by working in the functional
space

Eε :=
{
u ∈ [H1(RN )]n :

∫
RN

Vi(εx)u2
i < ∞ ∀i ∈ {1, . . . , n}

}
,

endowed with the inner product

〈u,v〉ε =
n∑

�=1

∫
RN

{∇u�∇v� + V�(εx)u�v�} .

The associated norm will be denoted ‖·‖ε, and we easily verify that (Eε, 〈·, ·〉ε)
is a Hilbert space that embeds continuously in H1(Rn). In this space, by setting

G(u) :=
1
4

∫
RN

∑
i,j

βiju
2
i u

2
j , Problem (2.1) is the Euler-Lagrange equation of

the following action functional:

Jε(u) :=
1
2

n∑
�=1

∫
RN

{|∇u�|2 + V�(εx)u2
�

}−
∫
RN

G(u), u ∈ Eε. (2.2)

For any f : RN → R and τ ∈ R
N , the translated function x �→ f(x + τ)

will be denoted as f [τ ]. Using this notation, we introduce the following family
of functions depending on ε > 0, a ∈ A, P ∈ R

N

σε,a,P := (XηUa)[−τ ], τ :=
a

ε
+ P, (2.3)

where Ua is defined in (A2), and χη has been given in (1.4). The reason of
using a cut-off function χη is due to the fact that Ua may fail to be in Eε

(since we do not make any assumptions on the potential Vi at infinity).
Setting α := min

{
‖a−a′‖

4 : a, a′ ∈ A, a �= a′
}

, for each ε > 0 we consider
η := η(ε) and fix δ > 0 satisfying

εη < α and δ < α. (2.4)

Under condition (2.4), the supports of the functions σε,a,P are pairwise dis-
joint, and we consider the collection of linear combination of such functions:

Σε,δ :=

{∑
a∈A

αa σε,a,Pa
: |αa − 1| < δ, Pa ∈ Bδ(0)

}
.

This set is parametrized with the variables(αa, Pa)a∈A, and defines a
|A| (N +1)-dimensional manifold in Eε. We consider a δ-tubular neighborhood
of Σε,δ

Wδ,ε := {u ∈ Eε : ‖u − σ‖ε < δ for some σ ∈ Σε,δ} .

In order to give (for δ > 0 small enough) a good parametrization of Wδ,ε,
for each ε > 0, a ∈ A and P ∈ R

N we define

Fε,a,P =

⎧⎪⎨
⎪⎩f ∈ Eε :

〈f ,σε,a,P 〉ε = 0,〈
f ,

∂σε,a,P

∂Pj

〉
ε

= 0, j = 1, . . . , N

⎫⎪⎬
⎪⎭ . (2.5)
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Following the arguments by Bahri and Coron [3] (see also Cao et al. [6]),
we have the following decomposition lemma.

Lemma 2.1. There exist δ0, ε0 > 0 such that for 0 < δ < δ0, 0 < ε < ε0 and
u ∈ Wδ,ε, the following minimization problem

inf {‖u − σ‖ε : σ ∈ Σ4δ}
has a unique solution which must be in Σ2δ. Hence, for each u ∈ Wδ,ε, there
are unique

(Pa)a∈A ∈
∏
a∈A

Bδ(0), (αa)a∈A ∈
∏
a∈A

(1 − δ, 1 + δ) w ∈
⋂

a∈A
Fε,a,Pa

such that

u =
∑
a∈A

αaσε,a,Pa
+ w. (2.6)

3. Invertibility of the linearized problem

For any u belonging to the δ-tubular neighborhood Wε,δ, formula (2.6) allows
to write u uniquely with the parameters (Pa, αa)a∈A. By setting P = (Pa)a∈A,
and α := (αa)a∈A, we can rewrite the functional (2.2) with these new param-
eters

Iε(P,α,w) := Jε

(∑
a∈A

αaσε,a,Pa
+ w

)
,

with (P,α,w) ∈∏a∈A Bδ(0) ×∏a∈A(1 − δ, 1 + δ) ×⋂a∈A Fε,a,Pa
.

Taking into account the orthogonality conditions (2.5) and the fact that
the supports of the functions σε,a,Pa

are disjoint (by (2.4)), we have

Iε(P,α,w) =
1
2

{∑
a∈A

α2
a

∥∥σε,a,Pa

∥∥2
ε

+ ‖w‖2ε
}

−
∫
RN

G

(∑
a∈A

αaσε,a,Pa
+ w

)
.

(3.1)

It is then easy to check that (P,α,w) is a critical point of Iε if and only
if
∑

a∈A αaσε,a,Pa
+ w is a critical point of Jε (for the details about this

argument, one can see the paper by Cao et al. [6]). Hence, we are reduced to
solve the following three equations⎧⎪⎪⎨

⎪⎪⎩
∂Iε

∂α (P,α,w) = 0 in
∏

a∈A R,

∂Iε

∂w (P,α,w) = 0 in F∗
ε,P,

∂Iε

∂P (P,α,w) = 0 in
∏

a∈A R
N

(3.2)

where Fε,P :=
⋂

a∈A Fε,a,Pa
and F∗

ε,P stands for the dual space of Fε,P.
To find a solution, we will first apply an implicit function Theorem (used

previously by Li [13], and Li–Nirenberg [14]) to show that for each P there
exists (α(P),w(P)) that solves the two first equation in (3.2):

∂Iε

∂α
(P,α(P),w(P)) = 0

∂Iε

∂w
(P,α(P),w(P)) = 0. (3.3)
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Hence, we will be reduced to solve the finite dimensional problem
∂

∂P
{Iε (P,α(P),w(P))} = 0, (3.4)

which will be done by applying a topological degree argument. To reach this
goal, we first fix P and look at the map S defined by

S :
∏
a∈A

R × Fε,P →
∏
a∈A

R × F∗
ε,P (α,w) �→

(
∂Iε

∂α
,
∂Iε

∂w

)
, (3.5)

and therefore solving (3.3) is equivalent to solve S(α,w) = 0. The two com-
ponents of the map S can be computed explicitly. The partial derivatives of
Iε with respect to each αa at a point q = (P,α,w):

∂Iε

∂αa
(q) = αa‖σε,a,Pa

‖2ε −
∫
RN

〈
∇G

(∑
a∈A

αaσε,a,Pa
+ w

)
,σε,a,Pa

〉

= αa‖σε,a,Pa
‖2ε −
∫
RN

〈∇G (αaσε,a,Pa
+ w) ,σε,a,Pa

〉 (3.6)

and the derivative with respect to the variable w is given by the linear form

∂Iε

∂w
(q) : Fε,a,P → R, ϕ �→ 〈w,ϕ〉ε −

∫
RN

〈
∇G

(∑
a∈A

αaσε,a,Pa
+ w

)
,ϕ

〉
.

(3.7)
In the sequel, we will also need to compute the derivative of S. At each

point q = (P,α,w), the derivative DS(q) is a linear map

DS(q) :
∏
a∈A

R × Fε,P →
∏
a∈A

R × (Fε,P)�

which can be represented as

DS(q) :=

⎛
⎜⎜⎝

∂2Iε

∂α2
(q)

∂2Iε

∂α ∂w
(q)

∂2Iε

∂α ∂w
(q)

∂2Iε

∂2w
(q)

⎞
⎟⎟⎠ . (3.8)

Each entry of (3.8) can easily be computed, and the final expression can
be simplified since the family of functions σε,a,P have compact support, with
supports that are pairwise disjoint. Firstly,

∂2Iε

∂α2
a

(q) = ‖σε,a,Pa
‖2ε −
∫
RN

σt
ε,a,Pa

D2G (αaσε,a,Pa
+ w) σε,a,Pa

, (3.9)

and for a, a′ ∈ A with a �= a′

∂2Iε

∂αa ∂αa′
(q) = −

∫
RN

σt
ε,a,Pa

D2G (αaσε,a,Pa
+ w) σε,a′,Pa′ = 0. (3.10)

We easily see that the mixed derivative can be identified with the linear map

∂2Iε

∂αa∂w
(q) : Fε,a,P → R, ϕ �→ −

∫
RN

σt
ε,a,Pa

D2G (αaσε,a,Pa
+ w) ϕ,

(3.11)
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and the derivative with respect to the variable w is given by the bilinear form

∂2Iε

∂w2
(q) : Fε,a,P × Fε,a,P −→ R,

(ϕ,η) �−→ 〈ϕ,η〉ε −
∫
RN

ϕtD2G

(∑
a∈A

αaσε,a,Pa
+ w

)
η.

(3.12)

We will now study the coercivity of this bilinear form and the invertibility
of the linear operator Lε,P : Fε,a,P → Fε,a,P associated to this bilinear form
defined by

〈Lε,P (u),η〉ε =
∂2Iε

∂w2
(q,u,η).

Proposition 3.1. There exist constants 0 < δ1 ≤ δ0, 0 < ε1 ≤ ε0 and C0 > 0
(independent of ε, δ, P) such that when 0 < ε < ε1, 0 < δ < δ1 and P ∈ Bδ,
we have

‖Lε,P(w)‖ε ≥ 1
C0

‖w‖ε, ∀w ∈
⋂

a∈A
Fε,a,Pa

. (3.13)

As a consequence, Lε,P : Fε,P → Fε,P is invertible and ‖L−1
ε,P‖ε ≤ C0.

Before presenting the proof of Proposition 3.1, we firstly give some pre-
liminary notations. Given a ∈ A, we define on [H1(RN )]n an equivalent inner
product 〈·, ·〉a as follows

〈f ,g〉a :=
n∑

�=1

∫
RN

{∇f�∇g� + V (a)f�g�} . (3.14)

The space [H1(RN )]n endowed with this inner product will be denoted Ha,
and the corresponding norm will be denoted ‖ · ‖a. Given a non-degenerate
solution Ua of (1.2), we are naturally led to consider the analogue of Fε,a,Pa

in Eε:

Fa :=

⎧⎪⎨
⎪⎩Φ ∈ Ha :

〈Φ,Ua〉a = 0,〈
Φ,

∂Ua

∂xj

〉
a

= 0, j = 1, . . . , N

⎫⎪⎬
⎪⎭ , (3.15)

In the Hilbert space Ha, the linearization at Ua of the Problem (1.2) is de-
scribed by the following bilinear form

(ψ,φ) �→ 〈ψ,φ〉a +
∫
RN

ψtD2G(Ua)φ,

to which we can associate the linear operator La : Ha → Ha defined as

〈La(u),φ〉a = 〈u,φ〉a +
∫
RN

utD2G(Ua)φ.
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Remark 3.2. By the definition of La and the fact that Ua is a solution of (1.2)

and
∂Ua

∂xj
is such that La(

∂Ua

∂xj
) = 0, we have that for any φ ∈ Fa, La(φ) ∈ Fa.

Hence, the restriction La to Fa defines an operator Fa → Fa.

Lemma 3.3. Let a ∈ A and Ua be a non-degenerate solution to (1.2). There
exists a constant C > 0 such that

‖La(w)‖a ≥ C‖w‖a ∀w ∈ Fa.

Proof. Arguing by contradiction, assume there exists a sequence (wn) in Fa

such that

‖wn‖a = 1 and ‖La(wn)‖a → 0.

Hence, wn weakly to w in Ha and also o(1) = 〈La(wn),ψ〉a → 〈La(w),ψ〉a for
all ψ ∈ Ha. We conclude that La(w) = 0. Since w ∈ Fa, the non-degeneracy
condition implies w = 0. Therefore,

o(1) = 〈La(wn),wn〉a = 〈wn,wn〉a −
∫
RN

wt
nD2F (Ua)wn. (3.16)

Since Ua ∈ L2(RN ) and the sequence wi,nwj,n converges weakly in L2 (for
i, j ∈ {1, . . . , n}), the last term in (3.16) converges to zero. Thus, we deduce the
strong convergence ‖wn‖a → 0 in contradiction with the assumption ‖wn‖a =
1. �

We now collect several estimates for elements in Fε,a,P .

Lemma 3.4. Assume (A1), (A2) hold, and let Ua be a non-degenerate solution
of (1.2) with a ∈ A. Then, by setting τ := a

ε +P there exists a constant C0 > 0
such that

‖L(χηw[τ ])‖a ≥ C0‖χηw[τ ]‖a + O
(
ε2 + ‖Ua‖H1(Bc

η)

)
‖w‖a, (3.17)

(remember that w[τ ] stands for the function w(·+τ)), which can be equivalently
written as

(1 − C0) ‖χηw[τ ]‖2a ≥
∫
RN

(
χηw[τ ]

)t
D2G(Ua)

(
χηw[τ ]

)
+O
(
ε4 + ‖Ua‖2H1(Bc

η)

)
‖w‖2a. (3.18)

Proof. Consider then in Ha the projection ϕa of χηw[τ ] on the space spanned
by Ua, ∂Ua

∂xj
(j = 1, . . . , N). Using Lemma A.2 of the “Appendix” we deduce

that ∥∥χηw[τ ] − ϕa

∥∥2
a

=
∥∥χηw[τ ]

∥∥2
a

+ O
(
ε4 + ‖Ua‖2H1(Bc

η)

)
‖w‖2a (3.19)

and also∫
RN

(
χηw[τ ] − ϕa

)t
D2G (Ua)

(
χηw[τ ] − ϕa

)

=
∫
RN

(
χηw[τ ]

)t
D2G (Ua)

(
χηw[τ ]

)
+O
(
ε4 + ‖Ua‖2H1(Bc

η)

)
‖w‖2a. (3.20)
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The inequality (3.17) follows by applying Lemma 3.3 with the function w =
χηw[τ ] − ϕa combined with the estimates (3.19) and (3.20). �

Now we give the proof of Proposition 3.1.

Proof. Let us set τa := a
ε +P . Using that the supports of the functions σε,a,Pa

are disjoint with G(0) = 0, together with the homogeneity of G (of degree
four), and applying (3.18) we obtain∫

RN

wtG

(∑
a∈A

σε,a,Pa

)
w =
∑
a∈A

∫
RN

wtD2G
(
(χηUa)[−τa]

)
w

=
∑
a∈A

∫
RN

(
χηw[τa]

)t
D2G (Ua)

(
χηw[τa]

)

≤ (1 − C0)
∑
a∈A

‖χηw[τa]‖2a. (3.21)

We estimate the right hand-side of (3.21) as follows:∫
B2η(τa)

∣∣∇(χ[τa]
η w�)

∣∣2 ≤
(

1 +
1
η

)∫
B2η(τa)

∣∣∇w�

∣∣2 +
1
η

(
1 +

1
η

)∫
B2η(τa)

w2
�

(3.22)
and∫

B2η(τa)

V�(a)(χ[τa]
η w�)

2 = O
(
ε2 + ‖Ua‖2

H1(Bc
η)

)∫
B2η(τa)

w2
�

+

∫
B2η(0)

V� (a + ε[x + Pa])
(
χηw

[−τa]
�

)2

≤ O
(
ε2 + ‖Ua‖2

H1(Bc
η)

)∫
B2η(τa)

w2
� +

∫
B2η(τa)

V�(εx)w2
�

(3.23)

Adding inequalities (3.22) and (3.23) on the collection of balls B2η(τ) (pairwise
disjoint by (2.4)), we deduce∑

a∈A
‖χηw[τa]‖2a ≤

(
1 +

1
η

)∥∥w‖2ε+O

(
ε2 + ‖Ua‖2H1(Bc

η)
+

1
η

)∥∥w‖22. (3.24)

By combining (3.21) and (3.24), with the embedding Eε ↪→ H1, we obtain

1
1 − C0

∫
RN

wtG

(∑
a∈A

σε,a,Pa

)
w ≤ ∥∥w‖2ε

{
1 + O

(
ε2 + ‖Ua‖2H1(Bc

η)
+

1
η

)}
.

Hence, by choosing ε, δ small enough, we find a constant C1 ∈ (0, 1) such that∫
RN

wtG

(∑
a∈A

σε,a,Pa

)
w ≤ C1

∥∥w‖2ε.

This concludes the proof. �

Proposition 3.1 is a key step in proving the following property:
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Proposition 3.5. Let 0 < ε < ε1, 0 < δ < δ1 and P ∈ Bδ. Then, at the point
q0 = (P,1,0), the operator DS(q0) is invertible and there is a constant C
which is independent of ε, δ and P such that∥∥[DS(q0)

]−1∥∥ ≤ C. (3.25)

Proof. Since G is homogeneous of degree 4, the map x �→ ∇G(x) is homogenous
of degree 3 and the Euler formula for homogenous map gives rt D2G(r) s =
3〈∇G(r), s〉. Hence, for any f ∈ H1 we have∫

RN

σt
ε,a,P D2G (σε,a,P ) f = 3

∫
RN

〈∇G(σε,a,P ), f〉. (3.26)

Using successively the definition of σε,a,P , the homogeneity of the function G
together with the equation satisfied by Ua, the equality (3.26) becomes∫

RN

σt
ε,a,P D2G (σε,a,P ) f = 3

∫
RN

〈∇G(Ua), χ3
ηf

[−τ ]〉 = 3
〈
Ua, χ3

ηf
[−τ ]
〉

a
.

(3.27)
We now estimate the second derivative ∂2Iε

∂α2
a

at the point q0 = (P,1,0):

∂2Iε

∂α2
a

(q0) = ‖σε,a,Pa
‖2ε −
∫
RN

σt
ε,a,Pa

D2G (σε,a,Pa
) σε,a,Pa

(by (3.9))

= ‖σε,a,Pa
‖2ε − 3

〈
Ua, χ3

ηUa

〉
a
. (by (3.27))

Hence, using (A.5) and (A.3), we obtain∣∣∣∣∂2Iε

∂α2
a

(q0)
∣∣∣∣ = −2‖Ua‖2a + O

(
ε2 + ‖Ua‖2H1(Bc

η)

)
.

To estimate ∂2Iε

∂αa∂w at the point q0 := (P,1,0), we first use (3.11):

∂2Iε

∂αa∂w
(q0) : Fε,a,P → R, ϕ �→ −

∫
RN

σt
ε,a,P D2G (σε,a,P ) ϕ. (3.28)

Hence, applying (3.27) with Lemma A.2, we obtain∥∥∥ ∂2Iε

∂αa∂w
(q0)
∥∥∥ = O

(
ε2 + ‖U‖H1(Bc

η)

)
.

�

4. Reduction to finite dimension via implicit function lemma

In this section, we aim to solve (3.3). This will be done by applying the fol-
lowing implicit function lemma (already used by Li [13])

Lemma 4.1. Let X,Y be Banach spaces, Bd(x0) = {x ∈ X : ‖x − x0‖X ≤ d}
(d > 0) and S : Bd(x0) → Y be a C1 map. Assume DS(x0) is invertible and
satisfies, for some θ ∈ (0, 1),∥∥[DS(x0)

]−1(S(x0))
∥∥

X
≤ (1 − θ)d , (4.1)∥∥[DS(x0)

]−1∥∥∥∥DS(x) − DS(x0)

∥∥ ≤ θ ∀x ∈ Bd(x0). (4.2)
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Then there is a unique solution in Bd(z0) of S(x) = 0.

Proof. The proof relies on a fix point argument, and for the sake of com-
pleteness we provide a short proof. Setting f(x) := [DS(x0)]

−1(S(x)) we want
to solve the equivalent problem x − f(x) = x in Bd(x0). On the one hand,
using (4.2), the mean value theorem and Df(x0) = id we easily check that
x �→ x − f(x) defines a map from X into itself that satisfies∥∥[y − f(y)] − [x − f(x)]

∥∥ ≤ θ‖y − x‖ ∀x, y ∈ Bd(x0). (4.3)

On the other hand, using (4.3) and assumption (4.1) for any x ∈ Bd(x0) we
get

‖x − f(x) − x0‖ ≤ θ‖x − x0‖ + ‖f(x0)‖ ≤ θd + (1 − θ)d = d. (4.4)

Hence, (4.3) and (4.4) show that the map x �→ x − f(x) is contraction map
in the complete metric space Bd(x0). The conclusion follows from the Banach
fixed point Theorem. �

Lemma 4.1 will be applied with the spaces

X =

(∏
a∈A

R

)
× Fε,P Y =

(∏
a∈A

R

)
× F�

ε,P

endowed with the product norm, and S defined by (3.5) in a neighborhood of
x0 = (1,0). Using this lemma we can reduce the system of equations (3.3) to
a finite dimension problem:

Proposition 4.2. For 0 < ε < ε0, 0 < δ < δ0 and for any P ∈ ∏a∈A Bδ(0),
the problem (3.3) admits a unique solution (α(P),w(P)) in

(∏
a∈A R
)× Fε,P

with

|1 − α(P)| + ‖w(P)‖ε ≤ C

(
ε2 +
∑
a∈A

‖Ua‖H1(Bc
η)

)
. (4.5)

Proof. Consider the map S(α,w) defined by (3.5). We divide the proof in
three steps.

Step 1: We show that

‖S(1,0)‖ ≤ C

(
ε2 +
∑
a∈A

‖Ua‖H1(Bc
η)

)
. (4.6)

We first estimate the derivative ∂Iε

∂α which has been computed in (3.6).
Using the definition of σa,ε,P , the fact that ∇G is homogeneous of degree 3
and that Ua is a solution of (1.2), we get

∂Iε

∂αa
(P,1,0) = ‖σε,a,Pa

‖2ε −
∫
RN

〈∇G (σε,a,Pa
) ,σε,a,Pa

〉

= ‖σε,a,Pa
‖2ε − 〈Ua, χ4

ηUa

〉
a

= O
(
ε2 + ‖Ua‖2H1(Bc

η)

)
(4.7)

where the last estimate follows from (A.3) and (A.5) proved in “Appendix”.
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The derivative ∂Iε

∂w ∈ F∗
ε,P has been computed in (3.7), and at (1,0) it is

given by the linear form:

∂Iε

∂w
=
∑
a∈A

∫
RN

〈∇G (σε,a,Pa
) , ·〉 . (4.8)

Hence, given w ∈ Fε,P, by using the homogeneity of the function G and
the fact that Ua solves (1.2), we obtain∫

RN

〈∇G (σε,a,Pa
) ,w〉 =

∫
RN

〈∇G(Ua), χ3
ηw

τa
〉

=
〈
Ua, χ3

ηw
τa
〉

a
. (4.9)

By applying now Lemma A.2 we conclude that at the point q = (P,1,0):∥∥∥∂Iε

∂w
(q)
∥∥∥ = O

(
ε2 + ‖Ua‖H1(Bc

η)

)
.

Step 2: For |α − 1| < 1
2 and ‖w‖ε < 1

2 , we have the following estimates

‖DS(α ,w) − DS(1,0)‖ ≤ C (|α − 1| + ‖w‖H1) . (4.10)

Indeed, setting q := (P,α,w) and q0 := (P,1,0)

DS(q) − DS(q0) =

⎛
⎜⎜⎝

∂2Iε

∂α2
(q) − ∂2Iε

∂α2
(q0)

∂2Iε

∂α∂w
(q) − ∂2Iε

∂α∂w
(q0)

∂2Iε

∂α∂w
(q) − ∂2Iε

∂α∂w
(q0)

∂2Iε

∂w2
(q) − ∂2Iε

∂w2
(q0)

⎞
⎟⎟⎠

First we note that, from the definition of G, for any r, s ∈ R
n, we have∣∣∣∂ijG(s) − ∂ijG(r)

∣∣∣ = ∣∣∣ ∫ 1

0

d

dt
∂ijG(r + t[s − r]) dt

∣∣∣
≤ C
∣∣s − r
∣∣ ∫ 1

0

∣∣∣r + t[s − r]
∣∣∣dt

≤ C
∣∣s − r
∣∣ (|s| + |r|) (4.11)

Applying (4.11) with s = αaσε,a,Pa
+ w and r = σε,a,Pa

, together with
the estimate (A.4) for any f ,g ∈ H1(RN ) and w ∈ Fε,a,P (with ‖w‖H1 ≤ 1/2)
we have ∣∣∣∣

∫
RN

f t
[
D2G (αaσε,a,Pa

+ w) − D2G (σε,a,Pa
)
]
g
∣∣∣∣

≤ C (|αa − 1| + ‖w‖H1) ‖f‖H1‖g‖H1 (4.12)

The second derivative with respect to αa given in (3.9), can be estimated
using (4.12) and (A.4):∣∣∣∣∂2Iε

∂α2
a

(P,α,w) − ∂2Iε

∂α2
a

(q0)
∣∣∣∣

≤
∫
RN

∣∣σt
ε,a,Pa

{
D2G (αaσε,a,Pa

+ w) − D2G (σε,a,Pa
)
}

σε,a,Pa

∣∣
≤ C (|αa − 1| + ‖w‖H1) . (4.13)
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Similarly, using the expression of the mixed partial derivatives ∂2Iε

∂w∂αa

given by the linear map (3.11), the estimate (4.12) and (A.4) show∣∣∣∣
∫
RN

ϕt
(
D2G (αaσε,a,Pa

+ w) − D2G (σε,a,Pa
)
)
σε,a,Pa

∣∣∣∣
≤ C (|αa − 1| + ‖w‖H1) ‖ϕ‖H1

for all ϕ ∈ H1(RN ), namely∥∥∥ ∂2Iε

∂w∂αa
(α,w) − ∂2Iε

∂w∂αa
(1,0)
∥∥∥ ≤ C (|αa − 1| + ‖w‖H1) (4.14)

The estimate of the bilinear form ∂2Iε

∂w2 (α,w) − ∂2Iε

∂w2 (1,0) (defined on
Fε,P × Fε,P) follows also immediately from (4.12), and we get∥∥∥∂2Iε

∂w2
(α,w) − ∂2Iε

∂w2
(1,0)
∥∥∥ ≤ C {|α − 1| + ‖w‖H1} . (4.15)

The estimate (4.10) follows by combining (4.13), (4.14), and (4.15).
Step 3: From Step 1 and Step 2, together with Proposition 3.5 we get a

constant C0 > 0 such that

∥∥[DS(1,0)

]−1 (S(1,0))
∥∥ ≤ C0

(
ε2 +
∑
a∈A

‖Ua‖H1(Bc
η)

)
, (4.16)

∥∥[DS(1,0)

]−1∥∥∥∥DS(α ,w) − DS(1,0)

∥∥ ≤ C0

(|α − 1|2 + ‖w‖2H1

)1/2
. (4.17)

In order to apply Lemma 4.1, we choose

θ =
1
2
, d := 2C0

(
ε2 +
∑
a∈A

‖Ua‖H1(Bc
η)

)
.

With this choice we get∥∥[DS(1,0)

]−1 (S(1,0))
∥∥ ≤ (1 − θ)d, (4.18)∥∥[DS(1,0)

]−1∥∥∥∥DS(α ,w) − DS(1,0)

∥∥ ≤ θ ∀(α,w) ∈ Bd(1,0). (4.19)

Hence we can apply Lemma 4.1, which concludes the proof of the proposition.
�

5. Solving finite dimension problem via degree arguments

By Proposition 4.2, we can define for each P ∈ Bδ

Rε(P) = Iε(P,α(P),w(P)) = Jε

(∑
a∈A

αa(P)σε,a,Pa
+ w(P)

)
,

where (α(P),w(P)) is a solution to (3.3). It is easy to verify that P ∈∏
a∈A Bδ(0) is a critical point of Rε if and only if (P, α(P),w(P)) is criti-

cal point of Iε(α,P, ω) (see for instance Cao and Heinz [7]). Thus solving (3.4)
is equivalent to solve

∂Rε(P)
∂P

= 0. (5.1)
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Existence of a solution to (5.1) can be obtained by computing the Brouwer
degree of the map ∇Rε.

Proposition 5.1. Assume (A1) − (A2) are satisfied. Then,

∂Rε

∂Pa
(P) = ε2

(
n∑

�=1

‖Ua,�‖22 D2V� (a)

)
(Pa) + O

(
ε3
)
. (5.2)

If furthermore (A3) holds, then there exist ε0, δ0 > 0 such that for ε ∈ (0, ε0)
and δ ∈ (0, δ0)

deg (0,∇Rε,Bδ) = (−1)
∑

a∈A na . (5.3)

where na stands for the number of negative eigenvalues of
∑n

�=1 ‖Ua,�‖2D2

V�(a).

Proof. By setting q := (P,α(P),w(P)), the derivative of Rε with respect to
P is given by

∂Rε(P)
∂P

=
∂Iε

∂P
(q) +

∂Iε

∂α

(
∂α

∂P
(q)
)

︸ ︷︷ ︸
=0

+
∂Iε

∂w

(
∂w
∂P

(q)
)

, (5.4)

where the second term on the right hand-side of (5.4) is zero since (α(P),w(P))
solves the first equation in (3.3). Concerning the third term of (5.4), we em-

phasize that here
∂Iε

∂w
is a linear form on the entire Hilbert space Eε and that

∂w
∂P may not belong to Fε,P. Hence, we decompose

∂w
∂Pa

= f⊥ + f0, (5.5)

with f⊥ ∈ Fε,P and f0 ∈ span
{

σε,a,Pa
,

∂σε,a,Pa

∂y1
, . . . ,

∂σε,a,Pa

∂yN

}
. Since, w ∈

Fε,a, by differentiating with respect to the point Pa the identities

〈w,σa,Pa,ε〉ε = 0,

〈
w,

∂σa,Pa,ε

∂yi

〉
ε

= 0,

we derive (as in Cao and Heinz [7, Appendix D]):〈
∂w

∂Pa,i
,σa,Pa,ε

〉
ε

= 0,

〈
∂w

∂Pa,i
,
∂σa,Pa,ε

∂yi

〉
ε

= O (‖w‖ε) . (5.6)

Therefore, from
∂Iε

∂w
(f⊥) = 0 (by (3.3)) and (5.6) we get

∣∣∣∂Iε

∂w

(
∂w
∂P

(q)
) ∣∣∣ ≤

∥∥∥∂Iε

∂w

∥∥∥O (‖w‖ε) = O
(
ε4 + ‖Ua‖2H1(Bc

η)
+ ‖w‖2ε

)
.

We can then rewrite (5.4) as follows:

∂Rε(P)
∂P

=
∂Iε

∂P
(q)+

∂Iε

∂w

(
∂w
∂P

(q)
)

=
∂Iε

∂P
(q)+O

(
ε4 + ‖Ua‖2H1(Bc

η)
+ ‖w‖2ε

)
.

(5.7)
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So, we need to estimate
∂Iε

∂P
. From the definition of Iε and using the facts

that the functions σε,a,Pa
have disjoint supports together with w ∈ Fε,P, we

obtain for i = 1, . . . , N :

∂Iε

∂Pa,i
(q) = DJ(

∑
a∈A αaσ ε,a,Pa+w)

(
αa

∂σε,a,Pa

∂Pa,i

)

= α2
a

〈
σε,a,Pa

,
∂σε,a,Pa

∂Pa,i

〉
ε︸ ︷︷ ︸

I

−
∫
RN

〈
∇G (αaσε,a,Pa

+ w) , αa
∂σε,a,Pa

∂Pa,i

〉
︸ ︷︷ ︸

II

.

(5.8)

To estimate I and II observe that the functions Ua, χη and the nonlin-
earity G are even, which implies∫

RN

〈
∇σε,a,Pa

,∇∂σε,a,Pa

∂Pa,i

〉
=
∫
RN

〈
∇(χηUa),∇

(
∂(χηUa)

∂yi

)〉
= 0, (5.9)∫

RN

〈
∇G (αaσε,a,Pa

) ,
∂σε,a,Pa

∂Pa,i

〉
=
∫
RN

〈
∇G (αaχηUa) ,

(
∂(χηUa)

∂yi

)〉
=0.

(5.10)

Estimate of (I):

Using (5.9) and the definition of σε,a,Pa
we get〈

σε,a,Pa
,
∂σε,a,Pa

∂Pa,i

〉
ε

= −
n∑

�=1

∫
RN

V�(εx)
∂(χηUa,�)2

∂xi

(
x − a

ε
− Pa

)
dx

= ε
n∑

�=1

∫
RN

∂V�

∂xi
(a + ε[y + Pa]) (χηUa,�)

2
dy

= ε2
n∑

�=1

〈
∇
(

∂V�

∂yi

)
(a), Pa

〉
‖Ua,�‖2L2

+ ε O(ε2 + ‖Ua,�‖2L2(Bc
η)

), (5.11)

where the last equality follows by applying Lemma A.3 with W := ∂V�

∂yi
at

a ∈ A and the even function f(x) = (χηUa,�)2.
Estimate of (II):

Setting σ := σε,a,Pa
, a Taylor expansion of G gives〈

∇G(ασ+w) − ∇G(ασ),
∂σ

∂Pa,i

〉
=
∫ 1

0

D2G(ασ+sw)

[
∂σ

∂Pa,i
,w
]

ds

= D2G
(U

[−τa]
a )

[
∂σ

∂xi
,w
]

+ R, (5.12)

where the remainder r is given by

r =
∫ 1

0

∫ 1

0

D3G
(U

[−τa]
a +t[ασ−U

[−τa]
a +sw])

[
∂σ

∂xi
,w, ασ − U[−τa]

a + sw
]

dsdt,
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whose L1-norm can easily be estimated as

‖r‖L1 = O
(
‖w‖2H1 + |α − 1|2 + ‖Ua‖2H1(Bc

η)

)
. (5.13)

From the equation satisfied by Ua we derive that

− Δ
∂Ua

∂xi
+ V(a)

∂Ua

∂xi
= D2G(Ua)

∂Ua

∂xi
, (5.14)

which implies with the estimate (A.7)∫
RN

D2G(Ua)

[
∂Ua

∂xi
, χηwτa

]
=
〈

∂Ua

∂xi
, χηwτa

〉
a

= O
(
ε4 + ‖w‖2ε

)
. (5.15)

Therefore, using (5.10), (5.12), (5.13) and (5.15) we deduce that∫
RN

〈∇G(ασ + w),
∂σ

∂Pa,i
〉 =
∫
RN

D2G(Ua)

[
∂(χηUa)

∂xi
,w[τa]

]
+
∫
RN

R

=
〈

∂Ua

∂xi
, χηwτa

〉
a

+O
(
|α − 1|2 + ‖w‖2H1 + ‖Ua‖2H1(Bc

η)

)
= O
(
ε4 + |α − 1|2 + ‖w‖2H1 + ‖Ua‖2H1(Bc

η)

)
.

(5.16)

By applying the estimates (5.11), (5.16) in (5.8), and using (4.5) with
(A.12), we can complete the estimate of (5.7) as follows

∂Rε(P)
∂Pa

= ε2

(
n∑

�=1

‖Ua,�‖22 D2V� (a)

)
︸ ︷︷ ︸

Ma

(Pa) + O
(
ε3
)
. (5.17)

This proves (5.2).
Let us now prove the degree formula (5.3). Under the assumption (A3),

each of the matrices Ma is invertible. So, there exists a constant C0 such that∣∣Ma(Pa)
∣∣ ≥ C0, ∀Pa ∈ ∂Bδ(a), ∀a ∈ A.

Hence, setting M(P) :=
(
Ma(Pa))a∈A, we can choose ε > 0 small enough

such that ∣∣∣∇Rε(P)
ε2

∣∣∣ = ∣∣M(P)
∣∣+ O(ε) > 0, (5.18)

for all P ∈ ∂
(∏

a∈A Bδ(a)
)
. Therefore, (5.18) implies that the homotopy given

by

H(t,P) = (1 − t)∇Rε(P) + tM(P), t ∈ [0, 1], P ∈ Bδ

satisfies |H(t,P)| �= 0 for all t ∈ [0, 1]. By the classical property of the Brouwer
Degree, we have

deg(0,∇Rε,Bδ) = deg(0,M,Bδ) = (−1)
∑

a∈A na ,

where na stands for the number of negative eigenvalues of the matrix Ma. This
completes the proof of the proposition. �
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Since the degree computed in Proposition 5.1 is non-zero, the existence
property for the Brouwer degree, we deduce the following

Corollary 5.2. Suppose the assumptions (A1)–(A2) are satisfied. Then, there
exists ε0 > 0 such that for each ε ∈ (0, ε0) the system (5.1) admits a solution
Pε ∈ Bδ.
Moreover, setting τa := a

ε + P ε
a ,
∑

a∈A αa(Pε)U[τa] + w(Pε) is a solution of
(2.1).

6. Proof of main results

In this section we give the proof of main result.

Proof of Theorem 1.3. By Corollary 5.2, we know that uε :=
∑

a∈A αa(Pε)
σε,a,P ε

a
+w(Pε) is a solution of (2.1). Thus, a solution to the original problem

(Sε) is given by

uε(x) := uε(
x

ε
) =
∑
a∈A

αa(Pε)(χηUa)
(

x − a

ε
− P ε

a

)
+ w(Pε)

(x
ε

)
.

The estimate in (1.5) on (α,w) follows from (4.5) and (A.12). Also, by
using (5.1) and (5.2) we have

0 = ε2Ma(P ε
a ) + O(ε3).

Since Ma is invertible, we deduce that |Pε| = O(ε). Hence, (1.5) holds. This
completes the proof of main result. �
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A. Appendix: Some estimates

In this appendix, we collect some technical estimates that have been used in
our paper. We start with two preliminary observations:
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(i) Given W ∈ C2(RN ) and a ∈ R
N , the definition of χη (see (1.4)) and a

first order Taylor expansion imply for ε ∈ (0, ε0), P ∈ B1(0):

χη(x)
{
W (a + ε[x + P ]) − W (a) − εDW(a)(x + P )

}
= ε2χη(x)

∫ 1

0

∫ 1

0

(x + P )tD2W(a+stε[x+P ])(x + P )ds dt

= O
(
ε2
[|x|2 + |P |2]) , (A.1)

where we used ε|x + P | = O(1) on the ball Bη(0) since P ∈ B1(0) and
εη = O(1) (see (2.4)).

(ii) Given s ≥ 1, the definition of χη implies∥∥χs
ηf
∥∥

Lq = ‖f‖Lq + O
(
‖f‖Lq(Bc

η)

)
∀f ∈ Lq(RN ) (q ≥ 1), (A.2)

and for all f ,g ∈ H1(RN ) it holds

〈f , χs
ηg〉a = 〈f ,g〉a + O

(
‖f‖H1(Bc

η)
‖g‖H1(Bc

η)

)
. (A.3)

In the rest of this appendix, we will always assume that ε ∈ (0, ε0),
P ∈ B1(0).

Lemma A.1. Given a ∈ A, P ∈ B1(0). Then, for q ≤ 5 we have

‖σε,a,P ‖q = ‖Ua‖q + O
(∥∥Ua

∥∥
H1(Bc

η)

)
, (A.4)

‖σε,a,P ‖2ε = ‖Ua‖2a + O
(
ε2 + ‖Ua‖2H1(Bc

η)

)
. (A.5)

Proof. Estimate (A.4) is a special case of (A.2). For (A.5) we note that (setting
τ := a

ε + P )∥∥σε,a,P

∥∥2
ε

=
∥∥(χηUa)[−τ ]

∥∥2
ε

=
∥∥χηUa

∥∥2
a

+
∫
RN

{V (a + ε[x + P ]) − V (a)} (χηUa)2.

We conclude by applying (A.1), (A.3) with the fact that (1+|x|2)U2
a ∈ L1(RN ).

�

Lemma A.2. Let s ≥ 1. Then, for any w ∈ Fε,a,P and setting τ := a
ε + P we

have 〈
χs

ηw
[τ ],Ua

〉
a

= O
(
ε2 + ‖Ua‖H1(Bc

η)

)
‖w‖ε, (A.6)〈

χs
ηw

[τ ],
∂Ua

∂xj

〉
a

= O
(
ε2 + ‖Ua‖H1(Bc

η)

)
‖w‖ε j = 1, . . . , N. (A.7)

Proof. Let us first prove (A.6). We have

∇(χs
ηw

[τ ]
� )∇Ua,� = ∇w

[τ ]
� ∇(χηUa,�) + ∇(χs

ηw
[τ ]
� )∇Ua,� − ∇w

[τ ]
� ∇(χηUa,�)

= ∇w
[τ ]
� ∇(χηUa,�) + ∇χη

{
sχs−1

η w
[τ ]
� ∇Ua,� − Ua,�∇w

[τ ]
�

}
+χη(χs−1

η − 1)∇w
[τ ]
� ∇Ua,�.



65 Page 20 of 22 M. Lucia and Z. Tang NoDEA

Using then the property of the function χη (see (1.4)) we easily deduce that∫
RN

∇(χs
ηw

[τ ]
� )∇Ua,� =

∫
RN

∇w
[τ ]
� ∇(χηUa,�) + O

(
‖Ua,�‖H1(Bc

η)

)
‖w�‖H1 .

(A.8)
Furthermore,

V�(a)χs
ηw

[τ ]
� Ua,� = V� (a + ε[x + P ]) w

[τ ]
� χηUa,�

+ (V�(a) − V� (a + ε[x + P ])) χηw
[τ ]
� Ua,�

+V�(a)
(
χs−1

η − 1
)
χηw

[τ ]
� Ua,�.

Hence by using (A.1) and the fact that (1 + |x|4)U2
a ∈ L1(RN ) we obtain∫

RN

V�(a)χs
ηw

[τ ]
� Ua,� =

∫
RN

V (εx)w�(χηUa,�)[−τ ]

+O
(
ε2 + ‖Ua,�‖L2(Bc

η)

) ∥∥w�‖L2 . (A.9)

Using 〈w, (χηUa)[−τ ]〉ε = 0 (Since w ∈ Fε,a,P ) together with (A.8) and
(A.9), we obtain〈

χs
ηw

[τ ],Ua

〉
a

= O
(
ε2 + ‖Ua‖H1(Bc

η)

) ∥∥w‖ε. (A.10)

The proof of (A.7) is similar. �

Lemma A.3. Let W ∈ C1(RN ) be such that W (a) = 0 for some a ∈ R
N ,

f ∈ L1(RN , (1 + |x|2)dx) be an even function and consider χη given by (1.4).
Then, for i = 1, . . . , N we have∫

RN

W (a+ε[x + P ])(χηf)(x)dx = ε 〈∇W (a), P 〉
∫
RN

f+O
(
ε2 + ‖f‖L1(Bc

η
)
)

.

(A.11)

Proof. Using (A.2) we have, for x ∈ Bη(0) and P ∈ B1(0),∫
RN

W (a + ε[x + P ]) (χηf)dx = ε

∫
Bη(0)

〈∇W (a), x + P 〉 (χηf)dx + O(ε2),

= ε 〈∇W (a), P 〉
∫
RN

f(x)dx

+O
(
ε2 + ‖f‖L1(Bc

η(0))

)
,

where we have used that the map x �→ 〈∇W (a), x〉f(x) is an odd function.
This proves (A.11). �

Finally, given function f ∈ L1(RN ) satisfying f(x) = O (|x|−α) for some
α > N , we have ∫

Bc
η

|f | = O(εα−N )

whenever εη = O(1). Since for the functions Ua solution of (1.2) there exists
a constant δ > 0 such that (same arguments as in Busca and Sirakov [5])
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|U(x)|, |∂iU(x)| ≤ Ce−δ|x|,

we conclude
‖Ua‖H1(Bc

η)
= O(εk), ∀k ≥ 1. (A.12)
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